Advertisements
Feeds:
Posts
Comments

Archive for the ‘Cancer and Current Therapeutics’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The CRISPR-Cas9 system has proven to be a powerful tool for genome editing allowing for the precise modification of specific DNA sequences within a cell. Many efforts are currently underway to use the CRISPR-Cas9 system for the therapeutic correction of human genetic diseases. CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells.

 

CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies utilizing CRISPR–Cas9.

 

Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells. Using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), an average insertion or deletion (indel) efficiency greater than 80% was achieved. This high efficiency of insertion or deletion generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs.

 

The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. These results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. As hPSCs can acquire P53 mutations, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

 

CRISPR-based editing of T cells to treat cancer, as scientists at the University of Pennsylvania are studying in a clinical trial, should also not have a p53 problem. Nor should any therapy developed with CRISPR base editing, which does not make the double-stranded breaks that trigger p53. But, there are pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans, a factor which must be taken into account as the CRISPR-Cas9 system moves forward into clinical trials.

 

References:

 

https://techonomy.com/2018/06/new-cancer-concerns-shake-crispr-prognosis/

 

https://www.statnews.com/2018/06/11/crispr-hurdle-edited-cells-might-cause-cancer/

 

https://www.biorxiv.org/content/early/2017/07/26/168443

 

https://www.nature.com/articles/s41591-018-0049-z.epdf?referrer_access_token=s92jDP_yPBmDmi-USafzK9RgN0jAjWel9jnR3ZoTv0MRjuB3dEnTctGtoy16n3DDbmISsvbln9SCISHVDd73tdQRNS7LB8qBlX1vpbLE0nK_CwKThDGcf344KR6RAm9k3wZiwyu-Kb1f2Dl7pArs5yYSiSLSdgeH7gst7lOBEh9qIc6kDpsytWLHqX_tyggu&tracking_referrer=www.statnews.com

 

https://www.nature.com/articles/s41591-018-0050-6.epdf?referrer_access_token=2KJ0L-tmvjtQdzqlkVXWVNRgN0jAjWel9jnR3ZoTv0Phq6GCpDlJx7lIwhCzBRjHJv0mv4zO0wzJJCeuxJjzoUWLeemH8T4I3i61ftUBkYkETi6qnweELRYMj4v0kLk7naHF-ujuz4WUf75mXsIRJ3HH0kQGq1TNYg7tk3kamoelcgGp4M7UTiTmG8j0oog_&tracking_referrer=www.statnews.com

 

https://www.biorxiv.org/content/early/2018/01/05/243345

 

https://www.nature.com/articles/nmeth.4293.epdf

 

Advertisements

Read Full Post »


Curation of selected topics and articles on Role of G-Protein Coupled Receptors in Chronic Disease as supplemental information for #TUBiol3373

Curator: Stephen J. Williams, PhD 

Below is a series of posts and articles related to the role of G protein coupled receptors (GPCR) in various chronic diseases.  This is only a cursory collection and by no means represents the complete extensive literature on pathogenesis related to G protein function or alteration thereof.  However it is important to note that, although we think of G protein signaling as rather short lived, quick, their chronic activation may lead to progression of various disease. As to whether disease onset, via GPCR, is a result of sustained signal, loss of desensitization mechanisms, or alterations of transduction systems is an area to be investigated.

From:

Molecular Pathogenesis of Progressive Lung Diseases

Author: Larry H. Bernstein, MD, FCAP

 

Chronic Obstructive Lung Disease (COPD)

Inflammatory and infectious factors are present in diseased airways that interact with G-protein coupled receptors (GPCRs), such as purinergic receptors and bradykinin (BK) receptors, to stimulate phospholipase C [PLC]. This is followed by the activation of inositol 1,4,5-trisphosphate (IP3)-dependent activation of IP3 channel receptors in the ER, which results in channel opening and release of stored Ca2+ into the cytoplasm. When ER Ca2+ stores are depleted a pathway for Ca2+ influx across the plasma membrane is activated. This has been referred to as “capacitative Ca2+ entry”, and “store-operated calcium entry” (3). In the next step PLC mediated Ca2+ i is mobilized as a result of GPCR activation by inflammatory mediators, which triggers cytokine production by Ca2+ i-dependent activation of the transcription factor nuclear factor kB (NF-kB) in airway epithelia.

 

 

 

In Alzheimer’s Disease

Important Lead in Alzheimer’s Disease Model

Larry H. Bernstein, MD, FCAP, Curator discusses findings from a research team at University of California at San Diego (UCSD) which the neuropeptide hormone corticotropin-releasing factor (CRF) as having an important role in the etiology of Alzheimer’s Disease (AD). CRF activates the CRF receptor (a G stimulatory receptor).  It was found inhibition of the CRF receptor prevented cognitive impairment in a mouse model of AD.  Furthermore researchers at the Flanders Interuniversity Institute for Biotechnology found the loss of a protein called G protein-coupled receptor 3 (GPR3) may lower the amyloid plaque aggregation, resulting in improved cognitive function.  Additionally inhibition of several G-protein coupled receptors alter amyloid precursor processing, providing a further mechanism of the role of GPCR in AD (see references in The role of G protein-coupled receptors in the pathology of Alzheimer’s disease by Amantha Thathiah and Bart De Strooper Nature Reviews Feb 2011; 12: 73-87 and read post).

 

In Cardiovascular and Thrombotic Disease

 

Adenosine Receptor Agonist Increases Plasma Homocysteine

 

and read related articles in curation on effects of hormones on the cardiovascular system at

Action of Hormones on the Circulation

 

In Cancer

A Curated History of the Science Behind the Ovarian Cancer β-Blocker Trial

 

Further curations and references of G proteins and chronic disease can be found at the Open Access journal https://pharmaceuticalintelligence.com using the search terms “GCPR” and “disease” in the Search box in the upper right of the home page.

 

 

 

 

 

 

Read Full Post »


Lesson 9 Cell Signaling:  Curations and Articles of reference as supplemental information for lecture section on WNTs: #TUBiol3373

Stephen J. Wiilliams, Ph.D: Curator

The following contain curations of scientific articles from the site https://pharmaceuticalintelligence.com  intended as additional reference material  to supplement material presented in the lecture.

Wnts are a family of lipid-modified secreted glycoproteins which are involved in:

Normal physiological processes including

A. Development:

– Osteogenesis and adipogenesis (Loss of wnt/β‐catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes)

  – embryogenesis including body axis patterning, cell fate specification, cell proliferation and cell migration

B. tissue regeneration in adult tissue

read: Wnt signaling in the intestinal epithelium: from endoderm to cancer

And in pathologic processes such as oncogenesis (refer to Wnt/β-catenin Signaling [7.10]) and to your Powerpoint presentation

 

The curation Wnt/β-catenin Signaling is a comprehensive review of canonical and noncanonical Wnt signaling pathways

 

To review:

 

 

 

 

 

 

 

 

 

 

 

Activating the canonical Wnt pathway frees B-catenin from the degradation complex, resulting in B-catenin translocating to the nucleus and resultant transcription of B-catenin/TCF/LEF target genes.

Fig. 1 Canonical Wnt/FZD signaling pathway. (A) In the absence of Wnt signaling, soluble β-catenin is phosphorylated by a degradation complex consisting of the kinases GSK3β and CK1α and the scaffolding proteins APC and Axin1. Phosphorylated β-catenin is targeted for proteasomal degradation after ubiquitination by the SCF protein complex. In the nucleus and in the absence of β-catenin, TCF/LEF transcription factor activity is repressed by TLE-1; (B) activation of the canonical Wnt/FZD signaling leads to phosphorylation of Dvl/Dsh, which in turn recruits Axin1 and GSK3β adjacent to the plasma membrane, thus preventing the formation of the degradation complex. As a result, β-catenin accumulates in the cytoplasm and translocates into the nucleus, where it promotes the expression of target genes via interaction with TCF/LEF transcription factors and other proteins such as CBP, Bcl9, and Pygo.

NOTE: In the canonical signaling, the Wnt signal is transmitted via the Frizzled/LRP5/6 activated receptor to INACTIVATE the degradation complex thus allowing free B-catenin to act as the ultimate transducer of the signal.

Remember, as we discussed, the most frequent cancer-related mutations of WNT pathway constituents is in APC.

This shows how important the degradation complex is in controlling canonical WNT signaling.

Other cell signaling systems are controlled by protein degradation:

A.  The Forkhead family of transcription factors

Read: Regulation of FoxO protein stability via ubiquitination and proteasome degradation

B. Tumor necrosis factor α/NF κB signaling

Read: NF-κB, the first quarter-century: remarkable progress and outstanding questions

1.            Question: In cell involving G-proteins, the signal can be terminated by desensitization mechanisms.  How is both the canonical and noncanonical Wnt signal eventually terminated/desensitized?

We also discussed the noncanonical Wnt signaling pathway (independent of B-catenin induced transcriptional activity).  Note that the canonical and noncanonical involve different transducers of the signal.

Noncanonical WNT Signaling

Note: In noncanonical signaling the transducer is a G-protein and second messenger system is IP3/DAG/Ca++ and/or kinases such as MAPK, JNK.

Depending on the different combinations of WNT ligands and the receptors, WNT signaling activates several different intracellular pathways  (i.e. canonical versus noncanonical)

 

In addition different Wnt ligands are expressed at different times (temporally) and different cell types in development and in the process of oncogenesis. 

The following paper on Wnt signaling in ovarian oncogenesis shows how certain Wnt ligands are expressed in normal epithelial cells but the Wnt expression pattern changes upon transformation and ovarian oncogenesis. In addition, differential expression of canonical versus noncanonical WNT ligands occur during the process of oncogenesis (for example below the authors describe the noncanonical WNT5a is expressed in normal ovarian  epithelia yet WNT5a expression in ovarian cancer is lower than the underlying normal epithelium. However the canonical WNT10a, overexpressed in ovarian cancer cells, serves as an oncogene, promoting oncogenesis and tumor growth.

Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence

Benjamin G. Bitler,1 Jasmine P. Nicodemus,1 Hua Li,1 Qi Cai,2 Hong Wu,3 Xiang Hua,4 Tianyu Li,5 Michael J. Birrer,6Andrew K. Godwin,7 Paul Cairns,8 and Rugang Zhang1,*

A.           Abstract

Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy in the US. Thus, there is an urgent need to develop novel therapeutics for this disease. Cellular senescence is an important tumor suppression mechanism that has recently been suggested as a novel mechanism to target for developing cancer therapeutics. Wnt5a is a non-canonical Wnt ligand that plays a context-dependent role in human cancers. Here, we investigate the role of Wnt5a in regulating senescence of EOC cells. We demonstrate that Wnt5a is expressed at significantly lower levels in human EOC cell lines and in primary human EOCs (n = 130) compared with either normal ovarian surface epithelium (n = 31; p = 0.039) or fallopian tube epithelium (n = 28; p < 0.001). Notably, a lower level of Wnt5a expression correlates with tumor stage (p = 0.003) and predicts shorter overall survival in EOC patients (p = 0.003). Significantly, restoration of Wnt5a expression inhibits the proliferation of human EOC cells both in vitro and in vivo in an orthotopic EOC mouse model. Mechanistically, Wnt5a antagonizes canonical Wnt/β-catenin signaling and induces cellular senescence by activating the histone repressor A (HIRA)/promyelocytic leukemia (PML) senescence pathway. In summary, we show that loss of Wnt5a predicts poor outcome in EOC patients and Wnt5a suppresses the growth of EOC cells by triggering cellular senescence. We suggest that strategies to drive senescence in EOC cells by reconstituting Wnt5a signaling may offer an effective new strategy for EOC therapy.

Oncol Lett. 2017 Dec;14(6):6611-6617. doi: 10.3892/ol.2017.7062. Epub 2017 Sep 26.

Clinical significance and biological role of Wnt10a in ovarian cancer. 

Li P1Liu W1Xu Q1Wang C1.

Ovarian cancer is one of the five most malignant types of cancer in females, and the only currently effective therapy is surgical resection combined with chemotherapy. Wnt family member 10A (Wnt10a) has previously been identified to serve an oncogenic function in several tumor types, and was revealed to have clinical significance in renal cell carcinoma; however, there is still only limited information regarding the function of Wnt10a in the carcinogenesis of ovarian cancer. The present study identified increased expression levels of Wnt10a in two cell lines, SKOV3 and A2780, using reverse transcription-polymerase chain reaction. Functional analysis indicated that the viability rate and migratory ability of SKOV3 cells was significantly inhibited following Wnt10a knockdown using short interfering RNA (siRNA) technology. The viability rate of SKOV3 cells decreased by ~60% compared with the control and the migratory ability was only ~30% of that in the control. Furthermore, the expression levels of β-catenin, transcription factor 4, lymphoid enhancer binding factor 1 and cyclin D1 were significantly downregulated in SKOV3 cells treated with Wnt10a-siRNA3 or LGK-974, a specific inhibitor of the canonical Wnt signaling pathway. However, there were no synergistic effects observed between Wnt10a siRNA3 and LGK-974, which indicated that Wnt10a activated the Wnt/β-catenin signaling pathway in SKOV3 cells. In addition, using quantitative PCR, Wnt10a was overexpressed in the tumor tissue samples obtained from 86 patients with ovarian cancer when compared with matching paratumoral tissues. Clinicopathological association analysis revealed that Wnt10a was significantly associated with high-grade (grade III, P=0.031) and late-stage (T4, P=0.008) ovarian cancer. Furthermore, the estimated 5-year survival rate was 18.4% for patients with low Wnt10a expression levels (n=38), whereas for patients with high Wnt10a expression (n=48) the rate was 6.3%. The results of the present study suggested that Wnt10a serves an oncogenic role during the carcinogenesis and progression of ovarian cancer via the Wnt/β-catenin signaling pathway.

Targeting the Wnt Pathway includes curations of articles related to the clinical development of Wnt signaling inhibitors as a therapeutic target in various cancers including hepatocellular carcinoma, colon, breast and potentially ovarian cancer.

 

2.         Question: Given that different Wnt ligands and receptors activate different signaling pathways, AND  WNT ligands  can be deferentially and temporally expressed  in various tumor types and the process of oncogenesis, how would you approach a personalized therapy targeting the WNT signaling pathway?

3.         Question: What are the potential mechanisms of either intrinsic or acquired resistance to Wnt ligand antagonists being developed?

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Targeting the Wnt Pathway [7.11]

Wnt/β-catenin Signaling [7.10]

Cancer Signaling Pathways and Tumor Progression: Images of Biological Processes in the Voice of a Pathologist Cancer Expert

e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point 

Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal @pharmaceuticalintelligence.com – Four Case Studies

 

Read Full Post »


Relations between Breast Cancer and DIET: amino acid called asparagine

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Diet may influence the spread of a deadly type of breast cancer, study finds

February 7, 2018, Cedars-Sinai Medical Center
Diet may influence the spread of a deadly type of breast cancer, study finds
Three-dimensional cell culture of breast cancer cells. Credit: National Institutes of Health (Dao Tiensinh)

A single protein building block commonly found in food may hold a key to preventing the spread of an often-deadly type of breast cancer, according to a new multicenter study published today in the medical journal Nature.

Investigators found that by limiting an amino acid called asparagine in laboratory mice with triple-negative breast cancer, they could dramatically reduce the ability of the cancer to travel to distant sites in the body. Among other techniques, the team used dietary restrictions to limit asparagine.

Foods rich in asparagine include dairy, whey, beef, poultry, eggs, fish, seafood, asparagus, potatoes, legumes, nuts, seeds, soy and whole grains. Foods low in asparagine include most fruits and vegetables.

“Our study adds to a growing body of evidence that suggests diet can influence the course of the disease,” said Simon Knott, PhD, associate director of the Center for Bioinformatics and Functional Genomics at Cedars-Sinai and one of two first authors of the study. The research was conducted at more than a dozen institutions.

If further research confirms the findings in human cells, limiting the amount of asparagine cancer patients ingest could be a potential strategy to augment existing therapies and to prevent the spread of breast cancer, Knott added.

The researchers studied triple-negative breast cancer cells, which grow and spread faster than most other types of cancer cells. It is called triple negative because it lacks receptors for the hormones estrogen and progesterone and makes little of a protein called HER2. As a result, it resists common treatments—which target these factors and has a higher-than-average mortality rate.

Research from past studies found that most tumor cells remain in the primary breast site, but a subset of cells leaves the breast and enters the bloodstream. Those cells colonize in the lungs, brain and liver, where they proliferate. The study team wanted to understand the particular traits of the tumor cells circulating in the blood and in the sites where the cancer has spread.

The researchers discovered that the appearance of asparagine synthetase—the enzyme cells used to make asparagine—in a primary tumor was strongly associated with later cancer spread.

The researchers also found that metastasis was greatly limited by reducing asparagine synthetase, treatment with the chemotherapy drug L-asparaginase, or dietary restriction. When the lab mice were given food rich in asparagine, the cancer cells spread more rapidly.

“The study results are extremely suggestive that changes in diet might impact both how an individual responds to primary therapy and their chances of lethal disease spreading later in life,” said the study’s senior author, Gregory J. Hannon, PhD, professor of Cancer Molecular Biology and director, Cancer Research UK Cambridge Institute, University of Cambridge in England.

Investigators now are considering conducting an early-phase clinical trial in which healthy participants would consume a low-asparagine diet. If the diet results in decreased levels of asparagine, the next scientific step would involve a clinical trial with cancer patients. That trial likely would employ dietary restrictions as well as chemotherapy and immunotherapy, Knott said.

Studying the effects of asparagine also could alter treatments for other types of cancer, investigators say.

“This study may have implications not only for breast cancer, but for many metastatic cancers,” said Ravi Thadhani, MD, MPH, vice dean, Research and Graduate Research Education, at Cedars-Sinai.

 Explore further: Researchers identify specific protein that helps breast cancer to spread

More information: Simon R. V. Knott et al, Asparagine bioavailability governs metastasis in a model of breast cancer, Nature (2018). DOI: 10.1038/nature25465

Read Full Post »


Juno acquired by Celgene for $9Billion following Gilead acquisition of Kite Pharma for 12.9 Billion

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 2/5/2018

Hans Bishop gets a $287M payday as Juno execs see windfall fortunes — with a $922M payoff for Arch

by john carroll — on February 5, 2018 05:47 AM EST
Updated: 05:48 AM

https://endpts.com/hans-bishop-gets-a-287m-payday-as-juno-execs-see-windfall-fortunes-with-a-922m-payoff-for-arch/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Hans%20Bishop%20gets%20a%20287M%20payday%20as%20Juno%20execs%20see%20windfall%20fortunes%20%20with%20a%20922M%20payoff%20for%20Arch

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

 john carroll — on February 5, 2018 05:50 AM EST

https://endpts.com/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/?utm_medium=email&utm_campaign=Monday%20February%205%202018&utm_content=Monday%20February%205%202018+CID_aecea465e79bcafc58b92d3615dfacda&utm_source=ENDPOINTS%20emails&utm_term=Anatomy%20of%20a%209B%20buyout%20Celgenes%20quick%20turn%20from%20Junos%20close%20collaborator%20to%20new%20owner

 

Other related articles on JUNO published in this Open Access Online Scientific Journal include the following:

Anatomy of a $9B buyout: Celgene’s quick turn from Juno’s close collaborator to new owner

https://pharmaceuticalintelligence.com/2018/02/05/anatomy-of-a-9b-buyout-celgenes-quick-turn-from-junos-close-collaborator-to-new-owner/

Juno Therapeutics to Resume JCAR015 Phase II ROCKET Trial AND Acquires privately held Boston, MA-based RedoxTherapies

https://pharmaceuticalintelligence.com/2016/07/14/juno-therapeutics-to-resume-jcar015-phase-ii-rocket-trial-and-acquires-privately-held-boston-ma-based-redoxtherapies/

What does this mean for Immunotherapy? FDA put a temporary hold on Juno’s JCAR015, Three Death of Celebral Edema in CAR-T Clinical Trial and Kite Pharma announced Phase II portion of its CAR-T ZUMA-1 trial

https://pharmaceuticalintelligence.com/2016/07/09/what-does-this-mean-for-immunotherapy-fda-put-a-temporary-hold-on-jcar015-three-death-of-celebral-edema-in-car-t-clinical-trial-and-kite-pharma-announced-phase-ii-portion-of-its-car-t-zuma-1-trial/

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

https://pharmaceuticalintelligence.com/2014/01/14/junos-approach-eradicated-cancer-cells-in-10-of-12-leukemia-patients-indicating-potential-to-transform-the-standard-of-care-in-oncology/

 

Economic Potential of a Drug Invention (Prof. Zelig Eshhar, Weitzman Institute, registered the patent) versus a Cancer Drug in Clinical Trials: CAR-T as a Case in Point, developed by Kite Pharma, under Arie Belldegrun, CEO, acquired by Gilead for $11.9 billion, 8/2017.

https://pharmaceuticalintelligence.com/2017/10/04/economic-potential-of-a-drug-invention-prof-zelig-eshhar-weitzman-institute-registered-the-patent-versus-a-cancer-drug-in-clinical-trials-car-t-as-a-case-in-point-developed-by-kite-pharma-unde/

 

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A mutated gene called RAS gives rise to a signalling protein Ral which is involved in tumour growth in the bladder. Many researchers tried and failed to target and stop this wayward gene. Signalling proteins such as Ral usually shift between active and inactive states.

 

So, researchers next tried to stop Ral to get into active state. In inacvtive state Ral exposes a pocket which gets closed when active. After five years, the researchers found a small molecule dubbed BQU57 that can wedge itself into the pocket to prevent Ral from closing and becoming active. Now, BQU57 has been licensed for further development.

 

Researchers have a growing genetic data on bladder cancer, some of which threaten to overturn the supposed causes of bladder cancer. Genetics has also allowed bladder cancer to be reclassified from two categories into five distinct subtypes, each with different characteristics and weak spots. All these advances bode well for drug development and for improved diagnosis and prognosis.

 

Among the groups studying the genetics of bladder cancer are two large international teams: Uromol (named for urology and molecular biology), which is based at Aarhus University Hospital in Denmark, and The Cancer Genome Atlas (TCGA), based at institutions in Texas and Boston. Each team tackled a different type of cancer, based on the traditional classification of whether or not a tumour has grown into the muscle wall of the bladder. Uromol worked on the more common, earlier form, non-muscle-invasive bladder cancer, whereas TCGA is looking at muscle-invasive bladder cancer, which has a lower survival rate.

 

The Uromol team sought to identify people whose non-invasive tumours might return after treatment, becoming invasive or even metastatic. Bladder cancer has a high risk of recurrence, so people whose non-invasive cancer has been treated need to be monitored for many years, undergoing cystoscopy every few months. They looked for predictive genetic footprints in the transcriptome of the cancer, which contains all of a cell’s RNA and can tell researchers which genes are turned on or off.

 

They found three subgroups with distinct basal and luminal features, as proposed by other groups, each with different clinical outcomes in early-stage bladder cancer. These features sort bladder cancer into genetic categories that can help predict whether the cancer will return. The researchers also identified mutations that are linked to tumour progression. Mutations in the so-called APOBEC genes, which code for enzymes that modify RNA or DNA molecules. This effect could lead to cancer and cause it to be aggressive.

 

The second major research group, TCGA, led by the National Cancer Institute and the National Human Genome Research Institute, that involves thousands of researchers across USA. The project has already mapped genomic changes in 33 cancer types, including breast, skin and lung cancers. The TCGA researchers, who study muscle-invasive bladder cancer, have looked at tumours that were already identified as fast-growing and invasive.

 

The work by Uromol, TCGA and other labs has provided a clearer view of the genetic landscape of early- and late-stage bladder cancer. There are five subtypes for the muscle-invasive form: luminal, luminal–papillary, luminal–infiltrated, basal–squamous, and neuronal, each of which is genetically distinct and might require different therapeutic approaches.

 

Bladder cancer has the third-highest mutation rate of any cancer, behind only lung cancer and melanoma. The TCGA team has confirmed Uromol research showing that most bladder-cancer mutations occur in the APOBEC genes. It is not yet clear why APOBEC mutations are so common in bladder cancer, but studies of the mutations have yielded one startling implication. The APOBEC enzyme causes mutations early during the development of bladder cancer, and independent of cigarette smoke or other known exposures.

 

The TCGA researchers found a subset of bladder-cancer patients, those with the greatest number of APOBEC mutations, had an extremely high five-year survival rate of about 75%. Other patients with fewer APOBEC mutations fared less well which is pretty surprising.

 

This detailed knowledge of bladder-cancer genetics may help to pinpoint the specific vulnerabilities of cancer cells in different people. Over the past decade, Broad Institute researchers have identified more than 760 genes that cancer needs to grow and survive. Their genetic map might take another ten years to finish, but it will list every genetic vulnerability that can be exploited. The goal of cancer precision medicine is to take the patient’s tumour and decode the genetics, so the clinician can make a decision based on that information.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29117162

 

https://www.ncbi.nlm.nih.gov/pubmed/27321955

 

https://www.ncbi.nlm.nih.gov/pubmed/28583312

 

https://www.ncbi.nlm.nih.gov/pubmed/24476821

 

https://www.ncbi.nlm.nih.gov/pubmed/28988769

 

https://www.ncbi.nlm.nih.gov/pubmed/28753430

 

Read Full Post »


Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

Top, from left: James Allison and Lieping Chen. Bottom, from left: Gordon Freeman, Tasuku Honjo (NOT ATTENDED), Arlene Sharpe.

Aviva Lev-Ari, PhD, RN was in attendance and covered this event LIVE

 

The 2017 Warren Alpert Foundation Prize has been awarded to five scientists for transformative discoveries in the field of cancer immunology.

Collectively, their work has elucidated foundational mechanisms in cancer’s ability to evade immune recognition and, in doing so, has profoundly altered the understanding of disease development and treatment. Their discoveries have led to the development of effective immune therapies for several types of cancer.

The 2017 award recipients are:

  • James Allison, professor of immunology and chair of the Department of Immunology, The University of Texas MD Anderson Cancer Center – Immune checkpoint blockage in Cancer Therapystrictly Genomics based drug
  1. 2017 FDA approved a gemonics based drug
  2. and co-stimulatory signals
  3. CTLA-4 blockade, CD28, AntiCTLA-4 induceses regression of Transplantable Murine tumo
  4. enhance tumor-specific immune response
  5. Fully antibody human immune response in 10,000 patients – FDA approved 2011
  6. Metastatic melanoma – 3 years survival, programmed tumor death, PD-1, MHC-A1
  7. Ipi/Nivo vs. Ipi – combination – 60% survival vs Ipi alone
  8. Anti CTA4 va Anti-PD-1
  9. responsive T cell population – MC38 TILs
  10. MC38 Infiltrating T cell populations: Treg, CD4, Effector, CD8, NKT/gamma-delta
  11. Checkpoint blockage modulates infiltrating T cell population frequencies
  12. T reg correlated with Tumor growth
  13. Combination therapy lead to CURE survival at 80% rate vs CTAL-4 40% positive outcome

Not Attended — Tasuku Honjo, professor of immunology and genomic medicine, Kyoto University – Immune regulation of Cancer Therapy by PD-1 Blockade

 

  • Lieping Chen, United Technologies Corporation Professor in Cancer Research and Professor of immunobiology, of dermatology and of medicine, Yale University – Adoptive Resistance: Molecular Pathway t Cancer Therapy – focus on solid tumors
  1. Enhancement – Enhance normal immune system – Co-stimulation/Co-inhibition Treg, and Cytokines, adoptive cell therapy, Lymphoid organs stores
  2. Normalization – to correct defective immune system – normalizing tumor immunity, diverse tumor escape mechanisms
  3. Anti-PD therapy: regression of large solid tumors: normalizing tumor immunity targeting tumor microenvironment: Heterogeneity, functional modulation, cellular and molecular components – classification by LACK of inflamation, adaptive resistance, other inhibitory pathways, intrinsic induction
  4. avoid autoimmune toxicity,
  5. Resetting immune response (melanoma)
  6. Understad Resistance: Target missing resistance or Adaptive resistance Type II= acquired immunity
  • Gordon Freeman, professor of medicine, Dana-Farber Cancer Institute, Harvard Medical School – PD-L1/PD-1 Cancer Immunotherapy
  1. B7 antibody
  2. block pathway – checkpoint blockage, Expand the T cells after recognition of the disease. T cell receptor signal, activation, co -stimulatory: B71 molecule, B72 – survival signals and cytokine production,.Increased T cell proliferation,
  3. PDL-1 is a ligand of PD 1. How T cell die? genes – PD1 Gene was highly expressed,
  4. Interferon gamma upregulate PD-L1 expression
  5. Feedback loop Tumor – stimulating immune response, interferon turn off PD1
  6. PD-L1 and PD-L2 Expression: Interferom
  7. Trancefuctor MHC, B7-2
  8. PD-L! sisgnat inhibit T-cell activation: turn off Proliferation and cytokine production — Decreasing the immune response
  9. T cell DNA Content: No S-phase devided cell
  10. PD-L1 engagement of PD-1 results in activation : Pd-1 Pathway inhibits T Cell Actiivation – lyposite motility,
  11. Pd-L2 is a second ligand for PD-1 and inhibits T cell activation
  12. PDl-1 expression: BR CA, Ovarian, Colonol-rectal, tymus, endothelial
  13. Blockage of the Pathway – Immune response enhanced
  14. Dendritic cells express PD-L1, PD-L2 and combination of Two, Combination was best of all by increase of cytokine production, increasing the immune response.
  15. PD-L1 blockade enhanced the immune response , increase killing and increased production of cytokines,
  16. anti-tumor efficacy of anti-PD-1/Pd-L1
  17. Pancreatic and colono-rector — PD-L, PDL1, PDL2 — does not owrkd.
  18. In menaloma: PD-1 works better than CYLA-4
  19. Comparison of Targeted Therapy: BRAF TKI vs Chemo high % but short term
  20. Immunotherapy – applies several mechanism: pre-existing anti-therapy
  21. Immune desert: PD=L does not work for them
  22. COMBINATION THERAPY: BLOCK TUMOR INVASION THEN STIMULATE IMMUNE RESPONSE — IT WILL WORK
  23. PD blockage + nutrients and probiotic
  24. Tumor Genome Therapy
  25. Tumore Immuno-evasion Score
  26. Antigens for immune response – choose the ones
  27. 20PD-1 or PD-L1 drugs in development
  28. WHO WILL THE DRUG WORK FOR?

 

  • Arlene Sharpe, the George Fabyan Professor of Comparative Pathology, Harvard Medical School; senior scientist, department of pathology, Brigham and Women’s Hospital – Multi-faceted Functionsof the PD-1 Pathway
  1. function of the pathway: control T cell activation and function of maintain immune tolerance
  2. protect tissues from damage by immune response
  3. T cell dysfunction during cancer anf viral infection
  4. protection from autoimmunity, inflammation,
  5. Mechanism by which PD-1 pathway inhibits anti-tumor immunity
  6. regulation of memoryT cell responce of PD-1
  7. PD-1 signaling inhibit anti-tumor immunity
  8. Compare: Mice lacking CD8-Cre- (0/5) cleared vs PD-1-/-5/5 – PD-1 DELETION: PARTIAL AND TIMED: DELETION OF PD-1 ON HALF OG TILS STARTING AT DAY 7 POSTTUMOR IMPLANTATION OF BOTH PD-1 AND PD-1 TILS: – Tamoxifen days 7-11
  9. Transcription profile: analysis of CD8+ TILs reveal altered metabolism: Fatty Acid Metabolism vs Oxidative Phosphorylation
  10. DOes metabolic shift: WIld type mouth vs PD-1-/_ P14: analyze Tumor cell killingPD-1-/- enhanced FAO increases CD8+ T cell tocicity
  11. Summary: T cell memory development and PD-1: T effectors vs T cell memory: Primary vs Secondary infection: In the absent of PD-1, CD8+ T cels show increase expansion of T cells
  12. INFLUENZA INFECTION: PRIMARY more virus in lung in PD-1 is lacking
  13. Acute infection: PD-1 controls memory T cell differentiation vs PD-1 increase expansion during effector phase BUT impaired persistence during memory phase: impaired cytokine production post re-challenge
  14. PD-1 immunotherapy work for patients with tumor: Recall Response and Primary response
  15. TIL density Primary vs Long term survivor – 5 days post tumor implantation – rechallenged long term survival
  16. Hot tumor vs Cold tumor – Deletion of PD-1 impairs T memory cell development

 

Opening Remarks: George Q. Daley, MD, PhD, DEAN, HMS

  • Scientific collaboration check point – avoid the body attacking itself, sabotaging the immune system
  • 1987 – Vaccine for HepB
  • Eight of the awardees got the Nobel Prize

 

Moderated by Joan Brugge, PhD, HMS, Prof. of Cell Biology

  • Evolution of concepts of Immunotherapy: William Coley’s Toxin streptoccocus skin infection.
  • 20th century: Immuno-surveilence, Immune response – field was dead in 1978 replaced by Immunotherapy
  • Rosenberg at NIH, high dose of costimulatory molecule prevented tumor reappearanceantbody induce tumor immunity–>> immune theraphy by check point receptor blockade – incidence of tumor in immune compromised mice – transfer T cell
  • T cell defficient, not completely defficient, self recognition of tumor,
  • suppress immmune – immune evasion
  • Michael Atkins, MD, Detupy Director, Georgetown-Lombardi, Comprehensive Cancer Center Clinical applications of Checkpoint inhibitors: Progress and Promise
  1. Overwhelm the Immune system, hide, subvert, Shield, defend-deactivating tumor trgeting T cells that ATTACK the immune system
  2. Immune system to TREAT the cancer
  3. Monotherapy – anti PD1/PD-L1: Antagonist activity
  4. Evading immune response: prostate, colcn
  5. MMR deficiency
  6. Nivolumab in relaped/Refractory HODGKIN LYMPHOMAS – over expression of PD-L1 and PDL2in Lymphomas
  7. 18 month survival better with Duv in Lung cancer stage 3 – anti PD-1- adjuvant therapy with broad effectiveness
  8. Biomarkers for pD-L1 Blockage
  9. ORR higher in PD-L1
  10. Improve Biomarkers: Clonality of T cells in Tumors
  11. T-effector Myeloid Inflammation Low – vs Hogh:
  12. Biomarker Model: Neoantigen burden vs Gene expression vs CD8+
  13. Tissue DIagnostic Labs: Tumor microenveironmenr
  14. Microbiome
  15. Combination: Nivo vs Nivo+Ipi is superior: DETERMINE WHEN TO STOP TREATMENT
  16. 15/16 stopped treatment – Treatment FREE SURVIVAL
  17. Sequencing with Standard Therapies
  18. Brain metastasis – Immune Oncology Therapy – crosses the BBB
  19. Less Toxic regimen, better toxicity management,
  20. Use Immuno therapy TFS
  21. combination – survival must be justified
  22. Goal: to make Cancer a curable disease vs cancer becoming a CHronic disease

 

Closing Remarks: George Q. Daley, MD, PhD, DEAN, HMS

 

The honorees will share a $500,000 prize and will be recognized at a day-long symposium on Oct. 5 at Harvard Medical School.

The Warren Alpert Foundation, in association with Harvard Medical School, honors trailblazing scientists whose work has led to the understanding, prevention, treatment or cure of human disease. The award recognizes seminal discoveries that hold the promise to change our understanding of disease or our ability to treat it.

“The discoveries honored by the Warren Alpert Foundation over the years are remarkable in their scope and potential,” said George Q. Daley, dean of Harvard Medical School. “The work of this year’s recipients is nothing short of breathtaking in its profound impact on medicine. These discoveries have reshaped our understanding of the body’s response to cancer and propelled our ability to treat several forms of this recalcitrant disease.”

The Warren Alpert Foundation Prize is given internationally. To date, the foundation has awarded nearly $4 million to 59 scientists. Since the award’s inception, eight honorees have also received a Nobel Prize.

“We commend these five scientists. Allison, Chen, Freeman, Honjoand Sharpe are indisputable standouts in the field of cancer immunology,” said Bevin Kaplan, director of the Warren Alpert Foundation. “Collectively, they are helping to turn the tide in the global fight against cancer. We couldn’t honor more worthy recipients for the Warren Alpert Foundation Prize.”

The 2017 award: Unraveling the mysterious interplay between cancer and immunity

Understanding how tumor cells sabotage the body’s immune defenses stems from the collective work of many scientists over many years and across multiple institutions.

Each of the five honorees identified key pieces of the puzzle.

The notion that cancer and immunity are closely connected and that a person’s immune defenses can be turned against cancer is at least a century old. However, the definitive proof and demonstration of the steps in this process were outlined through findings made by the five 2017 Warren Alpert prize recipients.

Under normal conditions, so-called checkpoint inhibitor molecules rein in the immune system to ensure that it does not attack the body’s own cells, tissues and organs. Building on each other’s work, the five award recipients demonstrated how this normal self-defense mechanism can be hijacked by tumors as a way to evade immune surveillance and dodge an attack. Subverting this mechanism allows cancer cells to survive and thrive.

A foundational discovery made in the 1980s elucidated the role of a molecule on the surface of T cells, the body’s elite assassins trained to seek, spot and destroy invaders.

A protein called CTLA-4 emerged as a key regulator of T cell behavior—one that signals to T cells the need to retreat from an attack. Experiments in mice lacking CTLA-4 and use of CTLA-4 antibodies demonstrated that absence of CTLA-4 or blocking its activity could lead to T cell activation and tumor destruction.

Subsequent work identified a different protein on the surface of T cells—PD-1—as another key regulator of T cell response. Mice lacking this protein developed an autoimmune disease as a result of aberrant T cell activity and over-inflammation.

Later on, scientists identified a molecule, B7-H1, subsequently renamed PD-L1, which binds to PD-1, clicking like a key in a lock. This was followed by the discovery of a second partner for PD-1—the molecule PD-L2—which also appeared to tame T-cell activity by binding to PD-1.

The identification of these molecules led to a set of studies showing that their presence on human and mouse tumors rendered the tumors resistant to immune eradication.

A series of experiments further elucidated just how tumors exploit the interaction between PD-1 and PD-L1 to survive. Specifically, some tumor cells appeared to express PD-L1, essentially “wrapping” themselves in it to avoid immune recognition and destruction.

Additional work demonstrated that using antibodies to block this interaction disarmed the tumors, rendering them vulnerable to immune destruction.

Collectively, the five scientists’ findings laid the foundation for antibody-based therapies that modulate the function of these molecules as a way to unleash the immune system against cancer cells.

Antibody therapy that targets CTLA-4 is currently approved by the FDA for the treatment of melanoma. PD-1/PD-L1 inhibitors have already shown efficacy in a broad range of cancers and have been approved by the FDA for the treatment of melanoma; kidney; lung; head and neck cancer; bladder cancer; some forms of colorectal cancer; Hodgkin lymphoma and Merkel cell carcinoma.

In their own words

“I am humbled to be included among the illustrious scientists who have been honored by the Warren Alpert Foundation for their contributions to the treatment and cure of human disease in its 30+ year history.  It is also recognition of the many investigators who have labored for decades to realize the promise of the immune system in treating cancer.”
        -James Allison


“The award is a great honor and a wonderful recognition of our work.”
         Lieping Chen



I am thrilled to have made a difference in the lives of cancer patients and to be recognized by fellow scientists for my part in the discovery of the PD-1/PD-L1 and PD-L2 pathway and its role in tumor immune evasion.  I am deeply honored to be a recipient of the Alpert Award and to be recognized for my part in the work that has led to effective cancer immunotherapy. The success of immunotherapy has unleashed the energies of a multitude of scientists to further advance this novel strategy.”
                                        -Gordon Freeman


I am extremely honored to receive the Warren Alpert Foundation Prize. I am very happy that our discovery of PD-1 in 1992 and subsequent 10-year basic research on PD-1 led to its clinical application as a novel cancer immunotherapy. I hope this development will encourage many scientists working in the basic biomedical field.”
-Tasuku Honjo


“I am truly honored to be a recipient of the Alpert Award. It is especially meaningful to be recognized by my colleagues for discoveries that helped define the biology of the CTLA-4 and PD-1 pathways. The clinical translation of our fundamental understanding of these pathways illustrates the value of basic science research, and I hope this inspires other scientists.”
-Arlene Sharpe

Previous winners

Last year’s award went to five scientists who were instrumental in the discovery and development of the CRISPR bacterial defense mechanism as a tool for gene editing. They were RodolpheBarrangou of North Carolina State University, Philippe Horvath of DuPont in Dangé-Saint-Romain, France, Jennifer Doudna of the University of California, Berkeley, Emmanuelle Charpentier of the Max Planck Institute for Infection Biology in Berlin and Umeå University in Sweden, and Virginijus Siksnys of the Institute of Biotechnology at Vilnius University in Lithuania.

Other past recipients include:

  • Tu Youyou of the China Academy of Chinese Medical Science, who went on to receive the 2015 Nobel Prize in Physiology or Medicine with two others, and Ruth and Victor Nussenzweig, of NYU Langone Medical Center, for their pioneering discoveries in chemistry and parasitology of malaria and the translation of their work into the development of drug therapies and an anti-malarial vaccine.
  • Oleh Hornykiewicz of the Medical University of Vienna and the University of Toronto; Roger Nicoll of the University of California, San Francisco; and Solomon Snyder of the Johns Hopkins University School of Medicine for research into neurotransmission and neurodegeneration.
  • David Botstein of Princeton University and Ronald Davis and David Hogness of Stanford University School of Medicine for contributions to the concepts and methods of creating a human genetic map.
  • Alain Carpentier of Hôpital Européen Georges-Pompidou in Paris and Robert Langer of MIT for innovations in bioengineering.
  • Harald zur Hausen and Lutz Gissmann of the German Cancer Research Center in Heidelberg for work on the human papillomavirus (HPV) and cancer of the cervix. Zur Hausenand others were honored with the Nobel Prize in Physiology or Medicine in 2008.

The Warren Alpert Foundation

Each year the Warren Alpert Foundation receives between 30 and 50 nominations from scientific leaders worldwide. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School.

Warren Alpert (1920-2007), a native of Chelsea, Mass., established the prize in 1987 after reading about the development of a vaccine for hepatitis B. Alpert decided on the spot that he would like to reward such breakthroughs, so he picked up the phone and told the vaccine’s creator, Kenneth Murray of the University of Edinburgh, that he had won a prize. Alpert then set about creating the foundation.

To award subsequent prizes, Alpert asked Daniel Tosteson (1925-2009), then dean of Harvard Medical School, to convene a panel of experts to identify scientists from around the world whose research has had a direct impact on the treatment of disease.

SOURCE

https://hms.harvard.edu/news/warren-alpert-foundation-honors-pioneers-cancer-immunology

Read Full Post »

Older Posts »