Feeds:
Posts
Comments

Posts Tagged ‘science policy’

Science Has A Systemic Problem, Not an Innovation Problem

Curator: Stephen J. Williams, Ph.D.

    A recent email, asking me to submit a survey, got me thinking about the malaise that scientists and industry professionals frequently bemoan: that innovation has been stymied for some reason and all sorts of convuluted processes must be altered to spur this mythical void of great new discoveries…..  and it got me thinking about our current state of science, and what is the perceived issue… and if this desert of innovation actually exists or is more a fundamental problem which we have created.

The email was from an NIH committee asking for opinions on recreating the grant review process …. now this on the same day someone complained to me about a shoddy and perplexing grant review they received.

The following email, which was sent out to multiple researchers, involved in either NIH grant review on both sides, as well as those who had been involved in previous questionnaires and studies on grant review and bias.  The email asked for researchers to fill out a survey on the grant review process, and how to best change it to increase innovation of ideas as well as inclusivity.  In recent years, there have been multiple survey requests on these matters, with multiple confusing procedural changes to grant format and content requirements, adding more administrative burden to scientists.

The email from Center for Scientific Review (one of the divisions a grant will go to before review {they set up review study sections and decide what section a grant should be  assigned to} was as follows:

Update on Simplifying Review Criteria: A Request for Information

https://www.csr.nih.gov/reviewmatters/2022/12/08/update-on-simplifying-review-criteria-a-request-for-information/

NIH has issued a request for information (RFI) seeking feedback on revising and simplifying the peer review framework for research project grant applications. The goal of this effort is to facilitate the mission of scientific peer review – identification of the strongest, highest-impact research. The proposed changes will allow peer reviewers to focus on scientific merit by evaluating 1) the scientific impact, research rigor, and feasibility of the proposed research without the distraction of administrative questions and 2) whether or not appropriate expertise and resources are available to conduct the research, thus mitigating the undue influence of the reputation of the institution or investigator.

Currently, applications for research project grants (RPGs, such as R01s, R03s, R15s, R21s, R34s) are evaluated based on five scored criteria: Significance, Investigators, Innovation, Approach, and Environment (derived from NIH peer review regulations 42 C.F.R. Part 52h.8; see Definitions of Criteria and Considerations for Research Project Grant Critiques for more detail) and a number of additional review criteria such as Human Subject Protections.

NIH gathered input from the community to identify potential revisions to the review framework. Given longstanding and often-heard concerns from diverse groups, CSR decided to form two working groups to the CSR Advisory Council—one on non-clinical trials and one on clinical trials. To inform these groups, CSR published a Review Matters blog, which was cross-posted on the Office of Extramural Research blog, Open Mike. The blog received more than 9,000 views by unique individuals and over 400 comments. Interim recommendations were presented to the CSR Advisory Council in a public forum (March 2020 videoslides; March 2021 videoslides). Final recommendations from the CSRAC (report) were considered by the major extramural committees of the NIH that included leadership from across NIH institutes and centers. Additional background information can be found here. This process produced many modifications and the final proposal presented below. Discussions are underway to incorporate consideration of a Plan for Enhancing Diverse Perspectives (PEDP) and rigorous review of clinical trials RPGs (~10% of RPGs are clinical trials) within the proposed framework.

Simplified Review Criteria

NIH proposes to reorganize the five review criteria into three factors, with Factors 1 and 2 receiving a numerical score. Reviewers will be instructed to consider all three factors (Factors 1, 2 and 3) in arriving at their Overall Impact Score (scored 1-9), reflecting the overall scientific and technical merit of the application.

  • Factor 1: Importance of the Research (Significance, Innovation), numerical score (1-9)
  • Factor 2: Rigor and Feasibility (Approach), numerical score (1-9)
  • Factor 3: Expertise and Resources (Investigator, Environment), assessed and considered in the Overall Impact Score, but not individually scored

Within Factor 3 (Expertise and Resources), Investigator and Environment will be assessed in the context of the research proposed. Investigator(s) will be rated as “fully capable” or “additional expertise/capability needed”. Environment will be rated as “appropriate” or “additional resources needed.” If a need for additional expertise or resources is identified, written justification must be provided. Detailed descriptions of the three factors can be found here.

Now looking at some of the Comments were very illuminating:

I strongly support streamlining the five current main review criteria into three, and the present five additional criteria into two. This will bring clarity to applicants and reduce the workload on both applicants and reviewers. Blinding reviewers to the applicants’ identities and institutions would be a helpful next step, and would do much to reduce the “rich-getting-richer” / “good ole girls and good ole boys” / “big science” elitism that plagues the present review system, wherein pedigree and connections often outweigh substance and creativity.

I support the proposed changes. The shift away from “innovation” will help reduce the tendency to create hype around a proposed research direction. The shift away from Investigator and Environment assessments will help reduce bias toward already funded investigators in large well-known institutions.

As a reviewer for 5 years, I believe that the proposed changes are a step in the right direction, refocusing the review on whether the science SHOULD be done and whether it CAN BE DONE WELL, while eliminating burdensome and unhelpful sections of review that are better handled administratively. I particularly believe that the de-emphasis of innovation (which typically focuses on technical innovation) will improve evaluation of the overall science, and de-emphasis of review of minor technical details will, if implemented correctly, reduce the “downward pull” on scores for approach. The above comments reference blinded reviews, but I did not see this in the proposed recommendations. I do not believe this is a good idea for several reasons: 1) Blinding of the applicant and institution is not likely feasible for many of the reasons others have described (e.g., self-referencing of prior work), 2) Blinding would eliminate the potential to review investigators’ biosketches and budget justifications, which are critically important in review, 3) Making review blinded would make determination of conflicts of interest harder to identify and avoid, 4) Evaluation of “Investigator and Environment” would be nearly impossible.

Most of the Comments were in favor of the proposed changes, however many admitted that it adds additional confusion on top of many administrative changes to formats and content of grant sections.

Being a Stephen Covey devotee, and just have listened to  The Four Principles of Execution, it became more apparent that issues that hinder many great ideas coming into fruition, especially in science, is a result of these systemic or problems in the process, not at the level of individual researchers or small companies trying to get their innovations funded or noticed.  In summary, Dr. Covey states most issues related to the success of any initiative is NOT in the strategic planning, but in the failure to adhere to a few EXECUTION principles.  Primary to these failures of strategic plans is lack of accounting of what Dr. Covey calls the ‘whirlwind’, or those important but recurring tasks that take us away from achieving the wildly important goals.  In addition, lack of  determining lead and lag measures of success hinder such plans.

In this case a lag measure in INNOVATION.  It appears we have created such a whirlwind and focus on lag measures that we are incapable of translating great discoveries into INNOVATION.

In the following post, I will focus on issues relating to Open Access, publishing and dissemination of scientific discovery may be costing us TIME to INNOVATION.  And it appears that there are systemic reasons why we appear stuck in a rut, so to speak.

The first indication is from a paper published by Johan Chu and James Evans in 2021 in PNAS:

 

Slowed canonical progress in large fields of science

Chu JSG, Evans JA. Slowed canonical progress in large fields of science. Proc Natl Acad Sci U S A. 2021 Oct 12;118(41):e2021636118. doi: 10.1073/pnas.2021636118. PMID: 34607941; PMCID: PMC8522281

 

Abstract

In many academic fields, the number of papers published each year has increased significantly over time. Policy measures aim to increase the quantity of scientists, research funding, and scientific output, which is measured by the number of papers produced. These quantitative metrics determine the career trajectories of scholars and evaluations of academic departments, institutions, and nations. Whether and how these increases in the numbers of scientists and papers translate into advances in knowledge is unclear, however. Here, we first lay out a theoretical argument for why too many papers published each year in a field can lead to stagnation rather than advance. The deluge of new papers may deprive reviewers and readers the cognitive slack required to fully recognize and understand novel ideas. Competition among many new ideas may prevent the gradual accumulation of focused attention on a promising new idea. Then, we show data supporting the predictions of this theory. When the number of papers published per year in a scientific field grows large, citations flow disproportionately to already well-cited papers; the list of most-cited papers ossifies; new papers are unlikely to ever become highly cited, and when they do, it is not through a gradual, cumulative process of attention gathering; and newly published papers become unlikely to disrupt existing work. These findings suggest that the progress of large scientific fields may be slowed, trapped in existing canon. Policy measures shifting how scientific work is produced, disseminated, consumed, and rewarded may be called for to push fields into new, more fertile areas of study.

So the Summary of this paper is

  • The authors examined 1.8 billion citations among 90 million papers over 241 subjects
  • found the corpus of papers do not lead to turnover of new ideas in a field, but rather the ossification or entrenchment of canonical (or older ideas)
  • this is mainly due to older paper cited more frequently than new papers with new ideas, potentially because authors are trying to get their own papers cited more frequently for funding and exposure purposes
  • The authors suggest that “fundamental progress may be stymied if quantitative growth of scientific endeavors is not balanced by structures fostering disruptive scholarship and focusing attention of novel ideas”

The authors note that, in most cases, science policy reinforces this “more is better” philosophy”,  where metrics of publication productivity are either number of publications or impact measured by citation rankings.  However, using an analysis of citation changes occurring in large versus smaller fields, it becomes apparent that this process is favoring the older, more established papers and a recirculating of older canonical ideas.

“Rather than resulting in faster turnover of field paradigms, the massive amounts of new publications entrenches the ideas of top-cited papers.”  New ideas are pushed down to the bottom of the citation list and potentially lost in the literature.  The authors suggest that this problem will intensify as the “annual mass” of new publications in each field grows, especially in large fields.  This issue is exacerbated by the deluge on new online ‘open access’ journals, in which authors would focus on citing the more highly cited literature. 

We maybe at a critical junction, where if many papers are published in a short time, new ideas will not be considered as carefully as the older ideas.  In addition,

with proliferation of journals and the blurring of journal hierarchies due to online articles-level access can exacerbate this problem

As a counterpoint, the authors do note that even though many molecular biology highly cited articles were done in 1976, there has been extremely much innovation since then however it may take a lot more in experiments and money to gain the level of citations that those papers produced, and hence a lower scientific productivity.

This issue is seen in the field of economics as well

Ellison, Glenn. “Is peer review in decline?” Economic Inquiry, vol. 49, no. 3, July 2011, pp. 635+. Gale Academic OneFile, link.gale.com/apps/doc/A261386330/AONE?u=temple_main&sid=bookmark-AONE&xid=f5891002. Accessed 12 Dec. 2022.

Abstract

Over the past decade, there has been a decline in the fraction of papers in top economics journals written by economists from the highest-ranked economics departments. This paper documents this fact and uses additional data on publications and citations to assess various potential explanations. Several observations are consistent with the hypothesis that the Internet improves the ability of high-profile authors to disseminate their research without going through the traditional peer-review process. (JEL A14, 030)

The facts part of this paper documents two main facts:

1. Economists in top-ranked departments now publish very few papers in top field journals. There is a marked decline in such publications between the early 1990s and early 2000s.

2. Comparing the early 2000s with the early 1990s, there is a decline in both the absolute number of papers and the share of papers in the top general interest journals written by Harvard economics department faculty.

Although the second fact just concerns one department, I see it as potentially important to understanding what is happening because it comes at a time when Harvard is widely regarded (I believe correctly) as having ascended to the top position in the profession.

The “decline-of-peer-review” theory I allude to in the title is that the necessity of going through the peer-review process has lessened for high-status authors: in the old days peer-reviewed journals were by far the most effective means of reaching readers, whereas with the growth of the Internet high-status authors can now post papers online and exploit their reputation to attract readers.

Many alternate explanations are possible. I focus on four theories: the decline-in-peer-review theory and three alternatives.

1. The trends could be a consequence of top-school authors’ being crowded out of the top journals by other researchers. Several such stories have an optimistic message, for example, there is more talent entering the profession, old pro-elite biases are being broken down, more schools are encouraging faculty to do cutting-edge research, and the Internet is enabling more cutting-edge research by breaking down informational barriers that had hampered researchers outside the top schools. (2)

2. The trends could be a consequence of the growth of revisions at economics journals discussed in Ellison (2002a, 2002b). In this more pessimistic theory, highly productive researchers must abandon some projects and/or seek out faster outlets to conserve the time now required to publish their most important works.

3. The trends could simply reflect that field journals have declined in quality in some relative sense and become a less attractive place to publish. This theory is meant to encompass also the rise of new journals, which is not obviously desirable or undesirable.

The majority of this paper is devoted to examining various data sources that provide additional details about how economics publishing has changed over the past decade. These are intended both to sharpen understanding of the facts to be explained and to provide tests of auxiliary predictions of the theories. Two main sources of information are used: data on publications and data on citations. The publication data include department-level counts of publications in various additional journals, an individual-level dataset containing records of publications in a subset of journals for thousands of economists, and a very small dataset containing complete data on a few authors’ publication records. The citation data include citations at the paper level for 9,000 published papers and less well-matched data that is used to construct measures of citations to authors’ unpublished works, to departments as a whole, and to various journals.

Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship

Josh Angrist, Pierre Azoulay, Glenn Ellison, Ryan Hill, Susan Feng Lu. Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship.

JOURNAL OF ECONOMIC LITERATURE

VOL. 58, NO. 1, MARCH 2020

(pp. 3-52)

So if innovation is there but it may be buried under the massive amount of heavily cited older literature, do we see evidence of this in other fields like medicine?

Why Isn’t Innovation Helping Reduce Health Care Costs?

 
 

National health care expenditures (NHEs) in the United States continue to grow at rates outpacing the broader economy: Inflation- and population-adjusted NHEs have increased 1.6 percent faster than the gross domestic product (GDP) between 1990 and 2018. US national health expenditure growth as a share of GDP far outpaces comparable nations in the Organization for Economic Cooperation and Development (17.2 versus 8.9 percent).

Multiple recent analyses have proposed that growth in the prices and intensity of US health care services—rather than in utilization rates or demographic characteristics—is responsible for the disproportionate increases in NHEs relative to global counterparts. The consequences of ever-rising costs amid ubiquitous underinsurance in the US include price-induced deferral of care leading to excess morbidity relative to comparable nations.

These patterns exist despite a robust innovation ecosystem in US health care—implying that novel technologies, in isolation, are insufficient to bend the health care cost curve. Indeed, studies have documented that novel technologies directly increase expenditure growth.

Why is our prolific innovation ecosystem not helping reduce costs? The core issue relates to its apparent failure to enhance net productivity—the relative output generated per unit resource required. In this post, we decompose the concept of innovation to highlight situations in which inventions may not increase net productivity. We begin by describing how this issue has taken on increased urgency amid resource constraints magnified by the COVID-19 pandemic. In turn, we describe incentives for the pervasiveness of productivity-diminishing innovations. Finally, we provide recommendations to promote opportunities for low-cost innovation.

 

 

Net Productivity During The COVID-19 Pandemic

The issue of productivity-enhancing innovation is timely, as health care systems have been overwhelmed by COVID-19. Hospitals in Italy, New York City, and elsewhere have lacked adequate capital resources to care for patients with the disease, sufficient liquidity to invest in sorely needed resources, and enough staff to perform all of the necessary tasks.

The critical constraint in these settings is not technology: In fact, the most advanced technology required to routinely treat COVID-19—the mechanical ventilator—was invented nearly 100 years ago in response to polio (the so-called iron lung). Rather, the bottleneck relates to the total financial and human resources required to use the technology—the denominator of net productivity. The clinical implementation of ventilators has been illustrative: Health care workers are still required to operate ventilators on a nearly one-to-one basis, just like in the mid-twentieth century. 

High levels of resources required for implementation of health care technologies constrain the scalability of patient care—such as during respiratory disease outbreaks such as COVID-19. Thus, research to reduce health care costs is the same kind of research we urgently require to promote health care access for patients with COVID-19.

Types Of Innovation And Their Relationship To Expenditure Growth

The widespread use of novel medical technologies has been highlighted as a central driver of NHE growth in the US. We believe that the continued expansion of health care costs is largely the result of innovation that tends to have low productivity (exhibit 1). We argue that these archetypes—novel widgets tacked on to existing workflows to reinforce traditional care models—are exactly the wrong properties to reduce NHEs at the systemic level.

Exhibit 1: Relative productivity of innovation subtypes

Source: Authors’ analysis.

Content Versus Process Innovation

Content (also called technical) innovation refers to the creation of new widgets, such as biochemical agents, diagnostic tools, or therapeutic interventions. Contemporary examples of content innovation include specialty pharmaceuticalsmolecular diagnostics, and advanced interventions and imaging.

These may be contrasted with process innovations, which address the organized sequences of activities that implement content. Classically, these include clinical pathways and protocols. They can address the delivery of care for acute conditions, such as central line infections, sepsis, or natural disasters. Alternatively, they can target chronic conditions through initiatives such as team-based management of hypertension and hospital-at-home models for geriatric care. Other processes include hiring staffdelegating labor, and supply chain management.

Performance-Enhancing Versus Cost-Reducing Innovation

Performance-enhancing innovations frequently create incremental outcome gains in diagnostic characteristics, such as sensitivity or specificity, or in therapeutic characteristics, such as biomarkers for disease status. Their performance gains often lead to higher prices compared to existing alternatives.  

Performance-enhancing innovations can be compared to “non-inferior” innovations capable of achieving outcomes approximating those of existing alternatives, but at reduced cost. Industries outside of medicine, such as the computing industry, have relied heavily on the ability to reduce costs while retaining performance.

In health care though, this pattern of innovation is rare. Since passage of the 2010 “Biosimilars” Act aimed at stimulating non-inferior innovation and competition in therapeutics markets, only 17 agents have been approved, and only seven have made it to market. More than three-quarters of all drugs receiving new patents between 2005 and 2015 were “reissues,” meaning they had already been approved, and the new patent reflected changes to the previously approved formula. Meanwhile, the costs of approved drugs have increased over time, at rates between 4 percent and 7 percent annually.

Moreover, the preponderance of performance-enhancing diagnostic and therapeutic innovations tend to address narrow patient cohorts (such as rare diseases or cancer subtypes), with limited clear clinical utility in broader populations. For example, the recently approved eculizimab is a monoclonal antibody approved for paroxysmal nocturnal hemoglobinuria—which effects 1 in 10 million individuals. At the time of its launch, eculizimab was priced at more than $400,000 per year, making it the most expensive drug in modern history. For clinical populations with no available alternatives, drugs such as eculizimab may be cost-effective, pending society’s willingness to pay, and morally desirable, given a society’s values. But such drugs are certainly not cost-reducing.

Additive Versus Substitutive Innovation

Additive innovations are those that append to preexisting workflows, while substitutive innovations reconfigure preexisting workflows. In this way, additive innovations increase the use of precedent services, whereas substitutive innovations decrease precedent service use.

For example, previous analyses have found that novel imaging modalities are additive innovations, as they tend not to diminish use of preexisting modalities. Similarly, novel procedures tend to incompletely replace traditional procedures. In the case of therapeutics and devices, off-label uses in disease groups outside of the approved indication(s) can prompt innovation that is additive. This is especially true, given that off-label prescriptions classically occur after approved methods are exhausted.

Eculizimab once again provides an illustrative example. As of February 2019, the drug had been used for 39 indications (it had been approved for three of those, by that time), 69 percent of which lacked any form of evidence of real-world effectiveness. Meanwhile, the drug generated nearly $4 billion in sales in 2019. Again, these expenditures may be something for which society chooses to pay—but they are nonetheless additive, rather than substitutive.

Sustaining Versus Disruptive Innovation

Competitive market theory suggests that incumbents and disruptors innovate differently. Incumbents seek sustaining innovations capable of perpetuating their dominance, whereas disruptors pursue innovations capable of redefining traditional business models.

In health care, while disruptive innovations hold the potential to reduce overall health expenditures, often they run counter to the capabilities of market incumbents. For example, telemedicine can deliver care asynchronously, remotely, and virtually, but large-scale brick-and-mortar medical facilities invest enormous capital in the delivery of synchronous, in-house, in-person care (incentivized by facility fees).

The connection between incumbent business models and the innovation pipeline is particularly relevant given that 58 percent of total funding for biomedical research in the US is now derived from private entities, compared with 46 percent a decade prior. It follows that the growing influence of eminent private organizations may favor innovations supporting their market dominance—rather than innovations that are societally optimal.

Incentives And Repercussions Of High-Cost Innovation

Taken together, these observations suggest that innovation in health care is preferentially designed for revenue expansion rather than for cost reduction. While offering incremental improvements in patient outcomes, therefore creating theoretical value for society, these innovations rarely deliver incremental reductions in short- or long-term costs at the health system level.

For example, content-based, performance-enhancing, additive, sustaining innovations tend to add layers of complexity to the health care system—which in turn require additional administration to manage. The net result is employment growth in excess of outcome improvement, leading to productivity losses. This gap leads to continuously increasing overall expenditures in turn passed along to payers and consumers.

Nonetheless, high-cost innovations are incentivized across health care stakeholders (exhibit 2). From the supply side of innovation, for academic researchers, “breakthrough” and “groundbreaking” innovations constitute the basis for career advancement via funding and tenure. This is despite stakeholders’ frequent inability to generalize early successes to become cost-effective in the clinical setting. As previously discussed, the increasing influence of private entities in setting the medical research agenda is also likely to stimulate innovation benefitting single stakeholders rather than the system.

Exhibit 2: Incentives promoting low-value innovation

Source: Authors’ analysis adapted from Hofmann BM. Too much technology. BMJ. 2015 Feb 16.

From the demand side of innovation (providers and health systems), a combined allure (to provide “cutting-edge” patient care), imperative (to leave “no stone unturned” in patient care), and profit-motive (to amplify fee-for-service reimbursements) spur participation in a “technological arms-race.” The status quo thus remains as Clay Christensen has written: “Our major health care institutions…together overshoot the level of care actually needed or used by the vast majority of patients.”

Christensen’s observations have been validated during the COVID-19 epidemic, as treatment of the disease requires predominantly century-old technology. By continually adopting innovation that routinely overshoots the needs of most patients, layer by layer, health care institutions are accruing costs that quickly become the burden of society writ large.

Recommendations To Reduce The Costs Of Health Care Innovation

Henry Aaron wrote in 2002 that “…the forces that have driven up costs are, if anything, intensifying. The staggering fecundity of biomedical research is increasing…[and] always raises expenditures.” With NHEs spiraling ever-higher, urgency to “bend the cost curve” is mounting. Yet, since much biomedical innovation targets the “flat of the [productivity] curve,” alternative forms of innovation are necessary.

The shortcomings in net productivity revealed by the COVID-19 pandemic highlight the urgent need for redesign of health care delivery in this country, and reevaluation of the innovation needed to support it. Specifically, efforts supporting process redesign are critical to promote cost-reducing, substitutive innovations that can inaugurate new and disruptive business models.

Process redesign rarely involves novel gizmos, so much as rejiggering the wiring of, and connections between, existing gadgets. It targets operational changes capable of streamlining workflows, rather than technical advancements that complicate them. As described above, precisely these sorts of “frugal innovations” have led to productivity improvements yielding lower costs in other high-technology industries, such as the computing industry.

Shrank and colleagues recently estimated that nearly one-third of NHEs—almost $1 trillion—were due to preventable waste. Four of the six categories of waste enumerated by the authors—failure in care delivery, failure in care coordination, low-value care, and administrative complexity—represent ripe targets for process innovation, accounting for $610 billion in waste annually, according to Shrank.

Health systems adopting process redesign methods such as continuous improvement and value-based management have exhibited outcome enhancement and expense reduction simultaneously. Internal processes addressed have included supply chain reconfiguration, operational redesign, outlier reconciliation, and resource standardization.

Despite the potential of process innovation, focus on this area (often bundled into “health services” or “quality improvement” research) occupies only a minute fraction of wallet- or mind-share in the biomedical research landscape, accounting for 0.3 percent of research dollars in medicine. This may be due to a variety of barriers beyond minimal funding. One set of barriers is academic, relating to negative perceptions around rigor and a lack of outlets in which to publish quality improvement research. To achieve health care cost containment over the long term, this dimension of innovation must be destigmatized relative to more traditional manners of innovation by the funders and institutions determining the conditions of the research ecosystem.

Another set of barriers is financial: Innovations yielding cost reduction are less “reimbursable” than are innovations fashioned for revenue expansion. This is especially the case in a fee-for-service system where reimbursement is tethered to cost, which creates perverse incentives for health care institutions to overlook cost increases. However, institutions investing in low-cost innovation will be well-positioned in a rapidly approaching future of value-based care—in which the solvency of health care institutions will rely upon their ability to provide economically efficient care.

Innovating For Cost Control Necessitates Frugality Over Novelty

Restraining US NHEs represents a critical step toward health promotion. Innovation for innovation’s sake—that is content-based, incrementally effective, additive, and sustaining—is unlikely to constrain continually expanding NHEs.

In contrast, process innovation offers opportunities to reduce costs while maintaining high standards of patient care. As COVID-19 stress-tests health care systems across the world, the importance of cost control and productivity amplification for patient care has become apparent.

As such, frugality, rather than novelty, may hold the key to health care cost containment. Redesigning the innovation agenda to stem the tide of ever-rising NHEs is an essential strategy to promote widespread access to care—as well as high-value preventive care—in this country. In the words of investors across Silicon Valley: Cost-reducing innovation is no longer a “nice-to-have,” but a “need-to-have” for the future of health and overall well-being this country.

So Do We Need A New Way of Disseminating Scientific Information?  Can Curation Help?

We had high hopes for Science 2.0, in particular the smashing of data and knowledge silos. However the digital age along with 2.0 platforms seemed to excaccerbate this somehow. We still are critically short on analysis!



Old Science 1.0 is still the backbone of all scientific discourse, built on the massive amount of experimental and review literature. However this literature was in analog format, and we moved to a more accesible digital open access format for both publications as well as raw data. However as there was a structure for 1.0, like the Dewey decimal system and indexing, 2.0 made science more accesible and easier to search due to the newer digital formats. Yet both needed an organizing structure; for 1.0 that was the scientific method of data and literature organization with libraries as the indexers. In 2.0 this relied on an army mostly of volunteers who did not have much in the way of incentivization to co-curate and organize the findings and massive literature.



The Intenet and the Web is rapidly adopting a new “Web 3.0” format, with decentralized networks, enhanced virtual experiences, and greater interconnection between people. Here we start the discussion what will the move from Science 2.0, where dissemination of scientific findings was revolutionized and piggybacking on Web 2.0 or social media, to a Science 3.0 format. And what will it involve or what paradigms will be turned upside down?

We have discussed this in other posts such as

Will Web 3.0 Do Away With Science 2.0? Is Science Falling Behind?

and

Curation Methodology – Digital Communication Technology to mitigate Published Information Explosion and Obsolescence in Medicine and Life Sciences

For years the pharmaceutical industry has toyed with the idea of making innovation networks and innovation hubs

It has been the main focus of whole conferences

Tales from the Translational Frontier – Four Unique Approaches to Turning Novel Biology into Investable Innovations @BIOConvention #BIO2018

However it still seems these strategies have not worked

Is it because we did not have an Execution plan? Or we did not understand the lead measures for success?

Other Related Articles on this Open Access Scientific Journal Include:

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Analysis of Utilizing LPBI Group’s Scientific Curation Platform as an Educational Tool: New Paradigm for Student Engagement

Global Alliance for Genomics and Health Issues Guidelines for Data Siloing and Sharing

Multiple Major Scientific Journals Will Fully Adopt Open Access Under Plan S

eScientific Publishing a Case in Point: Evolution of Platform Architecture Methodologies and of Intellectual Property Development (Content Creation by Curation) Business Model 

Read Full Post »

Joe Biden Announced Science Team Nominations for the New Administration

Reporter: Stephen J. Williams, PhD

Article ID #287: Joe Biden Announced Science Team Nominations for the New Administration. Published on 1/17/2021

WordCloud Image Produced by Adam Tubman

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page

Read Full Post »

Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 8AM-Noon Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Monday, June 22

8:30 AM – 10:10 AM EDT

Virtual Special Session

Opening Ceremony

The Opening Ceremony will include the following presentations:
Welcome from AACR CEO Margaret Foti, PhD, MD (hc)

CHIEF EXECUTIVE OFFICER

MARGARET FOTI, PHD, MD (HC)

​American Association for Cancer Research
Philadelphia, Pennsylvania

  • Dr. Foti mentions that AACR is making progress in including more ethnic and gender equality in cancer research and she feels that the disparities seen in health care, and in cancer care, is related to the disparities seen in the cancer research profession
  • AACR is very focused now on blood cancers and creating innovation summits on this matter
  • In 2019 awarded over 60 grants but feel they will be able to fund more research in 2020
  • Government funding is insufficient at current levels

Remarks from AACR Immediate Past President Elaine R. Mardis, PhD, FAACR

  • involved in planning and success of the first virtual meeting (it was really well done)
  • # of registrants was at unprecedented numbers
  • the scope for this meeting will be wider than the first meeting
  • they have included special sessions including COVID19 and health disparities
  • 70 educational and methodology workshops on over 70 channels

AACR Award for Lifetime Achievement in Cancer Research

  • Dr. Philip Sharp is awardee of Lifetime Achievement Award
  • Dr. Sharp is known for his work in RNA splicing and development of multiple cancer models including a mouse CRSPR model
  • worked under Jim Watson at Cold Spring Harbor
    Presentation of New Fellows of the AACR Academy
  • Dr. Radcliffe for hypoxic factors
  • CART therapies
  • Dr. Semenza for HIF1 discovery
  • Dr Swanton for stratification of patients and tumor heterogeneity
  • these are just some of the new fellows

AACR-Biedler Prizes for Cancer Journalism

  • Writer of Article War of Nerves awarded; reported on nerve intervation of tumors
  • writer Budman on reporting and curation of hedgehog inhibitors in cancers
  • patient advocacy book was awarded for journalism
  • cancer survivor Kasie Newsome produced multiple segments on personalized cancer therapy from a cancer survivor perspective

Remarks from Speaker of the United States House of Representatives Nancy Pelosi

  • helped secure a doubling of funding for NCI and NIH in the 90s
  • securing COVID funding to offset some of the productivity issues related to the shutdown due to COVID
  • advocating for more work to alleviate health disparities

 

Remarks from United States Senator Roy Blunt

  • tireless champion in the Senate for cancer research funding; he was a cancer survivor himself
  • we need to keep focus on advances in science

Margaret Foti

DETAILS

Monday, June 22

10:10 AM – 12:30 PM EDT

Virtual Plenary Session

Bioinformatics and Systems Biology, Epidemiology, Immunology, Molecular and Cellular Biology/Genetics

Opening Plenary Session: Turning Science into Lifesaving Care

Alexander Marson, Antoni Ribas, Ashani T Weeraratna, Olivier Elemento, Howard Y Chang, Daniel D. De Carvalho

DETAILS

Monday, June 22

12:45 PM – 1:30 PM EDT

Awards and Lectures

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Experimental and Molecular Therapeutics, Immunology

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

Reporter: Stephen J. Williams, PhD @StephenJWillia2

Science and technology bring tremendous value to society in years of life and quality of life, yet the public often perceives science as difficult, irrelevant or even threatening. Moreover, the inspirational and moving stories of scientists and innovators working around the world are often hidden or misrepresented in popular culture. Whose responsibility is it to communicate science and engage the public in supporting the scientific enterprise? Can everyone be a Champion of Science and what are the solutions to enlist and engage more champions of science across generations and geographies? How do we work together to enhance transparency, accessibility and relevance of science for everyone, everywhere? Can science become more inclusive and engage hearts and not only minds?

Join this exciting session as Johnson & Johnson announces the winners of the Champions of Science – BioGENEius Storytelling Challenge, and brings together other key stakeholders in a discussion about the importance of engaging the public to fall in love in science all over again.

Sponsored by: Johnson & Johnson Innovation

Seema: We need to solve the problem of the lack of trust in scientists.  Some of JNJ winners of their acheivement program went on to become Nobel Laureates.   Arthur Horwich and Hans Ullrich won the Jannsen Award for discovering compounds that could refold proteins, including protein chaperones.  Many diseases occur because of protein misfolding like neuro-degenerative diseases.
Seema:  Great science going on in Africa.  JNJ wanted to showcase the great science in Africa. they awarded four individuals with storytelling award (Emily).
Dr. Horwich: got interested in science early on.  Worked on N terminal mitochondrial signal peptides.  also then got interested in how proteins fold and unfold and refold since the 1950s.  He had changed the thinking of how proteins are processed within cells and over many years he had worked on this.
Emily Wang:  Parents and schoolteachers prodded her curiosity in biology. The impact of day to day work of scientists is arduous but the little things can lead to advances that may help people.  If passionate and have a great mentor then can get a foot in the door.  Worked at Stanford in the lab.
Dr. Mukherjee: He likes to cure diseases, physican first, scientist second, writer third but he doesn’t separate this.  In older times scientists wrote to think and true today. How we visualize the word, or use our hands, is similar.  He takes the word translational research very seriously.  Can you say in one sentence how this will help patients in three years?
There are multitude ways of love for science.
Dr. Pinela: loved asking big question and loved storytelling but asking bigger questions. Moved from Columbia and moved to US; loved the freedom and government funding situation at that time.  Need the training and mentorship so mentors are a very big aspect in innovation as it led her to entrepreneurship.  We need to use technology to disrupt and innovate.
Nsikin:  A lot of mentors nurture curiosity.  People like to see them in that story of curiosity.  That is how is bases the PBS science videos: did  a study on engagement and people wants a morality, and a science identity (an inner nerd in all of us i.e. spark the interest).  The feedback if they focus on this has been positive.

Please follow LIVE on TWITTER using the following @ handles and # hashtags:

@Handles

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

Read Full Post »