Feeds:
Posts
Comments

Archive for the ‘Transformative Technologies in Healthcare’ Category

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Curators:

 

THE VOICE of Aviva Lev-Ari, PhD, RN

In this curation we wish to present two breaking through goals:

Goal 1:

Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer

Goal 2:

Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.

According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.

These eight subcellular pathologies can’t be measured at present time.

In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.

Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases

  1. Glycation
  2. Oxidative Stress
  3. Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
  4. Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
  5. Membrane instability
  6. Inflammation in the gut [mucin layer and tight junctions]
  7. Epigenetics/Methylation
  8. Autophagy [AMPKbeta1 improvement in health span]

Diseases that are not Diseases: no drugs for them, only diet modification will help

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

Exercise will not undo Unhealthy Diet

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:

  1. Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
  2. IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL

In the Bioelecronics domain we are inspired by the work of the following three research sources:

  1. Biological and Biomedical Electrical Engineering (B2E2) at Cornell University, School of Engineering https://www.engineering.cornell.edu/bio-electrical-engineering-0
  2. Bioelectronics Group at MIT https://bioelectronics.mit.edu/
  3. The work of Michael Levin @Tufts, The Levin Lab
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
Born: 1969 (age 54 years), Moscow, Russia
Education: Harvard University (1992–1996), Tufts University (1988–1992)
Affiliation: University of Cape Town
Research interests: Allergy, Immunology, Cross Cultural Communication
Awards: Cozzarelli prize (2020)
Doctoral advisor: Clifford Tabin
Most recent 20 Publications by Michael Levin, PhD
SOURCE
SCHOLARLY ARTICLE
The nonlinearity of regulation in biological networks
1 Dec 2023npj Systems Biology and Applications9(1)
Co-authorsManicka S, Johnson K, Levin M
SCHOLARLY ARTICLE
Toward an ethics of autopoietic technology: Stress, care, and intelligence
1 Sep 2023BioSystems231
Co-authorsWitkowski O, Doctor T, Solomonova E
SCHOLARLY ARTICLE
Closing the Loop on Morphogenesis: A Mathematical Model of Morphogenesis by Closed-Loop Reaction-Diffusion
14 Aug 2023Frontiers in Cell and Developmental Biology11:1087650
Co-authorsGrodstein J, McMillen P, Levin M
SCHOLARLY ARTICLE
30 Jul 2023Biochim Biophys Acta Gen Subj1867(10):130440
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
Regulative development as a model for origin of life and artificial life studies
1 Jul 2023BioSystems229
Co-authorsFields C, Levin M
SCHOLARLY ARTICLE
The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left–Right Functional Differences
1 Jul 2023International Journal of Molecular Sciences24(13)
Co-authorsMasuelli S, Real S, McMillen P
SCHOLARLY ARTICLE
Bioelectricidad en agregados multicelulares de células no excitables- modelos biofísicos
Jun 2023Revista Española de Física32(2)
Co-authorsCervera J, Levin M, Mafé S
SCHOLARLY ARTICLE
Bioelectricity: A Multifaceted Discipline, and a Multifaceted Issue!
1 Jun 2023Bioelectricity5(2):75
Co-authorsDjamgoz MBA, Levin M
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part I: Classical and Quantum Formulations of Active Inference
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):235-245
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part II: Tensor Networks as General Models of Control Flow
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):246-256
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Darwin’s agential materials: evolutionary implications of multiscale competency in developmental biology
1 Jun 2023Cellular and Molecular Life Sciences80(6)
Co-authorsLevin M
SCHOLARLY ARTICLE
Morphoceuticals: Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging
1 Jun 2023Drug Discovery Today28(6)
Co-authorsPio-Lopez L, Levin M
SCHOLARLY ARTICLE
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine
12 May 2023Patterns4(5)
Co-authorsMathews J, Chang A, Devlin L
SCHOLARLY ARTICLE
Making and breaking symmetries in mind and life
14 Apr 2023Interface Focus13(3)
Co-authorsSafron A, Sakthivadivel DAR, Sheikhbahaee Z
SCHOLARLY ARTICLE
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis
14 Apr 2023Interface Focus13(3)
Co-authorsPio-Lopez L, Bischof J, LaPalme JV
SCHOLARLY ARTICLE
The collective intelligence of evolution and development
Apr 2023Collective Intelligence2(2):263391372311683SAGE Publications
Co-authorsWatson R, Levin M
SCHOLARLY ARTICLE
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
13 Mar 2023Physics Reports1004:1-31
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines
1 Mar 2023Biomimetics8(1)
Co-authorsBongard J, Levin M
SCHOLARLY ARTICLE
Transplantation of fragments from different planaria: A bioelectrical model for head regeneration
7 Feb 2023Journal of Theoretical Biology558
Co-authorsCervera J, Manzanares JA, Levin M
SCHOLARLY ARTICLE
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
1 Jan 2023Animal Cognition
Co-authorsLevin M
SCHOLARLY ARTICLE
Biological Robots: Perspectives on an Emerging Interdisciplinary Field
1 Jan 2023Soft Robotics
Co-authorsBlackiston D, Kriegman S, Bongard J
SCHOLARLY ARTICLE
Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model
1 Jan 2023Entropy25(1)
Co-authorsShreesha L, Levin M
5

5 total citations on Dimensions.

Article has an altmetric score of 16
SCHOLARLY ARTICLE
1 Jan 2023BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY138(1):141
Co-authorsClawson WP, Levin M
SCHOLARLY ARTICLE
Future medicine: from molecular pathways to the collective intelligence of the body
1 Jan 2023Trends in Molecular Medicine
Co-authorsLagasse E, Levin M

THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC

PENDING

THE VOICE of  Stephen J. Williams, PhD

Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes

 

  1. 25% of US children have fatty liver
  2. Type II diabetes can be manifested from fatty live with 151 million  people worldwide affected moving up to 568 million in 7 years
  3. A common myth is diabetes due to overweight condition driving the metabolic disease
  4. There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
  5. Thirty percent of ‘obese’ people just have high subcutaneous fat.  the visceral fat is more problematic
  6. there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects.  Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
  7. At any BMI some patients are insulin sensitive while some resistant
  8. Visceral fat accumulation may be more due to chronic stress condition
  9. Fructose can decrease liver mitochondrial function
  10. A methionine and choline deficient diet can lead to rapid NASH development

 

Read Full Post »

Artificial Intelligence (AI) Used to Successfully Determine Most Likely Repurposed Antibiotic Against Deadly Superbug Acinetobacter baumanni

Reporter: Stephen J. Williams, Ph.D.

The World Health Organization has identified 3 superbugs, or infective micororganisms displaying resistance to common antibiotics and multidrug resistance, as threats to humanity:

Three bacteria were listed as critical:

  • Acinetobacter baumannii bacteria that are resistant to important antibiotics called carbapenems. Acinetobacter baumannii are highly-drug resistant bacteria that can cause a range of infections for hospitalized patients, including pneumonia, wound, or blood infections.
  • Pseudomonas aeruginosa, which are resistant to carbapenems. Pseudomonas aeruginosa can cause skin rashes and ear infectious in healthy people but also severe blood infections and pneumonia when contracted by sick people in the hospital.
  • Enterobacteriaceae — a family of bacteria that live in the human gut — that are resistant to both carbepenems and another class of antibiotics, cephalosporins.

 

It has been designated critical need for development of  antibiotics to these pathogens.  Now researchers at Mcmaster University and others in the US had used artificial intelligence (AI) to screen libraries of over 7,000 chemicals to find a drug that could be repurposed to kill off the pathogen.

Liu et. Al. (1) published their results of an AI screen to narrow down potential chemicals that could work against Acinetobacter baumanii in Nature Chemical Biology recently.

Abstract

Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.

Schematic workflow for incorporation of AI for antibiotic drug discovery for A. baumannii from 1. Liu, G., Catacutan, D.B., Rathod, K. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol (2023). https://doi.org/10.1038/s41589-023-01349-8

Figure source: https://www.nature.com/articles/s41589-023-01349-8

Article Source: https://www.nature.com/articles/s41589-023-01349-8

  1. Liu, G., Catacutan, D.B., Rathod, K. et al.Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumanniiNat Chem Biol (2023). https://doi.org/10.1038/s41589-023-01349-8

 

 

For reference to WHO and lists of most pathogenic superbugs see https://www.scientificamerican.com/article/who-releases-list-of-worlds-most-dangerous-superbugs/

The finding was first reported by the BBC.

Source: https://www.bbc.com/news/health-65709834

By James Gallagher

Health and science correspondent

Scientists have used artificial intelligence (AI) to discover a new antibiotic that can kill a deadly species of superbug.

The AI helped narrow down thousands of potential chemicals to a handful that could be tested in the laboratory.

The result was a potent, experimental antibiotic called abaucin, which will need further tests before being used.

The researchers in Canada and the US say AI has the power to massively accelerate the discovery of new drugs.

It is the latest example of how the tools of artificial intelligence can be a revolutionary force in science and medicine.

Stopping the superbugs

Antibiotics kill bacteria. However, there has been a lack of new drugs for decades and bacteria are becoming harder to treat, as they evolve resistance to the ones we have.

More than a million people a year are estimated to die from infections that resist treatment with antibiotics.The researchers focused on one of the most problematic species of bacteria – Acinetobacter baumannii, which can infect wounds and cause pneumonia.

You may not have heard of it, but it is one of the three superbugs the World Health Organization has identified as a “critical” threat.

It is often able to shrug off multiple antibiotics and is a problem in hospitals and care homes, where it can survive on surfaces and medical equipment.

Dr Jonathan Stokes, from McMaster University, describes the bug as “public enemy number one” as it’s “really common” to find cases where it is “resistant to nearly every antibiotic”.

 

Artificial intelligence

To find a new antibiotic, the researchers first had to train the AI. They took thousands of drugs where the precise chemical structure was known, and manually tested them on Acinetobacter baumannii to see which could slow it down or kill it.

This information was fed into the AI so it could learn the chemical features of drugs that could attack the problematic bacterium.

The AI was then unleashed on a list of 6,680 compounds whose effectiveness was unknown. The results – published in Nature Chemical Biology – showed it took the AI an hour and a half to produce a shortlist.

The researchers tested 240 in the laboratory, and found nine potential antibiotics. One of them was the incredibly potent antibiotic abaucin.

Laboratory experiments showed it could treat infected wounds in mice and was able to kill A. baumannii samples from patients.

However, Dr Stokes told me: “This is when the work starts.”

The next step is to perfect the drug in the laboratory and then perform clinical trials. He expects the first AI antibiotics could take until 2030 until they are available to be prescribed.

Curiously, this experimental antibiotic had no effect on other species of bacteria, and works only on A. baumannii.

Many antibiotics kill bacteria indiscriminately. The researchers believe the precision of abaucin will make it harder for drug-resistance to emerge, and could lead to fewer side-effects.

 

In principle, the AI could screen tens of millions of potential compounds – something that would be impractical to do manually.

“AI enhances the rate, and in a perfect world decreases the cost, with which we can discover these new classes of antibiotic that we desperately need,” Dr Stokes told me.

The researchers tested the principles of AI-aided antibiotic discovery in E. coli in 2020, but have now used that knowledge to focus on the big nasties. They plan to look at Staphylococcus aureus and Pseudomonas aeruginosa next.

“This finding further supports the premise that AI can significantly accelerate and expand our search for novel antibiotics,” said Prof James Collins, from the Massachusetts Institute of Technology.

He added: “I’m excited that this work shows that we can use AI to help combat problematic pathogens such as A. baumannii.”

Prof Dame Sally Davies, the former chief medical officer for England and government envoy on anti-microbial resistance, told Radio 4’s The World Tonight: “We’re onto a winner.”

She said the idea of using AI was “a big game-changer, I’m thrilled to see the work he (Dr Stokes) is doing, it will save lives”.

Other related articles and books published in this Online Scientific Journal include the following:

Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases, Reproductive Genomic Endocrinology

(3 book series: Volume 1, 2&3, 4)

https://www.amazon.com/gp/product/B08VVWTNR4?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

 

 

 

 

 

 

 

 

 

 

  • The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications:

 

  • Series D, VOLUME 2

Infectious Diseases and Therapeutics

and

  • Series D, VOLUME 3

The Immune System and Therapeutics

(Series D: BioMedicine & Immunology) Kindle Edition.

On Amazon.com since September 4, 2017

(English Edition) Kindle Edition – as one Book

https://www.amazon.com/dp/B075CXHY1B $115

 

Bacterial multidrug resistance problem solved by a broad-spectrum synthetic antibiotic

The Journey of Antibiotic Discovery

FDA cleared Clever Culture Systems’ artificial intelligence tech for automated imaging, analysis and interpretation of microbiology culture plates speeding up Diagnostics

Artificial Intelligence: Genomics & Cancer

Read Full Post »

This AI Just Evolved From Companion Robot To Home-Based Physician Helper

Reporter: Ethan Coomber, Research Assistant III, Data Science and Podcast Library Development 

Article Author: Gil Press Senior Contributor Enterprise & Cloud @Forbes 

Twitter: @GilPress I write about technology, entrepreneurs and innovation.

Intuition Robotics announced today that it is expanding its mission of improving the lives of older adults to include enhancing their interactions with their physicians. The Israeli startup has developed the AI-based, award-winning proactive social robot ElliQ which has spent over 30,000 days in older adults’ homes over the past two years. Now ElliQ will help increase patient engagement while offering primary care providers continuous actionable data and insights for early detection and intervention.

The very big challenge Intuition Robotics set up to solve was to “understand how to create a relationship between a human and a machine,” says co-founder and CEO Dor Skuler. Unlike a number of unsuccessful high-profile social robots (e.g., Pepper) that tried to perform multiple functions in multiple settings, ElliQ has focused exclusively on older adults living alone. Understanding empathy and how to grow a trusting relationship were the key objectives of Intuition Robotics’ research project, as well as how to continuously learn the specific (and changing) behavioral characteristics, habits, and preferences of the older adults participating in the experiment.

The results are impressive: 90% of users engage with ElliQ every day, without deterioration in engagement over time. When ElliQ proactively initiates deep conversational interactions with its users, there’s 70% response rate. Most important, the participants share something personal with ElliQ almost every day. “She has picked up my attitude… she’s figured me out,” says Deanna Dezern, an ElliQ user who describes her robot companion as “my sister from another mother.”

The very big challenge Intuition Robotics set up to solve was to “understand how to create a relationship between a human and a machine,” says co-founder and CEO Dor Skuler. Unlike a number of unsuccessful high-profile social robots (e.g., Pepper) that tried to perform multiple functions in multiple settings, ElliQ has focused exclusively on older adults living alone. Understanding empathy and how to grow a trusting relationship were the key objectives of Intuition Robotics’ research project, as well as how to continuously learn the specific (and changing) behavioral characteristics, habits, and preferences of the older adults participating in the experiment.

The results are impressive: 90% of users engage with ElliQ every day, without deterioration in engagement over time. When ElliQ proactively initiates deep conversational interactions with its users, there’s 70% response rate. Most important, the participants share something personal with ElliQ almost every day. “She has picked up my attitude… she’s figured me out,” says Deanna Dezern, an ElliQ user who describes her robot companion as “my sister from another mother.”

Higher patient engagement leads to lower costs of delivering care and the quality of the physician-patient relationship is positively associated with improved functional health, studies have found. Typically, however, primary care physicians see their patients anywhere from once a month to once a year, even though about 85% of seniors in the U.S. have at least one chronic health condition. ElliQ, with the consent of its users, can provide data on the status of patients in between office visits and facilitate timely and consistent communications between physicians and their patients.

Supporting the notion of a home-based physician assistant robot is the transformation of healthcare delivery in the U.S. More and more primary care physicians are moving from a fee-for-service business model, where doctors are paid according to the procedures used to treat a patient, to “capitation,” where doctors are paid a set amount for each patient they see. This shift in how doctors are compensated is gaining momentum as a key solution for reducing the skyrocketing costs of healthcare: “…inadequate, unnecessary, uncoordinated, and inefficient care and suboptimal business processes eat up at least 35%—and maybe over 50%—of the more than $3 trillion that the country spends annually on health care. That suggests more than $1 trillion is being squandered,” states “The Case for Capitation,” a Harvard Business Review article.

Under this new business model, physicians have a strong incentive to reduce or eliminate visits to the ER and hospitalization, so ElliQ’s assistance in early intervention and support of proactive and preventative healthcare is highly valuable. ElliQ’s “new capabilities provide physicians with visibility into the patient’s condition at home while allowing seamless communication… can assist me and my team in early detection and mitigation of health issues, and it increases patients’ involvement in their care through more frequent engagement and communication,” says in a statement Dr. Peter Barker of Family Doctors, a Mass General Brigham-affiliated practice in Swampscott, MA, that is working with Intuition Robotics.

With the new stage in its evolution, ElliQ becomes “a conversational agent for self-reported data on how people are doing based on what the doctor is telling us to look for and, at the same time, a super-simple communication channel between the physician and the patient,” says Skuler. As only 20% of the individual’s health has to do with the administration of healthcare, Skuler says the balance is already taken care of by ElliQ—encouraging exercise, watching nutrition, keeping mentally active, connecting to the outside world, and promoting a sense of purpose.

A recent article in The Communication of the ACM pointed out that “usability concerns have for too long overshadowed questions about the usefulness and acceptability of digital technologies for older adults.” Specifically, the authors challenge the long-held assumption that accessibility and aging research “fall under the same umbrella despite the fact that aging is neither an illness nor a disability.”

For Skuler, a “pyramid of value” is represented in Intuition Robotics offering. At the foundation is the physical product, easy to use and operate and doing what it is expected to do. Then there is the layer of “building relationships based on trust and empathy,” with a lot of humor and social interaction and activities for the users. On top are specific areas of value to older adults, and the first one is healthcare. There will be more in the future, anything that could help older adults live better lives, such as direct connections to the local community. ”Healthcare is an interesting experiment and I’m very much looking forward to see what else the future holds for ElliQ,” says Skuler.

Original. Reposted with permission, 7/7/2021.

Other related articles published in this Open Access Online Scientific Journal include the Following:

The Future of Speech-Based Human-Computer Interaction
Reporter: Ethan Coomber
https://pharmaceuticalintelligence.com/2021/06/23/the-future-of-speech-based-human-computer-interaction/

Deep Medicine: How Artificial Intelligence Can Make Health Care Human Again
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2020/11/11/deep-medicine-how-artificial-intelligence-can-make-health-care-human-again/

Supporting the elderly: A caring robot with ‘emotions’ and memory
Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/02/10/supporting-the-elderly-a-caring-robot-with-emotions-and-memory/

Developing Deep Learning Models (DL) for Classifying Emotions through Brainwaves
Reporter: Abhisar Anand, Research Assistant I
https://pharmaceuticalintelligence.com/2021/06/22/developing-deep-learning-models-dl-for-classifying-emotions-through-brainwaves/

Read Full Post »

2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021

The 2021 Virtual World Medical Innovation Forum will focus on the growing impact of gene and cell therapy. Senior healthcare leaders from all over look to shape and debate the area of gene and cell therapy. Our shared belief: no matter the magnitude of change, responsible healthcare is centered on a shared commitment to collaborative innovation–industry, academia, and practitioners working together to improve patients’ lives.

About the World Medical Innovation Forum

Mass General Brigham is pleased to present the World Medical Innovation Forum (WMIF) virtual event Wednesday, May 19 – Friday, May 21. This interactive web event features expert discussions of gene and cell therapy (GCT) and its potential to change the future of medicine through its disease-treating and potentially curative properties. The agenda features 150+ executive speakers from the healthcare industry, venture, startups, life sciences manufacturing, consumer health and the front lines of care, including many Harvard Medical School-affiliated researchers and clinicians. The annual in-person Forum will resume live in Boston in 2022. The World Medical Innovation Forum is presented by Mass General Brigham Innovation, the global business development unit supporting the research requirements of 7,200 Harvard Medical School faculty and research hospitals including Massachusetts General, Brigham and Women’s, Massachusetts Eye and Ear, Spaulding Rehab and McLean Hospital. Follow us on Twitter: twitter.com/@MGBInnovation

Accelerating the Future of Medicine with Gene and Cell Therapy What Comes Next

https://worldmedicalinnovation.org/agenda/

Virtual | May 19–21, 2021

#WMIF2021

@MGBInnovation

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

will cover the event in Real Time

Aviva Lev-Ari, PhD, RN

Founder LPBI 1.0 & LPBI 2.0

member_60221522 copy

will be in virtual attendance producing the e-Proceedings

and the Tweet Collection of this Global event expecting +15,000 attendees

@pharma_BI

@AVIVA1950

LPBI’s Eighteen Books in Medicine

https://lnkd.in/ekWGNqA

Among them, books on Gene and Cell Therapy include the following:

Topics for May 19 – 21 include:

Impact on Patient Care – Therapeutic and Potentially Curative GCT Developments

GCT Delivery, Manufacturing – What’s Next

GCT Platform Development

Oncolytic Viruses – Cancer applications, start-ups

Regenerative Medicine/Stem Cells

Future of CAR-T

M&A Shaping GCT’s Future

Market Priorities

Venture Investing in GCT

China’s GCT Juggernaut

Disease and Patient Focus: Benign blood disorders, diabetes, neurodegenerative diseases

Click here for the current WMIF agenda  

Plus:

Fireside Chats: 1:1 interviews with industry CEOs/C-Suite leaders including Novartis Gene Therapies, ThermoFisher, Bayer AG, FDA

First Look: 18 briefings on emerging GCT research from Mass General Brigham scientists

Virtual Poster Session: 40 research posters and presenters on potential GCT discoveries from Mass General Brigham

Announcement of the Disruptive Dozen, 12 GCT technologies likely to break through in the next few years

AGENDA

Wednesday, May 19, 2021

8:00 AM – 8:10 AM

Opening Remarks

Welcome and the vision for Gene and Cell Therapy and why it is a top Mass General Brigham priority. Introducer: Scott Sperling

  • Co-President, Thomas H. Lee Partners
  • Chairman of the Board of Directors, PHS

Presenter: Anne Klibanski, MD

  • CEO, Mass General Brigham

3,000 people joined 5/19 morning

30 sessions: Lab to Clinic,  academia, industry, investment community

May 22,23,24, 2022 – in Boston, in-person 2022 WMIF on CGT 8:10 AM – 8:30 AM

The Grand Challenge of Widespread GCT Patient Benefits

Co-Chairs identify the key themes of the Forum –  set the stage for top GCT opportunities, challenges, and where the field might take medicine in the future. Moderator: Susan Hockfield, PhD

  • President Emerita and Professor of Neuroscience, MIT

GCT – poised to deliver therapies

Inflection point as Panel will present

Doctors and Patients – Promise for some patients 

Barriers for Cell & Gene

Access for patients to therapies like CGT Speakers: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic virus triple threat: Toxic, immunological, combine with anti cancer therapies

Polygenic therapy – multiple genes involved, plug-play, Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Ravi Thadhani, MD

  • CAO, Mass General Brigham
  • Professor, Medicine and Faculty Dean, HMS

Role of academia special to spear head the Polygenic therapy – multiple genes involved, plug-play, 

Access critical, relations with IndustryLuk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

Pharmacology Gene-Drug, Interface academic centers and industry

many CGT drugs emerged in Academic center 8:35 AM – 8:50 AM FIRESIDE

Gene and Cell Therapy 2.0 – What’s Next as We Realize their Potential for Patients

Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations Moderator: Julian Harris, MD

  • Partner, Deerfield

Promise of CGT realized, what part?

FDA role and interaction in CGT

Manufacturing aspects which is critical Speaker: Dave Lennon, PhD

  • President, Novartis Gene Therapies

Hope that CGT emerging, how the therapies work, neuro, muscular, ocular, genetic diseases of liver and of heart revolution for the industry 900 IND application 25 approvals Economic driver Skilled works, VC disease. Modality one time intervention, long duration of impart, reimbursement, ecosystem to be built around CGT

FDA works by indications and risks involved, Standards and expectations for streamlining manufacturing, understanding of process and products 

payments over time payers and Innovators relations

  • Q&A 8:55 AM – 9:10 AM  

8:55 AM – 9:20 AM

The Patient and GCT

GCT development for rare diseases is driven by patient and patient-advocate communities. Understanding their needs and perspectives enables biomarker research, the development of value-driving clinical trial endpoints and successful clinical trials. Industry works with patient communities that help identify unmet needs and collaborate with researchers to conduct disease natural history studies that inform the development of biomarkers and trial endpoints. This panel includes patients who have received cutting-edge GCT therapy as well as caregivers and patient advocates. Moderator: Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

What is the Power of One – the impact that a patient can have on their own destiny by participating in Clinical Trials Contacting other participants in same trial can be beneficial Speakers: Jack Hogan

  • Patient, MEE

Jeanette Hogan

  • Parent of Patient, MEE

Jim Holland

  • CEO, Backcountry.com

Parkinson patient Constraints by regulatory on participation in clinical trial advance stage is approved participation Patients to determine the level of risk they wish to take Information dissemination is critical Barbara Lavery

  • Chief Program Officer, ACGT Foundation

Advocacy agency beginning of work Global Genes educational content and out reach to access the information 

Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGTDan Tesler

  • Clinical Trial Patient, BWH/DFCC

Experimental Drug clinical trial patient participation in clinical trial is very important to advance the state of scienceSarah Beth Thomas, RN

  • Professional Development Manager, BWH

Outcome is unknown, hope for good, support with resources all advocacy groups, 

  • Q&A 9:25 AM – 9:40 AM  

9:25 AM – 9:45 AM FIRESIDE

GCT Regulatory Framework | Why Different?

  Moderator: Vicki Sato, PhD

  • Chairman of the Board, Vir Biotechnology

Diversity of approaches

Process at FDA generalize from 1st entry to rules more generalizable  Speaker: Peter Marks, MD, PhD

  • Director, Center for Biologics Evaluation and Research, FDA

Last Spring it became clear that something will work a vaccine by June 2020 belief that enough candidates the challenge manufacture enough and scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work

Recover Work load for the pandemic will wean & clear, Gene Therapies IND application remained flat in the face of the pandemic Rare diseases urgency remains Consensus with industry advisory to get input gene therapy Guidance  T-Cell therapy vs Regulation best thinking CGT evolve speedily flexible gained by Guidance

Immune modulators, Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation 

  • Q&A 9:50 AM – 10:05 AM  

9:50 AM – 10:15 AM

Building a GCT Platform for Mainstream Success

This panel of GCT executives, innovators and investors explore how to best shape a successful GCT strategy. Among the questions to be addressed:

  • How are GCT approaches set around defining and building a platform?
  • Is AAV the leading modality and what are the remaining challenges?
  • What are the alternatives?
  • Is it just a matter of matching modalities to the right indications?

Moderator: Jean-François Formela, MD

  • Partner, Atlas Venture

Established core components of the Platform Speakers: Katherine High, MD

  • President, Therapeutics, AskBio

Three drugs approved in Europe in the Gene therapy space

Regulatory Infrastructure exists for CGT drug approval – as new class of therapeutics

Participants investigators, regulators, patients i. e., MDM 

Hemophilia in male most challenging

Human are natural hosts for AV safety signals Dave Lennon, PhD

  • President, Novartis Gene Therapies

big pharma has portfolios of therapeutics not one drug across Tx areas: cell, gene iodine therapy 

collective learning infrastructure features manufacturing at scale early in development Acquisitions strategy for growth # applications for scaling Rick Modi

  • CEO, Affinia Therapeutics

Copy, paste EDIT from product A to B novel vectors leverage knowledge varient of vector, coder optimization choice of indication is critical exploration on larger populations Speed to R&D and Speed to better gene construct get to clinic with better design vs ASAP 

Data sharing clinical experience with vectors strategies patients selection, vector selection, mitigation, patient type specific Louise Rodino-Klapac, PhD

  • EVP, Chief Scientific Officer, Sarepta Therapeutics

AAV based platform 15 years in development same disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years

Safety to clinic vs speed to clinic, difference of vectors to trust

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:45 AM

AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy

Recent AAV gene therapy product approvals have catalyzed the field. This new class of therapies has shown the potential to bring transformative benefit to patients. With dozens of AAV treatments in clinical studies, all eyes are on the field to gauge its disruptive impact.

The panel assesses the largest challenges of the first two products, the lessons learned for the broader CGT field, and the extent to which they serve as a precedent to broaden the AAV modality.

  • Is AAV gene therapy restricted to genetically defined disorders, or will it be able to address common diseases in the near term?
  • Lessons learned from these first-in-class approvals.
  • Challenges to broaden this modality to similar indications.
  • Reflections on safety signals in the clinical studies?

Moderator: Joan Miller, MD

  • Chief, Ophthalmology, MEE
  • Cogan Professor & Chair of Ophthalmology, HMS

Retina specialist, Luxturna success FMA condition cell therapy as solution

Lessons learned

Safety Speakers: Ken Mills

  • CEO, RegenXBio

Tissue types additional administrations, tech and science, address additional diseases, more science for photoreceptors a different tissue type underlying pathology novelties in last 10 years 

Cell therapy vs transplant therapy no immunosuppressionEric Pierce, MD, PhD

  • Director, Ocular Genomics Institute, MEE
  • Professor of Ophthalmology, HMS

Laxterna success to be replicated platform, paradigms measurement visual improved

More science is needed to continue develop vectors reduce toxicity,

AAV can deliver different cargos reduce adverse events improve vectorsRon Philip

  • Chief Operating Officer, Spark Therapeutics

The first retinal gene therapy, voretigene neparvovec-rzyl (Luxturna, Spark Therapeutics), was approved by the FDA in 2017.Meredith Schultz, MD

  • Executive Medical Director, Lead TME, Novartis Gene Therapies

Impact of cell therapy beyond muscular dystrophy, translational medicine, each indication, each disease, each group of patients build platform unlock the promise

Monitoring for Safety signals real world evidence remote markers, home visits, clinical trial made safer, better communication of information

  • Q&A 10:50 AM – 11:05 AM  

10:45 AM – 10:55 AM

Break

  10:55 AM – 11:05 AM FIRST LOOK

Control of AAV pharmacology by Rational Capsid Design

Luk Vandenberghe, PhD

  • Grousbeck Family Chair, Gene Therapy, MEE
  • Associate Professor, Ophthalmology, HMS

AAV a complex driver in Pharmacology durable, vector of choice, administer in vitro, gene editing tissue specificity, pharmacokinetics side effects and adverse events manufacturability site variation diversify portfolios,

Pathway for rational AAV rational design, curated smart variant libraries, AAV  sequence screen multiparametric , data enable liver (de-) targeting unlock therapeutics areas: cochlea 

  • Q&A 11:05 AM – 11:25 AM  

11:05 AM – 11:15 AM FIRST LOOK

Enhanced gene delivery and immunoevasion of AAV vectors without capsid modification

Casey Maguire, PhD

  • Associate Professor of Neurology, MGH & HMS

Virus Biology: Enveloped (e) or not 

enveloped for gene therapy eAAV platform technology: tissue targets and Indications commercialization of eAAV 

  • Q&A 11:15 AM – 11:35 AM  

11:20 AM – 11:45 AM HOT TOPICS

AAV Delivery

This panel will address the advances in the area of AAV gene therapy delivery looking out the next five years. Questions that loom large are: How can biodistribution of AAV be improved? What solutions are in the wings to address immunogenicity of AAV? Will patients be able to receive systemic redosing of AAV-based gene therapies in the future? What technical advances are there for payload size? Will the cost of manufacturing ever become affordable for ultra-rare conditions? Will non-viral delivery completely supplant viral delivery within the next five years?What are the safety concerns and how will they be addressed? Moderators: Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Speakers: Jennifer Farmer

  • CEO, Friedreich’s Ataxia Research Alliance

Ataxia requires therapy targeting multiple organ with one therapy, brain, spinal cord, heart several IND, clinical trials in 2022Mathew Pletcher, PhD

  • SVP, Head of Gene Therapy Research and Technical Operations, Astellas

Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data 

Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response Manny Simons, PhD

  • CEO, Akouos

AAV Therapy for the fluid of the inner ear, CGT for the ear vector accessible to surgeons translational work on the inner ear for gene therapy right animal model 

Biology across species nerve ending in the cochlea

engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones

  • Q&A 11:50 AM – 12:05 PM  

11:50 AM – 12:15 PM

M&A | Shaping GCT Innovation

The GCT M&A market is booming – many large pharmas have made at least one significant acquisition. How should we view the current GCT M&A market? What is its impact of the current M&A market on technology development? Are these M&A trends new are just another cycle? Has pharma strategy shifted and, if so, what does it mean for GCT companies? What does it mean for patients? What are the long-term prospects – can valuations hold up? Moderator: Adam Koppel, MD, PhD

  • Managing Director, Bain Capital Life Sciences

What acquirers are looking for??

What is the next generation vs what is real where is the industry going? Speakers:

Debby Baron,

  • Worldwide Business Development, Pfizer 

CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally 

Scalability and manufacturing  regulatory conversations, clinical programs safety in parallel to planning getting drug to patients

Kenneth Custer, PhD

  • Vice President, Business Development and Lilly New Ventures, Eli Lilly and Company

Marianne De Backer, PhD

Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer

Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance 

Operating model of the acquired company discussed , company continue independence

Sean Nolan

  • Board Chairman, Encoded Therapeutics & Affinia

Executive Chairman, Jaguar Gene Therapy & Istari Oncology

As acquiree multiple M&A: How the acquirer looks at integration and cultures of the two companies 

Traditional integration vs jump start by external acquisition 

AAV – epilepsy, next generation of vectors 

  • Q&A 12:20 PM – 12:35 PM  

12:15 PM – 12:25 PM FIRST LOOK

Gene Therapies for Neurological Disorders: Insights from Motor Neuron Disorders

Merit Cudkowicz, MD

  • Chief of Neurology, MGH

ALS – Man 1in 300, Women 1 in 400, next decade increase 7% 

10% ALS is heredity 160 pharma in ALS space, diagnosis is late 1/3 of people are not diagnosed, active community for clinical trials Challenges: disease heterogeneity cases of 10 years late in diagnosis. Clinical Trials for ALS in Gene Therapy targeting ASO1 protein therapies FUS gene struck youngsters 

Q&A

  • 12:25 PM – 12:45 PM  

12:25 PM – 12:35 PM FIRST LOOK

Gene Therapy for Neurologic Diseases

Patricia Musolino, MD, PhD

  • Co-Director Pediatric Stroke and Cerebrovascular Program, MGH
  • Assistant Professor of Neurology, HMS

Cerebral Vascular disease – ACTA2 179H gene smooth muscle cell proliferation disorder

no surgery or drug exist –

Cell therapy for ACTA2 Vasculopathy  in the brain and control the BP and stroke – smooth muscle intima proliferation. Viral vector deliver aiming to change platform to non-viral delivery rare disease , gene editing, other mutations of ACTA2 gene target other pathway for atherosclerosis 

  • Q&A 12:35 PM – 12:55 PM  

12:35 PM – 1:15 PM

Lunch

  1:15 PM – 1:40 PM

Oncolytic Viruses in Cancer | Curing Melanoma and Beyond

Oncolytic viruses represent a powerful new technology, but so far an FDA-approved oncolytic (Imlygic) has only occurred in one area – melanoma and that what is in 2015. This panel involves some of the protagonists of this early success story.  They will explore why and how Imlygic became approved and its path to commercialization.  Yet, no other cancer indications exist for Imlygic, unlike the expansion of FDA-approved indication for immune checkpoint inhibitors to multiple cancers.  Why? Is there a limitation to what and which cancers can target?  Is the mode of administration a problem?

No other oncolytic virus therapy has been approved since 2015. Where will the next success story come from and why?  Will these therapies only be beneficial for skin cancers or other easily accessible cancers based on intratumoral delivery?

The panel will examine whether the preclinical models that have been developed for other cancer treatment modalities will be useful for oncolytic viruses.  It will also assess the extent pre-clinical development challenges have slowed the development of OVs. Moderator: Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Challenges of manufacturing at Amgen what are they? Speakers: Robert Coffin, PhD

  • Chief Research & Development Officer, Replimune

2002 in UK promise in oncolytic therapy GNCSF

Phase III melanoma 2015 M&A with Amgen

oncolytic therapy remains non effecting on immune response 

data is key for commercialization 

do not belief in systemic therapy achieve maximum immune response possible from a tumor by localized injection Roger Perlmutter, MD, PhD

  • Chairman, Merck & Co.

response rates systemic therapy like PD1, Keytruda, OPTIVA well tolerated combination of Oncolytic with systemic 

GMP critical for manufacturing David Reese, MD

  • Executive Vice President, Research and Development, Amgen

Inter lesion injection of agent vs systemic therapeutics 

cold tumors immune resistant render them immune susceptible 

Oncolytic virus is a Mono therapy

addressing the unknown Ann Silk, MD

  • Physician, Dana Farber-Brigham and Women’s Cancer Center
  • Assistant Professor of Medicine, HMS

Which person gets oncolytics virus if patient has immune suppression due to other indications

Safety of oncolytic virus greater than Systemic treatment

series biopsies for injected and non injected tissue and compare Suspect of hot tumor and cold tumors likely to have sme response to agent unknown all potential 

  • Q&A 1:45 PM – 2:00 PM  

1:45 PM – 2:10 PM

Market Interest in Oncolytic Viruses | Calibrating

There are currently two oncolytic virus products on the market, one in the USA and one in China.  As of late 2020, there were 86 clinical trials 60 of which were in phase I with just 2 in Phase III the rest in Phase I/II or Phase II.   Although global sales of OVs are still in the ramp-up phase, some projections forecast OVs will be a $700 million market by 2026. This panel will address some of the major questions in this area:

What regulatory challenges will keep OVs from realizing their potential? Despite the promise of OVs for treating cancer only one has been approved in the US. Why has this been the case? Reasons such have viral tropism, viral species selection and delivery challenges have all been cited. However, these are also true of other modalities. Why then have oncolytic virus approaches not advanced faster and what are the primary challenges to be overcome?

  • Will these need to be combined with other agents to realize their full efficacy and how will that impact the market?
  • Why are these companies pursuing OVs while several others are taking a pass?

Moderators: Martine Lamfers, PhD

  • Visiting Scientist, BWH

Challenged in development of strategies 

Demonstrate efficacyRobert Martuza, MD

  • Consultant in Neurosurgery, MGH
  • William and Elizabeth Sweet Distinguished Professor of Neurosurgery, HMS

Modulation mechanism Speakers: Anlong Li, MD, PhD

  • Clinical Director, Oncology Clinical Development, Merck Research Laboratories

IV delivery preferred – delivery alternative are less aggereable Jeffrey Infante, MD

  • Early development Oncolytic viruses, Oncology, Janssen Research & Development

oncologic virus if it will generate systemic effects the adoption will accelerate

What areas are the best efficacious 

Direct effect with intra-tumor single injection with right payload 

Platform approach  Prime with 1 and Boost with 2 – not yet experimented with 

Do not have the data at trial design for stratification of patients 

Turn off strategy not existing yetLoic Vincent, PhD

  • Head of Oncology Drug Discovery Unit, Takeda

R&D in collaboration with Academic

Vaccine platform to explore different payload

IV administration may not bring sufficient concentration to the tumor is administer  in the blood stream

Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification

  • Q&A 2:15 PM – 2:30 PM  

2:10 PM – 2:20 PM FIRST LOOK

Oncolytic viruses: turning pathogens into anticancer agents

Nino Chiocca, MD, PhD

  • Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH
  • Harvey W. Cushing Professor of Neurosurgery, HMS

Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma 

Intra- tumoral heterogeniety hinders success 

Solution: Oncolytic VIRUSES – Immunological “coldness”

GADD-34 20,000 GBM 40,000 pancreatic cancer

  • Q&A 2:25 PM – 2:40 PM  

2:20 PM – 2:45 PM

Entrepreneurial Growth | Oncolytic Virus

In 2020 there were a total of 60 phase I trials for Oncolytic Viruses. There are now dozens of companies pursuing some aspect of OV technology. This panel will address:

  •  How are small companies equipped to address the challenges of developing OV therapies better than large pharma or biotech?
  • Will the success of COVID vaccines based on Adenovirus help the regulatory environment for small companies developing OV products in Europe and the USA?
  • Is there a place for non-viral delivery and other immunotherapy companies to engage in the OV space?  Would they bring any real advantages?

Moderator: Reid Huber, PhD

  • Partner, Third Rock Ventures

Critical milestones to observe Speakers: Caroline Breitbach, PhD

  • VP, R&D Programs and Strategy, Turnstone Biologics

Trying Intra-tumor delivery and IV infusion delivery oncolytic vaccine pushing dose 

translation biomarkers program 

transformation tumor microenvironment Brett Ewald, PhD

  • SVP, Development & Corporate Strategy, DNAtrix

Studies gets larger, kicking off Phase III multiple tumors Paul Hallenbeck, PhD

  • President and Chief Scientific Officer, Seneca Therapeutics

Translation: Stephen Russell, MD, PhD

  • CEO, Vyriad

Systemic delivery Oncolytic Virus IV delivery woman in remission

Collaboration with Regeneron

Data collection: Imageable reporter secretable reporter, gene expression

Field is intense systemic oncolytic delivery is exciting in mice and in human, response rates are encouraging combination immune stimulant, check inhibitors 

  • Q&A 2:50 PM – 3:05 PM  

2:45 PM – 3:00 PM

Break

  3:00 PM – 3:25 PM

CAR-T | Lessons Learned | What’s Next

Few areas of potential cancer therapy have had the attention and excitement of CAR-T. This panel of leading executives, developers, and clinician-scientists will explore the current state of CAR-T and its future prospects. Among the questions to be addressed are:

  • Is CAR-T still an industry priority – i.e. are new investments being made by large companies? Are new companies being financed? What are the trends?
  • What have we learned from first-generation products, what can we expect from CAR-T going forward in novel targets, combinations, armored CAR’s and allogeneic treatment adoption?
  • Early trials showed remarkable overall survival and progression-free survival. What has been observed regarding how enduring these responses are?
  • Most of the approvals to date have targeted CD19, and most recently BCMA. What are the most common forms of relapses that have been observed?
  • Is there a consensus about what comes after these CD19 and BCMA trials as to additional targets in liquid tumors? How have dual-targeted approaches fared?
  • Moderator:
  • Marcela Maus, MD, PhD
    • Director, Cellular Immunotherapy Program, Cancer Center, MGH
    • Associate Professor, Medicine, HMSIs CAR-T Industry priority
  • Speakers:
  • Head of R&D, Atara BioTherapeutics
  • Phyno-type of the cells for hematologic cancers 
  • solid tumor 
  • inventory of Therapeutics for treating patients in the future 
  • Progressive MS program
  • EBBT platform B-Cells and T-Cells
    • Stefan Hendriks
      • Gobal Head, Cell & Gene, Novartis
      • yes, CGT is a strategy in the present and future
      • Journey started years ago 
      • Confirmation the effectiveness of CAR-T therapies, 1 year response prolonged to 5 years 26 months
      • Patient not responding – a lot to learn
      • Patient after 8 months of chemo can be helped by CAR-T
    • Christi Shaw
      • CEO, Kite
      • CAR-T is priority 120 companies in the space
      • Manufacturing consistency 
      • Patients respond with better quality of life
      • Blood cancer – more work to be done

Q&A

  • 3:30 PM – 3:45 PM  

3:30 PM – 3:55 PM HOT TOPICS

CAR-T | Solid Tumors Success | When?

The potential application of CAR-T in solid tumors will be a game-changer if it occurs. The panel explores the prospects of solid tumor success and what the barriers have been. Questions include:

  •  How would industry and investor strategy for CAR-T and solid tumors be characterized? Has it changed in the last couple of years?
  •  Does the lack of tumor antigen specificity in solid tumors mean that lessons from liquid tumor CAR-T constructs will not translate well and we have to start over?
  •  Whether due to antigen heterogeneity, a hostile tumor micro-environment, or other factors are some specific solid tumors more attractive opportunities than others for CAR-T therapy development?
  •  Given the many challenges that CAR-T faces in solid tumors, does the use of combination therapies from the start, for example, to mitigate TME effects, offer a more compelling opportunity.

Moderator: Oladapo Yeku, MD, PhD

  • Clinical Assistant in Medicine, MGH

window of opportunities studies  Speakers: Jennifer Brogdon

  • Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR

2017 CAR-T first approval

M&A and research collaborations

TCR tumor specific antigens avoid tissue toxicity Knut Niss, PhD

  • CTO, Mustang Bio

tumor hot start in 12 month clinical trial solid tumors , theraties not ready yet. Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance Lipid tumor Barbra Sasu, PhD

  • CSO, Allogene

T cell response at prostate cancer 

tumor specific 

cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration

Where we might go: safety autologous and allogeneic Jay Short, PhD

  • Chairman, CEO, Cofounder, BioAlta, Inc.

Tumor type is not enough for development of therapeutics other organs are involved in the periphery

difficult to penetrate solid tumors biologics activated in the tumor only, positive changes surrounding all charges, water molecules inside the tissue acidic environment target the cells inside the tumor and not outside 

Combination staggered key is try combination

  • Q&A 4:00 PM – 4:15 PM  

4:00 PM – 4:25 PM

GCT Manufacturing | Vector Production | Autologous and Allogeneic | Stem Cells | Supply Chain | Scalability & Management

The modes of GCT manufacturing have the potential of fundamentally reordering long-established roles and pathways. While complexity goes up the distance from discovery to deployment shrinks. With the likelihood of a total market for cell therapies to be over $48 billion by 2027,  groups of products are emerging.  Stem cell therapies are projected to be $28 billion by 2027 and non-stem cell therapies such as CAR-T are projected be $20 billion by 2027. The manufacturing challenges for these two large buckets are very different. Within the CAR-T realm there are diverging trends of autologous and allogeneic therapies and the demands on manufacturing infrastructure are very different. Questions for the panelists are:

  • Help us all understand the different manufacturing challenges for cell therapies. What are the trade-offs among storage cost, batch size, line changes in terms of production cost and what is the current state of scaling naïve and stem cell therapy treatment vs engineered cell therapies?
  • For cell and gene therapy what is the cost of Quality Assurance/Quality Control vs. production and how do you think this will trend over time based on your perspective on learning curves today?
  • Will point of care production become a reality? How will that change product development strategy for pharma and venture investors? What would be the regulatory implications for such products?
  • How close are allogeneic CAR-T cell therapies? If successful what are the market implications of allogenic CAR-T? What are the cost implications and rewards for developing allogeneic cell therapy treatments?

Moderator: Michael Paglia

  • VP, ElevateBio

Speakers:

  • Dannielle Appelhans
    • SVP TechOps and Chief Technical Officer, Novartis Gene Therapies
  • Thomas Page, PhD
    • VP, Engineering and Asset Development, FUJIFILM Diosynth Biotechnologies
  • Rahul Singhvi, ScD
    • CEO and Co-Founder, National Resilience, Inc.
  • Thomas VanCott, PhD
    • Global Head of Product Development, Gene & Cell Therapy, Catalent
    • 2/3 autologous 1/3 allogeneic  CAR-T high doses and high populations scale up is not done today quality maintain required the timing logistics issues centralized vs decentralized  allogeneic are health donors innovations in cell types in use improvements in manufacturing

Ropa Pike, Director,  Enterprise Science & Partnerships, Thermo Fisher Scientific 

Centralized biopharma industry is moving  to decentralized models site specific license 

  • Q&A 4:30 PM – 4:45 PM  

4:30 PM – 4:40 PM FIRST LOOK

CAR-T

Marcela Maus, MD, PhD

  • Director, Cellular Immunotherapy Program, Cancer Center, MGH
  • Assistant Professor, Medicine, HMS 

Fit-to-purpose CAR-T cells: 3 lead programs

Tr-fill 

CAR-T induce response myeloma and multiple myeloma GBM

27 patents on CAR-T

+400 patients treaded 40 Clinical Trials 

  • Q&A 4:40 PM – 5:00 PM  

4:40 PM – 4:50 PM FIRST LOOK

Repurposed Tumor Cells as Killers and Immunomodulators for Cancer Therapy

Khalid Shah, PhD

  • Vice Chair, Neurosurgery Research, BWH
  • Director, Center for Stem Cell Therapeutics and Imaging, HMS

Solid tumors are the hardest to treat because: immunosuppressive, hypoxic, Acidic Use of autologous tumor cells self homing ThTC self targeting therapeutic cells Therapeutic tumor cells efficacy pre-clinical models GBM 95% metastesis ThTC translation to patient settings

  • Q&A 4:50 PM – 5:10 PM  

4:50 PM – 5:00 PM FIRST LOOK

Other Cell Therapies for Cancer

David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

T-cell are made in bone marrow create cryogel  can be an off-the-shelf product repertoire on T Receptor CCL19+ mesenchymal cells mimic Tymus cells –

inter-tymic injection. Non human primate validation

Q&A

 

5:00 PM – 5:20 PM   5:00 PM – 5:20 PM FIRESIDE

Fireside with Mikael Dolsten, MD, PhD

  Introducer: Jonathan Kraft Moderator: Daniel Haber, MD, PhD

  • Chair, Cancer Center, MGH
  • Isselbacher Professor of Oncology, HMS

Vaccine Status Mikael Dolsten, MD, PhD

  • Chief Scientific Officer and President, Worldwide Research, Development and Medical, Pfizer

Deliver vaccine around the Globe, Israel, US, Europe.

3BIL vaccine in 2022 for all Global vaccination 

Bio Ntech in Germany

Experience with Biologics immuneoncology & allogeneic antibody cells – new field for drug discovery 

mRNA curative effort and cancer vaccine 

Access to drugs developed by Pfizer to underdeveloped countries 

  • Q&A 5:25 PM – 5:40 AM  

5:20 PM – 5:30 PM

Closing Remarks

Thursday, May 20, 2021

8:00 AM – 8:25 AM

GCT | The China Juggernaut

China embraced gene and cell therapies early. The first China gene therapy clinical trial was in 1991. China approved the world’s first gene therapy product in 2003—Gendicine—an oncolytic adenovirus for the treatment of advanced head and neck cancer.  Driven by broad national strategy, China has become a hotbed of GCT development, ranking second in the world with more than 1,000 clinical trials either conducted or underway and thousands of related patents.  It has a booming GCT biotech sector, led by more than 45 local companies with growing IND pipelines.

In late 1990, a T cell-based immunotherapy, cytokine-induced killer (CIK) therapy became a popular modality in the clinic in China for tumor treatment.  In early 2010, Chinese researchers started to carry out domestic CAR T trials inspired by several important reports suggested the great antitumor function of CAR T cells. Now, China became the country with the most registered CAR T trials, CAR T therapy is flourishing in China.

The Chinese GCT ecosystem has increasingly rich local innovation and growing complement of development and investment partnerships – and also many subtleties.

This panel, consisting of leaders from the China GCT corporate, investor, research and entrepreneurial communities, will consider strategic questions on the growth of the gene and cell therapy industry in China, areas of greatest strength, evolving regulatory framework, early successes and products expected to reach the US and world market. Moderator: Min Wu, PhD

  • Managing Director, Fosun Health Fund

What are the area of CGT in China, regulatory similar to the US Speakers: Alvin Luk, PhD

  • CEO, Neuropath Therapeutics

Monogenic rare disease with clear genomic target

Increase of 30% in patient enrollment 

Regulatory reform approval is 60 days no delayPin Wang, PhD

  • CSO, Jiangsu Simcere Pharmaceutical Co., Ltd.

Similar starting point in CGT as the rest of the World unlike a later starting point in other biologicalRichard Wang, PhD

  • CEO, Fosun Kite Biotechnology Co., Ltd

Possibilities to be creative and capitalize the new technologies for innovating drug

Support of the ecosystem by funding new companie allowing the industry to be developed in China

Autologous in patients differences cost challengeTian Xu, PhD

  • Vice President, Westlake University

ICH committee and Chinese FDA -r regulation similar to the US

Difference is the population recruitment, in China patients are active participants in skin disease 

Active in development of transposome 

Development of non-viral methods, CRISPR still in D and transposome

In China price of drugs regulatory are sensitive Shunfei Yan, PhD

  • Investment Manager, InnoStar Capital

Indication driven: Hymophilia, 

Allogogenic efficiency therapies

Licensing opportunities 

  • Q&A 8:30 AM – 8:45 AM  

8:30 AM – 8:55 AM

Impact of mRNA Vaccines | Global Success Lessons

The COVID vaccine race has propelled mRNA to the forefront of biomedicine. Long considered as a compelling modality for therapeutic gene transfer, the technology may have found its most impactful application as a vaccine platform. Given the transformative industrialization, the massive human experience, and the fast development that has taken place in this industry, where is the horizon? Does the success of the vaccine application, benefit or limit its use as a therapeutic for CGT?

  • How will the COVID success impact the rest of the industry both in therapeutic and prophylactic vaccines and broader mRNA lessons?
  • How will the COVID success impact the rest of the industry both on therapeutic and prophylactic vaccines and broader mRNA lessons?
  • Beyond from speed of development, what aspects make mRNA so well suited as a vaccine platform?
  • Will cost-of-goods be reduced as the industry matures?
  • How does mRNA technology seek to compete with AAV and other gene therapy approaches?

Moderator: Lindsey Baden, MD

  • Director, Clinical Research, Division of Infectious Diseases, BWH
  • Associate Professor, HMS

In vivo delivery process regulatory cooperation new opportunities for same platform for new indication Speakers:

Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna

How many mRNA can be put in one vaccine: Dose and tolerance to achieve efficacy 

45 days for Personalized cancer vaccine one per patient

1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications

Platform allowing to swap cargo reusing same nanoparticles address disease beyond Big Pharma options for biotech

WHat strain of Flu vaccine will come back in the future when people do not use masks 

  • Kate Bingham, UK Vaccine Taskforce

July 2020, AAV vs mRNA delivery across UK local centers administered both types supply and delivery uplift 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM HOT TOPICS

Benign Blood Disorders

Hemophilia has been and remains a hallmark indication for the CGT. Given its well-defined biology, larger market, and limited need for gene transfer to provide therapeutic benefit, it has been at the forefront of clinical development for years, however, product approval remains elusive. What are the main hurdles to this success? Contrary to many indications that CGT pursues no therapeutic options are available to patients, hemophiliacs have an increasing number of highly efficacious treatment options. How does the competitive landscape impact this field differently than other CGT fields? With many different players pursuing a gene therapy option for hemophilia, what are the main differentiators? Gene therapy for hemophilia seems compelling for low and middle-income countries, given the cost of currently available treatments; does your company see opportunities in this market? Moderator: Nancy Berliner, MD

  • Chief, Division of Hematology, BWH
  • H. Franklin Bunn Professor of Medicine, HMS

Speakers: Theresa Heggie

  • CEO, Freeline Therapeutics

Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered 

Potency and quality less quantity drug and greater potency

risk of delivery unwanted DNA, capsules are critical 

analytics is critical regulator involvement in potency definition

Close of collaboration is excitingGallia Levy, MD, PhD

  • Chief Medical Officer, Spark Therapeutics

Hemophilia CGT is the highest potential for Global access logistics in underdeveloped countries working with NGOs practicality of the Tx

Roche reached 120 Counties great to be part of the Roche GroupAmir Nashat, PhD

  • Managing Partner, Polaris Ventures

Suneet Varma

  • Global President of Rare Disease, Pfizer

Gene therapy at Pfizer small molecule, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry 

1/3 internal 1/3 partnership 1/3 acquisitions 

Learning from COVID-19 is applied for other vaccine development

review of protocols and CGT for Hemophelia

You can’t buy Time

With MIT Pfizer is developing a model for Hemopilia CGT treatment

  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Treating Rett Syndrome through X-reactivation

Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

200 disease X chromosome unlock for neurological genetic diseases: Rett Syndromeand other autism spectrum disorders female model vs male mice model

deliver protein to the brain 

restore own missing or dysfunctional protein

Epigenetic not CGT – no exogent intervention Xist ASO drug

Female model

  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 9:45 AM FIRST LOOK

Rare but mighty: scaling up success in single gene disorders

Florian Eichler, MD

  • Director, Center for Rare Neurological Diseases, MGH
  • Associate Professor, Neurology, HMS

Single gene disorder NGS enable diagnosis, DIagnosis to Treatment How to know whar cell to target, make it available and scale up Address gap: missing components Biomarkers to cell types lipid chemistry cell animal biology 

crosswalk from bone marrow matter 

New gene discovered that causes neurodevelopment of stagnant genes Examining new Biology cell type specific biomarkers 

  • Q&A 9:45 AM – 10:05 AM  

9:50 AM – 10:15 AM HOT TOPICS

Diabetes | Grand Challenge

The American Diabetes Association estimates 30 million Americans have diabetes and 1.5 million are diagnosed annually. GCT offers the prospect of long-sought treatment for this enormous cohort and their chronic requirements. The complexity of the disease and its management constitute a grand challenge and highlight both the potential of GCT and its current limitations.

  •  Islet transplantation for type 1 diabetes has been attempted for decades. Problems like loss of transplanted islet cells due to autoimmunity and graft site factors have been difficult to address. Is there anything different on the horizon for gene and cell therapies to help this be successful?
  • How is the durability of response for gene or cell therapies for diabetes being addressed? For example, what would the profile of an acceptable (vs. optimal) cell therapy look like?

Moderator: Marie McDonnell, MD

  • Chief, Diabetes Section and Director, Diabetes Program, BWH
  • Lecturer on Medicine, HMS

Type 1 Diabetes cost of insulin for continuous delivery of drug

alternative treatments: 

The Future: neuropotent stem cells 

What keeps you up at night  Speakers: Tom Bollenbach, PhD

  • Chief Technology Officer, Advanced Regenerative Manufacturing Institute

Data managment sterility sensors, cell survival after implantation, stem cells manufacturing, process development in manufacturing of complex cells

Data and instrumentation the Process is the Product

Manufacturing tight schedules Manasi Jaiman, MD

  • Vice President, Clinical Development, ViaCyte
  • Pediatric Endocrinologist

continous glucose monitoring Bastiano Sanna, PhD

  • EVP, Chief of Cell & Gene Therapies and VCGT Site Head, Vertex Pharmaceuticals

100 years from discovering Insulin, Insulin is not a cure in 2021 – asking patients to partner more 

Produce large quantities of the Islet cells encapsulation technology been developed 

Scaling up is a challengeRogerio Vivaldi, MD

  • CEO, Sigilon Therapeutics

Advanced made, Patient of Type 1 Outer and Inner compartments of spheres (not capsule) no immune suppression continuous secretion of enzyme Insulin independence without immune suppression 

Volume to have of-the-shelf inventory oxegenation in location lymphatic and vascularization conrol the whole process modular platform learning from others

  • Q&A 10:20 AM – 10:35 AM  

10:20 AM – 10:40 AM FIRESIDE

Building A Unified GCT Strategy

  Introducer: John Fish

  • CEO, Suffolk
  • Chairman of Board Trustees, Brigham Health

Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

Last year, what was it at Novartis Speaker: Jay Bradner, MD

  • President, NIBR

Keep eyes open, waiting the Pandemic to end and enable working back on all the indications 

Portfolio of MET, Mimi Emerging Therapies 

Learning from the Pandemic – operationalize the practice science, R&D leaders, new collaboratives at NIH, FDA, Novartis

Pursue programs that will yield growth, tropic diseases with Gates Foundation, Rising Tide pods for access CGT within Novartis Partnership with UPenn in Cell Therapy 

Cost to access to IP from Academia to a Biotech CRISPR accessing few translations to Clinic

Protein degradation organization constraint valuation by parties in a partnership 

Novartis: nuclear protein lipid nuclear particles, tamplate for Biotech to collaborate

Game changing: 10% of the Portfolio, New frontiers human genetics in Ophthalmology, CAR-T, CRISPR, Gene Therapy Neurological and payloads of different matter

  • Q&A 10:45 AM – 11:00 AM  

10:40 AM – 10:50 AM

Break

  10:50 AM – 11:00 AM FIRST LOOK

Getting to the Heart of the Matter: Curing Genetic Cardiomyopathy

Christine Seidman, MD

  • Director, Cardiovascular Genetics Center, BWH
  • Smith Professor of Medicine & Genetics, HMS

The Voice of Dr. Seidman – Her abstract is cited below

The ultimate opportunity presented by discovering the genetic basis of human disease is accurate prediction and disease prevention. To enable this achievement, genetic insights must enable the identification of at-risk

individuals prior to end-stage disease manifestations and strategies that delay or prevent clinical expression. Genetic cardiomyopathies provide a paradigm for fulfilling these opportunities. Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction with normal or enhanced systolic performance and a unique histopathology: myocyte hypertrophy, disarray and fibrosis. Dilated cardiomyopathy (DCM) exhibits enlarged ventricular volumes with depressed systolic performance and nonspecific histopathology. Both HCM and DCM are prevalent clinical conditions that increase risk for arrhythmias, sudden death, and heart failure. Today treatments for HCM and DCM focus on symptoms, but none prevent disease progression. Human molecular genetic studies demonstrated that these pathologies often result from dominant mutations in genes that encode protein components of the sarcomere, the contractile unit in striated muscles. These data combined with the emergence of molecular strategies to specifically modulate gene expression provide unparalleled opportunities to silence or correct mutant genes and to boost healthy gene expression in patients with genetic HCM and DCM. Many challenges remain, but the active and vital efforts of physicians, researchers, and patients are poised to ensure success.

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

  • 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021 8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator: Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Speakers: David Berry, MD, PhD

  • CEO, Valo Health
  • General Partner, Flagship Pioneering

Robert Nelsen

  • Managing Director, Co-founder, ARCH Venture Partners

Kush Parmar, MD, PhD

  • Managing Partner, 5AM Ventures
  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product

Moderator: Ole Isacson, MD, PhD

  • Director, Neuroregeneration Research Institute, McLean
  • Professor, Neurology and Neuroscience, HMS

Speakers: Kapil Bharti, PhD

  • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH

Joe Burns, PhD

  • VP, Head of Biology, Decibel Therapeutics

Erin Kimbrel, PhD

  • Executive Director, Regenerative Medicine, Astellas

Nabiha Saklayen, PhD

  • CEO and Co-Founder, Cellino
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies

Geoff MacKay

  • President & CEO, AVROBIO

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

 

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.Christine Seidman, MD

Hypertrophic and Dilated Cardiomyopaies ‘

10% receive heart transplant 12 years survival 

Mutation puterb function

TTN: contribute 20% of dilated cardiomyopaty

Silence gene 

pleuripotential cells deliver therapies 

  • Q&A 11:00 AM – 11:20 AM  

11:00 AM – 11:10 AM FIRST LOOK

Unlocking the secret lives of proteins in health and disease

Anna Greka, MD, PhD

  • Medicine, BWH
  • Associate Professor, Medicine, HMS

Cyprus Island, kidney disease by mutation causing MUC1 accumulation and death BRD4780 molecule that will clear the misfolding proteins from the kidney organoids: pleuripotent stem cells small molecule developed for applications in the other cell types in brain, eye, gene mutation build mechnism for therapy clinical models transition from Academia to biotech 

Q&A

  • 11:10 AM – 11:30 AM  

11:10 AM – 11:35 AM

Rare and Ultra Rare Diseases | GCT Breaks Through

One of the most innovative segments in all of healthcare is the development of GCT driven therapies for rare and ultra-rare diseases. Driven by a series of insights and tools and funded in part by disease focused foundations, philanthropists and abundant venture funding disease after disease is yielding to new GCT technology. These often become platforms to address more prevalent diseases. The goal of making these breakthroughs routine and affordable is challenged by a range of issues including clinical trial design and pricing.

  • What is driving the interest in rare diseases?
  • What are the biggest barriers to making breakthroughs ‘routine and affordable?’
  • What is the role of retrospective and prospective natural history studies in rare disease?  When does the expected value of retrospective disease history studies justify the cost?
  • Related to the first question, what is the FDA expecting as far as controls in clinical trials for rare diseases?  How does this impact the collection of natural history data?

Moderator: Susan Slaugenhaupt, PhD

  • Scientific Director and Elizabeth G. Riley and Daniel E. Smith Jr., Endowed Chair, Mass General Research Institute
  • Professor, Neurology, HMS

Speakers: Leah Bloom, PhD

  • SVP, External Innovation and Strategic Alliances, Novartis Gene Therapies

Ultra rare (less than 100) vs rare difficulty to recruit patients and to follow up after treatment Bobby Gaspar, MD, PhD

  • CEO, Orchard Therapeutics

Study of rare condition have transfer to other larger diseases – delivery of therapeutics genes, like immune disorders 

Patient testimonials just to hear what a treatment can make Emil Kakkis, MD, PhD

  • CEO, Ultragenyx

Do 100 patient study then have information on natural history to develop a clinical trial Stuart Peltz, PhD

  • CEO, PTC Therapeutics

Rare disease, challenge for FDA approval and after market commercialization follow ups

Justification of cost for Rare disease – demonstration of Change is IP in value patients advocacy is helpful

  • Q&A 11:40 AM – 11:55 AM  

11:40 AM – 12:00 PM FIRESIDE

Partnering Across the GCT Spectrum

  Moderator: Erin Harris

  • Chief Editor, Cell & Gene

Perspective & professional tenure

Partnership in manufacturing what are the recommendations?

Hospital systems: Partnership Challenges  Speaker: Marc Casper

  • CEO, ThermoFisher

25 years in Diagnostics last 20 years at ThermoFisher 

products used in the Lab for CAR-T research and manufacture 

CGT Innovations: FDA will have a high level of approval each year

How move from research to clinical trials to manufacturing Quicker process

Best practices in Partnerships: the root cause if acceleration to market service providers to deliver highest standards

Building capacity by acquisition to avoid the waiting time

Accelerate new products been manufactured 

Collaborations with Academic Medical center i.e., UCSF in CGT joint funding to accelerate CGT to clinics’

Customers are extremely knowledgable, scale the capital investment made investment

150MIL a year to improve the Workflow 

  • Q&A 12:05 PM – 12:20 PM  

12:05 PM – 12:30 PM

CEO Panel | Anticipating Disruption | Planning for Widespread GCT

The power of GCT to cure disease has the prospect of profoundly improving the lives of patients who respond. Planning for a disruption of this magnitude is complex and challenging as it will change care across the spectrum. Leading chief executives shares perspectives on how the industry will change and how this change should be anticipated. Moderator: Meg Tirrell

  • Senior Health and Science Reporter, CNBC

CGT becoming staple therapy what are the disruptors emerging Speakers: Lisa Dechamps

  • SVP & Chief Business Officer, Novartis Gene Therapies

Reimagine medicine with collaboration at MGH, MDM condition in children 

The Science is there, sustainable processes and systems impact is transformational

Value based pricing, risk sharing Payers and Pharma for one time therapy with life span effect

Collaboration with FDAKieran Murphy

  • CEO, GE Healthcare

Diagnosis of disease to be used in CGT

2021 investment in CAR-T platform 

Investment in several CGT frontier

Investment in AI, ML in system design new technologies 

GE: Scale and Global distributions, sponsor companies in software 

Waste in Industry – Healthcare % of GDP, work with MGH to smooth the workflow faster entry into hospital and out of Hospital

Telemedicine during is Pandemic: Radiologist needs to read remotely 

Supply chain disruptions slow down all ecosystem 

Production of ventilators by collaboration with GM – ingenuity 

Scan patients outside of hospital a scanner in a Box Christian Rommel, PhD

  • Head, Pharmaceuticals Research & Development, Bayer AG

CGT – 2016 and in 2020 new leadership and capability 

Disease Biology and therapeutics

Regenerative Medicine: CGT vs repair building pipeline in ophthalmology and cardiovascular 

During Pandemic: Deliver Medicines like Moderna, Pfizer – collaborations between competitors with Government Bayer entered into Vaccines in 5 days, all processes had to change access innovations developed over decades for medical solutions 

  • Q&A 12:35 PM – 12:50 PM  

12:35 PM – 12:55 PM FIRESIDE

Building a GCT Portfolio

GCT represents a large and growing market for novel therapeutics that has several segments. These include Cardiovascular Disease, Cancer, Neurological Diseases, Infectious Disease, Ophthalmology, Benign Blood Disorders, and many others; Manufacturing and Supply Chain including CDMO’s and CMO’s; Stem Cells and Regenerative Medicine; Tools and Platforms (viral vectors, nano delivery, gene editing, etc.). Bayer’s pharma business participates in virtually all of these segments. How does a Company like Bayer approach the development of a portfolio in a space as large and as diverse as this one? How does Bayer approach the support of the production infrastructure with unique demands and significant differences from its historical requirements? Moderator:

Shinichiro Fuse, PhD

  • Managing Partner, MPM Capital

Speaker: Wolfram Carius, PhD

  • EVP, Pharmaceuticals, Head of Cell & Gene Therapy, Bayer AG

CGT will bring treatment to cure, delivery of therapies 

Be a Leader repair, regenerate, cure

Technology and Science for CGT – building a portfolio vs single asset decision criteria development of IP market access patients access acceleration of new products

Bayer strategy: build platform for use by four domains  

Gener augmentation

Autologeneic therapy, analytics

Gene editing

Oncology Cell therapy tumor treatment: What kind of cells – the jury is out

Of 23 product launch at Bayer no prediction is possible some high some lows 

  • Q&A 1:00 PM – 1:15 PM  

12:55 PM – 1:35 PM

Lunch

  1:40 PM – 2:05 PM

GCT Delivery | Perfecting the Technology

Gene delivery uses physical, chemical, or viral means to introduce genetic material into cells. As more genetically modified therapies move closer to the market, challenges involving safety, efficacy, and manufacturing have emerged. Optimizing lipidic and polymer nanoparticles and exosomal delivery is a short-term priority. This panel will examine how the short-term and long-term challenges are being tackled particularly for non-viral delivery modalities. Moderator: Natalie Artzi, PhD

  • Assistant Professor, BWH

Speakers: Geoff McDonough, MD

  • CEO, Generation Bio

Sonya Montgomery

  • CMO, Evox Therapeutics

Laura Sepp-Lorenzino, PhD

  • Chief Scientific Officer, Executive Vice President, Intellia Therapeutics

Doug Williams, PhD

  • CEO, Codiak BioSciences
  • Q&A 2:10 PM – 2:25 PM  

2:05 PM – 2:10 PM

Invention Discovery Grant Announcement

  2:10 PM – 2:20 PM FIRST LOOK

Enhancing vesicles for therapeutic delivery of bioproducts

Xandra Breakefield, PhD

  • Geneticist, MGH, MGH
  • Professor, Neurology, HMS
  • Q&A 2:20 PM – 2:35 PM  

2:20 PM – 2:30 PM FIRST LOOK

Versatile polymer-based nanocarriers for targeted therapy and immunomodulation

Natalie Artzi, PhD

  • Assistant Professor, BWH
  • Q&A 2:30 PM – 2:45 PM  

2:55 PM – 3:20 PM HOT TOPICS

Gene Editing | Achieving Therapeutic Mainstream

Gene editing was recognized by the Nobel Committee as “one of gene technology’s sharpest tools, having a revolutionary impact on life sciences.” Introduced in 2011, gene editing is used to modify DNA. It has applications across almost all categories of disease and is also being used in agriculture and public health.

Today’s panel is made up of pioneers who represent foundational aspects of gene editing.  They will discuss the movement of the technology into the therapeutic mainstream.

  • Successes in gene editing – lessons learned from late-stage assets (sickle cell, ophthalmology)
  • When to use what editing tool – pros and cons of traditional gene-editing v. base editing.  Is prime editing the future? Specific use cases for epigenetic editing.
  • When we reach widespread clinical use – role of off-target editing – is the risk real?  How will we mitigate? How practical is patient-specific off-target evaluation?

Moderator: J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS

Speakers: John Evans

  • CEO, Beam Therapeutics

Lisa Michaels

  • EVP & CMO, Editas Medicine
  • Q&A 3:25 PM – 3:50 PM  

3:25 PM – 3:50 PM HOT TOPICS

Common Blood Disorders | Gene Therapy

There are several dozen companies working to develop gene or cell therapies for Sickle Cell Disease, Beta Thalassemia, and  Fanconi Anemia. In some cases, there are enzyme replacement therapies that are deemed effective and safe. In other cases, the disease is only managed at best. This panel will address a number of questions that are particular to this class of genetic diseases:

  • What are the pros and cons of various strategies for treatment? There are AAV-based editing, non-viral delivery even oligonucleotide recruitment of endogenous editing/repair mechanisms. Which approaches are most appropriate for which disease?
  • How can companies increase the speed of recruitment for clinical trials when other treatments are available? What is the best approach to educate patients on a novel therapeutic?
  • How do we best address ethnic and socio-economic diversity to be more representative of the target patient population?
  • How long do we have to follow up with the patients from the scientific, patient’s community, and payer points of view? What are the current FDA and EMA guidelines for long-term follow-up?
  • Where are we with regards to surrogate endpoints and their application to clinically meaningful endpoints?
  • What are the emerging ethical dilemmas in pediatric gene therapy research? Are there challenges with informed consent and pediatric assent for trial participation?
  • Are there differences in reimbursement policies for these different blood disorders? Clearly durability of response is a big factor. Are there other considerations?

Moderator: David Scadden, MD

  • Director, Center for Regenerative Medicine; Co-Director, Harvard Stem Cell Institute, Director, Hematologic Malignancies & Experimental Hematology, MGH
  • Jordan Professor of Medicine, HMS

Speakers: Samarth Kukarni, PhDNick Leschly

  • Chief Bluebird, Bluebird Bio

Mike McCune, MD, PhD

  • Head, HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation
  • Q&A 3:55 PM – 4:15 PM  

3:50 PM – 4:00 PM FIRST LOOK

Gene Editing

J. Keith Joung, MD, PhD

  • Robert B. Colvin, M.D. Endowed Chair in Pathology & Pathologist, MGH
  • Professor of Pathology, HMS
  • Q&A 4:00 PM – 4:20 PM  

4:20 PM – 4:45 PM HOT TOPICS

Gene Expression | Modulating with Oligonucleotide-Based Therapies

Oligonucleotide drugs have recently come into their own with approvals from companies such as Biogen, Alnylam, Novartis and others. This panel will address several questions:

How important is the delivery challenge for oligonucleotides? Are technological advancements emerging that will improve the delivery of oligonucleotides to the CNS or skeletal muscle after systemic administration?

  • Will oligonucleotides improve as a class that will make them even more effective?   Are further advancements in backbone chemistry anticipated, for example.
  • Will oligonucleotide based therapies blaze trails for follow-on gene therapy products?
  • Are small molecules a threat to oligonucleotide-based therapies?
  • Beyond exon skipping and knock-down mechanisms, what other roles will oligonucleotide-based therapies take mechanistically — can genes be activating oligonucleotides?  Is there a place for multiple mechanism oligonucleotide medicines?
  • Are there any advantages of RNAi-based oligonucleotides over ASOs, and if so for what use?

Moderator: Jeannie Lee, MD, PhD

  • Molecular Biologist, MGH
  • Professor of Genetics, HMS

Speakers: Bob Brown, PhD

  • CSO, EVP of R&D, Dicerna

Brett Monia, PhD

  • CEO, Ionis

Alfred Sandrock, MD, PhD

  • EVP, R&D and CMO, Biogen
  • Q&A 4:50 PM – 5:05 PM  

4:45 PM – 4:55 PM FIRST LOOK

RNA therapy for brain cancer

Pierpaolo Peruzzi, MD, PhD

  • Nuerosurgery, BWH
  • Assistant Professor of Neurosurgery, HMS
  • Q&A 4:55 PM – 5:15 PM  

Friday, May 21, 2021

Computer connection to the iCloud of WordPress.com FROZE completely at 10:30AM EST and no file update was possible. COVERAGE OF MAY 21, 2021 IS RECORDED BELOW FOLLOWING THE AGENDA BY COPY AN DPASTE OF ALL THE TWEETS I PRODUCED ON MAY 21, 2021

8:30 AM – 8:55 AM

Venture Investing | Shaping GCT Translation

What is occurring in the GCT venture capital segment? Which elements are seeing the most activity? Which areas have cooled? How is the investment market segmented between gene therapy, cell therapy and gene editing? What makes a hot GCT company? How long will the market stay frothy? Some review of demographics — # of investments, sizes, etc. Why is the market hot and how long do we expect it to stay that way? Rank the top 5 geographic markets for GCT company creation and investing? Are there academic centers that have been especially adept at accelerating GCT outcomes? Do the business models for the rapid development of coronavirus vaccine have any lessons for how GCT technology can be brought to market more quickly? Moderator:   Meredith Fisher, PhD

  • Partner, Mass General Brigham Innovation Fund

Strategies, success what changes are needed in the drug discovery process   Speakers:  

Bring disruptive frontier as a platform with reliable delivery CGT double knock out disease cure all change efficiency and scope human centric vs mice centered right scale of data converted into therapeutics acceleratetion 

Innovation in drugs 60% fails in trial because of Toxicology system of the future deal with big diseases

Moderna is an example in unlocking what is inside us Microbiome and beyond discover new drugs epigenetics  

  • Robert Nelsen
    • Managing Director, Co-founder, ARCH Venture Partners

Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization How to systematically scaling up systematize the discovery and the production regulatory innovations

Responsibility mismatch should be and what is “are”

Long term diseases Stack holders and modalities risk benefir for populations 

  • Q&A 9:00 AM – 9:15 AM  

9:00 AM – 9:25 AM

Regenerative Medicine | Stem Cells

The promise of stem cells has been a highlight in the realm of regenerative medicine. Unfortunately, that promise remains largely in the future. Recent breakthroughs have accelerated these potential interventions in particular for treating neurological disease. Among the topics the panel will consider are:

  • Stem cell sourcing
  • Therapeutic indication growth
  • Genetic and other modification in cell production
  • Cell production to final product optimization and challenges
  • How to optimize the final product
  • Moderator:
    • Ole Isacson, MD, PhD
      • Director, Neuroregeneration Research Institute, McLean
      • Professor, Neurology and Neuroscience, MGH, HMS

Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all Translational medicine funding stem cells enormous opportunities 

  • Speakers:
  • Kapil Bharti, PhD
    • Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH
    • first drug required to establish the process for that innovations design of animal studies not done before
    • Off-th-shelf one time treatment becoming cure 
    •  Intact tissue in a dish is fragile to maintain metabolism
    Joe Burns, PhD
    • VP, Head of Biology, Decibel Therapeutics
    • Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation
    • multiple cell types and tissue to follow
    Erin Kimbrel, PhD
    • Executive Director, Regenerative Medicine, Astellas
    • In the ocular space immunogenecity
    • regulatory communication
    • use gene editing for immunogenecity Cas1 and Cas2 autologous cells
    • gene editing and programming big opportunities 
    Nabiha Saklayen, PhD
    • CEO and Co-Founder, Cellino
    • scale production of autologous cells foundry using semiconductor process in building cassettes
    • solution for autologous cells
  • Q&A 9:30 AM – 9:45 AM  

9:25 AM – 9:35 AM FIRST LOOK

Stem Cells

Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamin
  • skin cell to become autologous cells reprograms to become cells producing dopamine
  • transplantation fibroblast cells metabolic driven process lower mutation burden 
  • Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 
  • Q&A 9:35 AM – 9:55 AM  

9:35 AM – 10:00 AM

Capital Formation ’21-30 | Investing Modes Driving GCT Technology and Timing

The dynamics of venture/PE investing and IPOs are fast evolving. What are the drivers – will the number of investors grow will the size of early rounds continue to grow? How is this reflected in GCT target areas, company design, and biotech overall? Do patients benefit from these trends? Is crossover investing a distinct class or a little of both? Why did it emerge and what are the characteristics of the players?  Will SPACs play a role in the growth of the gene and cell therapy industry. What is the role of corporate investment arms eg NVS, Bayer, GV, etc. – has a category killer emerged?  Are we nearing the limit of what the GCT market can absorb or will investment capital continue to grow unabated? Moderator: Roger Kitterman

  • VP, Venture, Mass General Brigham
  • Saturation reached or more investment is coming in CGT 

Speakers: Ellen Hukkelhoven, PhD

  • Managing Director, Perceptive Advisors
  • Cardiac area transduct cells
  • matching tools
  • 10% success of phase 1 in drug development next phase matters more 

Peter Kolchinsky, PhD

  • Founder and Managing Partner, RA Capital Management
  • Future proof for new comers disruptors 
  • Ex Vivo gene therapy to improve funding products what tool kit belongs to 
  • company insulation from next instability vs comapny stabilizing themselves along few years
  • Company interested in SPAC 
  • cross over investment vs SPAC
  • Multi Omics in cancer early screening metastatic diseas will be wiped out 

Deep Nishar

  • Senior Managing Partner, SoftBank Investment Advisors
  • Young field vs CGT started in the 80s 
  • high payloads is a challenge
  • cost effective fast delivery to large populations
  • Mission oriented by the team and management  
  • Multi Omics disease modality 

Oleg Nodelman

  • Founder & Managing Partner, EcoR1 Capital
  • Invest in company next round of investment will be IPO
  • Help company raise money cross over investment vs SPAC
  • Innovating ideas from academia in need for funding 
  • Q&A 10:05 AM – 10:20 AM  

10:00 AM – 10:10 AM FIRST LOOK

New scientific and clinical developments for autologous stem cell therapy for Parkinson’s disease patients

Penelope Hallett, PhD

  • NRL, McLean
  • Assistant Professor Psychiatry, HMS
  • Pharmacologic agent in existing cause another disorders locomo-movement related 
  • efficacy Autologous cell therapy transplantation approach program T cells into dopamine generating neurons greater than Allogeneic cell transplantation 
  • Q&A 10:10 AM – 10:30 AM  

10:10 AM – 10:35 AM HOT TOPICS

Neurodegenerative Clinical Outcomes | Achieving GCT Success

Can stem cell-based platforms become successful treatments for neurodegenerative diseases?

  •  What are the commonalities driving GCT success in neurodegenerative disease and non-neurologic disease, what are the key differences?
  • Overcoming treatment administration challenges
  • GCT impact on degenerative stage of disease
  • How difficult will it be to titrate the size of the cell therapy effect in different neurological disorders and for different patients?
  • Demonstrating clinical value to patients and payers
  • Revised clinical trial models to address issues and concerns specific to GCT

Moderator: Bob Carter, MD, PhD

  • Chairman, Department of Neurosurgery, MGH
  • William and Elizabeth Sweet, Professor of Neurosurgery, HMS
  • Neurogeneration REVERSAL or slowing down 

Speakers: Erwan Bezard, PhD

  • INSERM Research Director, Institute of Neurodegenerative Diseases
  • Cautious on reversal 
  • Early intervantion versus late

Nikola Kojic, PhD

  • CEO and Co-Founder, Oryon Cell Therapies
  • Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circuitary

Geoff MacKay

  • President & CEO, AVROBIO
  • Prevent condition to be manifested in the first place 
  • clinical effect durable single infusion preventions of symptoms to manifest 
  • Cerebral edema – stabilization
  • Gene therapy know which is the abnormal gene grafting the corrected one 
  • More than biomarker as end point functional benefit not yet established  

Viviane Tabar, MD

  • Founding Investigator, BlueRock Therapeutics
  • Chair of Neurosurgery, Memorial Sloan Kettering
  • Current market does not have delivery mechanism that a drug-delivery is the solution Trials would fail on DELIVERY
  • Immune suppressed patients during one year to avoid graft rejection Autologous approach of Parkinson patient genetically mutated reprogramed as dopamine generating neuron – unknowns are present
  • Circuitry restoration
  • Microenvironment disease ameliorate symptoms – education of patients on the treatment 
  • Q&A 10:40 AM – 10:55 AM  

10:35 AM – 11:35 AM

Disruptive Dozen: 12 Technologies that Will Reinvent GCT

Nearly one hundred senior Mass General Brigham Harvard faculty contributed to the creation of this group of twelve GCT technologies that they believe will breakthrough in the next two years. The Disruptive Dozen identifies and ranks the GCT technologies that will be available on at least an experimental basis to have the chance of significantly improving health care. 11:35 AM – 11:45 AM

Concluding Remarks

The co-chairs convene to reflect on the insights shared over the three days. They will discuss what to expect at the in-person GCT focused May 2-4, 2022 World Medical Innovation Forum.

ALL THE TWEETS PRODUCED ON MAY 21, 2021 INCLUDE THE FOLLOWING:

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Erwan Bezard, PhD INSERM Research Director, Institute of Neurodegenerative Diseases Cautious on reversal

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

  • @AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Nikola Kojic, PhD CEO and Co-Founder, Oryon Cell Therapies Autologus cell therapy placed focal replacing missing synapses reestablishment of neural circutary

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down? 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS Pharmacologic agent in existing cause another disorders locomo-movement related 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas

@pharma_BI

@AVIVA1950

1

3

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT 

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Oleg Nodelman Founder & Managing Partner, EcoR1 Capital Invest in company next round of investment will be IPO 20% discount

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

4h

#WMIF2021

@MGBInnovation

Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors  Ex Vivo gene therapy to improve funding products what tool kit belongs to 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

4h

#WMIF2021

@MGBInnovation

Deep Nishar Senior Managing Partner, SoftBank Investment Advisors Young field vs CGT started in the 80s  high payloads is a challenge 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Bob Carter, MD, PhD MGH, HMS cells producing dopamine transplantation fibroblast cells metabolic driven process lower mutation burden  Quercetin inhibition elimination undifferentiated cells graft survival oxygenation increased 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed  

@pharma_BI

@AVIVA1950

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure  Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

@AVIVA1950_PIcs

5h

#WMIF2021

@MGBInnovation

Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics

@pharma_BI

@AVIVA1950

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before 

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Meredith Fisher, PhD Partner, Mass General Brigham Innovation Fund Strategies, success what changes are needed in the drug discovery process@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization

@pharma_BI

@AVIVA1950

1

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures Responsibility mismatch should be and what is “are”

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

5h

#WMIF2021

@MGBInnovation

David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment  

@pharma_BI

@AVIVA1950

@AVIVA1950_PIcs

Aviva Lev-Ari

@AVIVA1950

6h

#WMIF2021

@MGBInnovation

Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma

@pharma_BI

@AVIVA1950

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights

Reporter: Stephen J. Williams, Ph.D.

3.4.16

3.4.16   AI Acquisitions by Big Tech Firms Are Happening at a Blistering Pace: 2019 Recent Data by CBI Insights, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine

Recent report from CBI Insights shows the rapid pace at which the biggest tech firms (Google, Apple, Microsoft, Facebook, and Amazon) are acquiring artificial intelligence (AI) startups, potentially confounding the AI talent shortage that exists.

The link to the report and free download is given here at https://www.cbinsights.com/research/top-acquirers-ai-startups-ma-timeline/

Part of the report:

TECH GIANTS LEAD IN AI ACQUISITIONS

The usual suspects are leading the race for AI: tech giants like Facebook, Amazon, Microsoft, Google, & Apple (FAMGA) have all been aggressively acquiring AI startups in the last decade.

Among the FAMGA companies, Apple leads the way, making 20 total AI acquisitions since 2010. It is followed by Google (the frontrunner from 2012 to 2016) with 14 acquisitions and Microsoft with 10.

Apple’s AI acquisition spree, which has helped it overtake Google in recent years, was essential to the development of new iPhone features. For example, FaceID, the technology that allows users to unlock their iPhone X just by looking at it, stems from Apple’s M&A moves in chips and computer vision, including the acquisition of AI company RealFace.

In fact, many of FAMGA’s prominent products and services came out of acquisitions of AI companies — such as Apple’s Siri, or Google’s contributions to healthcare through DeepMind.

That said, tech giants are far from the only companies snatching up AI startups.

Since 2010, there have been 635 AI acquisitions, as companies aim to build out their AI capabilities and capture sought-after talent (as of 8/31/2019).

The pace of these acquisitions has also been increasing. AI acquisitions saw a more than 6x uptick from 2013 to 2018, including last year’s record of 166 AI acquisitions — up 38% year-over-year.

In 2019, there have already been 140+ acquisitions (as of August), putting the year on track to beat the 2018 record at the current run rate.

Part of this increase in the pace of AI acquisitions can be attributed to a growing diversity in acquirers. Where once AI was the exclusive territory of major tech companies, today, smaller AI startups are becoming acquisition targets for traditional insurance, retail, and healthcare incumbents.

For example, in February 2018, Roche Holding acquired New York-based cancer startup Flatiron Health for $1.9B — one of the largest M&A deals in artificial intelligence. This year, Nike acquired AI-powered inventory management startup Celect, Uber acquired computer vision company Mighty AI, and McDonald’s acquired personalization platform Dynamic Yield.

Despite the increased number of acquirers, however, tech giants are still leading the charge. Acquisitive tech giants have emerged as powerful global corporations with a competitive advantage in artificial intelligence, and startups have played a pivotal role in helping these companies scale their AI initiatives.

Apple, Google, Microsoft, Facebook, Intel, and Amazon are the most active acquirers of AI startups, each acquiring 7+ companies.

To read more on recent Acquisitions in the AI space please see the following articles on this Open Access Online Journal

Diversification and Acquisitions, 2001 – 2015: Trail known as “Google Acquisitions” – Understanding Alphabet’s Acquisitions: A Sector-By-Sector Analysis

Clarivate Analytics expanded IP data leadership by new acquisition of the leading provider of intellectual property case law and analytics Darts-ip

2019 Biotechnology Sector and Artificial Intelligence in Healthcare

Forbes Opinion: 13 Industries Soon To Be Revolutionized By Artificial Intelligence

Artificial Intelligence and Cardiovascular Disease

Multiple Barriers Identified Which May Hamper Use of Artificial Intelligence in the Clinical Setting

Top 12 Artificial Intelligence Innovations Disrupting Healthcare by 2020

The launch of SCAI – Interview with Gérard Biau, director of the Sorbonne Center for Artificial Intelligence (SCAI).

Read Full Post »

DISCOVER BRIGHAM | NOVEMBER 7, 2019, 10AM – 6PM

Reporter: Aviva Lev-Ari, PhD, RN

 

#DISCOVERBRIGHAM

@pharma_BI

@AVIVA1950

 Aviva Lev-Ari, PhD, RN will be attending and will cover presentations in real time

ABOUT BRIGHAM RESEARCH

Discover Brigham is hosted by the Brigham Research Institute (BRI), under the umbrella of Brigham Health. Launched in 2005, the BRI’s mission is to accelerate discoveries that improve human health by bridging the gaps between science, communication and funding. The BRI’s resources help to foster groundbreaking interdepartmental and interdisciplinary research. They provide a voice for the research community and raise the profile of Brigham Research.

Speakers

http://www.discoverbrigham.org/speakers/

 

AGENDA

http://www.discoverbrigham.org/agenda/

ASK A QUESTION WITH SLI.DO!

DO YOU WANT TO SUBMIT A QUESTION TO A SPEAKER OF A SESSION? YOU CAN DO IT THROUGH SLI.DO!

2. ENTER THE EVENT CODE: DB19. THEN HIT JOIN!
3. PICK THE SESSION YOU WANT TO ASK A QUESTION. THEN ASK YOUR QUESTION!
4. YOUR QUESTION WILL BE REVIEWED AND MAY BE FORWARDED TO THE CHAIR TO ASK THE SPEAKER(S).

IT WORKS ON ANY DEVICE, YOU DO NOT NEED TO INSTALL ANYTHING!

 

Registration will open at 9:00 AM and will be located throughout the hospital including

  • Schlager Atrium (formerly known as Cabot Atrium, 45 Francis Street Lobby),
  • Schuster Lobby (75 Francis Street Entrance),
  • Shapiro Cardiovascular Center (70 Francis Street Entrance), and the
  • Hale Building for Transformative Medicine (HBTM) 1st Floor (60 Fenwood Road).

 

Click here for directions to these locations.  

NAVIGATING THE BRIGHAM IS EASIER THAN EVER

Need directions to a clinic, conference room, public space, or help assisting someone who looks lost?

Try our browser-based wayfinding tool and mobile app, BWH Maps,
which provides real-time location tracking and directions in the hospital.

Look for BWH Maps on the Apple App Store and Google Play Store,
or visit maps.brighamandwomens.org.

REGISTRATION LOCATIONS

Please visit one of the registration desks listed below to check-in, receive your badge, and collect any necessary materials. Registration will begin starting at 9:00 AM at each of the locations below.

 

Click on each location below for directions. 

  • SCHLAGER ATRIUM, FORMERLY KNOWN AS CABOT ATRIUM (45 FRANCIS ST. LOBBY)
  • SCHUSTER LOBBY (75 FRANCIS ST. LOBBY)
  • CARL J. AND RUTH SHAPIRO
    CARDIOVASCULAR CENTER
  • HALE BUILDING FOR
    TRANSFORMATIVE MEDICINE

SESSION LOCATIONS

Below you will find directions to each of the session locations.

MARSHALL A. WOLF CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

SESSION ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. Walk past the balcony overlooking the atrium and take the stairs on the left (Stair 2) to the 3rd floor. Once on the 3rd floor, exit the stairwell and take a right. The room is to your right through the double glass door, straight ahead.

ELEVATOR:
Take S Elevator to 3rd floor. Take a right out of the elevator. The room is past the stairwell, on your right through the double glass doors.

HALE VTC 02006B CONFERENCE ROOM

HALE BUILDING FOR TRANSFORMATIVE MEDICINE

OVERFLOW ROOM FOR MARSHALL A. WOLF CONFERENCE ROOM

FROM 60 FENWOOD ROAD:
Enter at 60 Fenwood Rd lobby entrance.

STAIRS:
Take the lobby staircase to the 2nd floor. The conference room will be on your right near the display monitor.

ELEVATOR:
Enter at 60 Fenwood Rd main entrance and take the S Elevator to the 2nd floor. Once you exit the elevator, take a right and walk past the balcony overlooking the atrium and the conference room will be straight ahead near the display monitor.

ZINNER BREAKOUT ROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

SESSION ROOM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

ZINNER BOARDROOM

CARL J. AND RUTH SHAPIRO CARDIOVASCULAR CENTER

OVERFLOW ROOM FOR ZINNER BREAKOUT ROOM

FROM 70 FRANCIS STREET:
The Zinner Boardroom is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalator, keeping to the left side of the building. The Conference Center is located on your right; the Boardroom is through the large doors on the back wall.

BORNSTEIN FAMILY AMPHITHEATER

MAIN PIKE, 45 FRANCIS STREET LOBBY

SESSION ROOM

FROM 45 FRANCIS STREET:
Coming from 45 Francis Street lobby, walk towards the Main Pike (2nd floor hallway). Then take left on the Main Pike, 2nd door on right.

AGENDA

10:00 AM – 11:00 AM

Opening remarks

Elizabeth G. Nabel, MD, President Brigham Health, Prof. Medicine @HarvardMed

  • 8th event since 2012
  • show casing amazing research
  • Open to the Public: Patients, Families to educate
  • 90 Posters
  • Health equity perspective as DNA of the Brigham
  • Learn a new idea, meet someone new, create a new idea

Keynote Introduction

David Bates, MD @DBatesSafety

KEYNOTE

KYU RHEE, MD, MPP, VICE PRESIDENT & CHIEF HEALTH OFFICER, IBM CORPORATION & IBM WATSON HEALTH

MAIN PIKE, 45 FRANCIS STREET LOBBY
  • Partnership BWH & IBM WATSON
  • Big data of claims from providers to payers
  • Waiting rookms in Healthcare delivery
  • Government: ACA
  • AI Spring is here, no more Winter for AI
  • Health disparities, salaries, sexual orientation – improving health of populations
  • Science & Security
  • Red Hat – data security – big data statoscope
  • Healthcare Culture & Technology Culture: IBM & Amazon hire healthcare professionals
  • Cost: Burnout, managing population health,
  • Reduce physicians burnout
  • Culture Tech – Competition by IBM’s Project Debater

11:15 AM – 12:50 PM

1:00 – 1:50 PM

FROM 70 FRANCIS STREET:
The Zinner Breakout Room is located in the Carl J. and Ruth Shapiro Cardiovascular Center at 70 Francis Street, Boston, MA. Upon entering the building at the street level, walk straight towards the escalators in the rear of the building. The Zinner Conference Center is located on your right; the Breakout room is through the large doors on the left.

Aaron Goldman
HaeLin Jang
Greog K. Gerber
  • Microbiome – Bacteria and Fungus therapies – computational tools for applications on microbiome
  • Diagnostics
  • Microbiome in early childhood
  • temporal variability during adulthood
  • host disease bacteriptherapeutics: C-Diff
  • Bugs as drugs
  • Gnotobiotic mice model for c-Diff in mice
  • MDSINE – Microbial dynamin model interaction model
  • cancer microbiome: Bacteria causing cancer, cancer changing the bacteria environment

 

Jeff Karp BENG PhD @MrJeffKarp

  • tissue based patch to seal open foramane ovale. Project remained in Academic settings however
  • GLUE component was commercialized
  • bioinspiration from living organs in Nature, slugs
  1. Viscose secretions
  2. Hydrophobic secretions and snails and sand castle worms

1:00 – 1:50 PM

Lina Matta, PharmD
Joji Suzuki, MD
Lisa WIchmann
Kevin Elias, MD
Daiva Braunfelds,MBA HPH
Elizabeth Cullen, MS

2:00 – 2:50 PM

3:00 – 3:50 PM

David Levin
Christopher baugh
Kathryn Britton
Joanne Feinberg Goldstein
Amrita Shahani
If patient meets criteria for Home Hospital : all services are sent home.
2016 – Pilot randomized controlled trial
2017-2018 – Repeat of Pilot on larger population
2018 – High-volume single arm innovation services
2019 – studies within home hospital wtth sensors at home
2020 – continue
Operation and Research lead to innovations

Anna Krichevsky, PhD HMS Initiative for RNA Medicine

  • paradox of organismal complexity and # protein encoding genes
  • Human genome, 70% Transcriptome Non-coding RNA only 2% encode proteins
  • Non-coding RNA small, long, multifunctional
  • biogenesis of offending RNAs can be drugged
  • RNA novel therapies: RNA as a Drug,
  • Indications: Brain Tumors and AD: MicroRNA (miRNA)the smallest Glioblastoma – only 4 drugs FDA approved in 25 years miRNA – 10b inhibition kills gliomacells miR-132 most neuroprotective RNA
  • Cardiovascular

Paul Anderson, MD, PhD

  • ALS and FTD – Fronto Temporal Dimensia
  • Riluzone 1970 – anti Anti-glutamateric
  • Edarabone 2017 drugs approved – anti-oxidative
  • Andogenesis role in Motor protection from Stress Cytoplasmatic tRNA – ANdiogenin (ANG) production
  • 20 amino acids
  • 5″-tiRNAs assemble G-quadruples – G4
  • point mutationin ANG (mANG) reduce its RNanase
  • G4-containing DNA analogs of 5″-tiRNA (Ala)

Marc Feinberg, MD

  • Cardiovascular: CAD, Insulin resistence – Vascular inflammation
  • Impaired angiogenesis: post MI repair CHF
  • MiRNA therapeutics for Atherosclerosis – miR-181b: Aortic ECs Athero (mice) CAD (Human)
  • miRNA _ Liposomes injected in the vessel wall – reduction of inflammation in vessel – microRNA Group
  • monocyte – How can we increase or amintain mir-181b expression in endothelial cells?
  • LncRNA Therapeutics for vascular Senescence and Atherosclerosis – no effect on leucocyte accumulation no difference in inflammation
  • DNA-dependent protein kinase (DNA-PK)
  • Does Loss SNHG12 triggers vascular senescence in the vessel wall

 

Clemens Scherzer, MD

  • The Protein RNA Brain
  • Dopamin p
  • BRAINCODE: 64% RNA: mRNA, ncRNA,
  • cell-type-spacific putative enhancer RNAs (eRNAs)
  • eRNAs indicate active genetic switches
  • central dogma in Biology: DNA, non-coding RNA, Protein
  • Top 10 Markers
  • Neuropsychiatric Disease: Parkinson: How do genetic variants function in specific brain cells: neurons, microglia, astrocytes
  • genetic variants of neuropsychiatric diseases over-localize to active eRNA sites in dopamine neurons
  • enhancers RNA – ADHD,
  • enhacers RNA – schizoprania, bipolar, addiction – antopsychotic Vlporic acid
  • BRAINCODE Project: BWH MGH HMS

5:00 – 6:00 PM

AWARDS & RECEPTION

SPECIAL PHOTO-OP TO CELEBRATE YOU!
WE WILL TAKE A GROUP PHOTO DURING THE RECEPTION AND AWARDS CEREMONY TO CELEBRATE YOU, OUR INNOVATORS!
THE PHOTO WILL BE DISPLAYED AT THE BRIGHAM IN THE HALE BUILDING. WE HOPE YOU CAN JOIN US IN CELEBRATING YOUR ACHIEVEMENTS.

SOURCE

http://www.discoverbrigham.org/agenda/

Read Full Post »

Extracellular RNA and their carriers in disease diagnosis and therapy, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

RNA plays various roles in determining how the information in our genes drives cell behavior. One of its roles is to carry information encoded by our genes from the cell nucleus to the rest of the cell where it can be acted on by other cell components. Rresearchers have now defined how RNA also participates in transmitting information outside cells, known as extracellular RNA or exRNA. This new role of RNA in cell-to-cell communication has led to new discoveries of potential disease biomarkers and therapeutic targets. Cells using RNA to talk to each other is a significant shift in the general thought process about RNA biology.

 

Researchers explored basic exRNA biology, including how exRNA molecules and their transport packages (or carriers) were made, how they were expelled by producer cells and taken up by target cells, and what the exRNA molecules did when they got to their destination. They encountered surprising complexity both in the types of carriers that transport exRNA molecules between cells and in the different types of exRNA molecules associated with the carriers. The researchers had to be exceptionally creative in developing molecular and data-centric tools to begin making sense of the complexity, and found that the type of carrier affected how exRNA messages were sent and received.

 

As couriers of information between cells, exRNA molecules and their carriers give researchers an opportunity to intercept exRNA messages to see if they are associated with disease. If scientists could change or engineer designer exRNA messages, it may be a new way to treat disease. The researchers identified potential exRNA biomarkers for nearly 30 diseases including cardiovascular disease, diseases of the brain and central nervous system, pregnancy complications, glaucoma, diabetes, autoimmune diseases and multiple types of cancer.

 

As for example some researchers found that exRNA in urine showed promise as a biomarker of muscular dystrophy where current studies rely on markers obtained through painful muscle biopsies. Some other researchers laid the groundwork for exRNA as therapeutics with preliminary studies demonstrating how researchers might load exRNA molecules into suitable carriers and target carriers to intended recipient cells, and determining whether engineered carriers could have adverse side effects. Scientists engineered carriers with designer RNA messages to target lab-grown breast cancer cells displaying a certain protein on their surface. In an animal model of breast cancer with the cell surface protein, the researchers showed a reduction in tumor growth after engineered carriers deposited their RNA cargo.

 

Other than the above research work the scientists also created a catalog of exRNA molecules found in human biofluids like plasma, saliva and urine. They analyzed over 50,000 samples from over 2000 donors, generating exRNA profiles for 13 biofluids. This included over 1000 exRNA profiles from healthy volunteers. The researchers found that exRNA profiles varied greatly among healthy individuals depending on characteristics like age and environmental factors like exercise. This means that exRNA profiles can give important and detailed information about health and disease, but careful comparisons need to be made with exRNA data generated from people with similar characteristics.

 

Next the researchers will develop tools to efficiently and reproducibly isolate, identify and analyze different carrier types and their exRNA cargos and allow analysis of one carrier and its cargo at a time. These tools will be shared with the research community to fill gaps in knowledge generated till now and to continue to move this field forward.

 

References:

 

https://www.nih.gov/news-events/news-releases/scientists-explore-new-roles-rna

 

https://www.cell.com/consortium/exRNA

 

https://www.sciencedaily.com/releases/2016/06/160606120230.htm

 

https://www.pasteur.fr/en/multiple-roles-rnas

 

https://www.nature.com/scitable/topicpage/rna-functions-352

 

https://www.umassmed.edu/rti/biology/role-of-rna-in-biology/

 

Read Full Post »

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

3.3.7

3.3.7   Digital Therapeutics: A Threat or Opportunity to Pharmaceuticals, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

Digital Therapeutics (DTx) have been defined by the Digital Therapeutics Alliance (DTA) as “delivering evidence based therapeutic interventions to patients, that are driven by software to prevent, manage or treat a medical disorder or disease”. They might come in the form of a smart phone or computer tablet app, or some form of a cloud-based service connected to a wearable device. DTx tend to fall into three groups. Firstly, developers and mental health researchers have built digital solutions which typically provide a form of software delivered Cognitive-Behaviour Therapies (CBT) that help patients change behaviours and develop coping strategies around their condition. Secondly there are the group of Digital Therapeutics which target lifestyle issues, such as diet, exercise and stress, that are associated with chronic conditions, and work by offering personalized support for goal setting and target achievement. Lastly, DTx can be designed to work in combination with existing medication or treatments, helping patients manage their therapies and focus on ensuring the therapy delivers the best outcomes possible.

Pharmaceutical companies are clearly trying to understand what DTx will mean for them. They want to analyze whether it will be a threat or opportunity to their business. For a long time, they have been providing additional support services to patients who take relatively expensive drugs for chronic conditions. A nurse-led service might provide visits and telephone support to diabetics for example who self-inject insulin therapies. But DTx will help broaden the scope of support services because they can be delivered cost-effectively, and importantly have the ability to capture real-world evidence on patient outcomes. They will no-longer be reserved for the most expensive drugs or therapies but could apply to a whole range of common treatments to boost their efficacy. Faced with the arrival of Digital Therapeutics either replacing drugs, or playing an important role alongside therapies, pharmaceutical firms have three options. They can either ignore DTx and focus on developing drug therapies as they have done; they can partner with a growing number of DTx companies to develop software and services complimenting their drugs; or they can start to build their own Digital Therapeutics to work with their products.

Digital Therapeutics will have knock-on effects in health industries, which may be as great as the introduction of therapeutic apps and services themselves. Together with connected health monitoring devices, DTx will offer a near constant stream of data about an individuals’ behavior, real world context around factors affecting their treatment in their everyday lives and emotional and physiological data such as blood pressure and blood sugar levels. Analysis of the resulting data will help create support services tailored to each patient. But who stores and analyses this data is an important question. Strong data governance will be paramount to maintaining trust, and the highly regulated pharmaceutical industry may not be best-placed to handle individual patient data. Meanwhile, the health sector (payers and healthcare providers) is becoming more focused on patient outcomes, and payment for value not volume. The future will say whether pharmaceutical firms enhance the effectiveness of drugs with DTx, or in some cases replace drugs with DTx.

Digital Therapeutics have the potential to change what the pharmaceutical industry sells: rather than a drug it will sell a package of drugs and digital services. But they will also alter who the industry sells to. Pharmaceutical firms have traditionally marketed drugs to doctors, pharmacists and other health professionals, based on the efficacy of a specific product. Soon it could be paid on the outcome of a bundle of digital therapies, medicines and services with a closer connection to both providers and patients. Apart from a notable few, most pharmaceutical firms have taken a cautious approach towards Digital Therapeutics. Now, it is to be observed that how the pharmaceutical companies use DTx to their benefit as well as for the benefit of the general population.

References:

https://eloqua.eyeforpharma.com/LP=23674?utm_campaign=EFP%2007MAR19%20EFP%20Database&utm_medium=email&utm_source=Eloqua&elqTrackId=73e21ae550de49ccabbf65fce72faea0&elq=818d76a54d894491b031fa8d1cc8d05c&elqaid=43259&elqat=1&elqCampaignId=24564

https://www.s3connectedhealth.com/resources/white-papers/digital-therapeutics-pharmas-threat-or-opportunity/

http://www.pharmatimes.com/web_exclusives/digital_therapeutics_will_transform_pharma_and_healthcare_industries_in_2019._heres_how._1273671

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/exploring-the-potential-of-digital-therapeutics

https://player.fm/series/digital-health-today-2404448/s9-081-scaling-digital-therapeutics-the-opportunities-and-challenges

Read Full Post »

 

From Technicall.y Philly.com

Reporter: Stephen J. Williams, PhD

Spark Therapeutics’ $4.8B deal confirmed as biggest-ever VC-backed exit in Philly

Quick update on this week’s news: The University City life sciences company’s acquisition by Swiss pharma giant Roche is the biggest acquisition ever of a VC-backed company within city limits, per PitchBook and PACT.

The eye-popping $4.8 billion sticker price on Spark Therapeutics’acquisition deal with Roche announced on Monday is shaping up to be the largest exit ever within city limits for a venture-backed company, according to data from financial data provider PitchBook and the Philadelphia Alliance for Capital and Technologies (PACT).

“Filtering down to just Philadelphia proper does reveal that Spark Therapeutics, once the deal closes, will be the biggest exit ever for Philly-based venture-backed exits,” the company said in an email, citing data from an upcoming report.

According to the Seattle-based company’s data, the current holder of the largest Philly-proper exit title goes to Avid Radiopharmaceuticals, which in 2010 announced its acquisition by Lilly in a deal valued at up to $800 million.

Founded in 2013, Spark is a publicly traded spinout of Children’s Hospital of Philadelphia (CHOP), which invested $33 million in the company. The Philadelphia Inquirer reports that CHOP stands to reap a total return of $430 million for its minority stake in Spark Therapeutics.

As part of the acquisition deal, the company will remain based out of 3711 Market St., and continue to do business as a standalone Roche company.

“This transaction demonstrates the enormous value that global biotech companies like Roche see in gene therapy, a field in which Philadelphia is the unquestioned leader,” said Saul Behar, senior VP of  advancement and strategic initiatives at the University City Science Center, the West Philly research park where Spark began and grew its operations. “[This] further validates Greater Philadelphia’s status as a biotech hub with a very bright future.”

Spark CEO Jeff Marrazzo said the deep pool of resources from Roche, the company plans to “accelerate the development of more gene therapies for more patients for more diseases and further expedite our vision of a world where no life is limited by genetic disease.”

Other articles on Gene Therapy and Retinal Disease on this Open Access Online Journal include:

Women Leaders in Cell and Gene Therapy

AGTC (AGTC) , An adenoviral gene therapy startup, expands in Florida with help from $1 billion deal with Biogen

Artificial Vision: Cornell and Stanford Researchers crack Retinal Code

D-Eye: a smartphone-based retinal imaging system

 

 

Read Full Post »

Older Posts »