Monoclonal Antibody Therapy and Market
Curator: Demet Sag, PhD, CRA, GCP
Monoclonal Antibody treatment means a biological therapy where monoclonal antibodies is used to initiate development of specific antibodies (protein molecules produced by the B cells as a primary immune defense), so that they can fight against antigens (substances that are capable of inducing a specific immune response) specifically to kill extracellular/ cell surface target. Thus, the application of this types of therapies are not limited to cancer but also rheumatoid arthritis, multiple sclerosis, Alzheimer’s disease, and some infectious diseases such as Ebola.
To eliminate or reduce the effects of chemotherapeutic agents. Thus chemotherapeutics agents attached to monoclonal antibodies.
Diagnostic process:
Monoclonal antibodies again used as a vehicle to locate the tumorigenic cancer cells in the body. There can be several methods but one of them is carrying radioactive substances to cancer cells so that they can be labelled in vivo. However, there are less invasive ways to do as well. As a result, there are new combination of methods such as:
- nuclear imaging,
- surgical mapping, and
- direct therapy in multiple settings either alone, or in conjunction with chemotherapeutic agents, adjuvant.
How do monoclonal antibody drugs work?
- Naked monoclonal antibodies:
- Make the cancer cell more visible to the immune system.
Action is to boost immune system.
Example: Alemtuzumab (Campath®), chronic lymphocytic leukemia (CLL) by binding to the CD52 antigen on lymphocytes.

- Block immune checkpoint inhibitor proteins
Treatments that target PD-1 or PD-L1.
PD-1 is a checkpoint protein on T cells, called “off switch” of T cells since PD-1 prevents from attacking other cells in the body. Yet, when it is overexpressed on the cancer cells, tumors escape from immune system, because when PD-1 binds to PD-L1, T cells thinks these cells are body’s own normal cells.
http://www.nature.com/nature/journal/v515/n7528/images/515496a-f1.jpg

a, Tumour cells express both cancer-driving mutations and ‘passenger’ mutations that cause the expression of neoantigens — ‘new’ molecular structures that, when presented by MHC proteins on the cell surface, are recognized by T cells of the immune system as being foreign, leading to an immune response against the tumour. However, interactions between the receptor PD-1 and its ligand PD-L1, which are expressed on tumour cells, T cells and other immune cells such as macrophages, activate signalling pathways that inhibit T-cell activity and thus inhibit the antitumour immune response. b, Antibodies that block the PD-1 pathway by binding to PD-1 or PD-L1 can reactivate T-cell activity and proliferation, leading to enhanced antitumour immunity.
Examples are:
- Pembrolizumab (Keytruda®)
- Nivolumab (Opdivo®)
There is a possibility of developing an autoimmune reaction. The most common side effects include fatigue, cough, nausea, skin rash, and itching. Rarely more serious problems in the lungs, intestines, liver, kidneys, hormone-making glands, or other organs may occur.
Treatments that target CTLA-4
Another protein is CTLA-4 to control T cells, “off switch”.

Example: Ipilimumab (Yervoy®) is a monoclonal antibody that attaches to CTLA-4 and stops it from working. This can boost the body’s immune response against cancer cells.
- Block antigens on cancer cells (or other nearby cells).
Example: Trastuzumab, when HER2 is activated, binds to these proteins and stops antigens from becoming active in breast and stomach cancer cells.
Example: Rituxan specifically attaches to CD20 that is found only on B cells so when these labelled B cells can be visible to immune system. There are certain types of lymphomas predisposed due to malfunctioning B cells.
- Block growth signals. Prevent signal amplification for cell growth.
The cells like to amplify their message in danger or during certain metabolisms so they secrete or produce a type of chemicals called growth factors. These factors then attaches to specific receptors on the surface of normal cells and cancer cells. Thus, signaling the cells to grow faster than the normal cells. The action is preventing the signals to be received by monoclonal.
Example:
Cetuximab (Erbitux), targets epidermal growth factor. Thus its function utilized to cure colon cancer, head and neck cancers.
- Stop new blood vessels from forming.
Tumors needs to grow so in the body they need blood vessel formation to feed the cell growth (angiogenesis)
Example; Bevacizumab (Avastin) targets vascular endothelial growth factor (VEGF) and blocks the angiogenesis.
- Conjugated monoclonal antibodies (tagged, labeled, or loaded antibodies).
Deliver chemotherapy to cancer cells.
They are monoclonal antibodies (mAbs) joined to a chemotherapy drug or to a radioactive particle to locate cancer cells directly through targeting specific antigen after circulating in the bloodstream. They are used as a homing device.
Chemo-labeled antibodies: Also called as antibody-drug conjugates (ADCs) and provide powerful chemotherapy (or other) drugs attached to them.
- Brentuximab vedotin (Adcetris®), an antibody that targets the CD30 antigen on lymphocytes, attached to MMAE (a chemo drug) against Hodgkin lymphoma and anaplastic large cell lymphoma.
- Ado-trastuzumab emtansine (Kadcyla®, also called TDM-1), an antibody that targets the HER2 protein, attached to DM1 (a chemo drug) against cells overexpressing HER2 in breast cancer
Toxin attached protein: Denileukin diftitox (Ontak®) is not an antibody but it is a protein, cytokine known as interleukin-2 (IL-2) and attached to diphtheria toxin that recognizes CD25 antigen to treat lymphoma of the skin (cutaneous T-cell lymphoma).
Radiolabeled antibodies: Deliver radiation to cancer cells.
The other method, less preferred, is radiation-linked monoclonal antibodies. This time low radiation in long term used to target the cancer cells but it is suggested that this method has elevated outcome to kill the cancer cells than conventional high-dose external beam radiation.
Example; Ibritumomab (Zevalin), is an approved treatment. The targeted disease is for non-Hodgkin’s lymphoma.
Treatment with this type of antibody also referred as radioimmunotherapy (RIT).
- Bispecific monoclonal antibodies
If the drug contains two parts of 2 different mAbs, meaning they can attach to 2 different proteins at the same time, they are called Bispecific monoclonal antibodies since they attack two proteins at the same time.
Example: Blinatumomab (Blincyto), can attach CD 19 which is found on some leukemia and lymphoma cells and CD3 on T cells. Thus, brings opponents, immune and malignant cancer cells, to defeat cancer.

THE OTHER SIDE OF THE COIN: SAFETY
Possible side effects of monoclonal antibodies
Delivery is intravenously and since Mabs are themselves are proteins sometimes presents side effects like an allergic reaction yet compared to chemotherapy drugs these effects are much less. .
- Fever
- Chills
- Weakness
- Headache
- Nausea
- Vomiting
- Diarrhea
- Low blood pressure
- Rashes
Examples:
- Bevacizumab (Avastin®), high blood pressure, bleeding, poor wound healing, blood clots, and kidney damage.
- Cetuximab (Erbitux®), serious rashes in some people.
Manufacturing of Monoclonal Antibodies and Market
“Since 2000, the therapeutic market for monoclonal antibodies has grown exponentially. The current “big 5” therapeutic antibodies on the market are bevacizumab, trastuzumab (both oncology), adalimumab, infliximab (both autoimmune and inflammatory disorders, ‘AIID’) and rituximab (oncology and AIID) accounted for 80% of revenues in 2006. In 2007, eight of the 20 best-selling biotechnology drugs in the U.S. are therapeutic monoclonal antibodies. Scolnik, Pablo A. (2009). “mAbs: A business perspective”. MAbs 1 (2): 179–184. doi:10.4161/mabs.1.2.7736. PMC 2725420. PMID 20061824.
This rapid growth in demand for monoclonal antibody production has been well accommodated by the industrialization of mAb manufacturing”. Kelley, Brian (2009). “Industrialization of mAb production technology”. MAbs 1 (5): 443–452. doi:10.4161/mabs.1.5.9448. PMC 2759494. PMID 20065641.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759494/bin/mabs0105_0443_fig001.jpg
Model mAb production plant design and capabilities. A model large scale mAb production plant employs multiple bioreactors configured to supply a single purification train. A plant having six individual 15 kL bioreactors is potentially capable of supplying 10 tons of purified mAb per year using conventional technologies, or 4–5 products with 1 ton demands. This enormous capacity per plant would result in a marked decrease in drug substance production costs, and results in significant excess capacity throughout the biopharmaceutical industry.
Production:
Production capacity estimates for mammalian cell-derived mAbsa
Year |
CMO |
Product company |
Total |
Capacity at 2 g/L |
Capacity at 5 g/L |
2007 |
500 kL |
1,800 kL |
2,300 kL |
70 tons/yr |
170 tons/yr |
2010 |
700 kL |
2,700 kL |
3,400 kL |
100 tons/yr |
255 tons/yr |
2013 |
1,000 kL |
3,000 kL |
4,000 kL |
120 tons/yr |
300 tons/yr |
aCapacity estimates from ref. Ransohoff TC, Ecker DM, Levine HL, Miller J. Cell culture manufacturing capacity: trends and outlook through 2013. PharmSource. 2008

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759494/bin/mabs0105_0443_fig003.jpg
Estimated demand for therapeutic mAbs and Fc-fusion products in 2009. The total demand for the top 15 mAbs and Fc-fusions in 2009 is estimated to be approximately 7 tons, with the four largest volume products requiring approximately one ton per year. More than half of the products were estimated to require less than 200 kg per year.

Distribution of average wholesale prices for mAb and Fc-fusions in 2008. The average U.S. wholesale prices per gram for 15 commercial mAbs and Fc-fusions are shown. The minimum is approximately $2,000 per gram, and the median is approximately $8,000 per gram. Note that a significant price erosion (50% of the minimum shown here) for a product with modest demand (100 kg/yr) could result in an unprofitable market, as revenues for the therapeutic product ($100 million/yr) may never provide a positive return on investment.
Sensitivity analysis of mAb drug substance COGs for the model plant (six 15kL bioreactors)
Titer (g/L) |
Plant capacity (tons/yr) |
Raw materials ($/gm) |
Depreciation & labor ($/gm)b |
Fill/Finish costs per vial ($) |
Total Drug Product Cost ($/vial) |
|
|
Cell culturea |
Purification |
|
|
100 mg |
1 gm |
0.5 |
1 |
20 |
|
100 |
|
22 |
134 |
2 |
4 |
4 |
4 |
25 |
10 |
13 |
43 |
5 |
10 |
2 |
|
10 |
|
12 |
26 |
aAssumes medium cost of $8/L.
bBased on the model plant ($500 M capital investment + 250 staff = $100 M per year).
Estimated cost breakdown for three production scenarios
|
|
Model large-scale plant |
Small-scale plant using disposables |
CMO |
|
Basis: 5 g/L |
6 × 15 kL |
n × 2 kL |
15 kL |
|
Capital Investmenta |
$500 M |
$125 M |
– |
Difference in annual cost for two best alternatives ($M/yr) |
Depreciationb($/yr) |
$50 M |
$12.5 M |
– |
Raw Materialsc |
$10/gm |
$20/gm |
$10/gm |
Labor ($/yr)d |
$50 M |
$20 M |
– |
CMO |
– |
– |
$3 M/batche |
COGs $/gm |
10 ton/yr |
20 |
23 |
60 |
$30 M |
1 ton/yr |
110 |
53 |
60 |
$7 M |
0.1 ton/yr |
1,010 |
345 |
60 |
$29 M |
aThe new facility based on disposables is assumed to cost just one-quarter of model plant to build, and uses only the number of bioreactors (‘n’) needed to satisfy the demand.
bA 10-year straight line depreciation is used to estimate the depreciation costs.
cRaw material costs per gram are assumed to be slightly higher for the disposable facility.
dLabor costs for the new facility are assumed to be just 40% of the model plant (100 vs 250 staff, respectively).
eA constant cost per batch is assumed for the CMO, all-inclusive of production, testing and release.
Sales and Marketing
FDA-approved marketed mAbs
Name |
Structure |
Target |
Indication |
Path |
Approval (Y) |
Sales |
% Top 20 |
Generic |
Trade |
|
|
Landing |
Expansion |
|
|
|
|
First Tier |
|
|
|
|
|
|
|
(U.S. $B) |
|
infliximab |
Remicade® |
Ch |
TNF |
CD |
RA |
O, A, P, F |
4.6 |
$5.0 |
9.84 |
|
|
|
|
|
AS |
|
|
|
|
|
|
|
|
|
PA |
|
|
|
|
|
|
|
|
|
UC |
|
|
|
|
|
|
|
|
|
|
PP |
|
|
|
rituximab |
Rituxan®, |
Ch |
CD20 |
NHL |
RA |
O, P |
5.1 |
$4.9 |
9.62 |
|
MabThera® |
|
|
|
DLBC |
|
|
|
|
|
|
|
|
|
1-NHL |
|
|
|
|
trastuzumab |
Herceptin® |
Hm |
HER2 |
mBC |
BC |
F, P |
7.5 |
$4.3 |
8.45 |
bevacizumab |
Avastin® |
Hm |
VEGF |
mCRC |
mCRC |
F, P |
7.1 |
$3.6 |
7.15 |
|
|
|
|
|
NSCLC |
|
|
|
|
|
|
|
|
|
HER2- BCa |
|
|
|
|
adalimumab |
Humira® |
Hu |
TNF |
RA |
RA |
O |
3.7 |
$3.1 |
6.04 |
|
|
|
|
|
JIA |
|
|
|
|
|
|
|
|
|
PA |
|
|
|
|
|
|
|
|
|
AS |
|
|
|
|
|
|
|
|
|
CD |
|
|
|
|
|
|
|
|
|
PP |
|
|
|
|
cetuximab |
Erbitux® |
Ch |
EGFR |
mCRC |
SCCHN |
A, P |
9.7 |
$1.4 |
2.73 |
ranibizumab |
Lucentis® |
Hm |
VEGF |
AMD |
|
P |
6.8 |
$1.2 |
2.39 |
palivizumab |
Synagis® |
Hm |
RSV |
RSV |
|
P |
3.6 |
$1.1 |
2.25 |
Second Tier |
|
|
|
|
|
|
|
(U.S. $M) |
|
tositumomab |
Bexxar® |
Mu |
CD20 |
NHLb |
NHLc |
13.7 |
$10.3 |
0.02 |
|
alemtuzumab |
Campath® |
Hm |
CD52 |
B-CLL |
B-CLLd |
A, P, F |
10.4e |
$108.0 |
0.21 |
certolizumab pegol |
Cimzia® |
Hm |
TNF |
CD |
|
P |
n/a |
n/a |
n/a |
gemtuzumab ozogamicin |
Mylotarg® |
Hm |
CD33 |
AML |
|
P, A, O |
6.5 |
$60.0 |
0.12 |
muromonab-CD3 |
Orthoclone Okt3® |
Mu |
CD3 |
OR |
OR |
|
n/a |
$150.0 |
0.30 |
efalizumab |
Raptçiva® |
Hm |
CD11a |
PS |
|
|
10e |
$163.0 |
0.32 |
abciximab |
ReoPro® |
Ch |
GP IIb/IIIa |
AC |
CI |
O |
n/a |
$380.0 |
0.75 |
basiliximab |
Simulect® |
Ch |
CD25 |
OR |
|
O, P |
n/a |
$300.0 |
0.59 |
eculizumab |
Soliris® |
Hm |
C5 |
PNH |
|
O, P |
n/a |
$230.0 |
0.45 |
natalizumab |
Tysabri® |
Hm |
a-4 integrin |
MS |
CD |
A |
10.6e |
$100.0 |
0.20 |
panitumumab |
Vectibix® |
Hu |
EGFR |
mCRC |
|
A, P, F |
7.4 |
$365.0 |
0.72 |
omalizumab |
Xolair® |
Hm |
IgE |
AA |
|
|
9.7 |
$472.0 |
0.93 |
daclizumab |
Zenapax® |
Hm |
CD25 |
OR |
ORp |
O, P |
n/a |
$60.0 |
0.12 |
ibritumomab tiuxetan |
Zevalin® |
Mu |
CD20 |
NHL |
|
P, A, O, F |
10.2 |
$17.0 |
0.03 |
Abbreviations: Structure: Ch, chimeric; Hm, humanized; Hu, human; Mu, murine. Regulatory Path: A, accelerated approval; F, fast-track; P, priority review; O, orphan indication. 1-, first-line therapy; a, conditional approval; b, rituximab refractory; c, refractory to chemotherapy; d, single-agent; e, estimate; m, metastatic; n/a, information not available; p, prophylaxis. Sources: 20 Compounds that defined biotech, Signals online magazine at www.signalsmag.com; ReCap database; Biopharmaceutical Products in the U.S. and European markets 6th edition, Ronald A. Rader, ed; Pharma Sales and BioPharmInsights databases; Reichert JM, Ph. D.; personal communications. Development times and sales estimates for some Second Tier mAbs are based on limited information.
References for Cancer Immunotherapy
Ault KA, Future II study group. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: A combined analysis of four randomised clinical trials. Lancet. 2007;369:1861−1868.
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123−135.
Chesney J, Rasku M, Clem A, Miller D. Denileukin diftitox depletes T regulatory cells and causes regression of melanoma metastases in humans. Eur J Cancer Suppl. 2006;4:12:84.
Cheung NV. Chapter 32: Therapeutic antibodies and immunologic conjugates. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology. 5th ed. Philadelphia, Pa: Elsevier; 2014.
Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850−854.
Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2013;2013:348−353.
Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018−2028.
Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509−1518.
Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134−144.
Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670−3679.
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711−723.
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23−34.
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509−2520.
Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126−129.
National Cancer Institute. CAR T-Cell Therapy: Engineering Patients’ Immune Cells to Treat Their Cancers. 2014. Accessed at http://www.cancer.gov/about-cancer/treatment/research/car-t-cells on July 20, 2015.
Pardoll D. Chapter 6: Cancer immunology. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology. 5th ed. Philadelphia, Pa: Elsevier; 2014.
Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917−924.
Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521−2532.
Borghaei H, Robinson MK, Adams GP, Weiner LM. Chapter 29: Monoclonal antibodies. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.
Rosenberg SA, Robbins PF, Phan GQ, Feldman SA, Kochenderfer JN. Chapter 14: Cancer immunotherapy. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.
Schlom J. Therapeutic cancer vaccines: Currrent status and moving forward. J Natl Cancer Inst. 2012;104:599−613.
Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783−1791.
Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, Sausen M, Phallen J, Hruban CA, Tokheim C, Niknafs N, Nesselbush M, Lytle K, Sassi F, Cottino F, Migliardi G, Zanella ER, Ribero D, Russolillo N, Mellano A, Muratore A, Paraluppi G, Salizzoni M, Marsoni S, Kragh M, Lantto J, Cassingena A, Li QK, Karchin R, Scharpf R, Sartore-Bianchi A, Siena S, Diaz LA Jr, Trusolino L, Velculescu VE. The genomic landscape of response to EGFR blockade in colorectal cancer.Nature. 2015 Oct 8;526(7572):263-7. doi: 10.1038/nature14969. Epub 2015 Sep 30. PubMed PMID: 26416732.
Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen CH, Yao Y, Lin YM, Driver JA, Sun Y, Wei S, Luo ML, Albayram O, Huang P, Rotenberg A, Ryo A,
Goldstein LE, Pascual-Leone A, McKee AC, Meehan W, Zhou XZ, Lu KP. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015 Jul 23;523(7561):431-6. doi: 10.1038/nature14658. Epub 2015 Jul 15. PubMed PMID: 26176913.
Spranger S, Bao R, Gajewski TF Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015 Jul 9;523(7559):231-5. doi:
10.1038/nature14404. Epub 2015 May 11. PubMed PMID: 25970248.
Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N, Kremer G,Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S,Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody3BNC117. Nature. 2015 Jun 25;522(7557):487-91. doi: 10.1038/nature14411. Epub 2015 Apr 8. PubMed PMID: 25855300.
Ledford H. First biosimilar drug set to enter US market.Nature. 2015 Jan15;517(7534):253-4. doi: 10.1038/517253a. PubMed PMID: 25592512.
Gitlin AD, Nussenzweig MC. IImmunology: Fifty years of B lymphocytes. Nature.
2015 Jan 8;517(7533):139-41. doi: 10.1038/517139a. PubMed PMID: 25567266.
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014 Nov 27;515(7528):577-81. doi: 10.1038/nature13988. PubMed PMID: 25428507; PubMed Central PMCID: PMC4279952.
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA,McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S,Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS.Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancerpatients. Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011. PubMed PMID: 25428504.
Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ.
MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014 Nov 27;515(7528):558-62. doi: 10.1038/nature13904. PubMed PMID: 25428503.
Wolchok JD, Chan TA. Cancer: Antitumour immunity gets a boost. Nature. 2014 Nov 27;515(7528):496-8. doi: 10.1038/515496a. PubMed PMID: 25428495.
Hoag H. Drug development: a chance of survival. Nature. 2014 Nov 20;515(7527):S118-20. doi: 10.1038/515S118a. PubMed PMID: 25407709.
Ledford H. Cancer treatment: The killer within. Nature. 2014 Apr 3;508(7494):24-6. doi: 10.1038/508024a. PubMed PMID: 24695297.
Roederer M, Keele BF, Schmidt SD, Mason RD, Welles HC, Fischer W, Labranche C, Foulds KE, Louder MK, Yang ZY, Todd JP, Buzby AP, Mach LV, Shen L, Seaton KE, Ward BM, Bailer RT, Gottardo R, Gu W, Ferrari G, Alam SM, Denny TN, Montefiori DC, Tomaras GD, Korber BT, Nason MC, Seder RA, Koup RA, Letvin NL, Rao SS, Nabel GJ, Mascola JR. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature. 2014 Jan 23;505(7484):502-8. doi: 10.1038/nature12893. Epub 2013 Dec 18. PubMed PMID: 24352234; PubMed Central PMCID: PMC3946913.
Weintraub K. Drug development: Releasing the brakes. Nature. 2013 Dec 19;504(7480):S6-8. doi: 10.1038/504S6a. PubMed PMID: 24352363.
Elert E. Calling cells to arms. Nature. 2013 Dec 19;504(7480):S2-3. doi: 10.1038/504S2a. PubMed PMID: 24352361.
Ledford H. Immunotherapy’s cancer remit widens. Nature. 2013 May 30;497(7451):544. doi: 10.1038/497544a. PubMed PMID: 23719439.
Ledford H. Sizing up a slow assault on cancer. Nature. 2013 Apr 4;496(7443):14-5. doi: 10.1038/496014a. PubMed PMID: 23552923.
Savage N. Modelling: Computing cancer. Nature. 2012 Nov 22;491(7425):S62-3. PubMed PMID: 23320290.
Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012 Jun 28;486(7404):537-40. doi: 10.1038/nature11219. PubMed PMID: 22722843; PubMed Central PMCID: PMC3436069.
Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S,
Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012 Jun 28;486(7404):532-6. doi: 10.1038/nature11156. PubMed PMID: 22722830; PubMed Central PMCID: PMC3927413.
Vilar E, Tabernero J. Cancer: Pinprick diagnostics. Nature. 2012 Jun 27;486(7404):482-3. doi: 10.1038/486482a. PubMed PMID: 22739312.
Hayden EC. Antibody alarm call rouses immune response to cancer. Nature. 2012 Jun 6;486(7401):16. doi: 10.1038/486016a. PubMed PMID: 22678259.
Steeg PS. Perspective: The right trials. Nature. 2012 May 30;485(7400):S58-9. doi: 10.1038/485S58a. PubMed PMID: 22648501.
Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D,
Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012 Jan 26;483(7387):100-3. doi: 10.1038/nature10868. PubMed PMID: 22281684.
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480(7378):480-9. doi: 10.1038/nature10673. Review. PubMed PMID: 22193102; PubMed Central PMCID: PMC3967235.
Ledford H. Melanoma drug wins US approval. Nature. 2011 Mar 31;471(7340):561. doi: 10.1038/471561a. PubMed PMID: 21455150.
Dolgin E. FDA narrows drug label usage. Nature. 2009 Aug 27;460(7259):1069. doi: 10.1038/4601069a. PubMed PMID: 19713906.
Ellis LM, Reardon DA. Cancer: The nuances of therapy. Nature. 2009 Mar 19;458(7236):290-2. doi: 10.1038/458290a. PubMed PMID: 19295595.
Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008 Jul 31;454(7204):656-60. doi: 10.1038/nature07083. Epub 2008 Jun 25. PubMed PMID: 18594512.
Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank Identification of cells initiating human melanomas. . Nature. 2008 Jan 17;451(7176):345-9. doi: 10.1038/nature06489. PubMed PMID: 18202660; PubMed Central PMCID: PMC3660705.
Wadman M. London’s disastrous drug trial has serious side effects for research. Nature. 2006 Mar 23;440(7083):388-9. PubMed PMID: 16554763.
Check E. Mouse opens door for study of autoimmune diseases.Nature. 2004 Apr 22;428(6985):786. PubMed PMID: 15103338.
Gura T. Therapeutic antibodies: magic bullets hit the target. Nature. 2002 Jun 6;417(6889):584-6. PubMed PMID: 12050630.
Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002 Mar 21;416(6878):279-80. PubMed PMID: 11907566.
Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999 Feb 11;397(6719):530-4. PubMed PMID: 10028970.
Jameson BA, McDonnell JM, Marini JC, Korngold R. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature. 1994 Apr 21;368(6473):744-6. PubMed PMID: 8152486.
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841-4. PubMed PMID: 7683111.
Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713-5. PubMed PMID: 1570015.
Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice.Nature.
1991 Jan 24;349(6307):329-31. PubMed PMID: 1987491.
Pérarnau B, Siegrist CA, Gillet A, Vincent C, Kimura S, Lemonnier FA. Beta 2-microglobulin restriction of antigen presentation. Nature. 1990 Aug 23;346(6286):751-4. PubMed PMID: 1697039.
Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987 Nov 12-18;330(6144):173-6. PubMed PMID: 3118216.
Cobbold SP, Waldmann H. Therapeutic potential of monovalent monoclonal antibodies. Nature. 1984 Mar 29-Apr 4;308(5958):460-2. PubMed PMID: 6608694.
Adorini L, Pini C, De Santis R, Robbiati F, Doria G, Ricciardi-Castagnoli P. Monoclonal suppressor T-cell factor displaying V H restriction and fine antigenic specificity. Nature. 1983 Jun 23-29;303(5919):704-6. PubMed PMID: 6190092.
Shouval D, Shafritz DA, Zurawski VR Jr, Isselbacher KJ, Wands JR. Immunotherapy in nude mice of human hepatoma using monoclonal antibodies against hepatitis B virus. Nature. 1982 Aug 5;298(5874):567-9. PubMed PMID: 7099252.
Thorpe PE, Mason DW, Brown AN, Simmonds SJ, Ross WC, Cumber AJ, Forrester JA. Selective killing of malignant cells in a leukaemic rat bone marrow using an antibody-ricin conjugate. Nature. 1982 Jun 17;297(5867):594-6. PubMed PMID:7088145.
Beverley PC. Antibodies and cancer therapy. Nature. 1982 Jun 3;297(5865):358-9. PubMed PMID: 7078646.
Trowbridge IS. Cancer monoclonals. Nature. 1981 Nov 19;294(5838):204. PubMed PMID: 7300906.
Blythman HE, Casellas P, Gros O, Gros P, Jansen FK, Paolucci F, Pau B, Vidal Immunotoxins: hybrid molecules ofmonoclonal antibodiesand a toxin subunit specifically kill tumour cells.Nature. 1981 Mar 12;290 (5802):145-6. PubMed PMID: 7207595.
Wolchok JD, Chan TA. Cancer: Antitumour immunity gets a boost. Nature. 2014 Nov 27;515(7528):496-8. doi: 10.1038/515496a. PubMed PMID: 25428495.
Hoag H. Drug development: a chance of survival. Nature. 2014 Nov 20;515(7527):S118-20. doi: 10.1038/515S118a. PubMed PMID: 25407709.
Ledford H. Cancer treatment: The killer within. Nature. 2014 Apr 3;508(7494):24-6. doi: 10.1038/508024a. PubMed PMID: 24695297.
Weintraub K. Drug development: Releasing the brakes. Nature. 2013 Dec 19;504(7480):S6-8. doi: 10.1038/504S6a. PubMed PMID: 24352363.
Elert E. Calling cells to arms. Nature. 2013 Dec 19;504(7480):S2-3. doi: 10.1038/504S2a. PubMed PMID: 24352361.
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480(7378):480-9. doi: 10.1038/nature10673. Review. PubMed PMID: 22193102; PubMed Central PMCID: PMC3967235.
Dolgin E. FDA narrows drug label usage. Nature. 2009 Aug 27;460(7259):1069. doi: 10.1038/4601069a. PubMed PMID: 19713906.
Ellis LM, Reardon DA. Cancer: The nuances of therapy. Nature. 2009 Mar 19;458(7236):290-2. doi: 10.1038/458290a. PubMed PMID: 19295595.
Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002 Mar 21;416(6878):279-80. PubMed PMID: 11907566.
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841-4. PubMed PMID: 7683111.
Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987 Nov 12-18;330(6144):173-6. PubMed PMID: 3118216.
Cobbold SP, Waldmann H. Therapeutic potential of monovalent monoclonal antibodies. Nature. 1984 Mar 29-Apr 4;308(5958):460-2. PubMed PMID: 6608694.
Shouval D, Shafritz DA, Zurawski VR Jr, Isselbacher KJ, Wands JR. Immunotherapy in nude mice of human hepatoma using monoclonal antibodies against hepatitis B virus. Nature. 1982 Aug 5;298(5874):567-9. PubMed PMID: 7099252.
Thorpe PE, Mason DW, Brown AN, Simmonds SJ, Ross WC, Cumber AJ, Forrester JA. Selective killing of malignant cells in a leukaemic rat bone marrow using an antibody-ricin conjugate. Nature. 1982 Jun 17;297(5867):594-6. PubMed PMID: 7088145.
Beverley PC. Antibodies and cancer therapy. Nature. 1982 Jun 3;297(5865):358-9. PubMed PMID: 7078646.
Trowbridge IS. Cancer monoclonals. Nature. 1981 Nov 19;294(5838):204. PubMed PMID: 7300906.
Blythman HE, Casellas P, Gros O, Gros P, Jansen FK, Paolucci F, Pau B, Vidal Immunotoxins: hybrid molecules ofmonoclonal antibodiesand a toxin subunit specifically kill tumour cells. Nature. 1981 Mar 12;290(5802):145-6. PubMed PMID: 7207595.
Waldmann, Thomas A. (2003). “Immunotherapy: past, present and future”. Nature Medicine 9 (3): 269–277. doi:10.1038/nm0303-269. PMID 12612576.
Sharma, Pamanee; Allison, James P. (April 3, 2015). “The future of immune checkpoint therapy”. Science. doi:10.1126/science.aaa8172. Retrieved June 2015.
Gene Garrard Olinger, Jr., James Pettitt, Do Kim, Cara Working, Ognian Bohorov, Barry Bratcher, Ernie Hiatt, Steven D. Hume, Ashley K. Johnson, Josh Morton, Michael Pauly, Kevin J. Whaley, Calli M. Lear, Julia E. Biggins, Corinne Scully, Lisa Hensley, and Larry Zeitlin (2012). “Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques”. PNAS 109 (44): 18030–5.doi:10.1073/pnas.1213709109. PMC 3497800. PMID 23071322.
Janeway, Charles; Paul Travers; Mark Walport; Mark Shlomchik (2001).Immunobiology; Fifth Edition. New York and London: Garland Science. ISBN 0-8153-4101-6.
Janeway CA, Jr.; et al. (2005). Immunobiology. (6th ed.). Garland Science. ISBN 0-443-07310-4.
Modified from Carter P (November 2001). “Improving the efficacy of antibody-based cancer therapies”. Nat. Rev. Cancer 1 (2): 118–29. doi:10.1038/35101072.PMID 11905803.
Prof FC Breedveld (2000). “Therapeutic monoclonal antibodies”. Lancet.doi:10.1016/S0140-6736(00)01034-5.
Köhler G, Milstein C (August 1975). “Continuous cultures of fused cells secreting antibody of predefined specificity”. Nature 256 (5517): 495–7.Bibcode:1975Natur.256..495K. doi:10.1038/256495a0. PMID 1172191.
Nadler LM, Stashenko P, Hardy R, et al. (September 1980). “Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen”.Cancer Res. 40 (9): 3147–54. PMID 7427932.
Ritz J, Schlossman SF (January 1982). “Utilization of monoclonal antibodies in the treatment of leukemia and lymphoma”. Blood 59 (1): 1–11. PMID 7032624.
Stern M, Herrmann R (April 2005). “Overview of monoclonal antibodies in cancer therapy: present and promise”. Crit. Rev. Oncol. Hematol. 54 (1): 11–29.doi:10.1016/j.critrevonc.2004.10.011. PMID 15780905.
(John, Martin et al. 2005, Robert, Ann et al. 2006, Albert, Edvardas et al. 2012, Claro, Karen et al. 2012, Gideon, Nancy et al. 2013, Michael, Ke et al. 2013, Thomas, Albert et al. 2013, Hyon-Zu, Barry et al. 2014, Larkins, Scepura et al. 2015, Sandra, Ibilola et al. 2015, Sean, Gideon et al. 2015)Hudson PJ, Souriau C (January 2003). “Engineered antibodies”. Nat. Med. 9 (1): 129–34. doi:10.1038/nm0103-129. PMID 12514726.
Carter P, Presta L, Gorman CM, et al. (May 1992). “Humanization of an anti-p185HER2 antibody for human cancer therapy”. Proc. Natl. Acad. Sci. U.S.A. 89 (10): 4285–9.Bibcode:1992PNAS…89.4285C. doi:10.1073/pnas.89.10.4285. PMC 49066.PMID 1350088.
Presta LG, Lahr SJ, Shields RL, et al. (September 1993). “Humanization of an antibody directed against IgE”. J. Immunol. 151 (5): 2623–32. PMID 8360482.
Chothia C, Lesk AM, Tramontano A, et al. (1989). “Conformations of immunoglobulin hypervariable regions”. Nature 342 (6252): 877–83. Bibcode:1989Natur.342..877C.doi:10.1038/342877a0. PMID 2687698.
Jefferis, Roy; Marie-Paule Lefranc (July–August 2009). “Human immunoglobulin allotypes”. MAbs 1 (4): 332–338. doi:10.4161/mabs.1.4.9122. PMC 2726606.PMID 20073133.
Chapman, Kathryn; Nick Pullen, Lee Coney, Maggie Dempster, Laura Andrews, Jeffrey Bajramovic, Paul Baldrick, Lorrene Buckley, Abby Jacobs, Geoff Hale, Colin Green, Ian Ragan and Vicky Robinson (2009). “Preclinical development of monoclonal antibodies”.MAbs 1 (5): 505–516. doi:10.4161/mabs.1.5.9676. PMC 2759500. PMID 20065651.
Francis RJ, Sharma SK, Springer C, et al. (2002). “A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours”. Br J Cancer 87 (6): 600–7. doi:10.1038/sj.bjc.6600517.PMC 2364249. PMID 12237768.
Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC (2000). “Emerging antibody-based HER2 (ErbB-2/neu) therapeutics”. Breast Dis 11: 113–124. PMID 15687597.
Joyce1, Johanna A.; Fearon, Douglas T. (April 3, 2015). “T cell exclusion, immune privilege, and the tumor microenvironment”. Science 348 (6230 74-80).doi:10.1126/science.aaa6204.
Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. p. 241. ISBN 0-443-07145-4.
Hooks MA, Wade CS, Millikan WJ (1991). “Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation”. Pharmacotherapy 11(1): 26–37. PMID 1902291.
Goel, Niti; Stephens, Sue (2010). “Certolizumab Pegol”. MAbs 2 (2): 137–147.doi:10.4161/mabs.2.2.11271. PMC 2840232. PMID 20190560.
Chames, Patrick; Baty, Daniel (2009). “Bispecific antibodies for cancer therapy: The light at the end of the tunnel?”. MAbs 1 (6): 539–547. doi:10.4161/mabs.1.6.10015.PMC 2791310. PMID 20073127.
Linke, Rolf; Klein, Anke; Seimetz, Diane (2010). “Catumaxomab: Clinical development and future directions”. MAbs 2 (2): 129–136. doi:10.4161/mabs.2.2.11221.
Scolnik, Pablo A. (2009). “mAbs: A business perspective”. MAbs 1 (2): 179–184.doi:10.4161/mabs.1.2.7736. PMC 2725420. PMID 20061824.
Kelley, Brian (2009). “Industrialization of mAb production technology”. MAbs 1 (5): 443–452. doi:10.4161/mabs.1.5.9448. PMC 2759494. PMID 20065641.
Selected FDA Approved Mab Drugs:
(John, Martin et al. 2005, Robert, Ann et al. 2006, Albert, Edvardas et al. 2012, Claro, Karen et al. 2012, Gideon, Nancy et al. 2013, Michael, Ke et al. 2013, Thomas, Albert et al. 2013, Hyon-Zu, Barry et al. 2014, Larkins, Scepura et al. 2015, Sandra, Ibilola et al. 2015, Sean, Gideon et al. 2015)
Albert, D., K. Edvardas, G. Joseph, C. Wei, S. Haleh, L. L. Hong, D. R. Mark, B. Satjit, W. Jian, G. Christine, B. Julie, B. B. Laurie, R. Atiqur, S. Rajeshwari, F. Ann and P. Richard (2012). “U.S. Food and Drug Administration Approval: Ruxolitinib for the Treatment of Patients with Intermediate and High-Risk Myelofibrosis.” Clinical Cancer Research: 3212-3217.
Claro, R. A. d., M. Karen, K. Virginia, B. Julie, K. Aakanksha, H. Bahru, O. Yanli, S. Haleh, L. Kyung, K. Kallappa, R. Mark, S. Marjorie, B. Francisco, C. Kathleen, C. Xiao Hong, B. Janice, A. Lara, K. Robert, K. Edvardas, F. Ann and P. Richard (2012). “U.S. Food and Drug Administration Approval Summary: Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma.” Clinical Cancer Research: 5845-5849.
Gideon, M. B., S. S. Nancy, C. Patricia, C. Somesh, T. Shenghui, S. Pengfei, L. Qi, R. Kimberly, M. P. Anne, T. Amy, E. K. Kathryn, G. Laurie, L. R. Barbara, C. W. Wendy, C. Bo, T. Colleen, H. Patricia, I. Amna, J. Robert and P. Richard (2013). “First FDA approval of dual anti-HER2 regimen: pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 4911-4916.
Hyon-Zu, L., W. M. Barry, E. K. Virginia, R. Stacey, D. Pedro, S. Haleh, G. Joseph, B. Julie, F. Jeffry, M. Nitin, K. Chia-Wen, N. Lei, S. Marjorie, T. Mate, C. K. Robert, K. Edvardas, J. Robert, T. F. Ann and P. Richard (2014). “U.S. Food and drug administration approval: obinutuzumab in combination with chlorambucil for the treatment of previously untreated chronic lymphocytic leukemia.” Clinical cancer research : an official journal of the American Association for Cancer Research: 3902-3907.
John, R. J., C. Martin, S. Rajeshwari, C. Yeh-Fong, M. W. Gene, D. John, G. Jogarao, B. Brian, B. Kimberly, L. John, H. Li Shan, C. Nallalerumal, Z. Paul and P. Richard (2005). “Approval Summary for Erlotinib for Treatment of Patients with Locally Advanced or Metastatic Non–Small Cell Lung Cancer after Failure of at Least One Prior Chemotherapy Regimen.” Clinical Cancer Research 11(18).
Larkins, E., B. Scepura, G. M. Blumenthal, E. Bloomquist, S. Tang, M. Biable, P. Kluetz, P. Keegan and R. Pazdur (2015). “U.S. Food and Drug Administration Approval Summary: Ramucirumab for the Treatment of Metastatic Non-Small Cell Lung Cancer Following Disease Progression On or After Platinum-Based Chemotherapy.” The oncologist.
Michael, A., L. Ke, J. Xiaoping, H. Kun, W. Jian, Z. Hong, K. Dubravka, P. Todd, D. Zedong, R. Anne Marie, M. Sarah, K. Patricia and P. Richard (2013). “U.S. Food and Drug Administration approval: vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2289-2293.
Robert, C. K., T. F. Ann, S. Rajeshwari and P. Richard (2006). “United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2955-2960.
Sandra, J. C., F.-A. Ibilola, J. L. Steven, Z. Lillian, J. Runyan, L. Hongshan, Z. Liang, Z. Hong, Z. Hui, C. Huanyu, H. Kun, D. Michele, N. Rachel, K. Sarah, K. Sachia, H. Whitney, K. Patricia and P. Richard (2015). “FDA Approval Summary: Ramucirumab for Gastric Cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 3372-3376.
Sean, K., M. B. Gideon, Z. Lijun, T. Shenghui, B. Margaret, F. Emily, H. Whitney, L. Ruby, S. Pengfei, P. Yuzhuo, L. Qi, Z. Ping, Z. Hong, L. Donghao, T. Zhe, H. Ali Al, B. Karen, K. Patricia, J. Robert and P. Richard (2015). “FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer.” Clinical cancer research : an official journal of the American Association for Cancer Research: 2436-2439.
Thomas, M. H., D. Albert, K. Edvardas, C. K. Robert, M. K. Kallappa, D. R. Mark, H. Bahru, B. Julie, D. B. Jeffrey, H. Jessica, R. P. Todd, J. Josephine, A. William, M. Houda, B. Janice, D. Angelica, S. Rajeshwari, T. F. Ann and P. Richard (2013). “U.S. Food and Drug Administration Approval: Carfilzomib for the Treatment of Multiple Myeloma.” Clinical Cancer Research: 4559-4563.
Like this:
Like Loading...
Read Full Post »
Having survived terminal cancer with a dietary approach, what you say is too simplistic.
Cancer is anything that interferes with any of the many growth inhibition pathways the prevent individual cells within the cooperative society of cells that is an animal body from growing in a fashion that puts the whole cooperative system at risk.
Certainly diet, largely via its effect on our immune system, and certainly in some degrees by other mechanisms also, can play a huge role in that. The particular regime I am on is strictly vegan, largely raw, and high dose vitamin c and supplementation of other vitamin/mineral complexes in very low doses.
The work in this article looks very promising, and in most people it would be unnecessary if they changed their diet and bought the contribution from animal products (meat, dairy, fish and foul etc) to below 10% of total calories. Going to zero seems to slightly reduce the risk even further, but not hugely. Along with that one needs to reduce stress (which seems to be not directly about external factors, but more accurately how we contextualise and respond to them).