Feeds:
Posts
Comments

Archive for the ‘Funding Opportunities for Cancer Research’ Category


Joe Biden Announced Science Team Nominations for the New Administration

Reporter: Stephen J. Williams, PhD

 

UPDATED on 1/18/2021

As we move forward, we should all take pride in the continuation of UC Berkeley’s legacy of service and leadership to our political, economic and civic institutions. We congratulate alumni and faculty of the social sciences playing prominent roles in the incoming administration. Dr. Lisa D. Cook (‘04 Ph.D., Economics) is leading the economic transition team. Professor Emeritus Janet Yellen , (Berkeley Haas, Berkeley Economics) is the first woman nominated to serve as Secretary of  the Treasury; Wally Adeyemo (‘03 Political Economy) is the first African-American to serve as the Deputy Secretary of the Treasury; and Alejandro Mayorkas (‘81 History) is both the first Latino American and the first Jewish American nominated as Director of Homeland Security.  

SOURCE

From: Dean Raka Ray <socialsciences@berkeley.edu>

Reply-To: socialsciences@berkeley.edu” <reply-fe841079776d017a72-101_HTML-19495415-7300855-42@our.berkeley.edu>

Date: Monday, January 18, 2021 at 11:01 AM

To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>

Subject: A message from the Dean of Social Sciences

 

Biden Science Team Nominations

President-elect Joe Biden and Vice President-elect Kamala Harris announced several members of their White House science team. Eric Lander is the nominee for director of the Office of Science and Technology Policy, elevated to a Cabinet-level position. Mr. Biden also selected Alondra Nelson for deputy director of the President’s Council of Advisers on Science and Technology, and appointed Frances Arnold and Maria Zuber as co-chairs of the Office of Science and Technology Policy

 

 

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

The video link is

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page

Read Full Post »


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Late Day Sessions

 

Reporter: Stephen J. Williams, PhD

 

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

 

 

Virtual Educational Session

Prevention Research, Science Policy, Epidemiology, Survivorship

Carcinogens at Home: Science and Pathways to Prevention

Chemicals known to cause cancer are used and released to the environment in large volumes, exposing people where they live, work, play, and go to school. The science establishing an important role for such exposures in the development of cancers continues to strengthen, yet cancer prevention researchers are largely unfamiliar with the data drawn upon in identifying carcinogens and making decisions about their use. Characterizing and reducing harmful exposures and accelerating the devel

Julia Brody, Kathryn Z. Guyton, Polly J. Hoppin, Bill Walsh, Mary H. Ward

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Molecular and Cellular Biology/Genetics, Clinical Research Excluding Trials

EMT Still Matters: Let’s Explore! – Dedicated to the Memory of Isaiah J. Fidler

During carcinoma progression, initially benign epithelial cells acquire the ability to invade locally and disseminate to distant tissues by activating epithelial-mesenchymal transition (EMT). EMT is a cellular process during which epithelial cells lose their epithelial features and acquire mesenchymal phenotypes and behavior. Growing evidence supports the notion that EMT programs during tumor progression are usually activated to various extents and often partial and reversible, thus pr

Jean-Paul Thiery, Heide L Ford, Jing Yang, Geert Berx

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

One of These Things Is Not Like the Other: The Many Faces of Senescence in Cancer

Cellular senescence is a stable cell growth arrest that is broadly recognized to act as a barrier against tumorigenesis. Senescent cells acquire a senescence-associated secretory phenotype (SASP), a transcriptional response involving the secretion of inflammatory cytokines, immune modulators, and proteases that can shape the tumor microenvironment. The SASP can initially stimulate tumor immune surveillance and reinforce growth arrest. However, if senescent cells are not removed by the

Clemens A Schmitt, Andrea Alimonti, René Bernards

DETAILS

Monday, June 22

1:30 PM – 3:00 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Molecular and Cellular Biology/Genetics

Recent Advances in Applications of Cell-Free DNA

The focus of this educational session will be on recent developments in cell-free DNA (cfDNA) analysis that have the potential to impact the care of cancer patients. Tumors continually shed DNA into the circulation, where it can be detected as circulating tumor DNA (ctDNA). Analysis of ctDNA has become a routine part of care for a subset of patients with advanced malignancies. However, there are a number of exciting potential applications that have promising preliminary data but that h

Michael R Speicher, Maximilian Diehn, Aparna Parikh

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Methods Workshop

Clinical Research Excluding Trials, Clinical Trials, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Translating Genetics and Genomics to the Clinic and Population

This session will describe how advances in understanding cancer genomes and in genetic testing technologies are being translated to the clinic. The speakers will illustrate the clinical impact of genomic discoveries for diagnostics and treatment of common tumor types in adults and in children. Cutting-edge technologies for characterization of patient and tumor genomes will be described. New insights into the importance of patient factors for cancer risk and outcome, including predispos

Heather L. Hampel, Gordana Raca, Jaclyn Biegel, Jeffrey M Trent

DETAILS

Monday, June 22

1:30 PM – 3:22 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Drug Development, Epidemiology

Under-representation in Clinical Trials and the Implications for Drug Development

The U.S. Food and Drug Administration relies on data from clinical trials to determine whether medical products are safe and effective. Ideally, patients enrolled in those trials are representative of the population in which the product will be used if approved, including people of different ages, races, ethnic groups, and genders. Unfortunately, with few patients enrolling in clinical trials, many groups are not well-represented in clinical trials. This session will explore challenges

Ajay K. Nooka, Nicole J. Gormley, Kenneth C Anderson, Ruben A. Mesa, Daniel J. George, Yelak Biru, RADM Richardae Araojo, Lola A. Fashoyin-Aje

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Cancer Chemistry

Targeted Protein Degradation: Target Validation Tools and Therapeutic Opportunity

This educational session will cover the exciting emerging field of targeted protein degradation. Key learning topics will include: 1. an introduction to the technology and its relevance to oncology; 2. PROTACS, degraders, and CELMoDs; 3. enzymology and protein-protein interactions in targeted protein degraders; 4. examples of differentiated biology due to degradation vs. inhibition; 5. how to address questions of specificity; and 6. how the field is approaching challenges in optimizing therapies

George Burslem, Mary Matyskiela, Lyn H. Jones, Stewart L Fisher, Andrew J Phillips

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Experimental and Molecular Therapeutics, Drug Development, Molecular and Cellular Biology/Genetics

Obstacles and opportunities for protein degradation drug discovery

Lyn H. Jones
  • PROTACs ubiquitin mediated by E3 ligases;  first discovered by DeShaies and targeted to specific proteins
  • PROTACs used in drug discovery against a host of types of targets including kinases and membrane receptors
  • PROTACs can be modular but lack molecular structural activity relationships
  • can use chemical probes for target validation
  • four requirements: candidate exposure at site of action (for example lipophilicity for candidates needed to cross membranes and accumulate in lysosomes), target engagement (ternary occupancy as measured by FRET), functional pharmacology, relevant phenotype
  • PROTACs hijack the proteosomal degradation system

Proteolysis-targeting chimeras as therapeutics and tools for biological discovery

George Burslem
  • first PROTAC developed to coopt the VHL ubiquitin ligase system which degrades HIF1alpha but now modified for EREalpha
  • in screen for potential PROTACS there were compounds which bound high affinity but no degradation so phenotypic screening very important
  • when look at molecular dynamics can see where PROTAC can add additional protein protein interaction, verifed by site directed mutagenesis
  • able to target bcr-Abl
  • he says this is a rapidly expanding field because of all the new E3 ligase targets being discovered

Expanding the horizons of cereblon modulators

Mary Matyskiela

Translating cellular targeted protein degradation to in vivo models using an enzymology framework

Stewart L Fisher
  • new targeting compounds have an E3 ligase binding domain, a target binding domain and a linker domain
  • in vivo these compounds are very effective; BRD4 degraders good invitro and in vivo with little effect on body weight
  • degraders are essential activators of E3 ligases as these degraders bring targets in close proximity so activates a catalytic cycle of a multistep process (has now high turnover number)
  • in enzymatic pathway the degraders make a productive complex so instead of a kcat think of measuring a kprod or productivity of degraders linked up an E3 ligase
  • the degraders are also affecting the rebound protein synthesis; so Emax never to zero and see a small rebound of protein synthesis

 

Data-Driven Approaches for Choosing Combinatorial Therapies

Drug combinations remain the gold standard for treating cancer, as they significantly outperform single agents. However, due to the enormous size of drug combination space, it is virtually impossible to interrogate all possible combinations. This session will discuss approaches to identify novel combinations using both experimental and computational approaches. Speakers will discuss i) approaches to drug screening in cell lines, the impact of the microenvironment, and attempts to more

Bence Szalai, James E Korkola, Lisa Tucker-Kellogg, Jeffrey W Tyner

DETAILS

Monday, June 22

3:45 PM – 5:21 PM EDT

Virtual Educational Session

Tumor Biology

Cancer Stem Cells and Therapeutic Resistance

Cancer stem cells are a subpopulation of cells with a high capacity for self-renewal, differentiation and resistance to therapy. In this session, we will define cancer stem cells, discuss cellular plasticity, interactions between cancer stem cells and the tumor microenvironment, and mechanisms that contribute to therapeutic resistance.

Robert S Kerbel, Dolores Hambardzumyan, Jennifer S. Yu

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Drug Development, Experimental and Molecular Therapeutics

Molecular Imaging in Cancer Research

This session will cover the fundamentals as well as the major advances made in the field of molecular imaging. Topics covered will include the basics for optical, nuclear, and ultrasound imaging; the pros and cons of each modality; and the recent translational advancements. Learning objectives include the fundamentals of each imaging modality, recent advances in the technology, the processes involved to translate an imaging agent from bench to bedside, and how molecular imaging can gui

Julie Sutcliffe, Summer L Gibbs, Mark D Pagel, Katherine W Ferrara

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Immunology, Experimental and Molecular Therapeutics, Drug Development

Tumor Endothelium: The Gatekeepers of Tumor Immune Surveillance

Tumor-associated endothelium is a gatekeeper that coordinates the entry and egress of innate and adaptive immune cells within the tumor microenvironment. This is achieved, in part, via the coordinated expression of chemokines and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. Crosstalk between adaptive immune cells and the tumor endothelium is therefore essential for tumor immune surveillance and the success of immune-based thera

Dai Fukumura, Maria M Steele, Wen Jiang, Andrew C Dudley

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Immunology, Experimental and Molecular Therapeutics

Novel Strategies in Cancer Immunotherapy: The Next Generation of Targets for Anticancer Immunotherapy

T-cell immunotherapy in the form of immune checkpoint blockade or cellular T-cell therapies has been tremendously successful in some types of cancer. This success has opened the door to consider what other modalities or types of immune cells can be harnessed for exert antitumor functions. In this session, experts in their respective fields will discuss topics including novel approaches in immunotherapy, including NK cells, macrophage, and viral oncotherapies.

Evanthia Galanis, Kerry S Campbell, Milan G Chheda, Jennifer L Guerriero

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Tumor Biology, Drug Development, Immunology, Clinical Research Excluding Trials

Benign Cells as Drivers of Cancer Progression: Fat and Beyond

Carcinomas develop metastases and resistance to therapy as a result of interaction with tumor microenvironment, composed of various nonmalignant cell types. Understanding the complexity and origins of tumor stromal cells is a prerequisite for development of effective treatments. The link between obesity and cancer progression has revealed the engagement of adipose stromal cells (ASC) and adipocytes from adjacent fat tissue. However, the molecular mechanisms through which they stimulate

Guojun Wu, Matteo Ligorio, Mikhail Kolonin, Maria T Diaz-Meco

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials, Experimental and Molecular Therapeutics, Tumor Biology

Dharma Master Jiantai Symposium on Lung Cancer: Know Thy Organ – Lessons Learned from Lung and Pancreatic Cancer Research

The term “cancer” encompasses hundreds of distinct disease entities involving almost every possible site in the human body. Effectively interrogating cancer, either in animals models or human specimens, requires a deep understanding of the involved organ. This includes both the normal cellular constituents of the affected tissue as well as unique aspects of tissue-specific tumorigenesis. It is critical to “Know Thy Organ” when studying cancer. This session will focus on two of the most

Trudy G Oliver, Hossein Borghaei, Laura Delong Wood, Howard C Crawford

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Clinical Trials

Clinical Trial Design: Part 1: Novel Approaches and Methods in Clinical Trial Design

Good clinical trial design has always had to balance the competing interests of effectively and convincingly answering the question with the limitations imposed by scarce resources, complex logistics, and risks and potential benefits to participants. New targeted therapies, immuno-oncology, and novel combination treatments add new challenges on top of the old ones. This session will introduce these concerns and 1) suggest ways to consider what outcomes are relevant, 2) how we can best

Mary W. Redman, Nolan A. Wages, Susan G Hilsenbeck, Karyn A. Goodman

DETAILS

Monday, June 22

3:45 PM – 5:45 PM EDT

Virtual Methods Workshop

Tumor Biology, Drug Development

High-Throughput Screens for Drivers of Progression and Resistance

The sequencing of human cancers now provides a landscape of the genetic alterations that occur in human cancer, and increasingly knowledge of somatic genetic alterations is becoming part of the evaluation of cancer patients. In some cases, this information leads directly to the selection of particular therapeutic approaches; however, we still lack the ability to decipher the significance of genetic alterations in many cancers. This session will focus on recent developments that permit the identification of molecular targets in specific cancers. This information, coupled with genomic characterization of cancer, will facilitate the development of new therapeutic agents and provide a path to implement precision cancer medicine to all patients.

William C Hahn, Mark A Dawson, Mariella Filbin, Michael Bassik

DETAILS

Monday, June 22

3:45 PM – 5:15 PM EDT

Defining a cancer dependency map

William C Hahn

Introduction

William C Hahn

Genome-scale CRISPR screens in 3D spheroids identify cancer vulnerabilities

Michael Bassik

Utilizing single-cell RNAseq and CRISPR screens to target cancer stem cells in pediatric brain tumors

Mariella Filbin
  • many gliomas are defined by discreet mutational spectra that also discriminates based on age and site as well (for example many cortical tumors have mainly V600E Braf mutations while thalamus will be FGFR1
  • they did single cell RNAseq on needle biopsy from 7 gliomas which gave about 3500 high quality single cells; obtained full length RNA
  • tumors clustered mainly where the patient it came from but had stromal cell contamination probably so did a deconvolution?  Copy number variation showed which were tumor cells and did principle component analysis
  • it seems they used a human glioma model as training set
  • identified a stem cell like glioma cell so concentrated on the genes altered in these for translational studies
  • developed multiple PDX models from patients
  • PDX transcriptome closest to patient transcriptome but organoid grown in serum free very close while organoids grown in serum very distinct transcriptome
  • developed a CRISPR barcoded library to determine genes for survival genes
  • pulled out BMI1  and EZH2 (polycomb complex proteins) as good targets

Virtual Methods Workshop

Prevention Research, Survivorship, Clinical Research Excluding Trials, Epidemiology

Implementation Science Methods for Cancer Prevention and Control in Diverse Populations: Integration of Implementation Science Methods in Care Settings

Through this Education Session we will use examples from ongoing research to provide an overview of implementation science approaches to cancer prevention and control research. We draw on examples to highlight study design approaches, research methods, and real-world solutions when applying implementation science to achieve health equity. Approaches to defining change in the care setting and measuring sustained changes are also emphasized. Using real examples of patient navigation prog

Graham A Colditz, Sanja Percac-Lima, Nathalie Huguet

DETAILS

Monday, June 22

3:45 PM – 5:30 PM EDT

Virtual Educational Session

Regulatory Science and Policy, Epidemiology

COVID-19 and Cancer: Guidance for Clinical Trial Conduct and Considerations for RWE

This session will consider the use of real-world evidence in the context of oncology clinical trials affected by the COVID-19 pandemic. Key aspects of the FDA’s recent “Guidance on Conduct of Clinical Trials of Medical Products of Medical Products during COVID-19 Public Health Emergency” will be discussed, including telemedicine, accounting for missing data, obtaining laboratory tests and images locally, using remote informed consent procedures, and additional considerations for contin

Wendy Rubinstein, Paul G. Kluetz, Amy P. Abernethy, Jonathan Hirsch, C.K. Wang

 

 

Read Full Post »


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Mid Day Sessions

Reporter: Stephen J. Williams, PhD

This post will be UPDATED during the next two days with notes from recordings from other talks

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

 

 

 

 

 

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research

The prestigious Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research was established in 1997 to annually recognize a scientist of international renown who has made a major scientific discovery in basic cancer research OR who has made significant contributions to translational cancer research; who continues to be active in cancer research and has a record of recent, noteworthy publications; and whose ongoing work holds promise for continued substantive contributions to progress in the field of cancer. For more information regarding the 2020 award recipient go to aacr.org/awards.

John E. Dick, Enzo Galligioni, David A Tuveson

DETAILS

Awardee: John E. Dick
Princess Anne Margaret Cancer Center, Toronto, Ontario
For determining how stem cells contribute to normal and leukemic hematopoeisis
  • not every cancer cell equal in their Cancer Hallmarks
  • how do we monitor and measure clonal dynamics
  • Barnie Clarkson did pivotal work on this
  • most cancer cells are post mitotic but minor populations of cells were dormant and survive chemotherapy
  •  only one cell is 1 in a million can regenerate and transplantable in mice and experiments with flow cytometry resolved the question of potency and repopulation of only small percentage of cells and undergo long term clonal population
  • so instead of going to cell lines and using thousands of shRNA looked at clinical data and deconvoluted the genetic information (RNASeq data) to determine progenitor and mature populations (how much is stem and how much is mature populations)
  • in leukemic patients they have seen massive expansion of a single stem cell population so only need one cell in AML if the stem cells have the mutational hits early on in their development
  • finding the “seeds of relapse”: finding the small subpopulation of stem cells that will relapse
  • they looked in BALL;;  there are cells resistant to l-aspariginase, dexamethasone, and vincristine
  • a lot of OXPHOS related genes (in DRIs) that may be the genes involved in this resistance
  • it a wonderful note of acknowledgement he dedicated this award to all of his past and present trainees who were the ones, as he said, made this field into what it is and for taking it into directions none of them could forsee

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Drug Development, Cancer Chemistry

Chemistry to the Clinic: Part 1: Lead Optimization Case Studies in Cancer Drug Discovery

How can one continue to deliver innovative medicines to patients when biological targets are becoming ever scarcer and less amenable to therapeutic intervention? Are there sound strategies in place that can clear the path to targets previously considered “undruggable”? Recent advances in lead finding methods and novel technologies such as covalent screening and targeted protein degradation have enriched the toolbox at the disposal of drug discovery scientists to expand the druggable ta

Stefan N Gradl, Elena S Koltun, Scott D Edmondson, Matthew A. Marx, Joachim Rudolph

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Molecular and Cellular Biology/Genetics

Informatics Technologies for Cancer Research

Cancer researchers are faced with a deluge of high-throughput data. Using these data to advance understanding of cancer biology and improve clinical outcomes increasingly requires effective use of computational and informatics tools. This session will introduce informatics resources that support the data management, analysis, visualization, and interpretation. The primary focus will be on high-throughput genomic data and imaging data. Participants will be introduced to fundamental concepts

Rachel Karchin, Daniel Marcus, Andriy Fedorov, Obi Lee Griffith

DETAILS

  • Variant analysis is the big bottleneck, especially interpretation of variants
  • CIVIC resource is a network for curation, interpretation of genetic variants
  • CIVIC curators go through multiple rounds of editors review
  • gene summaries, variant summaries
  • curation follows ACSME guidelines
  • evidences are accumulated, categories by various ontologies and is the heart of the reports
  • as this is a network of curators the knowledgebase expands
  • CIVIC is linked to multiple external informatic, clinical, and genetic databases
  • they have curated 7017 clinical interpretations, 2527 variants, using 2578 papers, and over 1000 curators
  • they are currently integrating with COSMIC ClinVar, and UniProt
  • they are partnering with ClinGen to expand network of curators and their curation effort
  • CIVIC uses a Python interface; available on website

https://civicdb.org/home

The Precision Medicine Revolution

Precision medicine refers to the use of prevention and treatment strategies that are tailored to the unique features of each individual and their disease. In the context of cancer this might involve the identification of specific mutations shown to predict response to a targeted therapy. The biomedical literature describing these associations is large and growing rapidly. Currently these interpretations exist largely in private or encumbered databases resulting in extensive repetition of effort.

CIViC’s Role in Precision Medicine

Realizing precision medicine will require this information to be centralized, debated and interpreted for application in the clinic. CIViC is an open access, open source, community-driven web resource for Clinical Interpretation of Variants in Cancer. Our goal is to enable precision medicine by providing an educational forum for dissemination of knowledge and active discussion of the clinical significance of cancer genome alterations. For more details refer to the 2017 CIViC publication in Nature Genetics.

U24 funding announced: We are excited to announce that the Informatics Technology for Cancer Research (ICTR) program of the National Cancer Institute (NCI) has awarded funding to the CIViC team! Starting this year, a five-year, $3.7 million U24 award (CA237719), will support CIViC to develop Standardized and Genome-Wide Clinical Interpretation of Complex Genotypes for Cancer Precision Medicine.

Informatics tools for high-throughput analysis of cancer mutations

Rachel Karchin
  • CRAVAT is a platform to determine, categorize, and curate cancer mutations and cancer related variants
  • adding new tools used to be hard but having an open architecture allows for modular growth and easy integration of other tools
  • so they are actively making an open network using social media

Towards FAIR data in cancer imaging research

Andriy Fedorov, PhD

Towards the FAIR principles

While LOD has had some uptake across the web, the number of databases using this protocol compared to the other technologies is still modest. But whether or not we use LOD, we do need to ensure that databases are designed specifically for the web and for reuse by humans and machines. To provide guidance for creating such databases independent of the technology used, the FAIR principles were issued through FORCE11: the Future of Research Communications and e-Scholarship. The FAIR principles put forth characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties through the web. Wilkinson et al.,2016. FAIR stands for: Findable, Accessible, Interoperable and Re-usable. The definition of FAIR is provided in Table 1:

Number Principle
F Findable
F1 (meta)data are assigned a globally unique and persistent identifier
F2 data are described with rich metadata
F3 metadata clearly and explicitly include the identifier of the data it describes
F4 (meta)data are registered or indexed in a searchable resource
A Accessible
A1 (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2 metadata are accessible, even when the data are no longer available
I Interoperable
I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2 (meta)data use vocabularies that follow FAIR principles
I3 (meta)data include qualified references to other (meta)data
R Reusable
R1 meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1 (meta)data are released with a clear and accessible data usage license
R1.2 (meta)data are associated with detailed provenance
R1.3 (meta)data meet domain-relevant community standards

A detailed explanation of each of these is included in the Wilkinson et al., 2016 article, and the Dutch Techcenter for Life Sciences has a set of excellent tutorials, so we won’t go into too much detail here.

  • for outside vendors to access their data, vendors would need a signed Material Transfer Agreement but NCI had formulated a framework to facilitate sharing of data using a DIACOM standard for imaging data

Monday, June 22

1:30 PM – 3:01 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Cancer Chemistry, Drug Development, Immunology

Engineering and Physical Sciences Approaches in Cancer Research, Diagnosis, and Therapy

The engineering and physical science disciplines have been increasingly involved in the development of new approaches to investigate, diagnose, and treat cancer. This session will address many of these efforts, including therapeutic methods such as improvements in drug delivery/targeting, new drugs and devices to effect immunomodulation and to synergize with immunotherapies, and intraoperative probes to improve surgical interventions. Imaging technologies and probes, sensors, and bioma

Claudia Fischbach, Ronit Satchi-Fainaro, Daniel A Heller

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Survivorship

Exceptional Responders and Long-Term Survivors

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Exploiting Metabolic Vulnerabilities in Cancer

The reprogramming of cellular metabolism is a hallmark feature observed across cancers. Contemporary research in this area has led to the discovery of tumor-specific metabolic mechanisms and illustrated ways that these can serve as selective, exploitable vulnerabilities. In this session, four international experts in tumor metabolism will discuss new findings concerning the rewiring of metabolic programs in cancer that support metabolic fitness, biosynthesis, redox balance, and the reg

Costas Andreas Lyssiotis, Gina M DeNicola, Ayelet Erez, Oliver Maddocks

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 8AM-Noon Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Monday, June 22

8:30 AM – 10:10 AM EDT

Virtual Special Session

Opening Ceremony

The Opening Ceremony will include the following presentations:
Welcome from AACR CEO Margaret Foti, PhD, MD (hc)

CHIEF EXECUTIVE OFFICER

MARGARET FOTI, PHD, MD (HC)

​American Association for Cancer Research
Philadelphia, Pennsylvania

  • Dr. Foti mentions that AACR is making progress in including more ethnic and gender equality in cancer research and she feels that the disparities seen in health care, and in cancer care, is related to the disparities seen in the cancer research profession
  • AACR is very focused now on blood cancers and creating innovation summits on this matter
  • In 2019 awarded over 60 grants but feel they will be able to fund more research in 2020
  • Government funding is insufficient at current levels

Remarks from AACR Immediate Past President Elaine R. Mardis, PhD, FAACR

  • involved in planning and success of the first virtual meeting (it was really well done)
  • # of registrants was at unprecedented numbers
  • the scope for this meeting will be wider than the first meeting
  • they have included special sessions including COVID19 and health disparities
  • 70 educational and methodology workshops on over 70 channels

AACR Award for Lifetime Achievement in Cancer Research

  • Dr. Philip Sharp is awardee of Lifetime Achievement Award
  • Dr. Sharp is known for his work in RNA splicing and development of multiple cancer models including a mouse CRSPR model
  • worked under Jim Watson at Cold Spring Harbor
    Presentation of New Fellows of the AACR Academy
  • Dr. Radcliffe for hypoxic factors
  • CART therapies
  • Dr. Semenza for HIF1 discovery
  • Dr Swanton for stratification of patients and tumor heterogeneity
  • these are just some of the new fellows

AACR-Biedler Prizes for Cancer Journalism

  • Writer of Article War of Nerves awarded; reported on nerve intervation of tumors
  • writer Budman on reporting and curation of hedgehog inhibitors in cancers
  • patient advocacy book was awarded for journalism
  • cancer survivor Kasie Newsome produced multiple segments on personalized cancer therapy from a cancer survivor perspective

Remarks from Speaker of the United States House of Representatives Nancy Pelosi

  • helped secure a doubling of funding for NCI and NIH in the 90s
  • securing COVID funding to offset some of the productivity issues related to the shutdown due to COVID
  • advocating for more work to alleviate health disparities

 

Remarks from United States Senator Roy Blunt

  • tireless champion in the Senate for cancer research funding; he was a cancer survivor himself
  • we need to keep focus on advances in science

Margaret Foti

DETAILS

Monday, June 22

10:10 AM – 12:30 PM EDT

Virtual Plenary Session

Bioinformatics and Systems Biology, Epidemiology, Immunology, Molecular and Cellular Biology/Genetics

Opening Plenary Session: Turning Science into Lifesaving Care

Alexander Marson, Antoni Ribas, Ashani T Weeraratna, Olivier Elemento, Howard Y Chang, Daniel D. De Carvalho

DETAILS

Monday, June 22

12:45 PM – 1:30 PM EDT

Awards and Lectures

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Experimental and Molecular Therapeutics, Immunology

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Reporter: Stephen J. Williams, PhD

NCI Activities: COVID-19 and Cancer Research

Dinah S. Singer. NCI-DCB, Bethesda, MD @theNCI

  • at the NCI they are pivoting some of their clinical trials to address COVID related issues like trials on tocilizumab and producing longitudinal cohorts of cancer patients and COVID for further analysis and studies
  • vaccine and antibody efforts at NCI and they are asking all their cancer centers (Cancer COVID Consortium) collecting data
  • Moonshot is collecting metadata but now COVID data from cellular therapy patients
  • they are about to publish new grants related to COVID and adding option to investigators to use current funds to do COVID related options
  • she says if at home take the time to think, write manuscripts, analyze data BE A REVIEWER FOR JOURNALS,
  • SSMMART project from Moonshot is still active
  • so far NCI and NIH grant process is ongoing although the peer review process is slower
  • they have extended deadlines with NO justification required (extend 90 days)
  • also allowing flexibility on use of grant money and allowing more early investigator rules and lax on those rules
  • non competitive renewals (type 5) will allow restructuring of project; contact program administrator
  • she and NCI heard rumors of institutions shutting down cancer research she is stressing to them not to do that
  • non refundable travel costs may be charged to the grant
  • NCI contemplating on extending the early investigator time
  • for more information go to NIH and NCI COVID-19 pages which have more guidances updated regularly

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@theNCI

#AACR20

Read Full Post »


Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


Can Elephants Help Fight Cancer?

Reporter: Gail S. Thornton, M.A.

 

 

This paragraph is excerpted from the American Technion Society Facebook page.

Professor Avi Schroeder and Dr. Josh Schiffman of the The University of Utah are working with elephants at Utah’s Hogle Zoo on a possible new tool to fight against lung, bone, breast, and other cancers. Dr. Schiffman found that p53, a cancer-suppressing protein, is far more prevalent in elephants, which rarely develop cancer. Prof. Schroeder is now working to manufacture the protein in nanoparticles to begin preclinical testing.


This article is excerpted from The Salt Lake Tribune, May 2, 2019.

Earth’s biggest, smallest, oddest life forms are getting new attention from scientists. A Utah author explores what they’re learning.

Published: May 2, 2019

Researchers have long ignored superlative life forms — the biggest, the tiniest, ones that can survive extremes — as outliers, Utah author Matthew D. LaPlante says.

But they’re now realizing the value of studying nature’s “oddballs,” he adds, which are helping scientists discover how to better fight disease and aging, understand the history of life on this planet and how we might reach others.

LaPlante’s new book, “Superlative: The Biology of Extremes” was released this week. On Friday at 7 p.m., the associate professor of journalistic writing at Utah State University will read from “Superlative” and talk about his work at The King’s English Bookshop, 1511 S. 1500 East, Salt Lake City. The event is free and open to the public.

The co-writer of several books on the intersection of scientific discovery and society, LaPlante now is working with Harvard geneticist David Sinclair on a book about human longevity. “Superlative” from BenBella Books is the first solo book by LaPlante, a former reporter for The Salt Lake Tribune.

As he surveys unusual life around the earth, there are stops in Utah — from Pando, the aspen clone in Sevier County believed to be the single most massive living organism known on Earth, to pop-up appearances by researchers at the University of Utah and elephants at Hogle Zoo in Salt Lake City.

Vast sequences of the genetic coding that humans share with elephants still perform similar functions in each species, LaPlante explains. And long after the two diverged, both developed the same genetic solution for the oxygen needs of a larger brain.

So there’s reason to believe that responses elephants have evolved — such as rarely developing cancer — might be spurred in humans.

The potential within a genome for such new traits to develop is at the heart of comparative genomics — and at the work of Utah pediatric oncologist Josh Schiffman.

This excerpt from “Superlative” explains how Schiffman began working with Hogle Zoo’s African elephants — the largest living land mammals — to fight cancer.

It all started in the summer of 2012, when [pediatric oncologist Josh] Schiffman’s beloved dog, Rhody, passed away [due] to histiocytosis, a condition that attacks the cells of skin and connective tissue. “It was the only time my wife has ever seen me cry,” he told me. “Rhody was like our first child.”

Schiffman had heard dogs like his had an elevated risk of cancer, but it wasn’t until after Rhody’s death that he learned just how elevated it was. Bernese mountain dogs who live to the age of ten have a 50 percent risk of dying from cancer.

“Suddenly it dawned on me there was this whole other world, this young field of comparative oncology,” he said, “and I was pulled into the idea of being a pioneer and maybe a leader to help move things along.”

Schiffman had long been intrigued by the fact that size doesn’t appear to correlate to cancer rates — a phenomenon known as “Peto’s Paradox,” named for Oxford University epidemiologist Richard Peto. But when Schiffman took his children on an outing to Utah’s Hogle Zoo — the same place I sometimes go to have lunch with my elephant friend, Zuri — everything came together.

A keeper named Eric Peterson had just finished giving a talk to a crowd of visitors, mentioning in passing that the zoo’s elephants have been trained to allow the veterinary staff to take small samples of blood from a vein behind their ears. As the crowd dispersed, an angular, excited man approached him.

“I’ve got a strange question,” Schiffman said.

“We’ve heard them all,” Peterson replied.

“OK then — how do I get me some of that elephant blood?” Schiffman asked.

Peterson contemplated calling security. Instead, after a bit of explanation from Schiffman, the zookeeper told the inquisitive doctor he’d look into it. Two and a half months later, the zoo’s institutional review board gave its blessing to Schiffman’s request.

Things moved fast after that.

(Steve Griffin | Tribune file photo) Lab specialists Lauren Donovan Cristhian Toruno, Lisa Abegglen and researcher Joshua Schiffman, from left, are testing the effects of elephant gene p53 (EP53) in human cancer cells at the Huntsman Cancer Institute.
(Steve Griffin | Tribune file photo) Lab specialists Lauren Donovan Cristhian Toruno, Lisa Abegglen and researcher Joshua Schiffman, from left, are testing the effects of elephant gene p53 (EP53) in human cancer cells at the Huntsman Cancer Institute.

Cancer develops in part because cells divide. During each division the cells must make a copy of their DNA, and once in a while, for various reasons, those copies include a mistake. The more cells divide, the greater the odds of an error, and the more prone an error is to be duplicated again and again.

And elephant cells? Those things are dividing like crazy. Based on the number of cell divisions elephants need to get from Zuri’s size when we met to the size she is now, in just a few short years, it stands to reason they should get lots of cancer. Yet they almost never do.

“Going from 300 pounds as a calf to more than 10,000 pounds, gaining three-plus pounds a day, they’re growing so quickly, so big and so fast — baby elephants really shouldn’t make it to adulthood,” Schiffman said. “They should have 100 times the cancer. Just by chance alone, elephants should be dropping dead all over the place.” Indeed, he said, they should probably die of cancer before they’re even old enough to reproduce. “They should be extinct!”

Already, comparative oncologists suspected the exceptionally low rate of cancer in elephants had something to do with p53, a gene whose human analog is a known cancer suppressor. Most humans have one copy — two alleles — of the gene. Those with an inherited condition known as Li–Fraumeni syndrome, however, have just one allele — and a nearly 100 percent chance of getting cancer. The logical conclusion is more p53 alleles mean a better chance of staving off cancer. And elephants, it turns out, have twenty of them.

The big find that came from Schiffman’s exploration of the elephant blood he got at the zoo, though, was not just that there were more of these genes in elephants, but that the genes behaved a little bit differently, too.

In humans, the gene’s first approach for suppressing tumor growth is to try to repair faulty cells — the sort that cause cancer. So, at first, Schiffman’s team assumed having more p53 genes meant elephants had bigger repair crews. With the goal of watching those crews in action, the researchers exposed the elephant cells to radiation, causing DNA damage. But they noticed that, instead of trying to fix what was broken, the elephant cells seemed to grow something of a conscience.

To understand this, it’s helpful to think about how you’d respond in a zombie apocalypse. Of course you’d fight long and hard to keep from being infected, right? But if a zombie was about to chomp down on your arm, and there was nothing you could do to stop it, and if you had but one bullet remaining in your gun —and a few moments to consider what you might do to your fellow humans as a part of the legion of the undead — what would you do?

That’s what elephant cells do, too. Under the directive of p53, mutated cells don’t put up a fight. Upon recognizing the inevitability of malignant mutation, they take their own lives in a process known as apoptosis.

And they don’t just do this for one kind of cancer. The p53 gene apparently programs cells to do this in response to all kinds of malignantly mutated cells in elephants—a finding that flies in the face of the conventional assumption that there is no one singular cure for the complex group of disorders we call cancer.

When I first met Schiffman in 2016, he was brimming with excitement about the potential elephants have to help us understand cancer. He was also very cautious not to suggest he was anywhere near a cure, nor that he ever would be.

Just a few years later, though, Schiffman was speaking openly about his intention to rid the world of cancer. And, to that end, what’s happening in his lab is encouraging, to say the least.

He and his team have been injecting cancer cells with a synthetic version of a p53 protein modeled on the DNA he’s drawn from Zuri and other elephants from around the world. Viewed on time-lapse video, the results are unmistakable and amazing.

Breast cancer. Gone.

bone cancer. Gone.

Lung cancer. Gone.

One by one, each type of cancer cell falls victim to zombie-cell hara-kiri, shriveling and then exploding, and leaving nothing behind to mutate. Schiffman is now working with Avi Schroeder, an expert in nanomedical delivery systems at Technion-Israel Institute of Technology, to create tiny delivery vehicles to take the synthetic elephant protein into mammalian tumors.

If this was all the benefit we ever derived from studying elephants, it would be plenty.

But it’s not. Not at all.

Source:

https://www.sltrib.com/artsliving/2019/05/02/earths-biggest-smallest/?fbclid=IwAR09iwADrhUKkuoXDRMBHFIMstUESU3OBXxKeN0dTKwxapTUASWsv1T_kZI

Read Full Post »


Gender affects the prevalence of the cancer type, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Gender of a person can affect the kinds of cancer-causing mutations they develop, according to a genomic analysis spanning nearly 2,000 tumours and 28 types of cancer. The results show striking differences in the cancer-causing mutations found in people who are biologically male versus those who are biologically female — not only in the number of mutations lurking in their tumours, but also in the kinds of mutations found there.

 

Liver tumours from women were more likely to carry mutations caused by a faulty system of DNA mending called mismatch repair, for instance. And men with any type of cancer were more likely to exhibit DNA changes thought to be linked to a process that the body uses to repair DNA with two broken strands. These biases could point researchers to key biological differences in how tumours develop and evolve across sexes.

 

The data add to a growing realization that sex is important in cancer, and not only because of lifestyle differences. Lung and liver cancer, for example, are more common in men than in women — even after researchers control for disparities in smoking or alcohol consumption. The source of that bias, however, has remained unclear.

In 2014, the US National Institutes of Health began encouraging researchers to consider sex differences in preclinical research by, for example, including female animals and cell lines from women in their studies. And some studies have since found sex-linked biases in the frequency of mutations in protein-coding genes in certain cancer types, including some brain cancers and advanced melanoma.

 

But the present study is the most comprehensive study of sex differences in tumour genomes so far. It looks at mutations not only in genes that code for proteins, but also in the vast expanses of DNA that have other functions, such as controlling when genes are turned on or off. The study also compares male and female genomes across many different cancers, which can allow researchers to pick up on additional patterns of DNA mutations, in part by increasing the sample sizes.

 

Researchers analysed full genome sequences gathered by the International Cancer Genome Consortium. They looked at differences in the frequency of 174 mutations known to drive cancer, and found that some of these mutations occurred more frequently in men than in women, and vice versa. When they looked more broadly at the loss or duplication of DNA segments in the genome, they found 4,285 sex-biased genes spread across 15 chromosomes.

 

There were also differences found when some mutations seemed to arise during tumour development, suggesting that some cancers follow different evolutionary paths in men and women. Researchers also looked at particular patterns of DNA changes. Such patterns can, in some cases, reflect the source of the mutation. Tobacco smoke, for example, leaves behind a particular signature in the DNA.

 

Taken together, the results highlight the importance of accounting for sex, not only in clinical trials but also in preclinical studies. This could eventually allow researchers to pin down the sources of many of the differences found in this study. Liver cancer is roughly three times as common in men as in women in some populations, and its incidence is increasing in some countries. A better understanding of its aetiology may turn out to be really important for prevention strategies and treatments.

 

References:

 

https://www.nature.com/articles/d41586-019-00562-7?utm_source=Nature+Briefing

 

https://www.nature.com/news/policy-nih-to-balance-sex-in-cell-and-animal-studies-1.15195

 

https://www.ncbi.nlm.nih.gov/pubmed/26296643

 

https://www.biorxiv.org/content/10.1101/507939v1

 

https://www.ncbi.nlm.nih.gov/pubmed/25985759

 

Read Full Post »

Immunoediting can be a constant defense in the cancer landscape


Immuno-editing can be a constant defense in the cancer landscape, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.

 

When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.

 

Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.

References:

 

https://www.linkedin.com/pulse/immunoediting-cancer-landscape-john-catanzaro/

 

https://www.cell.com/cell/fulltext/S0092-8674(16)31609-9

 

https://www.researchgate.net/publication/309432057_Circulating_tumor_cell_clusters_What_we_know_and_what_we_expect_Review

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840207/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00414/full

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388310/

 

https://www.linkedin.com/pulse/cancer-hallmark-analytics-omics-data-pathway-studio-review-catanzaro/

 

Read Full Post »


Funding Opportunities for Cancer Research

Reporter: Aviva Lev-Ari, PhD, RN

 

Stand Up to Cancer Innovative Research Grants 2017The SU2C Innovative Research Grants will fund novel, high-risk, high-reward immune-oncology research proposals that have significant potential for translational application. Proposals may focus on any discipline within basic, translational, or clinical cancer research. Tenure-track investigators who are currently in their first independent position, appointed no more than 7 years ago are eligible to submit a proposal.

  • Up to $750,000 over the three year grant term
  • Online application due to SU2C: January 12, 2017, at 12:00pm ET
  • Start of Grant Term: July 1, 2017

Program Guidelines and  Application Instructions link

 

Stand Up to Cancer Colorectal Cancer Dream Team Translational Research GrantThis grant is for a translational cancer research project that addresses critical problems in colorectal cancer treatment and patient care. The project must include therapeutic interventions for colorectal cancer and deliver near-term patient benefit through investigation by a multidisciplinary, multi-institutional, synergistic Dream Team of expert investigators.

  • Up to $7 million in funding over a 3-year grant term
  • Letter of Intent due to SU2C: December 1, 2016, at 12:00pm ET
  • Online application due to SU2C: February 20, 2017, at 12:00pm ET

Program Guidelines and  Application Instructions link

 

Neuroendocrine Tumor Research Foundation – AACR GrantThis grant is available to independent junior and senior investigators to develop and study new ideas and innovative approaches that have direct application and relevance to neuroendocrine tumors. Proposed research may be in any discipline of basic, translational, clinical, or epidemiological cancer research.

 

  • $250,000 over two years
  • Application Deadline: December 13, 2016, at 1:00pm ET
  • Notification of Award: March 2017
  • Start of Grant Term: July 1, 2017

Program Guidelines and  Application Instructions link

SOURCE

http://med.stanford.edu/cancer/research/funding.html

Read Full Post »