Funding, Deals & Partnerships: BIOLOGICS & MEDICAL DEVICES; BioMed e-Series; Medicine and Life Sciences Scientific Journal – http://PharmaceuticalIntelligence.com
Acinetobacter baumannii bacteria that are resistant to important antibiotics called carbapenems. Acinetobacter baumannii are highly-drug resistant bacteria that can cause a range of infections for hospitalized patients, including pneumonia, wound, or blood infections.
Pseudomonas aeruginosa, which are resistant to carbapenems. Pseudomonas aeruginosa can cause skin rashes and ear infectious in healthy people but also severe blood infections and pneumonia when contracted by sick people in the hospital.
Enterobacteriaceae — a family of bacteria that live in the human gut — that are resistant to both carbepenems and another class of antibiotics, cephalosporins.
It has been designated critical need for development of antibiotics to these pathogens. Now researchers at Mcmaster University and others in the US had used artificial intelligence (AI) to screen libraries of over 7,000 chemicals to find a drug that could be repurposed to kill off the pathogen.
Liu et. Al. (1) published their results of an AI screen to narrow down potential chemicals that could work against Acinetobacter baumanii in Nature Chemical Biology recently.
Abstract
Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.
Schematic workflow for incorporation of AI for antibiotic drug discovery for A. baumannii from 1. Liu, G., Catacutan, D.B., Rathod, K. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol (2023). https://doi.org/10.1038/s41589-023-01349-8
Antibiotics kill bacteria. However, there has been a lack of new drugs for decades and bacteria are becoming harder to treat, as they evolve resistance to the ones we have.
More than a million people a year are estimated to die from infections that resist treatment with antibiotics.The researchers focused on one of the most problematic species of bacteria – Acinetobacter baumannii, which can infect wounds and cause pneumonia.
You may not have heard of it, but it is one of the three superbugs the World Health Organization has identified as a “critical” threat.
It is often able to shrug off multiple antibiotics and is a problem in hospitals and care homes, where it can survive on surfaces and medical equipment.
Dr Jonathan Stokes, from McMaster University, describes the bug as “public enemy number one” as it’s “really common” to find cases where it is “resistant to nearly every antibiotic”.
Artificial intelligence
To find a new antibiotic, the researchers first had to train the AI. They took thousands of drugs where the precise chemical structure was known, and manually tested them on Acinetobacter baumannii to see which could slow it down or kill it.
This information was fed into the AI so it could learn the chemical features of drugs that could attack the problematic bacterium.
The AI was then unleashed on a list of 6,680 compounds whose effectiveness was unknown. The results – published in Nature Chemical Biology – showed it took the AI an hour and a half to produce a shortlist.
The researchers tested 240 in the laboratory, and found nine potential antibiotics. One of them was the incredibly potent antibiotic abaucin.
Laboratory experiments showed it could treat infected wounds in mice and was able to kill A. baumannii samples from patients.
However, Dr Stokes told me: “This is when the work starts.”
The next step is to perfect the drug in the laboratory and then perform clinical trials. He expects the first AI antibiotics could take until 2030 until they are available to be prescribed.
Curiously, this experimental antibiotic had no effect on other species of bacteria, and works only on A. baumannii.
Many antibiotics kill bacteria indiscriminately. The researchers believe the precision of abaucin will make it harder for drug-resistance to emerge, and could lead to fewer side-effects.
In principle, the AI could screen tens of millions of potential compounds – something that would be impractical to do manually.
“AI enhances the rate, and in a perfect world decreases the cost, with which we can discover these new classes of antibiotic that we desperately need,” Dr Stokes told me.
The researchers tested the principles of AI-aided antibiotic discovery in E. coli in 2020, but have now used that knowledge to focus on the big nasties. They plan to look at Staphylococcus aureus and Pseudomonas aeruginosa next.
“This finding further supports the premise that AI can significantly accelerate and expand our search for novel antibiotics,” said Prof James Collins, from the Massachusetts Institute of Technology.
He added: “I’m excited that this work shows that we can use AI to help combat problematic pathogens such as A. baumannii.”
Prof Dame Sally Davies, the former chief medical officer for England and government envoy on anti-microbial resistance, told Radio 4’s The World Tonight: “We’re onto a winner.”
She said the idea of using AI was “a big game-changer, I’m thrilled to see the work he (Dr Stokes) is doing, it will save lives”.
Other related articles and books published in this Online Scientific Journal include the following:
Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases, Reproductive Genomic Endocrinology
Twitter: @GilPress I write about technology, entrepreneurs and innovation.
Intuition Robotics announced today that it is expanding its mission of improving the lives of older adults to include enhancing their interactions with their physicians. The Israeli startup has developed the AI-based, award-winning proactive social robot ElliQ which has spent over 30,000 days in older adults’ homes over the past two years. Now ElliQ will help increase patient engagement while offering primary care providers continuous actionable data and insights for early detection and intervention.
The very big challenge Intuition Robotics set up to solve was to “understand how to create a relationship between a human and a machine,” says co-founder and CEO Dor Skuler. Unlike a number of unsuccessful high-profile social robots (e.g., Pepper) that tried to perform multiple functions in multiple settings, ElliQ has focused exclusively on older adults living alone. Understanding empathy and how to grow a trusting relationship were the key objectives of Intuition Robotics’ research project, as well as how to continuously learn the specific (and changing) behavioral characteristics, habits, and preferences of the older adults participating in the experiment.
The results are impressive: 90% of users engage with ElliQ every day, without deterioration in engagement over time. When ElliQ proactively initiates deep conversational interactions with its users, there’s 70% response rate. Most important, the participants share something personal with ElliQ almost every day. “She has picked up my attitude… she’s figured me out,” says Deanna Dezern, an ElliQ user who describes her robot companion as “my sister from another mother.”
The very big challenge Intuition Robotics set up to solve was to “understand how to create a relationship between a human and a machine,” says co-founder and CEO Dor Skuler. Unlike a number of unsuccessful high-profile social robots (e.g., Pepper) that tried to perform multiple functions in multiple settings, ElliQ has focused exclusively on older adults living alone. Understanding empathy and how to grow a trusting relationship were the key objectives of Intuition Robotics’ research project, as well as how to continuously learn the specific (and changing) behavioral characteristics, habits, and preferences of the older adults participating in the experiment.
The results are impressive: 90% of users engage with ElliQ every day, without deterioration in engagement over time. When ElliQ proactively initiates deep conversational interactions with its users, there’s 70% response rate. Most important, the participants share something personal with ElliQ almost every day. “She has picked up my attitude… she’s figured me out,” says Deanna Dezern, an ElliQ user who describes her robot companion as “my sister from another mother.”
Higher patient engagement leads to lower costs of delivering care and the quality of the physician-patient relationship is positively associated with improved functional health, studies have found. Typically, however, primary care physicians see their patients anywhere from once a month to once a year, even though about 85% of seniors in the U.S. have at least one chronic health condition. ElliQ, with the consent of its users, can provide data on the status of patients in between office visits and facilitate timely and consistent communications between physicians and their patients.
Supporting the notion of a home-based physician assistant robot is the transformation of healthcare delivery in the U.S. More and more primary care physicians are moving from a fee-for-service business model, where doctors are paid according to the procedures used to treat a patient, to “capitation,” where doctors are paid a set amount for each patient they see. This shift in how doctors are compensated is gaining momentum as a key solution for reducing the skyrocketing costs of healthcare: “…inadequate, unnecessary, uncoordinated, and inefficient care and suboptimal business processes eat up at least 35%—and maybe over 50%—of the more than $3 trillion that the country spends annually on health care. That suggests more than $1 trillion is being squandered,” states “The Case for Capitation,” a Harvard Business Review article.
Under this new business model, physicians have a strong incentive to reduce or eliminate visits to the ER and hospitalization, so ElliQ’s assistance in early intervention and support of proactive and preventative healthcare is highly valuable. ElliQ’s “new capabilities provide physicians with visibility into the patient’s condition at home while allowing seamless communication… can assist me and my team in early detection and mitigation of health issues, and it increases patients’ involvement in their care through more frequent engagement and communication,” says in a statement Dr. Peter Barker of Family Doctors, a Mass General Brigham-affiliated practice in Swampscott, MA, that is working with Intuition Robotics.
With the new stage in its evolution, ElliQ becomes “a conversational agent for self-reported data on how people are doing based on what the doctor is telling us to look for and, at the same time, a super-simple communication channel between the physician and the patient,” says Skuler. As only 20% of the individual’s health has to do with the administration of healthcare, Skuler says the balance is already taken care of by ElliQ—encouraging exercise, watching nutrition, keeping mentally active, connecting to the outside world, and promoting a sense of purpose.
A recent article in The Communication of the ACM pointed out that “usability concerns have for too long overshadowed questions about the usefulness and acceptability of digital technologies for older adults.” Specifically, the authors challenge the long-held assumption that accessibility and aging research “fall under the same umbrella despite the fact that aging is neither an illness nor a disability.”
For Skuler, a “pyramid of value” is represented in Intuition Robotics offering. At the foundation is the physical product, easy to use and operate and doing what it is expected to do. Then there is the layer of “building relationships based on trust and empathy,” with a lot of humor and social interaction and activities for the users. On top are specific areas of value to older adults, and the first one is healthcare. There will be more in the future, anything that could help older adults live better lives, such as direct connections to the local community. ”Healthcare is an interesting experiment and I’m very much looking forward to see what else the future holds for ElliQ,” says Skuler.
2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021
The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.
About the World Medical Innovation Forum
Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation
Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next
Co-Chairs identify the key themes of the Forum – set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD
President Emerita and Professor of Neuroscience, MIT
Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT
FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products
payments over time payers and Innovators relations Moderator: Julian Harris, MD
Partner, Deerfield
Promise of CGT realized, what part?
FDA role and interaction in CGT
Manufacturing aspects which is critical Speaker: Dave Lennon, PhD
President, Novartis Gene Therapies
Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT
FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products
payments over time payers and Innovators relations
GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD
Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
Assistant Professor of Neurology, HMS
What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan
Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery
Chief Program Officer, ACGT Foundation
Advocacy agency beginning of work Global Genes educational content and out reach to access the information
Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler
Clinical Trial Patient, BWH/DFCC
Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN
Professional Development Manager, BWH
Outcome is unknown, hope for good, support with resources all advocacy groups,
Process at FDA generalize from 1st entry to rules more generalizable Speaker: Peter Marks, MD, PhD
Director, Center for Biologics Evaluation and Research, FDA
Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work
Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance
Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation
big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy
collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi
CEO, Affinia Therapeutics
Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP
Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD
AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years
Safety to clinic vs speed to clinic, difference of vectors to trust
Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.
The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.
Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
Lessons learned from these first-in-class approvals.
Challenges to broaden this modality to similar indications.
Reflections on safety signals in the clinical studies?
Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years
Laxterna success to be replicated platform, paradigms measurement visual improved
More science is needed to continue develop vectors reduce toxicity,
AAV can deliver different cargos reduce adverse events improve vectorsRon Philip
Chief Operating Officer, Spark Therapeutics
The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD
Executive Medical Director, Lead TME, Novartis Gene Therapies
Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise
Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information
AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,
This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD
Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD
SVP, Head of Gene Therapy Research and Technical Operations, Astellas
Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data
Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD
CEO, Akouos
AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model
Biology across species nerve ending in the cochlea
engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones
The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD
Managing Director, Bain Capital Life Sciences
What acquirers are looking for??
What is the next generation vs what is real where is the industry going? Speakers:
Debby Baron,
Worldwide Business Development, Pfizer
CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally
Scalability and manufacturing regulatory conversations, clinical programs safety in parallel to planning getting drug to patients
ALS – Man 1in 300, Women 1 in 400, next decade increase 7%
10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters
Cell therapy for ACTA2 Vasculopathy in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis
Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story. They will explore why and how Imlygic became approved and its path to commercialization. Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers. Why? Is there a limitation to what and which cancers can target? Is the mode of administration a problem?
No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why? Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?
The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses. It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD
Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
Harvey W. Cushing Professor of Neurosurgery, HMS
Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD
Chief Research & Development Officer, Replimune
2002 in UK promise in oncolytic therapy GNCSF
Phase III melanoma 2015 M&A with Amgen
oncolytic therapy remains non effecting on immune response
data is key for commercialization
do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD
Chairman, Merck & Co.
response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic
Physician, Dana Farber-Brigham and Women’s Cancer Center
Assistant Professor of Medicine, HMS
Which person gets oncolytics virus if patient has immune suppression due to other indications
Safety of oncolytic virus greater than Systemic treatment
series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential
There are currently two oncolytic virus products on the market, one in the USA and one in China. As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II. Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:
What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?
Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
Why are these companies pursuing OVs while several others are taking a pass?
In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:
How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space? Would they bring any real advantages?
Systemic delivery Oncolytic Virus IV delivery woman in remission
Collaboration with Regeneron
Data collection: Imageable reporter secretable reporter, gene expression
Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors
Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:
Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:
How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.
Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR
2017 CAR-T first approval
M&A and research collaborations
TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD
CTO, Mustang Bio
tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD
CSO, Allogene
T cell response at prostate cancer
tumor specific
cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration
Where we might go: safety autologous and allogeneic Jay Short, PhD
Chairman, CEO, Cofounder, BioAlta, Inc.
Tumor type is not enough for development of therapeutics other organs are involved in the periphery
difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside
The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027, groups of products are emerging. Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:
Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?
Global Head of Product Development, Gene & Cell Therapy, Catalent
2/3 autologous 1/3 allogeneic CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized allogeneic are health donors innovations in cell types in use improvements in manufacturing
China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer. Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents. It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.
In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment. In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.
The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.
This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD
Managing Director, Fosun Health Fund
What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD
CEO, Neuropath Therapeutics
Monogenic rare disease with clear genomic target
Increase of 30% in patient enrollment
Regulatory reform approval is 60 days no delayPin Wang, PhD
CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.
Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD
CEO, Fosun Kite Biotechnology Co., Ltd
Possibilities to be creative and capitalize the new technologies for innovating drug
Support of the ecosystem by funding new companie allowing the industry to be developed in China
Autologous in patients differences cost challengeTian Xu, PhD
Vice President, Westlake University
ICH committee and Chinese FDA -r regulation similar to the US
Difference is the population recruitment, in China patients are active participants in skin disease
Active in development of transposome
Development of non-viral methods, CRISPR still in D and transposome
In China price of drugs regulatory are sensitive Shunfei Yan, PhD
The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?
How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
Will cost-of-goods be reduced as the industry matures?
How does mRNA technology seek to compete with AAV and other gene therapy approaches?
Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna
How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy
45 days for Personalized cancer vaccine one per patient
Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD
Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered
Potency and quality less quantity drug and greater potency
risk of delivery unwanted DNA, capsules are critical
analytics is critical regulator involvement in potency definition
Director, Center for Rare Neurological Diseases, MGH
Associate Professor, Neurology, HMS
Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology
crosswalk from bone marrow matter
New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers
The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.
Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?
Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression
Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others
Keep eyes open, waiting the Pandemic to end and enable working back on all the indications
Portfolio of MET, Mimi Emerging Therapies
Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis
Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy
Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic
Protein degradation organization constraint valuation by parties in a partnership
Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate
Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter
The Voice of Dr. Seidman – Her abstract is cited below
The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk
individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.
Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech
One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.
What is driving the interest in rare diseases?
What are the biggest barriers to making breakthroughs ‘routine and affordable?’
What is the role of retrospective and prospective natural history studies in rare disease? When does the expected value of retrospective disease history studies justify the cost?
Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases? How does this impact the collection of natural history data?
The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell
Senior Health and Science Reporter, CNBC
CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps
SVP & Chief Business Officer, Novartis Gene Therapies
Reimagine medicine with collaboration at MGH, MDM condition in children
The Science is there, sustainable processes and systems impact is transformational
Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect
Head, Pharmaceuticals Research & Development, Bayer AG
CGT – 2016 and in 2020 new leadership and capability
Disease Biology and therapeutics
Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular
During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions
GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:
EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG
CGT will bring treatment to cure, delivery of therapies
Be a Leader repair, regenerate, cure
Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products
Bayer strategy: build platform for use by four domains
Gener augmentation
Autologeneic therapy, analytics
Gene editing
Oncology Cell therapy tumor treatment: What kind of cells – the jury is out
Of 23 product launch at Bayer no prediction is possible some high some lows
Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD
Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.
Today’s panel is made up of pioneers who represent foundational aspects of gene editing. They will discuss the movement of the technology into the therapeutic mainstream.
Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
When to use what editing tool – pros and cons of traditional gene-editing v. base editing. Is prime editing the future? Specific use cases for epigenetic editing.
When we reach widespread clinical use – role of off-target editing – is the risk real? How will we mitigate? How practical is patient-specific off-target evaluation?
There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:
What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?
Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:
How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?
Will oligonucleotides improve as a class that will make them even more effective? Are further advancements in backbone chemistry anticipated, for example.
Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
Are small molecules a threat to oligonucleotide-based therapies?
Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides? Is there a place for multiple mechanism oligonucleotide medicines?
Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
Stem cell sourcing
Therapeutic indication growth
Genetic and other modification in cell production
Cell production to final product optimization and challenges
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
Stem cell sourcing
Therapeutic indication growth
Genetic and other modification in cell production
Cell production to final product optimization and challenges
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD
Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech
One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.
What is driving the interest in rare diseases?
What are the biggest barriers to making breakthroughs ‘routine and affordable?’
What is the role of retrospective and prospective natural history studies in rare disease? When does the expected value of retrospective disease history studies justify the cost?
Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases? How does this impact the collection of natural history data?
The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell
Senior Health and Science Reporter, CNBC
CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps
SVP & Chief Business Officer, Novartis Gene Therapies
Reimagine medicine with collaboration at MGH, MDM condition in children
The Science is there, sustainable processes and systems impact is transformational
Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect
Head, Pharmaceuticals Research & Development, Bayer AG
CGT – 2016 and in 2020 new leadership and capability
Disease Biology and therapeutics
Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular
During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions
GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:
EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG
CGT will bring treatment to cure, delivery of therapies
Be a Leader repair, regenerate, cure
Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products
Bayer strategy: build platform for use by four domains
Gener augmentation
Autologeneic therapy, analytics
Gene editing
Oncology Cell therapy tumor treatment: What kind of cells – the jury is out
Of 23 product launch at Bayer no prediction is possible some high some lows
Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD
Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.
Today’s panel is made up of pioneers who represent foundational aspects of gene editing. They will discuss the movement of the technology into the therapeutic mainstream.
Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
When to use what editing tool – pros and cons of traditional gene-editing v. base editing. Is prime editing the future? Specific use cases for epigenetic editing.
When we reach widespread clinical use – role of off-target editing – is the risk real? How will we mitigate? How practical is patient-specific off-target evaluation?
There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:
What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?
Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:
How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?
Will oligonucleotides improve as a class that will make them even more effective? Are further advancements in backbone chemistry anticipated, for example.
Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
Are small molecules a threat to oligonucleotide-based therapies?
Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides? Is there a place for multiple mechanism oligonucleotide medicines?
Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?
Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021
What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD
Partner, Mass General Brigham Innovation Fund
Strategies, success what changes are needed in the drug discovery process Speakers:
Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion
Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases
Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics
Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations
The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:
Stem cell sourcing
Therapeutic indication growth
Genetic and other modification in cell production
Cell production to final product optimization and challenges
Director, Neuroregeneration Research Institute, McLean
Professor, Neurology and Neuroscience, MGH, HMS
Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities
Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players? Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged? Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman
VP, Venture, Mass General Brigham
Saturation reached or more investment is coming in CGT
Pharmacologic agent in existing cause another disorders locomo-movement related
efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation
Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
Circuitry restoration
Microenvironment disease ameliorate symptoms – education of patients on the treatment
Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM
The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.
ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:
Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down?
Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation
Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas
Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors Ex Vivo gene therapy to improve funding products what tool kit belongs to
Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors
Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all
Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells
Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists
Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before
Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization
David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration
Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment
Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma
Improving diagnostic yield in pediatric cancer precision medicine
Elaine R Mardis
Advent of genomics have revolutionized how we diagnose and treat lung cancer
We are currently needing to understand the driver mutations and variants where we can personalize therapy
PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
The incidence rates and mortality rates of pediatric cancers are rising
Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics. Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors. RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations
They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
Need a diverse workforce across the cancer research and care spectrum
Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020
Tuesday, June 23
12:45 PM – 1:46 PM EDT
Virtual Educational Session
Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics
This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.
Judith A Varner, Yuliya Pylayeva-Gupta
Introduction
Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
Different type of cells are becoming targets for immune checkpoint like myeloid cells
In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
CXCLs are potential targets
PI3K delta inhibitors,
Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity
There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.
Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage
Discovering and optimizing covalent small-molecule ligands by chemical proteomics
Benjamin F Cravatt
Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
They use scout molecules to target ligands or proteins with reactive cysteines
For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)
Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier
The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib
Richard A. Ward
Cysteine activation: thiolate form of cysteine is a strong nucleophile
Thiolate form preferred in polar environment
Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
pKas of cysteine vary in EGFR
cysteine that are too reactive give toxicity while not reactive enough are ineffective
Accelerating drug discovery with lysine-targeted covalent probes
This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.
Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe
T-cell metabolism and metabolic reprogramming antitumor immunity
Jeffrey C Rathmell
Introduction
Jeffrey C Rathmell
Metabolic functions of cancer-associated fibroblasts
Mara H Sherman
Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response
Greg M Delgoffe
Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
When knock down glucose transporter the cells become more glycolytic
If patient had high oxidative metabolism had low PDL1 sensitivity
Showed this result in head and neck cancer as well
Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
Metformin now in clinical trials
T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
T cells from tumors have defective mitochondria or little respiratory capacity
They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy
Obesity, lipids and suppression of anti-tumor immunity
Lydia Lynch
Hypothesis: obesity causes issues with anti tumor immunity
Less NK cells in obese people; also produce less IFN gamma
RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
Upregulated genes that were upregulated involved in lipid metabolism
All were PPAR target genes
NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.
Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath
Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
However it will still take a trained pathologist to define regions of interest or field of desired view
Introduction
Jayanta Debnath
Challenges and barriers of implementing AI tools for cancer diagnostics
Jorge S Reis-Filho
Implementing robust digital pathology workflows into clinical practice and cancer research
Jayanta Debnath
Invited Speaker
Thomas J Fuchs
Founder of spinout of Memorial Sloan Kettering
Separates AI from computational algothimic
Dealing with not just machines but integrating human intelligence
Making decision for the patients must involve human decision making as well
How do we get experts to do these decisions faster
AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
In sandbox scenario the rules are set in stone and machines are great like chess playing
In second scenario can train computer to predict what a human would predict
So third scenario is like driving cars
System on constrained nature or constrained dataset will take a long time for commuter to get to decision
Fourth category is long term data collection project
He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
With an AI system pathologist drastically improved the ability to detect very small lesions
Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.
Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao
Cancers that are and are not increasing in younger populations
Stacey A. Fedewa
Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties. It is very hard for women as they are on their childbearing years so additional stress
Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer. Colorectal and testicular most common in US.
SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers
Other Articles on this Open Access Online Journal on Cancer Conferences and Conference Coverage in Real Time Include
AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights
Reporter: Stephen J. Williams, Ph.D.
3.4.16 AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine
Recent report from CBI Insights shows the rapid pace at which the biggest tech firms (Google, Apple, Microsoft, Facebook, and Amazon) are acquiring artificial intelligence (AI) startups, potentially confounding the AI talent shortage that exists.
The usual suspects are leading the race for AI: tech giants like Facebook, Amazon, Microsoft, Google, & Apple (FAMGA) have all been aggressively acquiring AI startups in the last decade.
Among the FAMGA companies, Apple leads the way, making 20 total AI acquisitions since 2010. It is followed by Google (the frontrunner from 2012 to 2016) with 14 acquisitions and Microsoft with 10.
Apple’s AI acquisition spree, which has helped it overtake Google in recent years, was essential to the development of new iPhone features. For example, FaceID, the technology that allows users to unlock their iPhone X just by looking at it, stems from Apple’s M&A moves in chips and computer vision, including the acquisition of AI company RealFace.
In fact, many of FAMGA’s prominent products and services came out of acquisitions of AI companies — such as Apple’s Siri, or Google’s contributions to healthcare through DeepMind.
That said, tech giants are far from the only companies snatching up AI startups.
Since 2010, there have been 635 AI acquisitions, as companies aim to build out their AI capabilities and capture sought-after talent (as of 8/31/2019).
The pace of these acquisitions has also been increasing. AI acquisitions saw a more than 6x uptick from 2013 to 2018, including last year’s record of 166 AI acquisitions — up 38% year-over-year.
In 2019, there have already been 140+ acquisitions (as of August), putting the year on track to beat the 2018 record at the current run rate.
Part of this increase in the pace of AI acquisitions can be attributed to a growing diversity in acquirers. Where once AI was the exclusive territory of major tech companies, today, smaller AI startups are becoming acquisition targets for traditional insurance, retail, and healthcare incumbents.
For example, in February 2018, Roche Holding acquired New York-based cancer startup Flatiron Health for $1.9B — one of the largest M&A deals in artificial intelligence.This year, Nike acquired AI-powered inventory management startup Celect, Uber acquired computer vision company Mighty AI, and McDonald’s acquired personalization platform Dynamic Yield.
Despite the increased number of acquirers, however, tech giants are still leading the charge. Acquisitive tech giants have emerged as powerful global corporations with a competitive advantage in artificial intelligence, and startups have played a pivotal role in helping these companies scale their AI initiatives.
Apple, Google, Microsoft, Facebook, Intel, and Amazon are the most active acquirers of AI startups, each acquiring 7+companies.
To read more on recent Acquisitions in the AI space please see the following articles on this Open Access Online Journal
Discover Brigham is hosted by the Brigham Research Institute (BRI), under the umbrella of Brigham Health. Launched in 2005, the BRI’s mission is to accelerate discoveries that improve human health by bridging the gaps between science, communication and funding. The BRI’s resources help to foster groundbreaking interdepartmental and interdisciplinary research. They provide a voice for the research community and raise the profile of Brigham Research.
2. ENTER THE EVENT CODE: DB19. THEN HIT JOIN!
3. PICK THE SESSION YOU WANT TO ASK A QUESTION. THEN ASK YOUR QUESTION!
4. YOUR QUESTION WILL BE REVIEWED AND MAY BE FORWARDED TO THE CHAIR TO ASK THE SPEAKER(S).
IT WORKS ON ANY DEVICE, YOU DO NOT NEED TO INSTALL ANYTHING!
Registration will open at 9:00 AM and will be located throughout the hospital including
Schlager Atrium (formerly known as Cabot Atrium, 45 Francis Street Lobby),
Schuster Lobby (75 Francis Street Entrance),
Shapiro Cardiovascular Center (70 Francis Street Entrance), and the
Hale Building for Transformative Medicine (HBTM) 1st Floor (60 Fenwood Road).
Please visit one of the registration desks listed below to check-in, receive your badge, and collect any necessary materials. Registration will begin starting at 9:00 AM at each of the locations below.
Click on each location below for directions.
SCHLAGER ATRIUM, FORMERLY KNOWN AS CABOT ATRIUM (45 FRANCIS ST. LOBBY)
SCHUSTER LOBBY (75 FRANCIS ST. LOBBY)
CARL J. AND RUTH SHAPIRO
CARDIOVASCULAR CENTER
HALE BUILDING FOR
TRANSFORMATIVE MEDICINE
SESSION LOCATIONS
Below you will find directions to each of the session locations.
MARSHALL A. WOLF CONFERENCE ROOM
HALE BUILDING FOR TRANSFORMATIVE MEDICINE
SESSION ROOM
FROM 60 FENWOOD ROAD: Enter at 60 Fenwood Rd lobby entrance.
STAIRS:
Take the lobby staircase to the 2nd floor. Walk past the balcony overlooking the atrium and take the stairs on the left (Stair 2) to the 3rd floor. Once on the 3rd floor, exit the stairwell and take a right. The room is to your right through the double glass door, straight ahead.
ELEVATOR:
Take S Elevator to 3rd floor. Take a right out of the elevator. The room is past the stairwell, on your right through the double glass doors.
HALE VTC 02006B CONFERENCE ROOM
HALE BUILDING FOR TRANSFORMATIVE MEDICINE
OVERFLOW ROOM FOR MARSHALL A. WOLF CONFERENCE ROOM
FROM 60 FENWOOD ROAD: Enter at 60 Fenwood Rd lobby entrance.
STAIRS:
Take the lobby staircase to the 2nd floor. The conference room will be on your right near the display monitor.
ELEVATOR:
Enter at 60 Fenwood Rd main entrance and take the S Elevator to the 2nd floor. Once you exit the elevator, take a right and walk past the balcony overlooking the atrium and the conference room will be straight ahead near the display monitor.
ZINNER BREAKOUT ROOM
CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER
SESSION ROOM
FROM 70 FRANCIS STREET: The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.
ZINNER BOARDROOM
CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER
OVERFLOW ROOM FOR ZINNER BREAKOUT ROOM
FROM 70 FRANCIS STREET:
The Zinner Boardroom is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalator, keeping to the left side of the building. The Conference Center is located on your right; the Boardroom is through the large doors on the back wall.
BORNSTEIN FAMILY AMPHITHEATER
MAIN PIKE, 45 FRANCIS STREET LOBBY
SESSION ROOM
FROM 45 FRANCIS STREET: Coming from 45 Francis Street lobby, walk towards the Main Pike (2nd floor hallway). Then take left on the Main Pike, 2nd door on right.
AGENDA
10:00 AM – 11:00 AM
Opening remarks
Elizabeth G. Nabel, MD, President Brigham Health, Prof. Medicine @HarvardMed
8th event since 2012
show casing amazing research
Open to the Public: Patients, Families to educate
90 Posters
Health equity perspective as DNA of the Brigham
Learn a new idea, meet someone new, create a new idea
FROM 70 FRANCIS STREET: The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.
Aaron Goldman
HaeLin Jang
Greog K. Gerber
Microbiome – Bacteria and Fungus therapies – computational tools for applications on microbiome
Diagnostics
Microbiome in early childhood
temporal variability during adulthood
host disease bacteriptherapeutics: C-Diff
Bugs as drugs
Gnotobiotic mice model for c-Diff in mice
MDSINE – Microbial dynamin model interaction model
cancer microbiome: Bacteria causing cancer, cancer changing the bacteria environment
Jeff Karp BENG PhD @MrJeffKarp
tissue based patch to seal open foramane ovale. Project remained in Academic settings however
GLUE component was commercialized
bioinspiration from living organs in Nature, slugs
Viscose secretions
Hydrophobic secretions and snails and sand castle worms
Anna Krichevsky, PhD HMS Initiative for RNA Medicine
paradox of organismal complexity and # protein encoding genes
Human genome, 70% Transcriptome Non-coding RNA only 2% encode proteins
Non-coding RNA small, long, multifunctional
biogenesis of offending RNAs can be drugged
RNA novel therapies: RNA as a Drug,
Indications: Brain Tumors and AD: MicroRNA (miRNA)the smallest Glioblastoma – only 4 drugs FDA approved in 25 years miRNA – 10b inhibition kills gliomacells miR-132 most neuroprotective RNA
Cardiovascular
Paul Anderson, MD, PhD
ALS and FTD – Fronto Temporal Dimensia
Riluzone 1970 – anti Anti-glutamateric
Edarabone 2017 drugs approved – anti-oxidative
Andogenesis role in Motor protection from Stress Cytoplasmatic tRNA – ANdiogenin (ANG) production
SPECIAL PHOTO-OP TO CELEBRATE YOU!
WE WILL TAKE A GROUP PHOTO DURING THE RECEPTION AND AWARDS CEREMONY TO CELEBRATE YOU, OUR INNOVATORS!
THE PHOTO WILL BE DISPLAYED AT THE BRIGHAM IN THE HALE BUILDING. WE HOPE YOU CAN JOIN US IN CELEBRATING YOUR ACHIEVEMENTS.
Extracellular RNA and their carriers in disease diagnosis and therapy, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
RNA plays various roles in determining how the information in our genes drives cell behavior. One of its roles is to carry information encoded by our genes from the cell nucleus to the rest of the cell where it can be acted on by other cell components. Rresearchers have now defined how RNA also participates in transmitting information outside cells, known as extracellular RNA or exRNA. This new role of RNA in cell-to-cell communication has led to new discoveries of potential disease biomarkers and therapeutic targets. Cells using RNA to talk to each other is a significant shift in the general thought process about RNA biology.
Researchers explored basic exRNA biology, including how exRNA molecules and their transport packages (or carriers) were made, how they were expelled by producer cells and taken up by target cells, and what the exRNA molecules did when they got to their destination. They encountered surprising complexity both in the types of carriers that transport exRNA molecules between cells and in the different types of exRNA molecules associated with the carriers. The researchers had to be exceptionally creative in developing molecular and data-centric tools to begin making sense of the complexity, and found that the type of carrier affected how exRNA messages were sent and received.
As couriers of information between cells, exRNA molecules and their carriers give researchers an opportunity to intercept exRNA messages to see if they are associated with disease. If scientists could change or engineer designer exRNA messages, it may be a new way to treat disease. The researchers identified potential exRNA biomarkers for nearly 30 diseases including cardiovascular disease, diseases of the brain and central nervous system, pregnancy complications, glaucoma, diabetes, autoimmune diseases and multiple types of cancer.
As for example some researchers found that exRNA in urine showed promise as a biomarker of muscular dystrophy where current studies rely on markers obtained through painful muscle biopsies. Some other researchers laid the groundwork for exRNA as therapeutics with preliminary studies demonstrating how researchers might load exRNA molecules into suitable carriers and target carriers to intended recipient cells, and determining whether engineered carriers could have adverse side effects. Scientists engineered carriers with designer RNA messages to target lab-grown breast cancer cells displaying a certain protein on their surface. In an animal model of breast cancer with the cell surface protein, the researchers showed a reduction in tumor growth after engineered carriers deposited their RNA cargo.
Other than the above research work the scientists also created a catalog of exRNA molecules found in human biofluids like plasma, saliva and urine. They analyzed over 50,000 samples from over 2000 donors, generating exRNA profiles for 13 biofluids. This included over 1000 exRNA profiles from healthy volunteers. The researchers found that exRNA profiles varied greatly among healthy individuals depending on characteristics like age and environmental factors like exercise. This means that exRNA profiles can give important and detailed information about health and disease, but careful comparisons need to be made with exRNA data generated from people with similar characteristics.
Next the researchers will develop tools to efficiently and reproducibly isolate, identify and analyze different carrier types and their exRNA cargos and allow analysis of one carrier and its cargo at a time. These tools will be shared with the research community to fill gaps in knowledge generated till now and to continue to move this field forward.
Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
3.3.7 Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair
Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.
Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.
Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.
Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.
Quick update on this week’s news: The University City life sciences company’s acquisition by Swiss pharma giant Roche is the biggest acquisition ever of a VC-backed company within city limits, per PitchBook and PACT.
The eye-popping $4.8 billion sticker price on Spark Therapeutics’acquisition deal with Roche announced on Monday is shaping up to be the largest exit ever within city limits for a venture-backed company, according to data from financial data provider PitchBook and the Philadelphia Alliance for Capital and Technologies (PACT).
“Filtering down to just Philadelphia proper does reveal that Spark Therapeutics, once the deal closes, will be the biggest exit ever for Philly-based venture-backed exits,” the company said in an email, citing data from an upcoming report.
According to the Seattle-based company’s data, the current holder of the largest Philly-proper exit title goes to Avid Radiopharmaceuticals, which in 2010 announced its acquisition by Lilly in a deal valued at up to $800 million.
Founded in 2013, Spark is a publicly traded spinout of Children’s Hospital of Philadelphia (CHOP), which invested $33 million in the company. The Philadelphia Inquirer reports that CHOP stands to reap a total return of $430 million for its minority stake in Spark Therapeutics.
As part of the acquisition deal, the company will remain based out of 3711 Market St., and continue to do business as a standalone Roche company.
“This transaction demonstrates the enormous value that global biotech companies like Roche see in gene therapy, a field in which Philadelphia is the unquestioned leader,” said Saul Behar, senior VP of advancement and strategic initiatives at the University City Science Center, the West Philly research park where Spark began and grew its operations. “[This] further validates Greater Philadelphia’s status as a biotech hub with a very bright future.”
Spark CEO Jeff Marrazzo said the deep pool of resources from Roche, the company plans to “accelerate the development of more gene therapies for more patients for more diseases and further expedite our vision of a world where no life is limited by genetic disease.”
Other articles on Gene Therapy and Retinal Disease on this Open Access Online Journal include:
JP Morgan Healthcare Conference Update: Sage, Mersana, Shutdown Woes and Babies
Published: Jan 10, 2019By Alex Keown
With the J.P. Morgan Healthcare Conference winding down, companies remain busy striking deals and informing investors about pipeline advances. BioSpace snagged some of the interesting news bits to come out of the conference from Wednesday.
SAGE Therapeutics – Following a positive Phase III report that its postpartum depression treatment candidate SAGE-217 hit the mark in its late-stage clinical trial, Sage Therapeutics is eying the potential to have multiple treatment options available for patients. At the start of J.P. Morgan, Sage said that patients treated with SAGE-217 had a statistically significant improvement of 17.8 points in the Hamilton Rating Scale for Depression, compared to 13.6 for placebo. The company plans to seek approval for SAGE-2017, but before that, the FDA is expected to make a decision on Zulresso in March. Zulresso already passed muster from advisory committees in November, and if approved, would be the first drug specifically for postpartum depression. In an interview with the Business Journal, Chief Business Officer Mike Cloonan said the company believes there is room in the market for both medications, particularly since the medications address different patient populations.
Mersana Therapeutics – After a breakup with Takeda Pharmaceutical and the shelving of its lead product, Cambridge, Mass.-based Mersana is making a new path. Even though a partial clinical hold was lifted following the death of a patient the company opted to shelve development of XMT-1522. During a presentation at JPM, CEO Anna Protopapas noted that many other companies are developing therapies that target the HER2 protein, which led to the decision, according to the Boston Business Journal. Protopapas said the HER2 space is highly competitive and now the company will focus on its other asset, XMT-1536, an ADC targeting NaPi2b, an antigen highly expressed in the majority of non-squamous NSCLC and epithelial ovarian cancer. XMT-1536 is currently in Phase 1 clinical trials for NaPi2b-expressing cancers, including ovarian cancer, non-small cell lung cancer and other cancers. Data on XMT-1536 is expected in the first half of 2019.
Novavax – During a JPM presentation, Stan Erck, CEO of Novavax, pointed to the company’s RSV vaccine, which is in late-stage development. The vaccine is being developed for the mother, in order to protect an infant. The mother transfers the antibodies to the infant, which will provide the baby with protection from RSV in its first six months. Erck called the program historic. He said the Phase III program is in its fourth year and the company has vaccinated 4,636 women. He said they are tracking the women and the babies. Researchers call the mothers every week through the first six months of the baby’s life to acquire data. Erck said the company anticipates announcing trial data this quarter. If approved, Erck said the market for the vaccine could be a significant revenue driver.
“You have 3.9 million birth cohorts and we expect 80 percent to 90 percent of those mothers to be vaccinated as a pediatric vaccine and in the U.S. the market rate is somewhere between $750 million and a $1 billion and then double that for worldwide market. So it’s a large market and we will be first to market in this,” Erck said, according to a transcript of the presentation.
Denali Therapeutics – Denali forged a collaboration with Germany-based SIRION Biotech to develop gene therapies for central nervous disorders. The two companies plan to develop adeno-associated virus (AAV) vectors to enable therapeutics to cross the blood-brain barrier for clinical applications in neurodegenerative diseases including Parkinson’s, Alzheimer’s disease, ALS and certain other diseases of the CNS.
AstraZeneca – Pharma giant AstraZeneca reported that in 2019 net prices on average across the portfolio will decrease versus 2018. With a backdrop of intense public and government scrutiny over pricing, Market Access head Rick Suarez said the company is increasing its pricing transparency. Additionally, he said the company is looking at new ways to price drugs, such as value-based reimbursement agreements with payers, Pink Sheet reported.
Amarin Corporation – As the company eyes a potential label expansion approval for its cardiovascular disease treatment Vascepa, Amarin Corporation has been proactively hiring hundreds of sales reps. In the fourth quarter, the company hired 265 new sales reps, giving the company a sales team of more than 400, CEO John Thero said. Thero noted that is a label expansion is granted by the FDA, “revenues will increase at least 50 percent over what we did in the prior year, which would give us revenues of approximate $350 million in 2019.”
Government Woes – As the partial government shutdown in the United States continues into its third week, biotech leaders at JPM raised concern as the FDA’s carryover funds are dwindling. With no new funding coming in, reviews of New Drug Applications won’t be able to continue past February, Pink Sheet said. While reviews are currently ongoing, no New Drug Applications are being accepted by the FDA at this time. With the halt of NDA applications, that has also caused some companies to delay plans for an initial public offering. It’s hard to raise potential investor excitement without the regulatory support of a potential drug approval. During a panel discussion, Jonathan Leff, a partner at Deerfield Management, noted that the ongoing government shutdown is a reminder of how “overwhelmingly dependent the whole industry of biotech and drug development is on government,” Pink Sheet said.
Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include: