Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Joe Biden’


Cancer initiatives

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Updated 4/12/2019

AACR 2016: Biden Calls for Overhauling Cancer Research Incentives

http://www.genengnews.com/gen-news-highlights/aacr-2016-biden-calls-for-overhauling-cancer-research-incentives/81252636/

 

The first priority cited by the vice president was data sharing. Biden defended the concept as essential to advancing the process of cancer research and countered a January 21 New England Journal of Medicine editorial in which editor-in-chief Jeffrey Drazen, M.D., contended that data sharing could breed data “parasites.”

Four days later, Dr. Drazen clarified NEJM’s position by adding that with “appropriate systems” in place, “we will require a commitment from authors to make available the data that underlie the reported results of their work within 6 months after we publish them.”

Other priorities Biden said should serve as the basis of new incentives:

  • Involve patients in clinical trial design—Raising awareness of trials, and allowing patients to participate in how they are designed and conducted, could help address the difficulty of recruiting patients for studies. Only 4% of cancer patients are involved in a trial, he said.
  • “Let scientists do science”—Biden contrasted unfavorably NIH’s roughly 1-year process for decisions on grants to that of the Prostate Cancer Foundation, which limits grant applications to 10 pages and decides on those funding requests within 30 days: “Why is it that it takes multiple submissions and more than a year to get an answer from us?” Biden said.
  • Encourage grants from younger researchers—Biden decried the current professional system under which younger researchers are sidetracked for years doing administrative work in labs before they can pursue their own research grants: “It’s like asking Derek Jeter to take several years off to sell bonds to build Yankee Stadium,” the VP quipped.
  • Measure progress by outcomes—Rather than the quantity of research papers generated by grants, Biden said, “what you propose and how it affects patients, it seems to me, should be the basis of whether you continue to get the grant.”
  • Promote open-access publication of results—Biden criticized academic publishing’s reliance on paid-subscription journals that block content behind paywalls and which own data for up to a year. He contrasted that system with the Bill and Melinda Gates Foundation’s stipulation that the research it funds be published in an open-access journal and be freely available once published.
  • Reward verification—Research that verifies results through replication should be encouraged, Biden said, which acknowledging that few people now get such funding.

Biden recalled how following Beau’s diagnosis with cancer, he and his wife Jill Biden, Ed.D., who introduced the VP at the AACR event, “had access to the best doctors in the world.”

“The more we talked to them, the more we understood that we are on the cusp of a real inflection point in the fight against cancer.”

Updated 4/12/2019

Pediatric Cancer Initiatives

Data Sharing for Pediatric Cancers: President Trump Announces Pledge to Fight Childhood Cancer Will Involve Genomic Data Sharing Effort

In the journal Science, Drs. Olena Morozova Vaske ( and David Haussler University of California, Santa Cruz) recently wrote an editorial entitled “Data Sharing for Pediatric Cancers“, in which they discuss the implications of President Trump’s intentions to increase funding for pediatric cancers with a corresponding effort for genomic data sharing.  Also discussed is the current efforts on pediatric genomic data sharing as well as some opinions on coordinating these efforts on a world-wide scale to benefit the patients, researchers, and clinicians.

The article is found below as it is a very good read on the state of data sharing in the pediatric cancer field and offers some very good insights in designing such a worldwide system to handle this data sharing, including allowing patients governance over their own data.

Last month, in a conference call held by the U.S. Department of Health and Human Services and National Institutes of Health (NIH), it was revealed that a large focus of President Trump’s pledge to fund childhood cancer research will be genomic data sharing. Although the United States has only 5% of the world’s pediatric cancer cases, it has disproportionately more resources and access to genomic information compared to low-income countries. We hope that the spotlight on genomic data sharing in the United States will galvanize the world’s pediatric cancer community to elevate genomic data sharing to a level where its full potential can finally be realized.

Pediatric cancers are rare, affecting 50 to 200 children per million a year worldwide. Thus, with 16 different major types and many subtypes, no cancer center encounters large cohorts of patients with the same diagnosis. To advance their understanding of particular cancer subtypes, pediatric oncologists must have access to data from similar cases at other centers. Because subtypes of pediatric cancer are rare, assembling large cohorts is a limiting factor in clinical trials as well. Here, too, data sharing is the first critical step.

Typically, pediatric cancers don’t have the number of mutations that make immunotherapies effective, and only a few subtypes have recurrent mutations that can be used to develop gene-targeted therapies. However, the abnormal expression level of genes gives a vivid picture of genetic misregulation, and just sharing this information would be a huge step forward. Using gene expression and mutation data, analysis of genetic misregulation in different pediatric cancer subtypes could point the way to new treatments.

A major challenge in genomic data sharing is the patient’s young age, which frequently precludes an opportunity for informed consent. Compounding this, the rarity of subtypes requires the aggregation of patients from multiple jurisdictions, raising barriers to assembling large representative data sets. A greater percentage of children than adults with cancer participate in research studies, and children often participate in multiple studies. However, this means that data collected on individual children may be found at multiple institutions, creating difficulties if there are no standards for data sharing.

To enable effective sharing of genomic and clinical data, the Global Alliance for Genomics and Health has developed the Key Implications for Data Sharing (KIDS) framework for pediatric genomics. The recommendations include involving children in the data-sharing decision-making process and imposing an ethical obligation on data generators to provide children and parents with the opportunity to share genomic and clinical information with researchers. Although KIDS guidelines are not legally binding, they could inform policy development worldwide.

To advance the sharing culture, along with the NIH, pediatric cancer foundations such as the St. Baldrick’s Foundation and Alex’s Lemonade Stand Foundation have incorporated genomic data-sharing requirements into their grants processes. Researchers and clinicians around the world have created dozens of pediatric cancer genomic databases and portals, but pulling these together into a larger network is problematic, especially for patients with data at more than one institution, as patient identifiers are stripped from shared data. However, initiatives like the Children’s Oncology Group’s Project Every Child and the European Network for Cancer Research in Children and Adolescents’ Unified Patient Identity may resolve this issue.

We urge the creators of pediatric cancer genomic resources to collaborate and build a real-time federated data-sharing system, and hope that the new U.S. initiative will inspire other countries to link databases rather than just create new siloed regional resources. The great advances in information technology and life sciences in the last decades have given us a new opportunity to save our children from the scourge of cancer. We must resolve to use them.

Source: Olena Morozova Vaske and David Haussler.  Science; 363(6432): 1125 (2019). Data sharing for pediatric cancers. 

NIH-NCI Initiative: International collaboration to create new cancer models to accelerate research

LIVE 1:45 pm – 3:10 pm 4/25/2016 Forum Opening, A War or Moonshot: Where Do We Stand? Creating a Disruptive Cancer Pipeline @2016 World Medical Innovation Forum: CANCER, April 25-27, 2016, Westin Hotel, Boston

Will President Obama’ s Cancer Immunotherapy Colloquium (dubbed Moonshot) mean Government is Fully Behind the War on Cancer or have we heard this before?

Exome Aggregation Consortium (ExAC), generated the largest catalogue so far of variation in human protein-coding regions: Sequence data of 60,000 people, NOW is a publicly accessible database

Healthcare conglomeration to access Big Data and lower costs

 

Advertisements

Read Full Post »