Feeds:
Posts
Comments

Archive for the ‘CAST – Alternative to CRISPR/Cas9’ Category


Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Mid Day Sessions

Reporter: Stephen J. Williams, PhD

This post will be UPDATED during the next two days with notes from recordings from other talks

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

 

 

 

 

 

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research

The prestigious Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research was established in 1997 to annually recognize a scientist of international renown who has made a major scientific discovery in basic cancer research OR who has made significant contributions to translational cancer research; who continues to be active in cancer research and has a record of recent, noteworthy publications; and whose ongoing work holds promise for continued substantive contributions to progress in the field of cancer. For more information regarding the 2020 award recipient go to aacr.org/awards.

John E. Dick, Enzo Galligioni, David A Tuveson

DETAILS

Awardee: John E. Dick
Princess Anne Margaret Cancer Center, Toronto, Ontario
For determining how stem cells contribute to normal and leukemic hematopoeisis
  • not every cancer cell equal in their Cancer Hallmarks
  • how do we monitor and measure clonal dynamics
  • Barnie Clarkson did pivotal work on this
  • most cancer cells are post mitotic but minor populations of cells were dormant and survive chemotherapy
  •  only one cell is 1 in a million can regenerate and transplantable in mice and experiments with flow cytometry resolved the question of potency and repopulation of only small percentage of cells and undergo long term clonal population
  • so instead of going to cell lines and using thousands of shRNA looked at clinical data and deconvoluted the genetic information (RNASeq data) to determine progenitor and mature populations (how much is stem and how much is mature populations)
  • in leukemic patients they have seen massive expansion of a single stem cell population so only need one cell in AML if the stem cells have the mutational hits early on in their development
  • finding the “seeds of relapse”: finding the small subpopulation of stem cells that will relapse
  • they looked in BALL;;  there are cells resistant to l-aspariginase, dexamethasone, and vincristine
  • a lot of OXPHOS related genes (in DRIs) that may be the genes involved in this resistance
  • it a wonderful note of acknowledgement he dedicated this award to all of his past and present trainees who were the ones, as he said, made this field into what it is and for taking it into directions none of them could forsee

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Drug Development, Cancer Chemistry

Chemistry to the Clinic: Part 1: Lead Optimization Case Studies in Cancer Drug Discovery

How can one continue to deliver innovative medicines to patients when biological targets are becoming ever scarcer and less amenable to therapeutic intervention? Are there sound strategies in place that can clear the path to targets previously considered “undruggable”? Recent advances in lead finding methods and novel technologies such as covalent screening and targeted protein degradation have enriched the toolbox at the disposal of drug discovery scientists to expand the druggable ta

Stefan N Gradl, Elena S Koltun, Scott D Edmondson, Matthew A. Marx, Joachim Rudolph

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Molecular and Cellular Biology/Genetics

Informatics Technologies for Cancer Research

Cancer researchers are faced with a deluge of high-throughput data. Using these data to advance understanding of cancer biology and improve clinical outcomes increasingly requires effective use of computational and informatics tools. This session will introduce informatics resources that support the data management, analysis, visualization, and interpretation. The primary focus will be on high-throughput genomic data and imaging data. Participants will be introduced to fundamental concepts

Rachel Karchin, Daniel Marcus, Andriy Fedorov, Obi Lee Griffith

DETAILS

  • Variant analysis is the big bottleneck, especially interpretation of variants
  • CIVIC resource is a network for curation, interpretation of genetic variants
  • CIVIC curators go through multiple rounds of editors review
  • gene summaries, variant summaries
  • curation follows ACSME guidelines
  • evidences are accumulated, categories by various ontologies and is the heart of the reports
  • as this is a network of curators the knowledgebase expands
  • CIVIC is linked to multiple external informatic, clinical, and genetic databases
  • they have curated 7017 clinical interpretations, 2527 variants, using 2578 papers, and over 1000 curators
  • they are currently integrating with COSMIC ClinVar, and UniProt
  • they are partnering with ClinGen to expand network of curators and their curation effort
  • CIVIC uses a Python interface; available on website

https://civicdb.org/home

The Precision Medicine Revolution

Precision medicine refers to the use of prevention and treatment strategies that are tailored to the unique features of each individual and their disease. In the context of cancer this might involve the identification of specific mutations shown to predict response to a targeted therapy. The biomedical literature describing these associations is large and growing rapidly. Currently these interpretations exist largely in private or encumbered databases resulting in extensive repetition of effort.

CIViC’s Role in Precision Medicine

Realizing precision medicine will require this information to be centralized, debated and interpreted for application in the clinic. CIViC is an open access, open source, community-driven web resource for Clinical Interpretation of Variants in Cancer. Our goal is to enable precision medicine by providing an educational forum for dissemination of knowledge and active discussion of the clinical significance of cancer genome alterations. For more details refer to the 2017 CIViC publication in Nature Genetics.

U24 funding announced: We are excited to announce that the Informatics Technology for Cancer Research (ICTR) program of the National Cancer Institute (NCI) has awarded funding to the CIViC team! Starting this year, a five-year, $3.7 million U24 award (CA237719), will support CIViC to develop Standardized and Genome-Wide Clinical Interpretation of Complex Genotypes for Cancer Precision Medicine.

Informatics tools for high-throughput analysis of cancer mutations

Rachel Karchin
  • CRAVAT is a platform to determine, categorize, and curate cancer mutations and cancer related variants
  • adding new tools used to be hard but having an open architecture allows for modular growth and easy integration of other tools
  • so they are actively making an open network using social media

Towards FAIR data in cancer imaging research

Andriy Fedorov, PhD

Towards the FAIR principles

While LOD has had some uptake across the web, the number of databases using this protocol compared to the other technologies is still modest. But whether or not we use LOD, we do need to ensure that databases are designed specifically for the web and for reuse by humans and machines. To provide guidance for creating such databases independent of the technology used, the FAIR principles were issued through FORCE11: the Future of Research Communications and e-Scholarship. The FAIR principles put forth characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties through the web. Wilkinson et al.,2016. FAIR stands for: Findable, Accessible, Interoperable and Re-usable. The definition of FAIR is provided in Table 1:

Number Principle
F Findable
F1 (meta)data are assigned a globally unique and persistent identifier
F2 data are described with rich metadata
F3 metadata clearly and explicitly include the identifier of the data it describes
F4 (meta)data are registered or indexed in a searchable resource
A Accessible
A1 (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2 metadata are accessible, even when the data are no longer available
I Interoperable
I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2 (meta)data use vocabularies that follow FAIR principles
I3 (meta)data include qualified references to other (meta)data
R Reusable
R1 meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1 (meta)data are released with a clear and accessible data usage license
R1.2 (meta)data are associated with detailed provenance
R1.3 (meta)data meet domain-relevant community standards

A detailed explanation of each of these is included in the Wilkinson et al., 2016 article, and the Dutch Techcenter for Life Sciences has a set of excellent tutorials, so we won’t go into too much detail here.

  • for outside vendors to access their data, vendors would need a signed Material Transfer Agreement but NCI had formulated a framework to facilitate sharing of data using a DIACOM standard for imaging data

Monday, June 22

1:30 PM – 3:01 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Cancer Chemistry, Drug Development, Immunology

Engineering and Physical Sciences Approaches in Cancer Research, Diagnosis, and Therapy

The engineering and physical science disciplines have been increasingly involved in the development of new approaches to investigate, diagnose, and treat cancer. This session will address many of these efforts, including therapeutic methods such as improvements in drug delivery/targeting, new drugs and devices to effect immunomodulation and to synergize with immunotherapies, and intraoperative probes to improve surgical interventions. Imaging technologies and probes, sensors, and bioma

Claudia Fischbach, Ronit Satchi-Fainaro, Daniel A Heller

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Survivorship

Exceptional Responders and Long-Term Survivors

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Exploiting Metabolic Vulnerabilities in Cancer

The reprogramming of cellular metabolism is a hallmark feature observed across cancers. Contemporary research in this area has led to the discovery of tumor-specific metabolic mechanisms and illustrated ways that these can serve as selective, exploitable vulnerabilities. In this session, four international experts in tumor metabolism will discuss new findings concerning the rewiring of metabolic programs in cancer that support metabolic fitness, biosynthesis, redox balance, and the reg

Costas Andreas Lyssiotis, Gina M DeNicola, Ayelet Erez, Oliver Maddocks

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »


Medicine in 2045 – Perspectives by World Thought Leaders in the Life Sciences & Medicine

Reporter: Aviva Lev-Ari, PhD, RN

 

This report is based on an article in Nature Medicine | VOL 25 | December 2019 | 1800–1809 | http://www.nature.com/naturemedicine

Looking forward 25 years: the future of medicine.

Nat Med 25, 1804–1807 (2019) doi:10.1038/s41591-019-0693-y

 

Aviv Regev, PhD

Core member and chair of the faculty, Broad Institute of MIT and Harvard; director, Klarman Cell Observatory, Broad Institute of MIT and Harvard; professor of biology, MIT; investigator, Howard Hughes Medical Institute; founding co-chair, Human Cell Atlas.

  • millions of genome variants, tens of thousands of disease-associated genes, thousands of cell types and an almost unimaginable number of ways they can combine, we had to approximate a best starting point—choose one target, guess the cell, simplify the experiment.
  • In 2020, advances in polygenic risk scores, in understanding the cell and modules of action of genes through genome-wide association studies (GWAS), and in predicting the impact of combinations of interventions.
  • we need algorithms to make better computational predictions of experiments we have never performed in the lab or in clinical trials.
  • Human Cell Atlas and the International Common Disease Alliance—and in new experimental platforms: data platforms and algorithms. But we also need a broader ecosystem of partnerships in medicine that engages interaction between clinical experts and mathematicians, computer scientists and engineers

Feng Zhang, PhD

investigator, Howard Hughes Medical Institute; core member, Broad Institute of MIT and Harvard; James and Patricia Poitras Professor of Neuroscience, McGovern Institute for Brain Research, MIT.

  • fundamental shift in medicine away from treating symptoms of disease and toward treating disease at its genetic roots.
  • Gene therapy with clinical feasibility, improved delivery methods and the development of robust molecular technologies for gene editing in human cells, affordable genome sequencing has accelerated our ability to identify the genetic causes of disease.
  • 1,000 clinical trials testing gene therapies are ongoing, and the pace of clinical development is likely to accelerate.
  • refine molecular technologies for gene editing, to push our understanding of gene function in health and disease forward, and to engage with all members of society

Elizabeth Jaffee, PhD

Dana and Albert “Cubby” Broccoli Professor of Oncology, Johns Hopkins School of Medicine; deputy director, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

  • a single blood test could inform individuals of the diseases they are at risk of (diabetes, cancer, heart disease, etc.) and that safe interventions will be available.
  • developing cancer vaccines. Vaccines targeting the causative agents of cervical and hepatocellular cancers have already proven to be effective. With these technologies and the wealth of data that will become available as precision medicine becomes more routine, new discoveries identifying the earliest genetic and inflammatory changes occurring within a cell as it transitions into a pre-cancer can be expected. With these discoveries, the opportunities to develop vaccine approaches preventing cancers development will grow.

Jeremy Farrar, OBE FRCP FRS FMedSci

Director, Wellcome Trust.

  • shape how the culture of research will develop over the next 25 years, a culture that cares more about what is achieved than how it is achieved.
  • building a creative, inclusive and open research culture will unleash greater discoveries with greater impact.

John Nkengasong, PhD

Director, Africa Centres for Disease Control and Prevention.

  • To meet its health challenges by 2050, the continent will have to be innovative in order to leapfrog toward solutions in public health.
  • Precision medicine will need to take center stage in a new public health order— whereby a more precise and targeted approach to screening, diagnosis, treatment and, potentially, cure is based on each patient’s unique genetic and biologic make-up.

Eric Topol, MD

Executive vice-president, Scripps Research Institute; founder and director, Scripps Research Translational Institute.

  • In 2045, a planetary health infrastructure based on deep, longitudinal, multimodal human data, ideally collected from and accessible to as many as possible of the 9+ billion people projected to then inhabit the Earth.
  • enhanced capabilities to perform functions that are not feasible now.
  • AI machines’ ability to ingest and process biomedical text at scale—such as the corpus of the up-to-date medical literature—will be used routinely by physicians and patients.
  • the concept of a learning health system will be redefined by AI.

Linda Partridge, PhD

Professor, Max Planck Institute for Biology of Ageing.

  • Geroprotective drugs, which target the underlying molecular mechanisms of ageing, are coming over the scientific and clinical horizons, and may help to prevent the most intractable age-related disease, dementia.

Trevor Mundel, MD

President of Global Health, Bill & Melinda Gates Foundation.

  • finding new ways to share clinical data that are as open as possible and as closed as necessary.
  • moving beyond drug donations toward a new era of corporate social responsibility that encourages biotechnology and pharmaceutical companies to offer their best minds and their most promising platforms.
  • working with governments and multilateral organizations much earlier in the product life cycle to finance the introduction of new interventions and to ensure the sustainable development of the health systems that will deliver them.
  • deliver on the promise of global health equity.

Josep Tabernero, MD, PhD

Vall d’Hebron Institute of Oncology (VHIO); president, European Society for Medical Oncology (2018–2019).

  • genomic-driven analysis will continue to broaden the impact of personalized medicine in healthcare globally.
  • Precision medicine will continue to deliver its new paradigm in cancer care and reach more patients.
  • Immunotherapy will deliver on its promise to dismantle cancer’s armory across tumor types.
  • AI will help guide the development of individually matched
  • genetic patient screenings
  • the promise of liquid biopsy policing of disease?

Pardis Sabeti, PhD

Professor, Harvard University & Harvard T.H. Chan School of Public Health and Broad Institute of MIT and Harvard; investigator, Howard Hughes Medical Institute.

  • the development and integration of tools into an early-warning system embedded into healthcare systems around the world could revolutionize infectious disease detection and response.
  • But this will only happen with a commitment from the global community.

Els Toreele, PhD

Executive director, Médecins Sans Frontières Access Campaign

  • we need a paradigm shift such that medicines are no longer lucrative market commodities but are global public health goods—available to all those who need them.
  • This will require members of the scientific community to go beyond their role as researchers and actively engage in R&D policy reform mandating health research in the public interest and ensuring that the results of their work benefit many more people.
  • The global research community can lead the way toward public-interest driven health innovation, by undertaking collaborative open science and piloting not-for-profit R&D strategies that positively impact people’s lives globally.

Read Full Post »


Alternative to CRISPR/Cas9 – CAST (CRISPR-associated transposase) – A New Gene-editing Approach for Insertion of Large DNA Sequences into a Genome developed @BroadInstitute @MIT @Harvard

Reporter: Aviva Lev-Ari, PhD, RN

 

A new gene-editing CAST member

In Science, a team led by Jonathan Strecker, Alim Ladha, and core institute member Feng Zhang reports a new gene-editing approach that can precisely and efficiently insert large DNA sequences into a genome. The system, called CRISPR-associated transposase (CAST), is a completely new platform to integrate genetic sequences into cellular DNA, addressing a long-sought goal for precision gene editing. The team molecularly characterized and harnessed the natural CAST system from cyanobacteria, also unveiling a new way that some CRISPR-associated systems perform in nature: not to protect bacteria from viruses, but to facilitate the spread of transposon DNA. Check out more in coverage from STAT and New Scientist.

SOURCE

https://www.broadinstitute.org/news/research-roundup-june-7-2019

 

RNA-guided DNA insertion with CRISPR-associated transposases

Science  06 Jun 2019:
eaax9181
DOI: 10.1126/science.aax9181

Abstract

CRISPR-Cas nucleases are powerful tools to manipulate nucleic acids; however, targeted insertion of DNA remains a challenge as it requires host cell repair machinery. Here we characterize a CRISPR-associated transposase (CAST) from cyanobacteria Scytonema hofmanni which consists of Tn7-like transposase subunits and the type V-K CRISPR effector (Cas12k). ShCAST catalyzes RNA-guided DNA transposition by unidirectionally inserting segments of DNA 60-66 bp downstream of the protospacer. ShCAST integrates DNA into unique sites in the E. coli genome with frequencies of up to 80% without positive selection. This work expands our understanding of the functional diversity of CRISPR-Cas systems and establishes a paradigm for precision DNA insertion.

 

SOURCE

https://science.sciencemag.org/content/early/2019/06/05/science.aax9181

 

Other related articel published in thies Open Access Online Scientific Journal, include:

Breakthrough in Gene Editing CRISPR–Cas systems: First example of a fully programmable, RNA-guided integrase and lays the foundation for genomic manipulations that obviate the requirements for double-strand breaks and homology-directed repair.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/13/breakthrough-in-gene-editing-crispr-cas-systems-first-example-of-a-fully-programmable-rna-guided-integrase-and-lays-the-foundation-for-genomic-manipulations-that-obviate-the-requirements-for/

Read Full Post »