Feeds:
Posts
Comments

Posts Tagged ‘Cancer immunology’

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions


Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »


New Mutant KRAS Inhibitors Are Showing Promise in Cancer Clinical Trials: Hope For the Once ‘Undruggable’ Target

Curator: Stephen J. Williams, Ph.D.

The November 1st issue of Science highlights a series of findings which give cancer researchers some hope in finally winning a thirty year war with the discovery of drugs that target KRAS, one of the most commonly mutated oncogenes  (25% of cancers), and thought to be a major driver of tumorigenesis. Once considered an undruggable target, mainly because of the smooth surface with no obvious pockets to fit a drug in, as well as the plethora of failed attempts to develop such an inhibitor, new findings with recently developed candidates, highlighted in this article and other curated within, are finally giving hope to researchers and oncologists who have been hoping for a clinically successful inhibitor of this once considered elusive target.

 

For a great review on development of G12C KRas inhibitors please see Dr. Hobb’s and Channing Der’s review in Cell Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It’s Down

Figure 1Mechanism of Action of ARS853 showing that the inhibitors may not need bind to the active conformation of KRAS for efficacy

Abstract: Two recent studies evaluated a small molecule that specifically binds to and inactivates the KRAS G12C mutant. The new findings argue that the perception that mutant KRAS is persistently frozen in its active GTP-bound form may not be accurate.

 

Although the development of the KRASG12C-specific inhibitor, compound 12 (Ostrem et al., 2013), was groundbreaking, subsequent studies found that the potency of compound 12 in cellular assays was limited (Lito et al., 2016, Patricelli et al., 2016). A search for more-effective analogs led to the development of ARS853 (Patricelli et al., 2016), which exhibited a 600-fold increase of its reaction rate in vitro over compound 12 and cellular activities in the low micromolar range.

 

A Summary and more in-depth curation of the Science article is given below:

After decades, progress against an ‘undruggable’ cancer target

Summary

Cancer researchers are making progress toward a goal that has eluded them for more than 30 years: shrinking tumors by shutting off a protein called KRAS that drives growth in many cancer types. A new type of drug aimed at KRAS made tumors disappear in mice and shrank tumors in lung cancer patients, two companies report in papers published this week. It’s not yet clear whether the drugs will extend patients’ lives, but the results are generating a wave of excitement. And one company, Amgen, reports an unexpected bonus: Its drug also appears to stimulate the immune system to attack tumors, suggesting it could be even more powerful if paired with widely available immunotherapy treatments.

Jocelyn Kaiser. After decades, progress against an ‘undruggable’ cancer target. Science  01 Nov 2019: Vol. 366, Issue 6465, pp. 561 DOI: 10.1126/science.366.6465.561

The article highlights the development of three inhibitors: by Wellspring Biosciences, Amgen, and Mirati Therapeutics.

Wellspring BioSciences

 

In 2013, Dr. Kevan Shokat’s lab at UCSF discovered a small molecule that could fit in the groove of the KRAS mutant G12C.  The G12C as well as the G12D is a common mutation found in KRAS in cancers. KRAS p.G12C mutations predominate in NSCLC comprising 11%–16% of lung adenocarcinomas (45%–50% of mutant KRAS is p.G12C) (Campbell et al., 2016; Jordan et al., 2017), as well as 1%–4% of pancreatic and colorectal adenocarcinomas, respectively (Bailey et al., 2016; Giannakis et al., 2016).  This inhibitor was effective in shrinking, in mouse studies conducted by Wellspring Biosciences,  implanted tumors containing this mutant KRAS.

 

See Wellspring’s news releases below:

March, 2016 – Publication – Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State

February, 2016 – Publication – Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

Amgen

 

Amgen press release on AMG510 Clinical Trial at ASCO 2019

 

THOUSAND OAKS, Calif., June 3, 2019 /PRNewswire/ — Amgen (NASDAQ: AMGN) today announced the first clinical results from a Phase 1 study evaluating investigational AMG 510, the first KRASG12C inhibitor to reach the clinical stage. In the trial, there were no dose-limiting toxicities at tested dose levels. AMG 510 showed anti-tumor activity when administered as a monotherapy in patients with locally-advanced or metastatic KRASG12C mutant solid tumors. These data are being presented during an oral session at the 55th Annual Meeting of the American Society of Clinical Oncology (ASCO) in Chicago.

“KRAS has been a target of active exploration in cancer research since it was identified as one of the first oncogenes more than 30 years ago, but it remained undruggable due to a lack of traditional small molecule binding pockets on the protein. AMG 510 seeks to crack the KRAS code by exploiting a previously hidden groove on the protein surface,” said David M. Reese, M.D., executive vice president of Research and Development at Amgen. “By irreversibly binding to cysteine 12 on the mutated KRAS protein, AMG 510 is designed to lock it into an inactive state. With high selectivity for KRASG12C, we believe investigational AMG 510 has high potential as both a monotherapy and in combination with other targeted and immune therapies.”

The Phase 1, first-in-human, open-label multicenter study enrolled 35 patients with various tumor types (14 non-small cell lung cancer [NSCLC], 19 colorectal cancer [CRC] and two other). Eligible patients were heavily pretreated with at least two or more prior lines of treatment, consistent with their tumor type and stage of disease. 

Canon, J., Rex, K., Saiki, A.Y. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019) doi:10.1038/s41586-019-1694-1

Besides blocking tumor growth, AMG510 appears to stimulate T cells to attack the tumor, thus potentially supplying a two pronged attack to the tumor, inhibiting oncogenic RAS and stimulating anti-tumor immunity.

 

Mirati Therapeutics

 

Mirati’s G12C KRAS inhibitor (MRTX849) is being investigated in a variety of solid malignancies containing the KRAS mutation.

 

For recent publication on results in lung cancer see Patricelli M.P., et al. Cancer Discov. 2016; (Published online January 6, 2016)

For more information on Mirati’s KRAS G12C inhibitor see https://www.mirati.com/pipeline/kras-g12c/

 

KRAS G12C Inhibitor (MRTX849)

Study 849-001 – Phase 1b/2 of single agent MRTX849 for solid tumors with KRAS G12C mutation

Phase 1b/2 clinical trial of single agent MRTX849 in patients with advanced solid tumors that have a KRAS G12C mutation.

See details for this study at clinicaltrials.gov

 

Additional References:

Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

Lito P et al. Science. (2016)

Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.

Janes MR et al. Cell. (2018)

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

Zeng M et al. Cell Chem Biol. (2017)

Campbell, J.D., Alexandrov, A., Kim, J., Wala, J., Berger, A.H., Pedamallu, C.S., Shukla, S.A., Guo, G., Brooks, A.N., Murray, B.A., et al.; Cancer Genome Atlas Research Network (2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet.48, 607–616

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J., Chang, M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 7, 596–609.

Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Christ, A.N., Bruxner, T.J., Quinn, M.C., et al.; Australian Pancreatic Cancer Genome Initiative (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52.

Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., et al. (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865.

Read Full Post »


Immunotherapy Resistance Rears Its Ugly Head Again: PD-1 Resistant Metastatic Melanoma and More

Curator/Reporter: Stephen J. Williams, Ph.D.

From GenomeWeb

Source: https://www.genomeweb.com/sequencing/immune-gene-mutations-found-immunotherapy-resistant-metastatic-melanoma-patients?utm_source=SilverpopMailing&utm_medium=email&utm_campaign=Daily%20News:%20U%20of%20Texas%20Southwestern%20Medical%20Center%20Licenses%20Exosome%20Tech%20to%20Peregrine%20Pharmaceuticals%20-%2007/14/2016%2011:05:00%20AM

Immune Gene Mutations Found in Immunotherapy-Resistant Metastatic Melanoma Patients

NEW YORK (GenomeWeb) – Researchers from the US and the Netherlands reported in the New England Journal of Medicine that they have identified mutations in immune system-related genes in individuals who initially responded to anti-PD-1 treatment for metastatic melanoma treatment, but relapsed after six months or more.

A team led by investigators at the University of California at Los Angeles, the Jonsson Comprehensive Cancer Center, and the Netherlands Cancer Institute did exome sequencing on tumor samples from four individuals with metastatic melanoma prior to treatment with pembrolizumab (marketed as Keytruda by Merck). The researchers also assessed protein-coding sequences in tumor samples taken after late relapse, comparing the baseline and relapse tumors to search for mutations related to checkpoint blockade therapy resistance.

They uncovered suspicious mutations in three of the four individuals. In one individual, for example, they saw a truncating mutation affecting the beta-2-microglobulin (B2M) gene, which contributes to expression of class I major histocompatibility complex molecules recognized by the immune system’s CD8 T cells. Two more relapse tumors contained loss-of-function mutations to JAK1 or JAK2 — genes coding for interferon-related kinase enzymes.

“The mutations make the tumor resistant to the way the immune system tries to kill it,” first author Jesse Zaretsky, an MD/PhD student in senior author Antoni Ribas’ University of California at Los Angeles lab, told GenomeWeb. For example, he explained, the JAK mutations “are associated with the interferon receptor and make the tumors insensitive to the signals the immune system sends to slow [tumor] growth and kill the cancer.”

While roughly three-quarters of individuals treated with anti-PD-1 therapies show durable treatment responses, acquired resistance can occur, even long after immunotherapy-mediated tumor regression.

“With the approval of PD-1 checkpoint blockade agents for the treatment of patients with melanoma, lung cancer, and other cancers, it is anticipated that cases of late relapse after initial response will increase,” the study’s authors wrote. “Understanding the molecular mechanisms of acquired resistance … may open options for the rational design of salvage combination therapies or preventative interventions and may guide mechanistic biomarker studies for the selection of patients, before the initiation of treatment, who are unlikely to have a response.”

The team started with 78 metastatic melanoma patients who were treated with pembrolizumab at UCLA. Of the 42 individuals who showed an objective response to the checkpoint blockade therapy, 15 eventually experienced disease progression.

From that group of 15 patients, the researchers focused on four patients with late-acquired resistance — six months or more after response to pembrolizumab as a single agent — for whom there was sufficient biopsy material and clinical information available. Each of the patients had been receiving continuous doses of the drug until relapse, which occurred after a mean of nearly 21 months.

When the investigators scrutinized biopsies from the relapse tumors, they saw enhanced PD-L1 expression at the edges of tumors, along with CD8 T cells attempting to infiltrate the tumors. After capturing protein-coding portions of the genome in baseline and relapse tumor samples with Nimblegen exome kits, the team sequenced the exomes to nearly 150-fold average coverage using the Illumina HiSeq 2000.

“We wanted to capture all of the mutations down to low allele frequencies to get a picture of everything that was going on in the tumors, both before they went on the treatment and after [the tumors] came back,” Zaretsky said.

In the two cases marked by new JAK1 or JAK2 mutations at relapse, the team found that 93 percent to nearly 96 percent of baseline tumor mutations persisted in the relapse tumors.

The researchers suspect resistance mutations arose from clonal populations in the metastatic tumors that expanded after anti-PD-1 treatment. From allele frequency patterns in the relapsed tumors with JAK1/2 mutations, for example, they concluded that “tumors resistant to anti-PD-1 are a relatively homogeneous population derived directly from the baseline tumor and that acquisition of the JAK mutations was an early founder event.”

Even so, they didn’t detect burgeoning resistance mutations in the pre-pembrolizumab-treatment tumors, Zaretsky said, perhaps because such alterations were present in very few cells in the baseline tumors.

In cell lines established from the individual with JAK2 loss-of-function mutations at relapse, the team’s NanoString Technologies’ nCounter expression experiments pointed to loss of JAK2 protein expression after treatment progression, along with a dip in interferon gamma activity and diminished production of proteins involved in antigen presentation and T cell activity.

Other articles related to ImmunoOncology in this Open Access Journal include:

Vectorisation Of Immune Checkpoint Inhibitor Antibodies

First Drug in Checkpoint Inhibitor Class of Cancer Immunotherapies has demonstrated Superiority over Standard of care in the treatment of First-line Lung Cancer Patients: Merck’s Keytryda

Durable responses with checkpoint inhibitor

Immune-Oncology Molecules In Development & Articles on Topic in @pharmaceuticalintelligence.com

 

Read Full Post »


Issues Need to be Resolved With Immuno-Modulatory Therapies: NK cells, mAbs, and adoptive T cells

Curator: Stephen J. Williams, PhD

nihms-618191-f0001NKvaciines

 

 

 

 

 

 

 

 

 

 

 

Immunotherapy. 2014;6(3):309-20. doi: 10.2217/imt.13.175.

Optimizing NKT cell ligands as vaccine adjuvants.

Carreño LJ1Kharkwal SSPorcelli SA.

Author information

Abstract

NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.

 

 

Cancer Res. 2013 Jul 1;73(13):3842-51. doi: 10.1158/0008-5472.CAN-12-1974. Epub 2013 May 23.

Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment.

Baird JR1Fox BASanders KLLizotte PHCubillos-Ruiz JRScarlett UKRutkowski MRConejo-Garcia JRFiering SBzik DJ.

Author information

Abstract

Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cellsregained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.

 

Oncoimmunology. 2013 Jun 1;2(6):e24677. Epub 2013 Apr 29.

TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR+ head and neck cancer cells.

Ming Lim C1Stephenson RSalazar AMFerris RL.

Author information

Abstract

Toll-like receptor 3 (TLR3) agonists have been extensively used as adjuvants for anticancer vaccines. However, their immunostimulatory effects and precise mechanisms of action in the presence of antineoplastic monoclonal antibodies (mAbs) have not yet been evaluated. We investigated the effect of TLR3 agonists on cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) against head and neck cancer (HNC) cells, as well as on dendritic cell (DC) maturation and cross-priming of epidermal growth factor receptor (EGFR)-specific CD8+ T cells. The cytotoxic activity of peripheral blood mononuclear cells (PBMCs) or isolated natural killer (NK) cells expressing polymorphic variants (at codon 158) of the Fcγ receptor IIIa (FcγIIIa) was determined in 51Cr release assays upon incubation with the TLR3 agonist poly-ICLC. NK cell stimulation was measured based on activation and degranulation markers, while DC maturation in the presence of poly-ICLC was assessed using flow cytometry. The DC-mediated cross priming of EGFR-specific CD8+ T cells was monitored upon in vitro stimulation with tetramer-based flow cytometry. TLR3-stimulated, unfractionated PBMCs from HNC patients mediated robust cetuximab-dependent ADCC, which was abrogated by NK-cell depletion. The cytolytic activity of TLR3-stimulated NK cells differed among cells expressing different polymorphic variants of FcγRIIIa, and NK cells exposed to both poly-ICLC and cetuximab expressed higher levels of CD107a and granzyme B than their counterparts exposed to either stimulus alone. Poly-ICLC plus cetuximab also induced a robust upregulation of CD80, CD83 and CD86 on the surface of DCs, a process that was partially NK-cell dependent. Furthermore, DCs matured in these conditions exhibited improved cross-priming abilities, resulting in higher numbers of EGFR-specific CD8+ T cells. These findings suggest that TLR3 agonists may provide a convenient means to improve the efficacy of mAb-based anticancer regimens.

Ann Oncol. 2012 Sep; 23(Suppl 8): viii6–viii9.

doi:  10.1093/annonc/mds256

PMCID: PMC4085883

Immuno-oncology: understanding the function and dysfunction of the immune system in cancer

  1. J. Finn*

Interactions between the Immune System and Cancer

Evidence has been accumulating since the middle of the last century, first from animal models and later from studies in cancer patients, that the immune system can recognise and reject tumours. The goal of tumour immunology has been to understand the components of the immune system that are important for tumour immunosurveillance and tumour rejection to understand how, when, and why they fail in cases of clinical disease. Immunotherapy, which involves strengthening the cancer patient’s immune system by improving its ability to recognise the tumour or providing a missing immune effector function, is one treatment approach that holds promise of a life-long cure [4].

Studies of cancer–immune system interactions have revealed that every known innate and adaptive immune effector mechanism participates in tumour recognition and control [5]. The first few transformed cells are detected by NK cells through their encounter with specific ligands on tumour cells. This leads to the destruction of some transformed cells and the uptake and processing of their fragments by macrophages and dendritic cells. In turn, these macrophages and dendritic cells are activated to secrete many inflammatory cytokines and present tumour cell-derived molecules to T- and B cells. Activation of T- and B cells leads to the production of additional cytokines that further promote activation of innate immunity and support the expansion and production of tumour-specific T cells and antibodies, respectively. The full power of the adaptive immune system leads to the elimination of remaining tumour cells and, importantly, to the generation of immune memory to specific tumour components that will serve to prevent tumour recurrence.

Effectors of adaptive immunity, such as CD4+ helper T cells, CD8+ cytotoxic T cells, and antibodies, specifically target tumour antigens; i.e. molecules expressed in tumour cells, but not in normal cells. Tumour antigens are normal cellular proteins that are abnormally expressed as a result of genetic mutations, quantitative differences in expression, or differences in posttranslational modifications [5]. In tumour types that have a well-documented viral origin, such as cervical cancer, caused by the human papillomavirus [5], or hepatocellular carcinoma caused by the hepatitis B virus [6], viral proteins can also serve as tumour antigens and targets for antitumour immune response [7].

The first indication that tumours carried molecules distinct from those on the normal cell of origin was derived from immunising mice with human tumours and selecting antibodies that recognised human tumour cells but not their normal counterparts. The major question was whether some, or all, of these molecules would also be recognised by the human immune system. 2011 was an important anniversary for human tumour immunology, marking 20 years since the publication by van der Bruggen et al. [8] that described the cloning of MAGE-1, a gene that encodes a human melanoma antigen recognised by patient’s antitumour T cells. This was not a mutant protein; its recognition by the immune system was due to the fact that it was only expressed by transformed, malignant cells and, with the exception of testicular germ cells, was not expressed in normal adult tissue. Many similar discoveries followed, with each new molecule providing a better understanding of what might be good targets for different forms of cancer immunotherapy. Tumour antigens have been tested as vaccines, as targets for monoclonal antibodies, and as targets for adoptively transferred cytotoxic T cells. There is a wealth of publications from preclinical studies targeting these antigens and results from phase I/II clinical trials. Recently, these studies were critically reviewed and a list of tumour antigens with the largest body of available data compiled [9]. The goal was to encourage faster progress in the design, testing, and approval of immunotherapeutic reagents that incorporate or target the most promising antigens.

 

As highlighted in the article two scenarios which present problems emerged:

  1. In the past, immunotherapy was referred to as ‘passive’ (e.g. the infusion of preformed immune effectors, such as antibodies, cytokines, or activated T cells, NK cells, or lymphokine-activated killer cells), presumably acting directly on the tumour and independent of the immune system or ‘active’ (e.g. vaccines), designed to activate and therefore be dependent on the patient’s immune system. it has since become clear that both passive and active immunotherapies depend on the patient’s immune system for long-term tumour control or complete tumour elimination. anticancer monoclonal antibodies are a well-established class of immunotherapeutic agent. HOWEVER, The potential of these antibodies is drastically undermined by their administration relatively late in the disease course, when the patient’s immune system is largely compromised. Under more optimal conditions, antibody treatment might result not only in the direct cytostatic or cytotoxic effect on the tumour cell, but also in the loading of antibody-bound tumour antigens onto antigen presenting cells (APC) in the tumour microenvironment. The resultant cross-presentation to antitumour T- and B cells could result in additional antibodies to these antigens being produced, and propagation of the immune response at the tumour site would maintain tumour elimination long after the infused monoclonal antibody is gone.
  2. The same scenario could be predicted for adoptively transferred T cells. Unlike antibodies, transferred T cells persist longer and may provide a memory response [14]; however, as long as the memory response is restricted to one clone, or a limited number of clones, then antigen-negative tumours will be able to escape. In addition, cancer vaccines encounter large numbers of immunosuppressive Tregand MDSC in circulation, as well as immunosuppressive cell-derived soluble products that flood the lymph nodes, preventing maturation of APCs and activation of T cells. Even when vaccines are delivered in the context of ex vivo matured and activated dendritic cells, their ability to activate T cells is compromised by the high-level expression of various molecules on T cells that block this process.

The scenarios proposed above present a rather bleak picture of the potential of immunotherapy to achieve the cure for cancer that has eluded standard therapy [15]. Interestingly, failures of some standard therapies are beginning to be ascribed to their inability to activate the patient’s immune system [16]. However, rather than seeing the picture as a deterrent, it should be considered as a road map, providing at least two major directions for new developments in immunotherapy.

The first direction is to continue using the old classes of immunotherapy that target the cancer directly, but to use them in combination with therapies that target the immune system in the tumour microenvironment, such as cytokines, suppressors of Treg or MDSC activity, or antibodies that modulate T-cell activity. The recently approved antibody, ipilimumab, which acts to sustain cytotoxic T-cell activity by augmenting T-cell activation and proliferation, is one example of such an immunomodulatory agent [17].

The other direction is to use immunotherapies, both old and new, for preventing cancer in individuals at high risk [18]. Studies of the tumour microenvironment are providing information about immunosurveillance of tumours from early premalignant lesions to more advanced dysplastic lesions to cancer. At each step, tumour-derived and immune system-derived components have a unique composition that will have distinct effects on immunotherapy. Because these premalignant microenvironments are less developed and immunosuppression is less entrenched, it should be easier to modulate towards the elimination of abnormal cells.

 

Cancer Immunol Immunother. 2011 Sep;60(9):1309-17. doi: 10.1007/s00262-011-1038-y. Epub 2011 May 28.

Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN.

Geary SM1Lemke CDLubaroff DMSalem AK.

Author information

Abstract

The combination of viral vaccination with intratumoral (IT) administration of CpG ODNs is yet to be investigated as an immunotherapeutic treatment for solid tumors. Here, we show that such a treatment regime can benefit survival of tumor-challenged mice. C57BL/6 mice bearing ovalbumin (OVA)-expressing EG.7 thymoma tumors were therapeutically vaccinated with adenovirus type 5 encoding OVA (Ad5-OVA), and the tumors subsequently injected with the immunostimulatory TLR9 agonist, CpG-B ODN 1826 (CpG), 4, 7, 10, and 13 days later. This therapeutic combination resulted in enhanced mean survival times that were more than 3.5× longer than naïve mice, and greater than 40% of mice were cured and capable of resisting subsequent tumor challenge. This suggests that an adaptive immune response was generated. Both Ad5-OVA and Ad5-OVA + CpG IT treatments led to significantly increased levels of H-2 K(b)-OVA-specific CD8+ lymphocytes in the peripheral blood and intratumorally. Lymphocyte depletion studies performed in vivo implicated both NK cells and CD8+ lymphocytes as co-contributors to the therapeutic effect. Analysis of tumor infiltrating lymphocytes (TILs) on day 12 post-tumor challenge revealed that mice treated with Ad5-OVA + CpG IT possessed a significantly reduced percentage of regulatory T lymphocytes (Tregs) within the CD4+ lymphocyte population, compared with TILs isolated from mice treated with Ad5-OVA only. In addition, the proportion of CD8+ TILs that were OVA-specific was reproducibly higher in the mice treated with Ad5-OVA + CpG IT compared with other treatment groups. These findings highlight the therapeutic potential of combining intratumoral CpG and vaccination with virus encoding tumor antigen.

 

Adv Drug Deliv Rev. 2009 Mar 28;61(3):268-74. doi: 10.1016/j.addr.2008.12.005. Epub 2009 Jan 7.

CpG oligonucleotide as an adjuvant for the treatment of prostate cancer.

Lubaroff DM1Karan D.

Author information

Abstract

The use of an adenovirus transduced to express a prostate cancer antigen (PSA) as a vaccine for the treatment of prostate cancer has been shown to be active in the destruction of antigen-expressing prostate tumor cells in a pre-clinical model, using Balb/C or PSA transgenic mice. The destruction of PSA-secreting mouse prostate tumors was observed in Ad/PSA immunized mice in a prophylaxis study with 70% of the mice surviving long term tumor free. This successful immunotherapy was not observed in therapeutic studies in which tumors were established before vaccination and the development of anti-PSA immune response was not as easily generated in PSA transgenic mice. Immunization of conventional and transgenic animals was enhanced by incorporating a collagen matrix into the immunizing injection. Therefore the need to strengthen anti-PSA and anti-prostate cancer immunity was an obvious next step in developing a successful prostate cancer immunotherapy. Because the use ofimmunostimulatory CpG motifs was shown to enhance immune responses to a wide variety of antigens, our studies incorporated CpG into the Ad/PSA vaccine experimental plans. The results of the subsequent studies demonstrated a dichotomy where Ad/PSA plus CpG enhanced the in vivo destruction of PSA-secreting tumors and the survival of experimental animals, but revealed that the number and in vitro activities of antigen specific CD8+ T cells was decreased as compared to the values observed when the vaccine alone was used for immunization. The dichotomous observations were confirmed using another antigen system, OVA also incorporated into a replication defective adenovirus. Despite the reduction in antigen-specific CD8+ cells after vaccine plus CpG immunization the enhanced destruction of sc and systemic tumors was shown to be mediated entirely by CD8+ T cells. Finally, the reduction of the CD8+ T cells was the result of an observed decrease in the proliferation of the antigen specific cell population.

J Invest Dermatol. 2004 Aug;123(2):371-9.

 

CpG motifs are efficient adjuvants for DNA cancer vaccines.

Schneeberger A1Wagner CZemann ALührs PKutil RGoos MStingl GWagner SN.

Author information

Abstract

DNA vaccines can induce impressive specific cellular immune response (IR) when taking advantage of their recognition as pathogen-associated molecular patterns (PAMP) through Toll-like receptors (TLR) expressed on/in cells of the innate immune system. Among the many types of PAMP,immunostimulatory DNA, so-called CpG motifs, was shown to interact specifically with TLR9, which is expressed in plasmacytoid dendritic cells(pDC), a key regulatory cell for the activation of innate and adaptive IR. We now report that CpG motifs, when introduced into the backbone, are a useful adjuvant for plasmid-based DNA (pDNA) vaccines to induce melanoma antigen-specific protective T cell responses in the Cloudman M3/DBA/2 model. The CpG-enriched pDNA vaccine induced protection against subsequent challenge with melanoma cells at significantly higher levels than its parental unmodified vector. Preferential induction of an antigen-specific, protective T cell response could be demonstrated by (i) induction of antigen-dependent tumor cell protection, (ii) complete loss of protection by in vivo CD4+/CD8+T cell- but not NK cell-depletion, and (iii) the detection of antigen-specific T cell responses but not of relevant NK cell activity in vitro. These results demonstrate that employing PAMP in pDNA vaccines improves the induction of protective, antigen-specific, T cell-mediated IR.

 

J Biomed Sci. 2016 Jan 25;23(1):16. doi: 10.1186/s12929-016-0238-3.

Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine.

Gableh F1Saeidi M2Hemati S3Hamdi K4Soleimanjahi H5Gorji A6,7,8Ghaemi A9,10,11.

Author information

Abstract

BACKGROUND:

DNA vaccines have emerged as an attractive approach for the generation of cytotoxic T lymphocytes (CTL). In our previous study, we found That Toll like receptor (TLR) ligands are promising candidates for the development of novel adjuvants for DNA vaccine. To improve the efficacy of DNA vaccine directed against human papillomavirus (HPV) tumors, we evaluated whether co-administration of a TLR4 ligand, monophosphoryl lipid A (MPL), and Natural Killer T Cell Ligand α-Galactosylceramide(α-GalCer) adjuvants with DNA vaccine would influence the anti-tumor efficacy of DNA vaccinations.

METHODS:

We investigated the effectiveness of α-GalCer and MPL combination as an adjuvant with an HPV-16 E7 DNA vaccine to enhance antitumor immune responses.

RESULTS:

By using adjuvant combination for a DNA vaccine, we found that the levels of lymphocyte proliferation, CTL activity, IFN- γ, IL-4 and IL-12 responses, and tumor protection against TC-1 cells were significantly increased compared to the DNA vaccine with individual adjuvants. In addition, inhibition of IL-18 signaling during vaccination decreased IFN-γ responses and tumor protection, and that this inhibition suggested stimulatory role of IL-18 in adjuvant effects of α-GalCer and MPL combination.

CONCLUSION:

The strong adjuvanticity associated with α-GalCer/MPL combination may to be an important tool in the development of novel and strong cancer immunotherapy.

Cancer Sci. 2015 Dec;106(12):1659-68. doi: 10.1111/cas.12824. Epub 2015 Nov 18.

Adjuvant for vaccine immunotherapy of cancer – focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity.

Seya T1Shime H1Takeda Y1Tatematsu M1Takashima K1Matsumoto M1.

Author information

Abstract

Immune-enhancing adjuvants usually targets antigen (Ag)-presenting cells to tune up cellular and humoral immunity. CD141(+) dendritic cells (DC) represent the professional Ag-presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross-presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer-mediated cell damage. Toll-like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α(+) DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141(+) DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag-presenting DCs. Bacillus Calmette-Guerin peptidoglycan and polyinosinic-polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine-adjuvant immunotherapy for cancer.

Adv Exp Med Biol. 2015;850:81-91. doi: 10.1007/978-3-319-15774-0_7.

Molecular Programming of Immunological Memory in Natural Killer Cells.

Beaulieu AM1Madera SSun JC.

Author information

Abstract

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens–all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease.

 

Read Full Post »


Microbe meets cancer

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Microbes Meet Cancer

Understanding cancer’s relationship with the human microbiome could transform immune-modulating therapies.

By Kate Yandell | April 1, 2016  http://www.the-scientist.com/?articles.view/articleNo/45616/title/Microbes-Meet-Cancer

 © ISTOCK.COM/KATEJA_FN; © ISTOCK.COM/FRANK RAMSPOTT  http://www.the-scientist.com/images/April2016/feature1.jpg

In 2013, two independent teams of scientists, one in Maryland and one in France, made a surprising observation: both germ-free mice and mice treated with a heavy dose of antibiotics responded poorly to a variety of cancer therapies typically effective in rodents. The Maryland team, led by Romina Goldszmidand Giorgio Trinchieri of the National Cancer Institute, showed that both an investigational immunotherapy and an approved platinum chemotherapy shrank a variety of implanted tumor types and improved survival to a far greater extent in mice with intact microbiomes.1 The French group, led by INSERM’s Laurence Zitvogel, got similar results when testing the long-standing chemotherapeutic agent cyclophosphamide in cancer-implanted mice, as well as in mice genetically engineered to develop tumors of the lung.2

The findings incited a flurry of research and speculation about how gut microbes contribute to cancer cell death, even in tumors far from the gastrointestinal tract. The most logical link between the microbiome and cancer is the immune system. Resident microbes can either dial up inflammation or tamp it down, and can modulate immune cells’ vigilance for invaders. Not only does the immune system appear to be at the root of how the microbiome interacts with cancer therapies, it also appears to mediate how our bacteria, fungi, and viruses influence cancer development in the first place.

“We clearly see shifts in the [microbial] community that precede development of tumors,” says microbiologist and immunologist Patrick Schloss, who studies the influence of the microbiome on colon cancer at the University of Michigan.

But the relationship between the microbiome and cancer is complex: while some microbes promote cell proliferation, others appear to protect us against cancerous growth. And in some cases, the conditions that spur one cancer may have the opposite effect in another. “It’s become pretty obvious that the commensal microbiota affect inflammation and, through that or through other mechanisms, affect carcinogenesis,” says Trinchieri. “What we really need is to have a much better understanding of which species, which type of bug, is doing what and try to change the balance.”

Gut feeling

In the late 1970s, pathologist J. Robin Warren of Royal Perth Hospital in Western Australia began to notice that curved bacteria often appeared in stomach tissue biopsies taken from patients with chronic gastritis, an inflammation of the stomach lining that often precedes the development of stomach cancer. He and Barry J. Marshall, a trainee in internal medicine at the hospital, speculated that the bacterium, now called Helicobacter pylori, was somehow causing the gastritis.3 So committed was Marshall to demonstrating the microbe’s causal relationship to the inflammatory condition that he had his own stomach biopsied to show that it contained no H. pylori, then infected himself with the bacterium and documented his subsequent experience of gastritis.4 Scientists now accept that H. pylori, a common gut microbe that is present in about 50 percent of the world’s population, is responsible for many cases of gastritis and most stomach ulcers, and is a strong risk factor for stomach cancer.5 Marshall and Warren earned the 2005 Nobel Prize in Physiology or Medicine for their work.

H. pylori may be the most clear-cut example of a gut bacterium that influences cancer development, but it is likely not the only one. Researchers who study cancer in mice have long had anecdotal evidence that shifts in the microbiome influence the development of diverse tumor types. “You have a mouse model of carcinogenesis. It works beautifully,” says Trinchieri. “You move to another institution. It works completely differently,” likely because the animals’ microbiomes vary with environment.

IMMUNE INFLUENCE: In recent years, research has demonstrated that microbes living in and on the mammalian body can affect cancer risk, as well as responses to cancer treatment. Although the details of this microbe-cancer link remain unclear, investigators suspect that the microbiome’s ability to modulate inflammation and train immune cells to react to tumors is to blame.
See full infographic: WEB | PDF
© AL GRANBERG

Around the turn of the 21st century, cancer researchers began to systematically experiment with the rodent microbiome, and soon had several lines of evidence linking certain gut microbes with a mouse’s risk of colon cancer. In 2001, for example, Shoichi Kado of the Yakult Central Institute for Microbiological Research in Japan and colleagues found that a strain of immunocompromised mice rapidly developed colon tumors, but that germ-free versions of these mice did not.6 That same year, an MIT-based group led by the late David Schauer demonstrated that infecting mice with the bacterium Citrobacter rodentium spurred colon tumor development.7 And in 2003, MIT’s Susan Erdman and her colleagues found that they could induce colon cancer in immunocompromised mice by infecting them with Helicobacter hepaticus, a relative of? H. pylori that commonly exists within the murine gut microbiome.8

More recent work has documented a similar link between colon cancer and the gut microbiome in humans. In 2014, a team led by Schloss sequenced 16S rRNA genes isolated from the stool of 90 people, some with colon cancer, some with precancerous adenomas, and still others with no disease.9 The researchers found that the feces of people with cancer tended to have an altered composition of bacteria, with an excess of the common mouth microbes Fusobacterium or Porphyromonas. A few months later, Peer Bork of the European Molecular Biology Laboratory performed metagenomic sequencing of stool samples from 156 people with or without colorectal cancer. Bork and his colleagues found they could predict the presence or absence of cancer using the relative abundance of 22 bacterial species, including Porphyromonas andFusobacterium.10 They could also use the method to predict colorectal cancer with about the same accuracy as a blood test, correctly identifying about 50 percent of cancers while yielding false positives less than 10 percent of the time. When the two tests were combined, they caught more than 70 percent of cancers.

Whether changes in the microbiota in colon cancer patients are harbingers of the disease or a consequence of tumor development remained unclear. “What comes first, the change in the microbiome or tumor development?” asks Schloss. To investigate this question, he and his colleagues treated mice with microbiome-altering antibiotics before administering a carcinogen and an inflammatory agent, then compared the outcomes in those animals and in mice that had received only the carcinogenic and inflammatory treatments, no antibiotics. The antibiotic-treated animals had significantly fewer and smaller colon tumors than the animals with an undisturbed microbiome, suggesting that resident bacteria were in some way promoting cancer development. And when the researchers transferred microbiota from healthy mice to antibiotic-treated or germ-free mice, the animals developed more tumors following carcinogen exposure. Sterile mice that received microbiota from mice already bearing malignancies developed the most tumors of all.11

Most recently, Schloss and his colleagues showed that treating mice with seven unique combinations of antibiotics prior to exposing them to carcinogens yielded variable but predictable levels of tumor formation. The researchers determined that the number of tumors corresponded to the unique ways that each antibiotic cocktail modulated the microbiome.12

“We’ve kind of proven to ourselves, at least, that the microbiome is involved in colon cancer,” says Schloss, who hypothesizes that gut bacteria–driven inflammation is to blame for creating an environment that is hospitable to tumor development and growth. Gain or loss of certain components of the resident bacterial community could lead to the release of reactive oxygen species, damaging cells and their genetic material. Inflammation also involves increased release of growth factors and blood vessel proliferation, potentially supporting the growth of tumors. (See illustration above.)

Recent research has also yielded evidence that the gut microbiota impact the development of cancer in sites far removed from the intestinal tract, likely through similar immune-modulating mechanisms.

Systemic effects

In the mid-2000s, MIT’s Erdman began infecting a strain of mice predisposed to intestinal tumors withH. hepaticus and observing the subsequent development of colon cancer in some of the animals. To her surprise, one of the mice developed a mammary tumor. Then, more of the mice went on to develop mammary tumors. “This told us that something really interesting was going on,” Erdman recalls. Sure enough, she and her colleagues found that mice infected with H. hepaticus were more likely to develop mammary tumors than mice not exposed to the bacterium.13The researchers showed that systemic immune activation and inflammation could contribute to mammary tumors in other, less cancer-prone mouse models, as well as to the development of prostate cancer.

MICROBIAL STOWAWAYS: Bacteria of the human gut microbiome are intimately involved in cancer development and progression, thanks to their interactions with the immune system. Some microbes, such as Helicobacter pylori, increase the risk of cancer in their immediate vicinity (stomach), while others, such as some Bacteroides species, help protect against tumors by boosting T-cell infiltration.© EYE OF SCIENCE/SCIENCE SOURCE
http://www.the-scientist.com/images/April2016/immune_2.jpg

 

 

© DR. GARY GAUGLER/SCIENCE SOURCE  http://www.the-scientist.com/images/April2016/immune3.jpg

At the University of Chicago, Thomas Gajewski and his colleagues have taken a slightly different approach to studying the role of the microbiome in cancer development. By comparing Black 6 mice coming from different vendors—Taconic Biosciences (formerly Taconic Farms) and the Jackson Laboratory—Gajewski takes advantage of the fact that the animals’ different origins result in different gut microbiomes. “We deliberately stayed away from antibiotics, because we had a desire to model how intersubject heterogeneity [in cancer development] might be impacted by the commensals they happen to be colonized with,” says Gajewski in an email to The Scientist.

Last year, the researchers published the results of a study comparing the progression of melanoma tumors implanted under the mice’s skin, finding that tumors in the Taconic mice grew more aggressively than those in the Jackson mice. When the researchers housed the different types of mice together before their tumors were implanted, however, these differences disappeared. And transferring fecal material from the Jackson mice into the Taconic mice altered the latter’s tumor progression.14

Instead of promoting cancer, in these experiments the gut microbiome appeared to slow tumor growth. Specifically, the reduced tumor growth in the Jackson mice correlated with the presence of Bifidobacterium, which led to the greater buildup of T?cells in the Jackson mice’s tumors. Bifidobacteriaactivate dendritic cells, which present antigens from bacteria or cancer cells to T?cells, training them to hunt down and kill these invaders. Feeding Taconic mice bifidobacteria improved their response to the implanted melanoma cells.

“One hypothesis going into the experiments was that we might identify immune-suppressive bacteria, or commensals that shift the immune response towards a character that was unfavorable for tumor control,” says Gajewski.  “But in fact, we found that even a single type of bacteria could boost the antitumor immune response.”

http://www.the-scientist.com/images/April2016/immune4.jpg

 

Drug interactions

Ideally, the immune system should recognize cancer as invasive and nip tumor growth in the bud. But cancer cells display “self” molecules that can inhibit immune attack. A new type of immunotherapy, dubbed checkpoint inhibition or blockade, spurs the immune system to attack cancer by blocking either the tumor cells’ surface molecules or the receptors on T?cells that bind to them.

CANCER THERAPY AND THE MICROBIOME

In addition to influencing the development and progression of cancer by regulating inflammation and other immune pathways, resident gut bacteria appear to influence the effectiveness of many cancer therapies that are intended to work in concert with host immunity to eliminate tumors.

  • Some cancer drugs, such as oxaliplatin chemotherapy and CpG-oligonucleotide immunotherapy, work by boosting inflammation. If the microbiome is altered in such a way that inflammation is reduced, these therapeutic agents are less effective.
  • Cancer-cell surface proteins bind to receptors on T cells to prevent them from killing cancer cells. Checkpoint inhibitors that block this binding of activated T cells to cancer cells are influenced by members of the microbiota that mediate these same cell interactions.
  • Cyclophosphamide chemotherapy disrupts the gut epithelial barrier, causing the gut to leak certain bacteria. Bacteria gather in lymphoid tissue just outside the gut and spur generation of T helper 1 and T helper 17 cells that migrate to the tumor and kill it.

As part of their comparison of Jackson and Taconic mice, Gajewski and his colleagues decided to test a type of investigational checkpoint inhibitor that targets PD-L1, a ligand found in high quantities on the surface of multiple types of cancer cells. Monoclonal antibodies that bind to PD-L1 block the PD-1 receptors on T?cells from doing so, allowing an immune response to proceed against the tumor cells. While treating Taconic mice with PD-L1–targeting antibodies did improve their tumor responses, they did even better when that treatment was combined with fecal transfers from Jackson mice, indicating that the microbiome and the immunotherapy can work together to take down cancer. And when the researchers combined the anti-PD-L1 therapy with a bifidobacteria-enriched diet, the mice’s tumors virtually disappeared.14

Gajewski’s group is now surveying the gut microbiota in humans undergoing therapy with checkpoint inhibitors to better understand which bacterial species are linked to positive outcomes. The researchers are also devising a clinical trial in which they will give Bifidobacterium supplements to cancer patients being treated with the approved anti-PD-1 therapy pembrolizumab (Keytruda), which targets the immune receptor PD-1 on T?cells, instead of the cancer-cell ligand PD-L1.

Meanwhile, Zitvogel’s group at INSERM is investigating interactions between the microbiome and another class of checkpoint inhibitors called CTLA-4 inhibitors, which includes the breakthrough melanoma treatment ipilimumab (Yervoy). The researchers found that tumors in antibiotic-treated and germ-free mice had poorer responses to a CTLA-4–targeting antibody compared with mice harboring unaltered microbiomes.15 Particular Bacteroides species were associated with T-cell infiltration of tumors, and feedingBacteroides fragilis to antibiotic-treated or germ-free mice improved the animals’ responses to the immunotherapy. As an added bonus, treatment with these “immunogenic” Bacteroides species decreased signs of colitis, an intestinal inflammatory condition that is a dangerous side effect in patients using checkpoint inhibitors. Moreover, Zitvogel and her colleagues showed that human metastatic melanoma patients treated with ipilimumab tended to have elevated levels of B. fragilis in their microbiomes. Mice transplanted with feces from patients who showed particularly strong B. fragilis gains did better on anti-CTLA-4 treatment than did mice transplanted with feces from patients with normal levels of B. fragilis.

“There are bugs that allow the therapy to work, and at the same time, they protect against colitis,” says Trinchieri. “That is very exciting, because not only [can] we do something to improve the therapy, but we can also, at the same time, try to reduce the side effect.”

And these checkpoint inhibitors aren’t the only cancer therapies whose effects are modulated by the microbiome. Trinchieri has also found that an immunotherapy that combines antibodies against interleukin-10 receptors with CpG oligonucleotides is more effective in mice with unaltered microbiomes.1He and his NCI colleague Goldszmid further found that the platinum chemotherapy oxaliplatin (Eloxatin) was more effective in mice with intact microbiomes, and Zitvogel’s group has shown that the chemotherapeutic agent cyclophosphamide is dependent on the microbiota for its proper function.

Although the mechanisms by which the microbiome influences the effectiveness of such therapies remains incompletely understood, researchers once again speculate that the immune system is the key link. Cyclophosphamide, for example, spurs the body to generate two types of T?helper cells, T?helper 1 cells and a subtype of T?helper 17 cells referred to as “pathogenic,” both of which destroy tumor cells. Zitvogel and her colleagues found that, in mice with unaltered microbiomes, treatment with cyclophosphamide works by disrupting the intestinal mucosa, allowing bacteria to escape into the lymphoid tissues just outside the gut. There, the bacteria spur the body to generate T?helper 1 and T?helper 17 cells, which translocate to the tumor. When the researchers transferred the “pathogenic” T?helper 17 cells into antibiotic-treated mice, the mice’s response to chemotherapy was partly restored.

Microbiome modification

As the link between the microbiome and cancer becomes clearer, researchers are thinking about how they can manipulate a patient’s resident microbial communities to improve their prognosis and treatment outcomes. “Once you figure out exactly what is happening at the molecular level, if there is something promising there, I would be shocked if people don’t then go in and try to modulate the microbiome, either by using pharmaceuticals or using probiotics,” says Michael Burns, a postdoc in the lab of University of Minnesota genomicist Ran Blekhman.

Even if researchers succeed in identifying specific, beneficial alterations to the microbiome, however, molding the microbiome is not simple. “It’s a messy, complicated system that we don’t understand,” says Schloss.

So far, studies of the gut microbiome and colon cancer have turned up few consistent differences between cancer patients and healthy controls. And the few bacterial groups that have repeatedly shown up are not present in every cancer patient. “We should move away from saying, ‘This is a causal species of bacteria,’” says Blekhman. “It’s more the function of a community instead of just a single bacterium.”

But the study of the microbiome in cancer is young. If simply adding one type of microbe into a person’s gut is not enough, researchers may learn how to dose people with patient-specific combinations of microbes or antibiotics. In February 2016, a team based in Finland and China showed that a probiotic mixture dubbed Prohep could reduce liver tumor size by 40 percent in mice, likely by promoting an anti-inflammatory environment in the gut.16

“If it is true that, in humans, we can alter the course of the disease by modulating the composition of the microbiota,” says José Conejo-Garcia of the Wistar Institute in Philadelphia, “that’s going to be very impactful.”

Kate Yandell has been a freelance writer living Philadelphia, Pennsylvania. In February she became an associate editor at Cancer Today.

GENETIC CONNECTION

The microbiome doesn’t act in isolation; a patient’s genetic background can also greatly influence response to therapy. Last year, for example, the Wistar Institute’s José Garcia-Conejo and Melanie Rutkowski, now an assistant professor at the University of Virginia, showed that a dominant polymorphism of the gene for the innate immune protein toll-like receptor 5 (TLR5) influences clinical outcomes in cancer patients by changing how the patients’ immune cells interact with their gut microbes (Cancer Cell, 27:27-40, 2015).

More than 7 percent of people carry a specific mutation in TLR5 that prevents them from mounting a full immune response when exposed to bacterial flagellin. Analyzing both genetic and survival data from the Cancer Genome Atlas, Conejo-Garcia, Rutkowski, and their colleagues found that estrogen receptor–positive breast cancer patients who carry the TLR5 mutation, called the R392X polymorphism, have worse outcomes than patients without the mutation. Among patients with ovarian cancer, on the other hand, those with the TLR5 mutation were more likely to live at least six years after diagnosis than patients who don’t carry the mutation.

Investigating the mutation’s contradictory effects, the researchers found that mice with normal TLR5produce higher levels of the cytokine interleukin 6 (IL-6) than those carrying the mutant version, which have higher levels of a different cytokine called interleukin 17 (IL-17). But when the researchers knocked out the animals’ microbiomes, these differences in cytokine production disappeared, as did the differences in cancer progression between mutant and wild-type animals.

“The effectiveness of depleting specific populations or modulating the composition of the microbiome is going to affect very differently people who are TLR5-positive or TLR5-negative,” says Conejo-Garcia. And Rutkowski speculates that many more polymorphisms linked to cancer prognosis may act via microbiome–immune system interactions. “I think that our paper is just the tip of the iceberg.”

References

  1. N. Iida et al., “Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment,” Science, 342:967-70, 2013.
  2. S. Viaud et al., “The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide,” Science, 342:971-76, 2013.
  3. J.R. Warren, B. Marshall, “Unidentified curved bacilli on gastric epithelium in active chronic gastritis,”Lancet, 321:1273-75, 1983.
  4. B.J. Marshall et al., “Attempt to fulfil Koch’s postulates for pyloric Campylobacter,” Med J Aust, 142:436-39, 1985.
  5. J. Parsonnet et al., “Helicobacter pylori infection and the risk of gastric carcinoma,” N Engl J Med, 325:1127-31, 1991.
  6. S. Kado et al., “Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor β chain and p53 double-knockout mice,” Cancer Res, 61:2395-98, 2001.
  7. J.V. Newman et al., “Bacterial infection promotes colon tumorigenesis in ApcMin/+ mice,” J Infect Dis, 184:227-30, 2001.
  8. S.E. Erdman et al., “CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice,” Am J Pathol, 162:691-702, 2003.
  9. J.P. Zackular et al., “The human gut microbiome as a screening tool for colorectal cancer,” Cancer Prev Res, 7:1112-21, 2014.
  10. G. Zeller et al., “Potential of fecal microbiota for early-stage detection of colorectal cancer,” Mol Syst Biol, 10:766, 2014.
  11. J.P. Zackular et al., “The gut microbiome modulates colon tumorigenesis,” mBio, 4:e00692-13, 2013.
  12. J.P. Zackular et al., “Manipulation of the gut microbiota reveals role in colon tumorigenesis,”mSphere, doi:10.1128/mSphere.00001-15, 2015.
  13. V.P. Rao et al., “Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice,” Cancer Res, 66:7395, 2006.
  14. A. Sivan et al., “Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy,” Science, 350:1084-89, 2015.
  15. M. Vétizou et al., “Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota,”Science, 350:1079-84, 2015.

……..

 

Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation

Melanie R. Rutkowski, Tom L. Stephen, Nikolaos Svoronos, …., Julia Tchou,  Gabriel A. Rabinovich, Jose R. Conejo-Garcia
Cancer cell    12 Jan 2015; Volume 27, Issue 1, p27–40  http://dx.doi.org/10.1016/j.ccell.2014.11.009
Figure thumbnail fx1
  • TLR5-dependent IL-6 mobilizes MDSCs that drive galectin-1 production by γδ T cells
  • IL-17 drives malignant progression in IL-6-unresponsive tumors
  • TLR5-dependent differences in tumor growth are abrogated upon microbiota depletion
  • A common dominant TLR5 polymorphism influences the outcome of human cancers

The dominant TLR5R392X polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extramucosal locations by increasing systemic IL-6, which drives mobilization of myeloid-derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening antitumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently upregulated in TLR5-unresponsive tumor-bearing mice but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, antitumor immunity, and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism.

see also… Immune Influence

In recent years, research has demonstrated that microbes living in and on the mammalian body can affect cancer risk, as well as responses to cancer treatment.

By Kate Yandell | April 1, 2016

http://www.the-scientist.com/?articles.view/articleNo/45644/title/Immune-Influence

Although the details of this microbe-cancer link remain unclear, investigators suspect that the microbiome’s ability to modulate inflammation and train immune cells to react to tumors is to blame. Here are some of the hypotheses that have come out of recent research in rodents for how gut bacteria shape immunity and influence cancer.

HOW THE MICROBIOME PROMOTES CANCER

Gut bacteria can dial up inflammation locally in the colon, as well as in other parts of the body, leading to the release of reactive oxygen species, which damage cells and DNA, and of growth factors that spur tumor growth and blood vessel formation.

http://www.the-scientist.com/images/April2016/ImmuneInfluence1_640px.jpg

http://www.the-scientist.com/images/April2016/ImmuneInfluence2_310px1.jpg

Helicobacter pylori can cause inflammation and high cell turnover in the stomach wall, which may lead to cancerous growth.

HOW THE MICROBIOME STEMS CANCER

Gut bacteria can also produce factors that lower inflammation and slow tumor growth. Some gut bacteria (e.g., Bifidobacterium)
appear to activate dendritic cells,
which present cancer-cell antigens to T cells that in turn kill the cancer cells.

http://www.the-scientist.com/images/April2016/ImmuneInfluence3_310px1.jpg

http://www.the-scientist.com/images/April2016/ImmuneInfluence4_310px1.jpg

Read the full story.

 

Read Full Post »


Advances in Cancer Immunotherapy

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Dramatic remissions in blood cancer in immunotherapy treatment trial

“We are at the precipice of a revolution in cancer treatment based on using immunotherapy.” — Stanley Riddell, MD

Recent advances in an immune-cell cancer treatment — a type of immunotherapy* using engineered immune cells to target specific molecules on cancer cells — are producing dramatic results for people with cancer, according to Stanley Riddell, MD, an immunotherapy researcher and oncologist at Seattle’s Fred Hutchinson Cancer Research Center.**

Riddell and his colleagues have refined new methods of engineering a patient’s own immune cells to better target and kill cancer cells while decreasing side effects. In laboratory and clinical trials, the researchers are seeing “dramatic responses” in patients with tumors that are resistant to conventional high-dose chemotherapy, “providing new hope for patients with many different kinds of malignancies,” Riddell said.

https://youtu.be/6mt7AyepE74?list=PLFb_Mc_opwOHti4qsYXvZWhXWvk41Wf9_

Twenty-seven out of 29 patients with an advanced blood cancer who received experimental, “living” immunotherapy as part of a clinical trial experienced sustained remissions, in preliminary results of an ongoing study at Fred Hutchinson Cancer Research Center.

Boosting natural immune response

Adoptive T-cell transfer aims to boost a patient’s immune cells’ ability to recognize and attack cancer cells. (1) T cells are extracted from the patient’s blood, (2) genetically engineered to produce a molecule that recognizes cancer cells and grown in the laboratory, and (3) infused back into the patient to (4) improve immune response. (credit: LUNGevity Foundation)

The immune system produces two major types of immune reaction to protect the body: one uses antibodies secreted by B cells; the other uses T cells.

Riddell’s team takes T cells from the patient’s body, re-engineers them, and infuses them back into the patient to create an army of cancer-fighting immune cells. (credit: Fred Hutchinson Cancer Research Center)

http://www.kurzweilai.net/images/T-cells.jpg

T cells are white blood cells that detect foreign or abnormal cells — including cancerous or infected cells — and initiate a process that targets those cells for attack. But the natural immune response to a tumor is often neither potent nor persistent enough, so Riddell and associates pioneered a new way to boost this immune response using a method known as “adoptive T-cell transfer.”

With adoptive T-cell transfer, immune cells are engineered to recognize and attack the patient’s cancer cells. Researchers extract T cells from a patient’s blood and then introduce genes into those T cells so they synthesize highly potent receptors (called chimeric antigen receptors, or CARs) that can recognize and target the cancer cell.

http://www.kurzweilai.net/images/20-million-T-cells.jpg

A single treatment of a relatively small number of the re-engineered T cells only takes about 30 minutes, and within weeks, the patient goes into a complete remission. (credit: Fred Hutchinson Cancer Research Center)

They grow the T cells in a laboratory for about two weeks and then infuse the engineered cells back into the patient, where they can home in on the tumor site and destroy the cancer cells.

Sustained remission of B cell cancers

Riddell’s team has recently developed a refined version of this process that increases the effectiveness of the immune response while reducing negative side effects, such as neurological symptoms, fevers, and large decreases in blood pressure.

In a study published in the journal Nature Biotechnology, Riddell and his team describe tagging the potent T-cell receptor (with amino acid sequences called Strep-tag), and the resulting effect on human cancer cells in the laboratory and on a mouse model of lymphoma.

Those results, using the latest version of this experimental immunotherapy, suggest sustained remission in cases of B cell cancers that previously relapsed and had become resistant to treatment.***

“The results are simply astounding,” Riddell said. We are treating patients with advanced leukemia and lymphoma that have failed every conventional therapy and radiation therapy, including transplants … in a single treatment. Within weeks, the patient goes into remission.”

“In my years as a oncologist and as a research scientist, I have never seen a treatment that has that spectacular response rate in its initial testing in patients,” Riddell said. His team is initiating trials in lung, breast, sarcoma, melanoma, and soon in pancreatic cancer. The opportunities for this technology are “incredible” and the approach has the potential to also treat common cancers such as kidney and colon cancer, he said.

“We are at the precipice of a revolution in cancer treatment based on using immunotherapy.”

Funding for Riddell’s research was provided by Juno Therapeutics.

* For approximately 100 years, the main tools to treat cancer were surgery, chemotherapy, and radiation therapy. But since around 2000, doctors have had access to a type of immunotherapy based on engineered antibodies that can target specific molecules on cancer cells. For example, trastuzumab (Herceptin) can be used for some types of breast cancer and stomach cancer. The new treatment approach used by Riddell’s team is based on a new type of immunotherapy using engineered immune cells to kill cancer, rather than antibodies.

** Stanley Riddell. Engineering T cells for safe and effective cancer immunotherapy. 2016 Annual Meeting of the American Association for the Advancement of Science, Washington, D.C., February 2016.

*** Such as acute lymphoblastic leukemia, Non-Hodgkin lymphoma, and chronic lymphocytic leukemia.


Abstract of Acquisition of a CD19 negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy

Administration of lymphodepletion chemotherapy followed by CD19-specific chimeric antigen receptor (CAR)-modified T cells is a remarkably effective approach to treat patients with relapsed and refractory CD19+ B cell malignancies. We treated 7 patients with B-cell acute lymphoblastic leukemia (B-ALL) harboring rearrangement of the mixed lineage leukemia (MLL) gene with CD19 CAR-T cells. All patients achieved complete remission in the bone marrow by flow cytometry after CD19 CAR-T cell therapy; however, within one month of CAR-T cell infusion two of the patients developed acute myeloid leukemia that was clonally related to their B-ALL, a novel mechanism of CD19-negative immune escape. These reports have implications for the management of patients with relapsed and refractory MLL-B-ALL who receive CD19 CAR-T cell therapy.


Abstract of Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy

Adoptive immunotherapy with genetically engineered T cells has the potential to treat cancer and other diseases. The introduction of Strep-tag II sequences into specific sites in synthetic chimeric antigen receptors or natural T-cell receptors of diverse specificities provides engineered T cells with a marker for identification and rapid purification, a method for tailoring spacer length of chimeric receptors for optimal function, and a functional element for selective antibody-coated, microbead-driven, large-scale expansion. These receptor designs facilitate cGMP manufacturing of pure populations of engineered T cells for adoptive T-cell therapies and enable in vivo tracking and retrieval of transferred cells for downstream research applications.

references:

It is great that immunotherapy is being highlighted! However the approach they are using is misguided. Cancer occurs from constant chemical attack by free radicals and other types of chemical or forms of damage like radiation. The objective is prevention and secret is in the diet. If you already have it you have to eliminate all the bad stuff and start consuming nutrients that will enhance your immune system so it takes care of the cancer with the T cells. Watch this video and go to minute 38 where the Doc starts explaining this.https://www.youtube.com/watch?v=Pj1PK0LHJwg

 

Having survived terminal cancer with a dietary approach, what you say is too simplistic.

Cancer is anything that interferes with any of the many growth inhibition pathways the prevent individual cells within the cooperative society of cells that is an animal body from growing in a fashion that puts the whole cooperative system at risk.

Certainly diet, largely via its effect on our immune system, and certainly in some degrees by other mechanisms also, can play a huge role in that. The particular regime I am on is strictly vegan, largely raw, and high dose vitamin c and supplementation of other vitamin/mineral complexes in very low doses.

The work in this article looks very promising, and in most people it would be unnecessary if they changed their diet and bought the contribution from animal products (meat, dairy, fish and foul etc) to below 10% of total calories. Going to zero seems to slightly reduce the risk even further, but not hugely. Along with that one needs to reduce stress (which seems to be not directly about external factors, but more accurately how we contextualise and respond to them).

 

Immunotherapy historically has involved all arms of the immune system in experimental treatments. That includes not only trained white blood cells, but B-cell antibodies and T-cell antibodies. In some experiments they attached poisons such as ricin to kill the cancer cells.Indeed most anti-cancer drugs can theoretically be attached to antibodies to kill of cancer cells specifically.Most approaches have had miraculous cures and remissions of hopelessly ill cancer patients who were dying.They are not offered to people who have no other hope except as small treatment studies.Why? Oncol;ogy is a big medical business, to cure it outright would put Oncologists out of work.The giant pharmaceutical companies that sell super expensive drugs would lose great gobs of money.They have some of the biggest lobbies in congress to maintain their business.
Often Immunotherapy of whatever form will have dangerous side effects.Some people do die from the treatments.It is unetihcal to refuse to give people who have a few weeks or minths to live a shot at these miracle treatments. In the case of enhanced T-cell therapy such as this one it can be difficult to control how extreme the body attacks. Today they have the means to put in genetic switches which will simply turn off the T-cells or any other cell line, by turning off the genes responsible for the action.One such switch is being produced by the company Intrexon using the insect molting hormone ecdysone to stop and start the genes of any organism.There almost certainly could be analogous techniques to biochemically create similar results if we understand how this one works.— I will be dead and gone a thousand years before any of this is cheaply available to the general population.

 

Despite the fact that immunotherapy has attracted considerable interest in recent years because of major progress in the identification of human tumor antigens (TA) suitable for clinical use, considerable obstacles to the development of clinically effective immunotherapy still exists including inability to:

induce expansion of large pools of antigen specific CD8+ T cells

maintain durable anti-tumor immunity > 5 years

overcome inherent tolerogenic mechanisms, such as CD4+CD25+ regulatory T cells (Tregs)

Unfortunately understanding the effectiveness of this new protocol with respect to resolving these obstacles takes time and future studies with larger cohorts.

 

 

Read Full Post »


Meeting Announcement: Cancer Immunotherapy and Combinations June 15-16 2016

 

Cancer Immunotherapy & Combinations – June 15-16, 2016 in Boston, MA

YouTubeLinkedInTwitter#CHIWPC16

Final Brochure PDF | Learn More | Sponsorship & Exhibit Details | Register by March 4 & SAVE up to $400!

Cambridge Healthtech Institute’s inaugural Cancer Immunotherapy and Combinations meeting will convene immuno-oncology researchers, cancer immunotherapy developers, and technology providers to discuss next-generation approaches and combinations, including small molecule development, to enhance the efficacy of checkpoint inhibitors.

BISPECIFIC ANTIBODIES – DUAL TARGETING

FEATURED PRESENTATION: ANTI-PD1 OR CD137 ENHANCES NK-CELL CYTOTOXICITY TOWARDS CD30+ HODGKIN LYMPHOMA INDUCED BY CD30/CD16A TANDAB AFM13
Martin Treder, Ph.D., CSO, R&D, Affimed

In vivo Efficacy of Bispecific Antibodies Targeting Two Immune-Modulatory Receptors
Jacqueline Doody, Ph.D., Vice President, Immunology, F-star Biotechnology, Ltd

Dual-Targeting Bispecific Antibodies for Selective Neutralization of CD47 on Cancer Cells
Krzysztof Masternak, Ph.D., Head, Biology, Therapeutic Antibody Discovery, Novimmune

Update on MCLA-134: A Biclonics® Binding Two Immunomodulatory Targets Expressed by T Cells
Mark Throsby, Ph.D., CSO, Merus

The ImmTAC Technology: A Cutting-Edge Immunotherapy for Cancer Treatment
Samir Hassan, Ph.D., Director, Translational Research & Development, Immunocore Ltd.

RADIOTHERAPY AND CHEMOTHERAPY – PD-1 COMBINATIONS

Rational Development of Combinations of Antiangiogenic Therapy with Immune Checkpoint Blockers Using Mouse Models of HCC and Cirrhosis
Dan Duda, D.M.D., Ph.D., Associate Professor, Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School

Harnessing the Immune Microenvironment of Gastrointestinal Cancers Using Combined Modalities
Osama Rahma, M.D., Assistant Professor, Internal Medicine/Oncology, University of Virginia

AGONIST – PD-1 AND CTLA-4 COMBINATIONS

The Role of the Target in the Disposition and Immunogenicity of an Anti-GITR Agonist Antibody
Enrique Escandón, Ph.D., Senior Principal Scientist, DMPK and Disposition, Merck

Combination of 4-1BB Agonist and PD-1 Antagonist Promotes Antitumor Effector/Memory CD8 T Cells
Changyu Wang, Ph.D., Director, Cancer Immunology, Pfizer

Combination Immunotherapy with Checkpoint Blockade, Agonist Anti-OX40 mAb, and Vaccination Rescues Anergic CD8 T Cells
William Redmond, Ph.D., Associate Member, Laboratory of Cancer Immunotherapy, Earle A. Chiles Research Institute, Providence Portland Medical Center

Interactive Breakout Discussion Groups with Continental Breakfast

This session features various discussion groups that are led by a moderator/s who ensures focused conversations around the key issues listed. Attendees choose to join a specific group and the small, informal setting facilitates sharing of ideas and active networking. Continental breakfast is available for all participants.

Topic: Small Molecule Targeting of IDO1 and TDO for Cancer Immunotherapy

Moderator: Rogier Buijsman, Ph.D., Head, Chemistry, Netherlands Translational Research Center B.V. (NTRC)

  • Overcoming challenges of current IDO1 inhibitors lacking selectivity over TDO and having suboptimal drug-like properties
  • Advances in IDO1 and TDO inhibitor screening
  • Is selective IDO1 or TDO inhibitors is required, or a dual IDO1/TDO inhibitor is preferred to obtain optimal efficacy and safety in the clinic?

Topic: Strategies for Developing Bispecific Antibodies for Cancer Immunotherapy

Moderator: Krzysztof Masternak, Ph.D., Head, Biology, Therapeutic Antibody Discovery, Novimmune

  • Considerations for efficacy in vitro and in vivo: selectivity for tumor cells, ADCP, ADCC, in vivo efficacy (xenograft models)
  • Insights into mechanisms of action
  • Safety considerations: binding selectivity, PK and tox studies

Topic: Combining Standard Antiangiogenic Therapy with Immune Checkpoint Inhibitors

Moderator: Dan Duda, D.M.D., Ph.D., Associate Professor, Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School

  • Will checkpoint combination with chemotherapy or other targeted agents prove to have too many toxicity issues?
  • How do we minimize overlapping toxic effects of radiation and immunotherapy?
  • How to optimize the sequencing of these two treatment modalities?

SMALL MOLECULE INHIBITORS AS SINGLE AND CHECKPOINT COMBINATION AGENTS

Selective Small Molecule Inhibitors of IDO1 and TDO for Cancer Immunotherapy
Rogier Buijsman, Ph.D., Head, Chemistry, Netherlands Translational Research Center B.V. (NTRC)

Potent and Selective Small Molecule USP7 Inhibitors for Cancer Immunotherapy
Suresh Kumar, Ph.D., Director, R&D, Progenra, Inc.

Epigenetic Agents for Combination with Cancer Immunotherapy
Svetlana Hamm, Ph.D., Head, Biology, Translational Pharmacology, 4SC Group

VACCINES AND CHECKPOINT BLOCKADE IMMUNOTHERAPY

Immunotherapy for Mesothelioma with an in vivo DC Vaccine and PD-1/PD-L1 Blockade
Huabiao Chen, M.D., Ph.D., Principal Investigator, Vaccine and Immunotherapy Center, Massachusetts General Hospital

Bringing Together Checkpoint Inhibition with Vaccines Using Customizing Capsids
Willie Quinn, Ph.D., President & CEO, Bullet Bio

Recommended All Access Package:

June 14 SC1: Immunosequencing: Generating a New Class of Cancer Immunotherapy Diagnostics*

June 14 SC5: Convergence of Immunotherapy and Epigenetics for Cancer Treatment*

June 14 SC8: Rational Design of Cancer Combination Therapies*

June 15-16: Cancer Immunotherapy and Combinations

June 16-17: Tumor Models for Cancer Immunotherapy

* Separate registration required.

Exhibit booth space has sold out! The few remaining spaces are being sold via sponsorship only. To customize yoursponsorship package, please contact:
Joseph Vacca, M.Sc., Associate Director, Business Development, 781-972-5431, jvacca@healthtech.com

For more information visit

WorldPreclinicalCongress.com/Cancer-Immunotherapy-Combinations

Cambridge Healthtech Institute, 250 First Avenue, Suite 300, Needham, MA 02494 healthtech.com
Tel: 781-972-5400 | Fax: 781-972-5425

This email is being sent to sjwilliamspa@comcast.net. This email communication is for marketing purposes. If it is not of interest to you, please disregard and we apologize for any inconvenience this may have caused.
Visit www.chicorporate.com/corporate_unsubscribe.aspx to update usage.

Read Full Post »


Will President Obama’ s Cancer Immunotherapy Colloquium (dubbed Moonshot) mean Government is Fully Behind the War on Cancer or have we heard this before?

 

UPDATED on 12/13/2016

Greg Simon, White House Cancer Moonshot Task Force: Interview Q&A

Dec 12, 2016 | AnnouncementsQ&ASpeaker spotlights |

The following is an interview recently conducted by PMWC with Greg Simon, Executive Director at the White House Cancer Moonshot Task Force. The discussion focused on the future of the Cancer Moonshot with the upcoming change of administration.

A status update on the Cancer Moonshot will be presented at the upcoming Precision Medicine World Conference (PMWC) 2017 Silicon Valley. To registerclick here.

http://www.pmwcintl.com/greg-simon-qa/

 

SOURCE:

From: Tal Behar <talb=pmwcintl.com@mail61.atl161.mcsv.net> on behalf of Tal Behar <talb@pmwcintl.com>

Reply-To: Tal Behar <talb@pmwcintl.com>

Date: Tuesday, December 13, 2016 at 1:40 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: PMWC News – Late Breaking Interview – The White House Cancer Moonshot in Limbo

 

 

Reporter: Stephen J. Williams, Ph.D

potusmoonshotannouncementsotus

President Obama announces a “Moonshot” Program to create collaborations aimed at developing immunotherapies to cure cancer by 2020 at his last State of the Union Address. Vice President Biden will lead the effort.

 

From Cancer Letters

  • Obama Announces Moonshot to Cure Cancer
  • When Moonshots Collide
  • Soon-Shiong Says FDA & NCI are Onboard For His Moonshot; Feds Deny Involvement

Obama Announces Moonshot to Cure Cancer

President Barack Obama announced a moonshot aimed at curing cancer, a project to be led by Vice President Joe Biden.

The United States can do “so much more,” Obama said in his seventh and final State of the Union address Jan. 12. “Last year, Vice President Biden said that with a new moonshot, America can cure cancer. Last month, he worked with this Congress to give scientists at the National Institutes of Health the strongest resources they’ve had over a decade.

“Tonight, I’m announcing a new national effort to get it done. And because he’s gone to the mat for all of us, on so many issues over the past 40 years, I’m putting Joe in charge of mission control. For the loved ones we’ve all lost, for the family we can still save—let’s make America the country that cures cancer once and for all.”

  When Moonshots Collide

Did Patrick Soon-Shiong attempt to scoop President Barack Obama’s State of the Union address?

Several days before Obama announced the federal government’s moonshot to cure cancer, Soon-Shiong put out a draft press release, claiming that the White House, NIH, FDA and pharmaceutical companies have united in “Cancer MoonShot 2020,” an immunotherapy clinical trials program he devised.

Soon-Shiong, founder and CEO of NantWorks and the Chan Soon-Shiong Institute of Molecular Medicine, ultimately announced his moonshot on Jan. 11, a day before Obama announced his.

Conversation with The Cancer Letter

Soon-Shiong Says FDA & NCI are Onboard For His Moonshot; Feds Deny Involvement

Government agencies said the biotechnology billionaire Patrick Soon-Shiong had overstated the extent of their involvement in “Cancer MoonShot 2020,” the immunotherapy clinical trials program he put together.

In an in-depth conversation with Matthew Bin Han Ong, a reporter with The Cancer Letter, Soon-Shiong said that while his program doesn’t seek federal funds, it has the support of NCI and FDA officials.

Soon-Shiong said he and Vice President Joe Biden met to discuss their interlocking missions and are now pursuing them.

 

From the AACR website

AACR Thanks President Obama and Vice President Biden for Their Strong Commitment to Cancer Research and Biomedical Science in State of the Union Address

1/12/2016

PHILADELPHIA — The American Association for Cancer Research (AACR) applauds and commends President Obama and Vice President Biden for their dedication in the fight against cancer discussed during tonight’s State of the Union address.

The AACR looks forward to working with the administration and Congress to make faster progress against cancer so that we might achieve the goal that Vice President Biden outlined during his speech in the Rose Garden Oct. 21, 2015, specifically that now is the time to make an “absolute national commitment to end cancer as we know it today.”

“We have indeed reached an inflection point, where the number of discoveries that are being made at such an accelerated pace are saving lives and bringing enormous hope for cancer patients, even those with advanced disease,” said AACR President José Baselga, MD, PhD, physician-in-chief and chief medical officer at Memorial Sloan Kettering Cancer Center. “Now is the time for a major new initiative in cancer science that supports and builds upon our basic science foundation while translating these exciting scientific discoveries into improved treatments for cancer patients, such as in the areas of genomics, precision medicine, and immuno-oncology. Tonight’s State of the Union address underscores the importance of collaborations if we are to achieve the vision that President Obama has outlined.”

To that end, on Jan. 8, a group of 15 AACR members, led by Baselga and comprising a number of AACR Board Members, and other AACR leaders from nine states and 10 of the top cancer centers and medical institutions in the U.S., met with Vice President Biden’s senior staff to discuss the state of cancer research, as well as Vice President Biden’s commitment to leading in this important issue.

From Philly.com

Biden to open effort to fight cancer Friday at Penn

 

011316_Biden-SOTU

US Vice President Biden will meet with University of Pennsylvania researchers to discuss the new Moonshot program to eliminate cancer. Photo from http://www.philly.com

 

Jonathan Tamari

Posted: Wednesday, January 13, 2016, 4:14 PM

image: http://media.philly.com/designimages/partnerIcon-Inquirer-2014.jpg

WASHINGTON – Vice President Biden will launch his effort to find a cure for cancer Friday in Philadelphia, with a visit to Penn’s Abramson Cancer Center at the school’s Perelman School of Medicine.

Biden announced the visit in an online post Tuesday night, when the call to cure the disease was one of the highlights of President Obama’s State of the Union speech.

“It’s personal for me. But it’s also personal for nearly every American, and millions of people around the world,” said Biden’s post on Medium. The vice president’s son Beau died of brain cancer at the age of 46 last year.

Biden compared the effort to President Kennedy’s call to go to the moon.

“From my own personal experience, I’ve learned that research and therapies are on the cusp of incredible breakthroughs,” Biden wrote. “The goal of this initiative — this “Moonshot” — is to seize this moment.”
Read more at http://www.philly.com/philly/blogs/capitolinq/Biden-to-open-effort-to-fight-cancer-Friday-at-Penn.html#sQFbeebwSDM17S0d.99

 

Biden to tour labs, meet cancer researchers at Penn

 

Vice President Biden is scheduled to spend part of Friday afternoon at the University of Pennsylvania’s Abramson Cancer Center, the first stop on his quest for the United States to cure cancer. President Obama announced the new “Moon Shot” mission during his State of the Union address Tuesday night, comparing it with John F. Kennedy’s 1961 declaration to Congress that the nation would land a man on the moon by the end of the decade.Biden’s 3 p.m. visit includes a tour of laboratories and a roundtable discussion with researchers at the Smilow Center for Translational Research and the Perelman Center for Advanced Medicine, both 3400 Civic Center Blvd. The events are not open to the public but are likely to cause some disruption.

In an internal e-mail Thursday afternoon, Garry Scheib, CEO of the Hospital of the University of Pennsylvania, told employees that parts of the building would be emptied for security reasons from 11 a.m. through evening. “In addition, the Secret Service will temporarily close roadways near our campus to allow for secure transport of the Vice President,” Scheib wrote.

– Don Sapatkin
Read more at http://www.philly.com/philly/health/20160115_Biden_to_visit_Penn_cancer_center_Friday_afternoon.html#vCpr4Hfu2AGYLSoX.99

 

Billionaire pulls together drugmakers, IBX for cancer collaboration

A billionaire medical entrepreneur has pulled together several drugmakers and Philadelphia-based Independence Blue Cross to speed development of what researchers hope could be a powerful weapon against cancers – potent combinations of new drugs that harness the body’s immune system.

So-called immunotherapies help disease-fighting cells attack tumors. Yet researchers believe they may work best when two, three, or more of the drugs are used together – overwhelming a tumor’s cellular defenses with attacks from all sides.

The group – called the National Immunotherapy Coalition – brought together by Patrick Soon-Shiong calls itself Moon Shot 2020. The name spun out of conversations Soon-Shiong had last year with Vice President Biden, whose son Beau died of cancer in May. In his October announcement that he was not running for president, Biden suggested a project of moon-shot proportions would be needed to defeat cancer.

A controversial figure in oncology research circles because of his self-promotion, Soon-Shiong made his fortune by inventing the cancer drug Abraxane in the early 1990s. California-based Amgen and New Jersey-based Celgene have joined the effort. Early reports suggested Pfizer, Merck, and GlaxoSmithKline might participate, but other reports indicated they had not as of Monday.

Independence Blue Cross said in a statement Monday that it entered into an agreement with NantHealth, one of Soon-Shiong’s companies, to cover next-generation whole genome sequencing, which is a test designed to detect gene mutations that may serve as markers to help doctors choose cancer treatment.

Independence said its agreement with NantHealth involves a “very specific and complex lab study” related to certain types of cancer. The test will be covered for members with “specific conditions including rare cancers, tumors in children, metastatic cancer of unknown primary, primary brain cancer, triple negative breast cancer, and metastatic cancer where conventional therapies have been exhausted and patients remain candidates for further therapy. Coverage for the testing will be available to eligible members of Independence commercial plans in March 2016.”

As for the National Immunotherapy Coalition, Independence said members referred by their oncologist for participation in one of the approved Moon Shot 2020 clinical trials will be eligible for coverage for the routine patient care costs related to the trial. The coverage includes all routine services required for the patient – such as blood tests, supportive medications, and surgical interventions.

“Independence Blue Cross is committed to bringing state-of-the-art advances in oncology to our members and making care accessible and affordable,” Daniel J. Hilferty, president and CEO, Independence Blue Cross, said in the statement. “Decisions around cancer care are complex and personal. We’re focused on supporting Independence members and their oncologists by offering coverage for this innovative approach to treating cancer. Whole genome sequencing is one more option to help inform a personalized, effective treatment plan.”
Read more at http://www.philly.com/philly/business/20160112_Billionaire_pulls_together_drugmakers__IBX_for_cancer_collaboration.html#XuXeFCydClgRsX0W.99

 

This is a Great Announcement But What is the History of the Government and THE WAR on CANCER? (Have we heard this before?)

 

The War on Cancer (launced by US President Nixon in the early 1970’s) has been discussed on this site from a historical perspective

2013 Perspective on “War on Cancer” on December 23, 1971

 

as well as the further needs the cancer field needs from this governmental effort

War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert

World facing cancer ‘tidal wave’, warns WHO

 

A summation of these efforts would say we have achieved great results in reducing the burden of cancer (through smoking cessation, early screening programs, better education, as well as therapeutic advances) however as the worldwide populace ages we are, and will see, a “rising tidal wave” of cancer incidence across the globe, and cancer researchers are feeling we are at an important precipice on this war, one which could be lost.

And the program which both President Obama and Vice President Biden are suggesting, the power would be a massive collaboration between government, academia, industry, and patient advocacy will certainly produce positive results.

However these efforts have been ongoing as with the University of Pennsylvania-Novartis deal to work together on CAR-T therapies for leukemias as well as other cancers

New Facility Poised to Accelerate the Research and Development of Personalized Cellular Cancer Therapies

 

as well as other academic-industry partnerships in immuno-oncology.

There have been other such announcements in recent years (mainly to draw in research $ or assist in forming academia-industry partnerships) such as:

NCI sets goal of eliminating suffering and death due to cancer by 2015.

 

In 2003 then NCI president Dr. Andrew C. von Eschenbach announced, after discussions with leaders in the field, that

“I have proposed a challenge goal for the field of cancer research- to eliminate suffering and death due to cancer by 2015. I issued this challenge because I believe we are at a ‘strategic inflection’ in oncology…”

Later in early decade of 2010 another program began to help make a push to recoup some of the government research $ lost to budgetary constraints on the NIH

STAND UP TO CANCER

stand-up-2-cancer

This program has met much success in raising money, awareness, and clinical trial enrollment (following shows current stats from the organization site)

Founded: May 28, 2008
Funds Pledged since inception: Over $370 Million
Number of scientists participating in SU2C-funded research: Over 1000
Clinical Trails funded by SU2C planned, initiated or completed: Over 160
Patients enrolled in SU2C supported Clinical Trials: Over 6,000 patients
Number of institutions joining in SU2C’s collaborative mission: 129

However, although it has grown the cancer research world encompasses a greater number than they can provide for.

 

In short, there has been no government effort much like Nixon’s War on Cancer, which took an obscure disease at the time and not only put it in the limelight but probably the most powerful result was the creation of the National Cancer Institute, thereby developing a framework to promote cancer research for the next century. President Obama should be applauded for this effort yet the real test for the Moonshot program will be to create, much like the NCI did, a self-perpetuating system by which continued further advancement can be made.

 

Read Full Post »


Kite Pharma is joining forces with Alpine Immune Sciences to target the immune synapse, the communications area between the antigen presenting cell and the T lymphocyte (FierceBiotech). Their approach is to specifically modify the T cells in the patient’s peripheral blood so that these T cells will target the patient’s tumour. Their engineered Autologous Cell Therapy (eACT) platform, allows them to modify in vitro the patient’s T cells so that they will express either chimeric antigen receptors (CAR) or T cell receptors (TCR).

They have devised single chain antibodies linked to intracellular T-cell activating domains and TCR to specifically target the tumour antigen in the patient. These modifications are introduced into the T-cells via a viral vector to express the CAR and TCR on these cells.

The CAR products are specifically engineered to target cell membrane antigens on the tumour cells, whilst the TCR products are able to target both the cell membrane and the intracellular antigens, giving these products a well rounded approach to targeting both solid tumours and haemtalogical malignancies.

Kite and Alpine Immune Science’s potential for delivering personalised tumour therapy is now being tested in clinical trials.

Kite Pharma

Alpine Immune Sciences

Read Full Post »



Monoclonal Antibody Therapy and Market

Demet Sag, PhD, CRA, GCP 

 

Monoclonal Antibody treatment means a biological therapy where monoclonal antibodies is used to initiate development of specific antibodies (protein molecules produced by the B cells as a primary immune defense), so that they can fight against antigens (substances that are capable of inducing a specific immune response) specifically to kill extracellular/ cell surface target.  Thus, the application of this types of therapies are not limited to cancer but also rheumatoid arthritis, multiple sclerosis, Alzheimer’s disease, and some infectious diseases such as Ebola.

To eliminate or reduce the effects of chemotherapeutic agents. Thus chemotherapeutics agents attached to monoclonal antibodies.



Diagnostic process:

Monoclonal antibodies again used as a vehicle to locate the tumorigenic cancer cells in the body. There can be several methods but one of them is carrying radioactive substances to cancer cells so that they can be labelled in vivo.  However, there are less invasive ways to do as well. As a result, there are new combination of methods such as:

  • nuclear imaging,
  • surgical mapping, and
  • direct therapy in multiple settings either alone, or in conjunction with chemotherapeutic agents, adjuvant.


How do monoclonal antibody drugs work?

 525px-Monoclonal_antibodies.svg



  1. Naked monoclonal antibodies:

  • Make the cancer cell more visible to the immune system.

Action is to boost immune system.

Example: Alemtuzumab (Campath®), chronic lymphocytic leukemia (CLL) by binding to the CD52 antigen on lymphocytes.

 


T cell targets for immunoregulatory antibody therapy

  • Block immune checkpoint inhibitor proteins

        

 Treatments that target PD-1 or PD-L1.

 PD-1 is a checkpoint protein on T cells, called “off switch” of T cells since PD-1 prevents from attacking other cells in the body. Yet, when it is overexpressed on the cancer cells, tumors escape from immune system, because when PD-1 binds to PD-L1, T cells thinks these cells are body’s own normal cells.

http://www.nature.com/nature/journal/v515/n7528/images/515496a-f1.jpg

Checkpoint blockade activates antitumour immunity.

a, Tumour cells express both cancer-driving mutations and ‘passenger’ mutations that cause the expression of neoantigens — ‘new’ molecular structures that, when presented by MHC proteins on the cell surface, are recognized by T cells of the immune system as being foreign, leading to an immune response against the tumour. However, interactions between the receptor PD-1 and its ligand PD-L1, which are expressed on tumour cells, T cells and other immune cells such as macrophages, activate signalling pathways that inhibit T-cell activity and thus inhibit the antitumour immune response. b, Antibodies that block the PD-1 pathway by binding to PD-1 or PD-L1 can reactivate T-cell activity and proliferation, leading to enhanced antitumour immunity.

Examples are:

  • Pembrolizumab (Keytruda®)
  • Nivolumab (Opdivo®)

There is a possibility of developing an autoimmune reaction. The most common side effects include fatigue, cough, nausea, skin rash, and itching. Rarely more serious problems in the lungs, intestines, liver, kidneys, hormone-making glands, or other organs may occur.

 Treatments that target CTLA-4

 Another protein is CTLA-4 to control T cells, “off switch”.

Generation and regulation of anti-tumor immunity Biologic activities of CTLA-4 antibody blockade

Example: Ipilimumab (Yervoy®) is a monoclonal antibody that attaches to CTLA-4 and stops it from working. This can boost the body’s immune response against cancer cells.


  • Block antigens on cancer cells (or other nearby cells).

Example: Trastuzumab, when HER2 is activated, binds to these proteins and stops antigens from becoming active in breast and stomach cancer cells.

Example: Rituxan specifically attaches to CD20 that is found only on B cells so when these labelled B cells can be visible to immune system. There are certain types of lymphomas predisposed due to malfunctioning B cells.


  • Block growth signals. Prevent signal amplification for cell growth.

The cells like to amplify their message in danger or during certain metabolisms so they secrete or produce a type of chemicals called growth factors.  These factors then attaches to specific receptors on the surface of normal cells and cancer cells. Thus, signaling the cells to grow faster than the normal cells. The action is preventing the signals to be received by monoclonal.

 Example:

Cetuximab (Erbitux), targets epidermal growth factor. Thus its function utilized to cure colon cancer, head and neck cancers.


  • Stop new blood vessels from forming.

Tumors needs to grow so in the body they need blood vessel formation to feed the cell growth (angiogenesis)

Example; Bevacizumab (Avastin) targets vascular endothelial growth factor (VEGF) and blocks the angiogenesis.



  1. Conjugated monoclonal antibodies (tagged, labeled, or loaded antibodies).

 Deliver chemotherapy to cancer cells.

They are monoclonal antibodies (mAbs) joined to a chemotherapy drug or to a radioactive particle to locate cancer cells directly through targeting specific antigen after circulating in the bloodstream. They are used as a homing device.

Chemo-labeled antibodies: Also called as antibody-drug conjugates (ADCs) and provide powerful chemotherapy (or other) drugs attached to them.

  • Brentuximab vedotin (Adcetris®), an antibody that targets the CD30 antigen on lymphocytes, attached to MMAE (a chemo drug) against Hodgkin lymphoma and anaplastic large cell lymphoma.
  • Ado-trastuzumab emtansine (Kadcyla®, also called TDM-1), an antibody that targets the HER2 protein, attached to DM1 (a chemo drug) against cells overexpressing HER2 in breast cancer

 Toxin attached protein: Denileukin diftitox (Ontak®) is not an antibody but it is a protein, cytokine known as interleukin-2 (IL-2) and attached to diphtheria toxin that recognizes CD25 antigen to treat lymphoma of the skin (cutaneous T-cell lymphoma).


 Radiolabeled antibodies: Deliver radiation to cancer cells.

The other method, less preferred, is radiation-linked monoclonal antibodies.  This time low radiation in long term used to target the cancer cells but it is suggested that this method has elevated outcome to kill the cancer cells than conventional high-dose external beam radiation.

Example; Ibritumomab (Zevalin), is an approved treatment.  The targeted disease is for non-Hodgkin’s lymphoma.

Treatment with this type of antibody also referred as radioimmunotherapy (RIT).



  1. Bispecific monoclonal antibodies

 If the drug contains two parts of 2 different mAbs, meaning they can attach to 2 different proteins at the same time, they are called Bispecific monoclonal antibodies since they attack two proteins at the same time.

 

Example:  Blinatumomab (Blincyto), can attach CD 19 which is found on some leukemia and lymphoma cells and CD3 on T cells.  Thus, brings opponents, immune and malignant cancer cells, to defeat cancer.

  nature_graphic_immune-system_08.01.15

THE OTHER SIDE OF THE COIN: SAFETY

 Possible side effects of monoclonal antibodies

 Delivery is intravenously and since Mabs are themselves are proteins sometimes presents side effects like an allergic reaction yet compared to chemotherapy drugs these effects are much less. .

  • Fever
  • Chills
  • Weakness
  • Headache
  • Nausea
  • Vomiting
  • Diarrhea
  • Low blood pressure
  • Rashes

Examples:

  • Bevacizumab (Avastin®), high blood pressure, bleeding, poor wound healing, blood clots, and kidney damage.
  • Cetuximab (Erbitux®), serious rashes in some people.

Manufacturing of Monoclonal Antibodies and Market

“Since 2000, the therapeutic market for monoclonal antibodies has grown exponentially. The current “big 5” therapeutic antibodies on the market are bevacizumab, trastuzumab (both oncology), adalimumab, infliximab (both autoimmune and inflammatory disorders, ‘AIID’) and rituximab (oncology and AIID) accounted for 80% of revenues in 2006. In 2007, eight of the 20 best-selling biotechnology drugs in the U.S. are therapeutic monoclonal antibodies. Scolnik, Pablo A. (2009). “mAbs: A business perspective”. MAbs 1 (2): 179–184. doi:10.4161/mabs.1.2.7736. PMC 2725420. PMID 20061824.

This rapid growth in demand for monoclonal antibody production has been well accommodated by the industrialization of mAb manufacturing”. Kelley, Brian (2009). “Industrialization of mAb production technology”. MAbs 1 (5): 443–452. doi:10.4161/mabs.1.5.9448. PMC 2759494. PMID 20065641.

mabs0105_0443_fig001http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759494/bin/mabs0105_0443_fig001.jpg

Model mAb production plant design and capabilities. A model large scale mAb production plant employs multiple bioreactors configured to supply a single purification train. A plant having six individual 15 kL bioreactors is potentially capable of supplying 10 tons of purified mAb per year using conventional technologies, or 4–5 products with 1 ton demands. This enormous capacity per plant would result in a marked decrease in drug substance production costs, and results in significant excess capacity throughout the biopharmaceutical industry.

Production:

Production capacity estimates for mammalian cell-derived mAbsa

Year CMO Product company Total Capacity at 2 g/L Capacity at 5 g/L
2007 500 kL 1,800 kL 2,300 kL 70 tons/yr 170 tons/yr
2010 700 kL 2,700 kL 3,400 kL 100 tons/yr 255 tons/yr
2013 1,000 kL 3,000 kL 4,000 kL 120 tons/yr 300 tons/yr

aCapacity estimates from ref. Ransohoff TC, Ecker DM, Levine HL, Miller J. Cell culture manufacturing capacity: trends and outlook through 2013. PharmSource. 2008

mabs0105_0443_fig002

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759494/bin/mabs0105_0443_fig003.jpg

Estimated demand for therapeutic mAbs and Fc-fusion products in 2009. The total demand for the top 15 mAbs and Fc-fusions in 2009 is estimated to be approximately 7 tons, with the four largest volume products requiring approximately one ton per year. More than half of the products were estimated to require less than 200 kg per year.

mabs0105_0443_fig004 mabs0105_0443_fig003

Distribution of average wholesale prices for mAb and Fc-fusions in 2008. The average U.S. wholesale prices per gram for 15 commercial mAbs and Fc-fusions are shown. The minimum is approximately $2,000 per gram, and the median is approximately $8,000 per gram. Note that a significant price erosion (50% of the minimum shown here) for a product with modest demand (100 kg/yr) could result in an unprofitable market, as revenues for the therapeutic product ($100 million/yr) may never provide a positive return on investment.

Sensitivity analysis of mAb drug substance COGs for the model plant (six 15kL bioreactors)

Titer (g/L) Plant capacity (tons/yr) Raw materials ($/gm) Depreciation & labor ($/gm)b Fill/Finish costs per vial ($) Total Drug Product Cost ($/vial)
Cell culturea Purification 100 mg 1 gm
0.5 1 20 100 22 134
2 4 4 4 25 10 13 43
5 10 2 10 12 26

aAssumes medium cost of $8/L.

bBased on the model plant ($500 M capital investment + 250 staff = $100 M per year).

Estimated cost breakdown for three production scenarios

Model large-scale plant Small-scale plant using disposables CMO
Basis: 5 g/L 6 × 15 kL n × 2 kL 15 kL
Capital Investmenta $500 M $125 M Difference in annual cost for two best alternatives ($M/yr)
Depreciationb($/yr) $50 M $12.5 M
Raw Materialsc $10/gm $20/gm $10/gm
Labor ($/yr)d $50 M $20 M
CMO $3 M/batche
COGs $/gm 10 ton/yr 20 23 60 $30 M
1 ton/yr 110 53 60 $7 M
0.1 ton/yr 1,010 345 60 $29 M

aThe new facility based on disposables is assumed to cost just one-quarter of model plant to build, and uses only the number of bioreactors (‘n’) needed to satisfy the demand.

bA 10-year straight line depreciation is used to estimate the depreciation costs.

cRaw material costs per gram are assumed to be slightly higher for the disposable facility.

dLabor costs for the new facility are assumed to be just 40% of the model plant (100 vs 250 staff, respectively).

eA constant cost per batch is assumed for the CMO, all-inclusive of production, testing and release.

Sales and Marketing

PMC full text: MAbs. 2009 Mar-Apr; 1(2): 179–184.

FDA-approved marketed mAbs

Name Structure Target Indication Path Approval (Y) Sales % Top 20
Generic Trade Landing Expansion
First Tier (U.S. $B)
infliximab Remicade® Ch TNF CD RA O, A, P, F 4.6 $5.0 9.84
AS
PA
UC
PP
rituximab Rituxan®, Ch CD20 NHL RA O, P 5.1 $4.9 9.62
MabThera® DLBC
1-NHL
trastuzumab Herceptin® Hm HER2 mBC BC F, P 7.5 $4.3 8.45
bevacizumab Avastin® Hm VEGF mCRC mCRC F, P 7.1 $3.6 7.15
NSCLC
HER2- BCa
adalimumab Humira® Hu TNF RA RA O 3.7 $3.1 6.04
JIA
PA
AS
CD
PP
cetuximab Erbitux® Ch EGFR mCRC SCCHN A, P 9.7 $1.4 2.73
ranibizumab Lucentis® Hm VEGF AMD P 6.8 $1.2 2.39
palivizumab Synagis® Hm RSV RSV P 3.6 $1.1 2.25
Second Tier (U.S. $M)
tositumomab Bexxar® Mu CD20 NHLb NHLc 13.7 $10.3 0.02
alemtuzumab Campath® Hm CD52 B-CLL B-CLLd A, P, F 10.4e $108.0 0.21
certolizumab pegol Cimzia® Hm TNF CD P n/a n/a n/a
gemtuzumab ozogamicin Mylotarg® Hm CD33 AML P, A, O 6.5 $60.0 0.12
muromonab-CD3 Orthoclone Okt3® Mu CD3 OR OR n/a $150.0 0.30
efalizumab Raptçiva® Hm CD11a PS 10e $163.0 0.32
abciximab ReoPro® Ch GP IIb/IIIa AC CI O n/a $380.0 0.75
basiliximab Simulect® Ch CD25 OR O, P n/a $300.0 0.59
eculizumab Soliris® Hm C5 PNH O, P n/a $230.0 0.45
natalizumab Tysabri® Hm a-4 integrin MS CD A 10.6e $100.0 0.20
panitumumab Vectibix® Hu EGFR mCRC A, P, F 7.4 $365.0 0.72
omalizumab Xolair® Hm IgE AA 9.7 $472.0 0.93
daclizumab Zenapax® Hm CD25 OR ORp O, P n/a $60.0 0.12
ibritumomab tiuxetan Zevalin® Mu CD20 NHL P, A, O, F 10.2 $17.0 0.03

Abbreviations: Structure: Ch, chimeric; Hm, humanized; Hu, human; Mu, murine. Regulatory Path: A, accelerated approval; F, fast-track; P, priority review; O, orphan indication. 1-, first-line therapy; a, conditional approval; b, rituximab refractory; c, refractory to chemotherapy; d, single-agent; e, estimate; m, metastatic; n/a, information not available; p, prophylaxis. Sources: 20 Compounds that defined biotech, Signals online magazine at www.signalsmag.com; ReCap database; Biopharmaceutical Products in the U.S. and European markets 6th edition, Ronald A. Rader, ed; Pharma Sales and BioPharmInsights databases; Reichert JM, Ph. D.; personal communications. Development times and sales estimates for some Second Tier mAbs are based on limited information.

References for Cancer Immunotherapy

Ault KA, Future II study group. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: A combined analysis of four randomised clinical trials. Lancet. 2007;369:1861−1868.

Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123−135.

Chesney J, Rasku M, Clem A, Miller D. Denileukin diftitox depletes T regulatory cells and causes regression of melanoma metastases in humans. Eur J Cancer Suppl. 2006;4:12:84.

Cheung NV. Chapter 32: Therapeutic antibodies and immunologic conjugates. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology. 5th ed. Philadelphia, Pa: Elsevier; 2014.

Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850−854.

Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2013;2013:348−353.

Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018−2028.

Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509−1518.

Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134−144.

Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670−3679.

Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711−723.

Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23−34.

Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509−2520.

Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126−129.

National Cancer Institute. CAR T-Cell Therapy: Engineering Patients’ Immune Cells to Treat Their Cancers. 2014. Accessed at http://www.cancer.gov/about-cancer/treatment/research/car-t-cells on July 20, 2015.

Pardoll D. Chapter 6: Cancer immunology. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology. 5th ed. Philadelphia, Pa: Elsevier; 2014.

Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917−924.

Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521−2532.

Borghaei H, Robinson MK, Adams GP, Weiner LM. Chapter 29: Monoclonal antibodies. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.

Rosenberg SA, Robbins PF, Phan GQ, Feldman SA, Kochenderfer JN. Chapter 14: Cancer immunotherapy. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.

Schlom J. Therapeutic cancer vaccines: Currrent status and moving forward. J Natl Cancer Inst. 2012;104:599−613.

Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783−1791.

Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, Sausen M, Phallen J, Hruban CA, Tokheim C, Niknafs N, Nesselbush M, Lytle K, Sassi F, Cottino F, Migliardi G, Zanella ER, Ribero D, Russolillo N, Mellano A, Muratore A, Paraluppi G, Salizzoni M, Marsoni S, Kragh M, Lantto J, Cassingena A, Li QK, Karchin R, Scharpf R, Sartore-Bianchi A, Siena S, Diaz LA Jr, Trusolino L, Velculescu VE. The genomic landscape of response to EGFR blockade in colorectal cancer.Nature. 2015 Oct 8;526(7572):263-7. doi: 10.1038/nature14969. Epub 2015 Sep 30. PubMed PMID: 26416732.

Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen CH, Yao Y, Lin YM, Driver JA, Sun Y, Wei S, Luo ML, Albayram O, Huang P, Rotenberg A, Ryo A,

Goldstein LE, Pascual-Leone A, McKee AC, Meehan W, Zhou XZ, Lu KP. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015 Jul 23;523(7561):431-6. doi: 10.1038/nature14658. Epub 2015 Jul 15. PubMed PMID: 26176913.

Spranger S, Bao R, Gajewski TF Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.  Nature. 2015 Jul 9;523(7559):231-5. doi:

10.1038/nature14404. Epub 2015 May 11. PubMed PMID: 25970248.

Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N, Kremer G,Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S,Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody3BNC117. Nature. 2015 Jun 25;522(7557):487-91. doi: 10.1038/nature14411. Epub 2015 Apr 8. PubMed PMID: 25855300.

Ledford H. First biosimilar drug set to enter US market.Nature. 2015 Jan15;517(7534):253-4. doi: 10.1038/517253a. PubMed PMID: 25592512.

Gitlin AD, Nussenzweig MC. IImmunology: Fifty years of B lymphocytes. Nature.

2015 Jan 8;517(7533):139-41. doi: 10.1038/517139a. PubMed PMID: 25567266.

Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014 Nov 27;515(7528):577-81. doi: 10.1038/nature13988. PubMed PMID: 25428507; PubMed Central PMCID: PMC4279952.

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA,McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S,Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS.Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancerpatients. Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011. PubMed PMID: 25428504.

Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ.

MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014 Nov 27;515(7528):558-62. doi: 10.1038/nature13904. PubMed PMID: 25428503.

Wolchok JD, Chan TA. Cancer: Antitumour immunity gets a boost. Nature. 2014 Nov 27;515(7528):496-8. doi: 10.1038/515496a. PubMed PMID: 25428495.

Hoag H. Drug development: a chance of survival. Nature. 2014 Nov 20;515(7527):S118-20. doi: 10.1038/515S118a. PubMed PMID: 25407709.

Ledford H. Cancer treatment: The killer within. Nature. 2014 Apr 3;508(7494):24-6. doi: 10.1038/508024a. PubMed PMID: 24695297.

Roederer M, Keele BF, Schmidt SD, Mason RD, Welles HC, Fischer W, Labranche C, Foulds KE, Louder MK, Yang ZY, Todd JP, Buzby AP, Mach LV, Shen L, Seaton KE, Ward BM, Bailer RT, Gottardo R, Gu W, Ferrari G, Alam SM, Denny TN, Montefiori DC, Tomaras GD, Korber BT, Nason MC, Seder RA, Koup RA, Letvin NL, Rao SS, Nabel GJ, Mascola JR. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature. 2014 Jan 23;505(7484):502-8. doi: 10.1038/nature12893. Epub 2013 Dec 18. PubMed PMID: 24352234; PubMed Central PMCID: PMC3946913.

Weintraub K. Drug development: Releasing the brakes. Nature. 2013 Dec 19;504(7480):S6-8. doi: 10.1038/504S6a. PubMed PMID: 24352363.

Elert E. Calling cells to arms. Nature. 2013 Dec 19;504(7480):S2-3. doi: 10.1038/504S2a. PubMed PMID: 24352361.

Ledford H. Immunotherapy’s cancer remit widens. Nature. 2013 May 30;497(7451):544. doi: 10.1038/497544a. PubMed PMID: 23719439.

Ledford H. Sizing up a slow assault on cancer. Nature. 2013 Apr 4;496(7443):14-5. doi: 10.1038/496014a. PubMed PMID: 23552923.

Savage N. Modelling: Computing cancer. Nature. 2012 Nov 22;491(7425):S62-3. PubMed PMID: 23320290.

Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012 Jun 28;486(7404):537-40. doi: 10.1038/nature11219. PubMed PMID: 22722843; PubMed Central PMCID: PMC3436069.

Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S,

Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012 Jun 28;486(7404):532-6. doi: 10.1038/nature11156. PubMed PMID: 22722830; PubMed Central PMCID: PMC3927413.

Vilar E, Tabernero J. Cancer: Pinprick diagnostics. Nature. 2012 Jun 27;486(7404):482-3. doi: 10.1038/486482a. PubMed PMID: 22739312.

Hayden EC. Antibody alarm call rouses immune response to cancer. Nature. 2012 Jun 6;486(7401):16. doi: 10.1038/486016a. PubMed PMID: 22678259.

Steeg PS. Perspective: The right trials. Nature. 2012 May 30;485(7400):S58-9. doi: 10.1038/485S58a. PubMed PMID: 22648501.

Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D,

Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012 Jan 26;483(7387):100-3. doi: 10.1038/nature10868. PubMed PMID: 22281684.

Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480(7378):480-9. doi: 10.1038/nature10673. Review. PubMed PMID: 22193102; PubMed Central PMCID: PMC3967235.

Ledford H. Melanoma drug wins US approval. Nature. 2011 Mar 31;471(7340):561. doi: 10.1038/471561a. PubMed PMID: 21455150.

Dolgin E. FDA narrows drug label usage. Nature. 2009 Aug 27;460(7259):1069. doi: 10.1038/4601069a. PubMed PMID: 19713906.

Ellis LM, Reardon DA. Cancer: The nuances of therapy. Nature. 2009 Mar 19;458(7236):290-2. doi: 10.1038/458290a. PubMed PMID: 19295595.

Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation.  Nature. 2008 Jul 31;454(7204):656-60. doi: 10.1038/nature07083. Epub 2008 Jun 25. PubMed PMID: 18594512.

Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank Identification of cells initiating human melanomas. . Nature. 2008 Jan 17;451(7176):345-9. doi: 10.1038/nature06489. PubMed PMID: 18202660; PubMed Central PMCID: PMC3660705.

Wadman M. London’s disastrous drug trial has serious side effects for research. Nature. 2006 Mar 23;440(7083):388-9. PubMed PMID: 16554763.

Check E. Mouse opens door for study of autoimmune diseases.Nature. 2004 Apr 22;428(6985):786. PubMed PMID: 15103338.

Gura T. Therapeutic antibodies: magic bullets hit the target. Nature. 2002 Jun 6;417(6889):584-6. PubMed PMID: 12050630.

Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail.  Nature. 2002 Mar 21;416(6878):279-80. PubMed PMID: 11907566.

Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999 Feb 11;397(6719):530-4. PubMed PMID: 10028970.

Jameson BA, McDonnell JM, Marini JC, Korngold R. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature. 1994 Apr 21;368(6473):744-6. PubMed PMID: 8152486.

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841-4. PubMed PMID: 7683111.

Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713-5. PubMed PMID: 1570015.

Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice.Nature.

1991 Jan 24;349(6307):329-31. PubMed PMID: 1987491.

Pérarnau B, Siegrist CA, Gillet A, Vincent C, Kimura S, Lemonnier FA. Beta 2-microglobulin restriction of antigen presentation. Nature. 1990 Aug 23;346(6286):751-4. PubMed PMID: 1697039.

Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987 Nov 12-18;330(6144):173-6. PubMed PMID: 3118216.

Cobbold SP, Waldmann H. Therapeutic potential of monovalent monoclonal antibodies. Nature. 1984 Mar 29-Apr 4;308(5958):460-2. PubMed PMID: 6608694.

Adorini L, Pini C, De Santis R, Robbiati F, Doria G, Ricciardi-Castagnoli P. Monoclonal suppressor T-cell factor displaying V H restriction and fine antigenic specificity. Nature. 1983 Jun 23-29;303(5919):704-6. PubMed PMID: 6190092.

Shouval D, Shafritz DA, Zurawski VR Jr, Isselbacher KJ, Wands JR. Immunotherapy in nude mice of human hepatoma using monoclonal antibodies against hepatitis B virus. Nature. 1982 Aug 5;298(5874):567-9. PubMed PMID: 7099252.

Thorpe PE, Mason DW, Brown AN, Simmonds SJ, Ross WC, Cumber AJ, Forrester JA. Selective killing of malignant cells in a leukaemic rat bone marrow using an antibody-ricin conjugate. Nature. 1982 Jun 17;297(5867):594-6. PubMed PMID:7088145.

Beverley PC. Antibodies and cancer therapy. Nature. 1982 Jun 3;297(5865):358-9. PubMed PMID: 7078646.

Trowbridge IS. Cancer monoclonals. Nature. 1981 Nov 19;294(5838):204. PubMed PMID: 7300906.

Blythman HE, Casellas P, Gros O, Gros P, Jansen FK, Paolucci F, Pau B, Vidal Immunotoxins: hybrid molecules ofmonoclonal antibodiesand a toxin subunit specifically kill tumour cells.Nature. 1981 Mar 12;290 (5802):145-6. PubMed PMID: 7207595.

Wolchok JD, Chan TA. Cancer: Antitumour immunity gets a boost. Nature. 2014 Nov 27;515(7528):496-8. doi: 10.1038/515496a. PubMed PMID: 25428495.

Hoag H. Drug development: a chance of survival. Nature. 2014 Nov 20;515(7527):S118-20. doi: 10.1038/515S118a. PubMed PMID: 25407709.

Ledford H. Cancer treatment: The killer within. Nature. 2014 Apr 3;508(7494):24-6. doi: 10.1038/508024a. PubMed PMID: 24695297.

Weintraub K. Drug development: Releasing the brakes. Nature. 2013 Dec 19;504(7480):S6-8. doi: 10.1038/504S6a. PubMed PMID: 24352363.

Elert E. Calling cells to arms. Nature. 2013 Dec 19;504(7480):S2-3. doi: 10.1038/504S2a. PubMed PMID: 24352361.

Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480(7378):480-9. doi: 10.1038/nature10673. Review. PubMed PMID: 22193102; PubMed Central PMCID: PMC3967235.

Dolgin E. FDA narrows drug label usage. Nature. 2009 Aug 27;460(7259):1069. doi: 10.1038/4601069a. PubMed PMID: 19713906.

Ellis LM, Reardon DA. Cancer: The nuances of therapy. Nature. 2009 Mar 19;458(7236):290-2. doi: 10.1038/458290a. PubMed PMID: 19295595.

Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail.  Nature. 2002 Mar 21;416(6878):279-80. PubMed PMID: 11907566.

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841-4. PubMed PMID: 7683111.

Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987 Nov 12-18;330(6144):173-6. PubMed PMID: 3118216.

Cobbold SP, Waldmann H. Therapeutic potential of monovalent monoclonal antibodies. Nature. 1984 Mar 29-Apr 4;308(5958):460-2. PubMed PMID: 6608694.

Shouval D, Shafritz DA, Zurawski VR Jr, Isselbacher KJ, Wands JR. Immunotherapy in nude mice of human hepatoma using monoclonal antibodies against hepatitis B virus. Nature. 1982 Aug 5;298(5874):567-9. PubMed PMID: 7099252.

Thorpe PE, Mason DW, Brown AN, Simmonds SJ, Ross WC, Cumber AJ, Forrester JA. Selective killing of malignant cells in a leukaemic rat bone marrow using an antibody-ricin conjugate. Nature. 1982 Jun 17;297(5867):594-6. PubMed PMID: 7088145.

Beverley PC. Antibodies and cancer therapy. Nature. 1982 Jun 3;297(5865):358-9. PubMed PMID: 7078646.

Trowbridge IS. Cancer monoclonals.  Nature. 1981 Nov 19;294(5838):204. PubMed PMID: 7300906.

Blythman HE, Casellas P, Gros O, Gros P, Jansen FK, Paolucci F, Pau B, Vidal Immunotoxins: hybrid molecules ofmonoclonal antibodiesand a toxin subunit specifically kill tumour cells. Nature. 1981 Mar 12;290(5802):145-6. PubMed PMID: 7207595.

Waldmann, Thomas A. (2003). “Immunotherapy: past, present and future”. Nature Medicine 9 (3): 269–277. doi:10.1038/nm0303-269PMID 12612576.

Sharma, Pamanee; Allison, James P. (April 3, 2015). “The future of immune checkpoint therapy”. Science. doi:10.1126/science.aaa8172. Retrieved June 2015.

Gene Garrard Olinger, Jr., James Pettitt, Do Kim, Cara Working, Ognian Bohorov, Barry Bratcher, Ernie Hiatt, Steven D. Hume, Ashley K. Johnson, Josh Morton, Michael Pauly, Kevin J. Whaley, Calli M. Lear, Julia E. Biggins, Corinne Scully, Lisa Hensley, and Larry Zeitlin (2012). “Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques”. PNAS 109 (44): 18030–5.doi:10.1073/pnas.1213709109PMC 3497800PMID 23071322.

Janeway, Charles; Paul Travers; Mark Walport; Mark Shlomchik (2001).Immunobiology; Fifth Edition. New York and London: Garland Science. ISBN 0-8153-4101-6.

Janeway CA, Jr.; et al. (2005). Immunobiology. (6th ed.). Garland Science. ISBN 0-443-07310-4.

Modified from Carter P (November 2001). “Improving the efficacy of antibody-based cancer therapies”. Nat. Rev. Cancer 1 (2): 118–29. doi:10.1038/35101072.PMID 11905803.

Prof FC Breedveld (2000). “Therapeutic monoclonal antibodies”. Lancet.doi:10.1016/S0140-6736(00)01034-5.

Köhler G, Milstein C (August 1975). “Continuous cultures of fused cells secreting antibody of predefined specificity”. Nature 256 (5517): 495–7.Bibcode:1975Natur.256..495Kdoi:10.1038/256495a0PMID 1172191.

Nadler LM, Stashenko P, Hardy R, et al. (September 1980). “Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen”.Cancer Res. 40 (9): 3147–54. PMID 7427932.

Ritz J, Schlossman SF (January 1982). “Utilization of monoclonal antibodies in the treatment of leukemia and lymphoma”. Blood 59 (1): 1–11. PMID 7032624.

Stern M, Herrmann R (April 2005). “Overview of monoclonal antibodies in cancer therapy: present and promise”. Crit. Rev. Oncol. Hematol. 54 (1): 11–29.doi:10.1016/j.critrevonc.2004.10.011PMID 15780905.

(John, Martin et al. 2005, Robert, Ann et al. 2006, Albert, Edvardas et al. 2012, Claro, Karen et al. 2012, Gideon, Nancy et al. 2013, Michael, Ke et al. 2013, Thomas, Albert et al. 2013, Hyon-Zu, Barry et al. 2014, Larkins, Scepura et al. 2015, Sandra, Ibilola et al. 2015, Sean, Gideon et al. 2015)Hudson PJ, Souriau C (January 2003). “Engineered antibodies”. Nat. Med. 9 (1): 129–34. doi:10.1038/nm0103-129PMID 12514726.

Carter P, Presta L, Gorman CM, et al. (May 1992). “Humanization of an anti-p185HER2 antibody for human cancer therapy”. Proc. Natl. Acad. Sci. U.S.A. 89 (10): 4285–9.Bibcode:1992PNAS…89.4285Cdoi:10.1073/pnas.89.10.4285PMC 49066.PMID 1350088.

Presta LG, Lahr SJ, Shields RL, et al. (September 1993). “Humanization of an antibody directed against IgE”. J. Immunol. 151 (5): 2623–32. PMID 8360482.

Chothia C, Lesk AM, Tramontano A, et al. (1989). “Conformations of immunoglobulin hypervariable regions”. Nature 342 (6252): 877–83. Bibcode:1989Natur.342..877C.doi:10.1038/342877a0PMID 2687698.

Jefferis, Roy; Marie-Paule Lefranc (July–August 2009). “Human immunoglobulin allotypes”. MAbs 1 (4): 332–338. doi:10.4161/mabs.1.4.9122PMC 2726606.PMID 20073133.

Chapman, Kathryn; Nick Pullen, Lee Coney, Maggie Dempster, Laura Andrews, Jeffrey Bajramovic, Paul Baldrick, Lorrene Buckley, Abby Jacobs, Geoff Hale, Colin Green, Ian Ragan and Vicky Robinson (2009). “Preclinical development of monoclonal antibodies”.MAbs 1 (5): 505–516. doi:10.4161/mabs.1.5.9676PMC 2759500PMID 20065651.

Francis RJ, Sharma SK, Springer C, et al. (2002). “A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours”. Br J Cancer 87 (6): 600–7. doi:10.1038/sj.bjc.6600517.PMC 2364249PMID 12237768.

Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC (2000). “Emerging antibody-based HER2 (ErbB-2/neu) therapeutics”. Breast Dis 11: 113–124. PMID 15687597.

Joyce1, Johanna A.; Fearon, Douglas T. (April 3, 2015). “T cell exclusion, immune privilege, and the tumor microenvironment”. Science 348 (6230 74-80).doi:10.1126/science.aaa6204.

Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. p. 241. ISBN 0-443-07145-4.

Hooks MA, Wade CS, Millikan WJ (1991). “Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation”. Pharmacotherapy 11(1): 26–37. PMID 1902291.

Goel, Niti; Stephens, Sue (2010). “Certolizumab Pegol”. MAbs 2 (2): 137–147.doi:10.4161/mabs.2.2.11271PMC 2840232PMID 20190560.

Chames, Patrick; Baty, Daniel (2009). “Bispecific antibodies for cancer therapy: The light at the end of the tunnel?”. MAbs 1 (6): 539–547. doi:10.4161/mabs.1.6.10015.PMC 2791310PMID 20073127.

Linke, Rolf; Klein, Anke; Seimetz, Diane (2010). “Catumaxomab: Clinical development and future directions”. MAbs 2 (2): 129–136. doi:10.4161/mabs.2.2.11221.

Scolnik, Pablo A. (2009). “mAbs: A business perspective”. MAbs 1 (2): 179–184.doi:10.4161/mabs.1.2.7736PMC 2725420PMID 20061824.

Kelley, Brian (2009). “Industrialization of mAb production technology”. MAbs 1 (5): 443–452. doi:10.4161/mabs.1.5.9448PMC 2759494PMID 20065641.

Selected FDA Approved Mab Drugs:

(John, Martin et al. 2005, Robert, Ann et al. 2006, Albert, Edvardas et al. 2012, Claro, Karen et al. 2012, Gideon, Nancy et al. 2013, Michael, Ke et al. 2013, Thomas, Albert et al. 2013, Hyon-Zu, Barry et al. 2014, Larkins, Scepura et al. 2015, Sandra, Ibilola et al. 2015, Sean, Gideon et al. 2015)

Albert, D., K. Edvardas, G. Joseph, C. Wei, S. Haleh, L. L. Hong, D. R. Mark, B. Satjit, W. Jian, G. Christine, B. Julie, B. B. Laurie, R. Atiqur, S. Rajeshwari, F. Ann and P. Richard (2012). “U.S. Food and Drug Administration Approval: Ruxolitinib for the Treatment of Patients with Intermediate and High-Risk Myelofibrosis.” Clinical Cancer Research: 3212-3217.

Claro, R. A. d., M. Karen, K. Virginia, B. Julie, K. Aakanksha, H. Bahru, O. Yanli, S. Haleh, L. Kyung, K. Kallappa, R. Mark, S. Marjorie, B. Francisco, C. Kathleen, C. Xiao Hong, B. Janice, A. Lara, K. Robert, K. Edvardas, F. Ann and P. Richard (2012). “U.S. Food and Drug Administration Approval Summary: Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma.” Clinical Cancer Research: 5845-5849.

Gideon, M. B., S. S. Nancy, C. Patricia, C. Somesh, T. Shenghui, S. Pengfei, L. Qi, R. Kimberly, M. P. Anne, T. Amy, E. K. Kathryn, G. Laurie, L. R. Barbara, C. W. Wendy, C. Bo, T. Colleen, H. Patricia, I. Amna, J. Robert and P. Richard (2013). “First FDA approval of dual anti-HER2 regimen: pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 4911-4916.

Hyon-Zu, L., W. M. Barry, E. K. Virginia, R. Stacey, D. Pedro, S. Haleh, G. Joseph, B. Julie, F. Jeffry, M. Nitin, K. Chia-Wen, N. Lei, S. Marjorie, T. Mate, C. K. Robert, K. Edvardas, J. Robert, T. F. Ann and P. Richard (2014). “U.S. Food and drug administration approval: obinutuzumab in combination with chlorambucil for the treatment of previously untreated chronic lymphocytic leukemia.” Clinical cancer research : an official journal of the American Association for Cancer Research: 3902-3907.

John, R. J., C. Martin, S. Rajeshwari, C. Yeh-Fong, M. W. Gene, D. John, G. Jogarao, B. Brian, B. Kimberly, L. John, H. Li Shan, C. Nallalerumal, Z. Paul and P. Richard (2005). “Approval Summary for Erlotinib for Treatment of Patients with Locally Advanced or Metastatic Non–Small Cell Lung Cancer after Failure of at Least One Prior Chemotherapy Regimen.” Clinical Cancer Research 11(18).

Larkins, E., B. Scepura, G. M. Blumenthal, E. Bloomquist, S. Tang, M. Biable, P. Kluetz, P. Keegan and R. Pazdur (2015). “U.S. Food and Drug Administration Approval Summary: Ramucirumab for the Treatment of Metastatic Non-Small Cell Lung Cancer Following Disease Progression On or After Platinum-Based Chemotherapy.” The oncologist.

Michael, A., L. Ke, J. Xiaoping, H. Kun, W. Jian, Z. Hong, K. Dubravka, P. Todd, D. Zedong, R. Anne Marie, M. Sarah, K. Patricia and P. Richard (2013). “U.S. Food and Drug Administration approval: vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2289-2293.

Robert, C. K., T. F. Ann, S. Rajeshwari and P. Richard (2006). “United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2955-2960.

Sandra, J. C., F.-A. Ibilola, J. L. Steven, Z. Lillian, J. Runyan, L. Hongshan, Z. Liang, Z. Hong, Z. Hui, C. Huanyu, H. Kun, D. Michele, N. Rachel, K. Sarah, K. Sachia, H. Whitney, K. Patricia and P. Richard (2015). “FDA Approval Summary: Ramucirumab for Gastric Cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 3372-3376.

Sean, K., M. B. Gideon, Z. Lijun, T. Shenghui, B. Margaret, F. Emily, H. Whitney, L. Ruby, S. Pengfei, P. Yuzhuo, L. Qi, Z. Ping, Z. Hong, L. Donghao, T. Zhe, H. Ali Al, B. Karen, K. Patricia, J. Robert and P. Richard (2015). “FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2436-2439.

Thomas, M. H., D. Albert, K. Edvardas, C. K. Robert, M. K. Kallappa, D. R. Mark, H. Bahru, B. Julie, D. B. Jeffrey, H. Jessica, R. P. Todd, J. Josephine, A. William, M. Houda, B. Janice, D. Angelica, S. Rajeshwari, T. F. Ann and P. Richard (2013). “U.S. Food and Drug Administration Approval: Carfilzomib for the Treatment of Multiple Myeloma.” Clinical Cancer Research: 4559-4563.

Read Full Post »

Older Posts »