Feeds:
Posts
Comments

Posts Tagged ‘Pancreatic cancer’


New Mutant KRAS Inhibitors Are Showing Promise in Cancer Clinical Trials: Hope For the Once ‘Undruggable’ Target

Curator: Stephen J. Williams, Ph.D.

The November 1st issue of Science highlights a series of findings which give cancer researchers some hope in finally winning a thirty year war with the discovery of drugs that target KRAS, one of the most commonly mutated oncogenes  (25% of cancers), and thought to be a major driver of tumorigenesis. Once considered an undruggable target, mainly because of the smooth surface with no obvious pockets to fit a drug in, as well as the plethora of failed attempts to develop such an inhibitor, new findings with recently developed candidates, highlighted in this article and other curated within, are finally giving hope to researchers and oncologists who have been hoping for a clinically successful inhibitor of this once considered elusive target.

 

For a great review on development of G12C KRas inhibitors please see Dr. Hobb’s and Channing Der’s review in Cell Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It’s Down

Figure 1Mechanism of Action of ARS853 showing that the inhibitors may not need bind to the active conformation of KRAS for efficacy

Abstract: Two recent studies evaluated a small molecule that specifically binds to and inactivates the KRAS G12C mutant. The new findings argue that the perception that mutant KRAS is persistently frozen in its active GTP-bound form may not be accurate.

 

Although the development of the KRASG12C-specific inhibitor, compound 12 (Ostrem et al., 2013), was groundbreaking, subsequent studies found that the potency of compound 12 in cellular assays was limited (Lito et al., 2016, Patricelli et al., 2016). A search for more-effective analogs led to the development of ARS853 (Patricelli et al., 2016), which exhibited a 600-fold increase of its reaction rate in vitro over compound 12 and cellular activities in the low micromolar range.

 

A Summary and more in-depth curation of the Science article is given below:

After decades, progress against an ‘undruggable’ cancer target

Summary

Cancer researchers are making progress toward a goal that has eluded them for more than 30 years: shrinking tumors by shutting off a protein called KRAS that drives growth in many cancer types. A new type of drug aimed at KRAS made tumors disappear in mice and shrank tumors in lung cancer patients, two companies report in papers published this week. It’s not yet clear whether the drugs will extend patients’ lives, but the results are generating a wave of excitement. And one company, Amgen, reports an unexpected bonus: Its drug also appears to stimulate the immune system to attack tumors, suggesting it could be even more powerful if paired with widely available immunotherapy treatments.

Jocelyn Kaiser. After decades, progress against an ‘undruggable’ cancer target. Science  01 Nov 2019: Vol. 366, Issue 6465, pp. 561 DOI: 10.1126/science.366.6465.561

The article highlights the development of three inhibitors: by Wellspring Biosciences, Amgen, and Mirati Therapeutics.

Wellspring BioSciences

 

In 2013, Dr. Kevan Shokat’s lab at UCSF discovered a small molecule that could fit in the groove of the KRAS mutant G12C.  The G12C as well as the G12D is a common mutation found in KRAS in cancers. KRAS p.G12C mutations predominate in NSCLC comprising 11%–16% of lung adenocarcinomas (45%–50% of mutant KRAS is p.G12C) (Campbell et al., 2016; Jordan et al., 2017), as well as 1%–4% of pancreatic and colorectal adenocarcinomas, respectively (Bailey et al., 2016; Giannakis et al., 2016).  This inhibitor was effective in shrinking, in mouse studies conducted by Wellspring Biosciences,  implanted tumors containing this mutant KRAS.

 

See Wellspring’s news releases below:

March, 2016 – Publication – Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State

February, 2016 – Publication – Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

Amgen

 

Amgen press release on AMG510 Clinical Trial at ASCO 2019

 

THOUSAND OAKS, Calif., June 3, 2019 /PRNewswire/ — Amgen (NASDAQ: AMGN) today announced the first clinical results from a Phase 1 study evaluating investigational AMG 510, the first KRASG12C inhibitor to reach the clinical stage. In the trial, there were no dose-limiting toxicities at tested dose levels. AMG 510 showed anti-tumor activity when administered as a monotherapy in patients with locally-advanced or metastatic KRASG12C mutant solid tumors. These data are being presented during an oral session at the 55th Annual Meeting of the American Society of Clinical Oncology (ASCO) in Chicago.

“KRAS has been a target of active exploration in cancer research since it was identified as one of the first oncogenes more than 30 years ago, but it remained undruggable due to a lack of traditional small molecule binding pockets on the protein. AMG 510 seeks to crack the KRAS code by exploiting a previously hidden groove on the protein surface,” said David M. Reese, M.D., executive vice president of Research and Development at Amgen. “By irreversibly binding to cysteine 12 on the mutated KRAS protein, AMG 510 is designed to lock it into an inactive state. With high selectivity for KRASG12C, we believe investigational AMG 510 has high potential as both a monotherapy and in combination with other targeted and immune therapies.”

The Phase 1, first-in-human, open-label multicenter study enrolled 35 patients with various tumor types (14 non-small cell lung cancer [NSCLC], 19 colorectal cancer [CRC] and two other). Eligible patients were heavily pretreated with at least two or more prior lines of treatment, consistent with their tumor type and stage of disease. 

Canon, J., Rex, K., Saiki, A.Y. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019) doi:10.1038/s41586-019-1694-1

Besides blocking tumor growth, AMG510 appears to stimulate T cells to attack the tumor, thus potentially supplying a two pronged attack to the tumor, inhibiting oncogenic RAS and stimulating anti-tumor immunity.

 

Mirati Therapeutics

 

Mirati’s G12C KRAS inhibitor (MRTX849) is being investigated in a variety of solid malignancies containing the KRAS mutation.

 

For recent publication on results in lung cancer see Patricelli M.P., et al. Cancer Discov. 2016; (Published online January 6, 2016)

For more information on Mirati’s KRAS G12C inhibitor see https://www.mirati.com/pipeline/kras-g12c/

 

KRAS G12C Inhibitor (MRTX849)

Study 849-001 – Phase 1b/2 of single agent MRTX849 for solid tumors with KRAS G12C mutation

Phase 1b/2 clinical trial of single agent MRTX849 in patients with advanced solid tumors that have a KRAS G12C mutation.

See details for this study at clinicaltrials.gov

 

Additional References:

Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

Lito P et al. Science. (2016)

Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.

Janes MR et al. Cell. (2018)

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

Zeng M et al. Cell Chem Biol. (2017)

Campbell, J.D., Alexandrov, A., Kim, J., Wala, J., Berger, A.H., Pedamallu, C.S., Shukla, S.A., Guo, G., Brooks, A.N., Murray, B.A., et al.; Cancer Genome Atlas Research Network (2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet.48, 607–616

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J., Chang, M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 7, 596–609.

Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Christ, A.N., Bruxner, T.J., Quinn, M.C., et al.; Australian Pancreatic Cancer Genome Initiative (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52.

Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., et al. (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865.

Read Full Post »


Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Pancreatic cancer is a significant cause of cancer mortality; therefore, the development of early diagnostic strategies and effective treatment is essential. Improvements in imaging technology, as well as use of biomarkers are changing the way that pancreas cancer is diagnosed and staged. Although progress in treatment for pancreas cancer has been incremental, development of combination therapies involving both chemotherapeutic and biologic agents is ongoing.

 

Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (PDAC) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease.

 

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology.

 

PDAC is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. In the present study to comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, single-cell RNA-seq (scRNA-seq) was employed to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases. The diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, were identified in PDAC.

 

The researchers found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, it was found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, the findings provided a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/31273297

 

https://www.ncbi.nlm.nih.gov/pubmed/21491194

 

https://www.ncbi.nlm.nih.gov/pubmed/27444064

 

https://www.ncbi.nlm.nih.gov/pubmed/28983043

 

https://www.ncbi.nlm.nih.gov/pubmed/24976721

 

https://www.ncbi.nlm.nih.gov/pubmed/27693023

 

Read Full Post »


New Targeted Cancer Therapy may be ‘Possible Hope’ for Some Pancreatic Cancer Patients

Reporter: Irina Robu, PhD

 

UPDATED on 7/18/2019

BREAKTHROUGH PANCREATIC CANCER TREATMENT PHASE III TRIAL OPENS IN ISRAEL

Hope is that successful trials will allow Rafael Pharmaceuticals will receive expedited FDA approval by late 2020.

BY MAAYAN JAFFE-HOFFMAN  JULY 18, 2019 18:30

“What it does is feeds misinformation to these regulatory elements, making them feel that there is too much carbon flow through both of these complexes, causing them to be inhibited,” Pardee said. “It simultaneously inhibits both complexes so tumor cells that are primarily driven by glucose cannot utilize glucose in the TCA cycle. Tumor cells that are primarily driven by glutamine usage cannot use glutamine-derived carbons in the TCA cycle. And, importantly, tumors cannot switch from one source to the other in the presence of CPI-613,” he explained.

He said that hitting two complexes simultaneously has many advantages. One is that the carbon source the tumor is primarily dependent on does not matter; another is that evolved resistance for both complexes simultaneously is very unlikely to happen.

Pardee said CPI-613’s key differentiators are that it is highly selective on the uptake and target level in cancer cells, which leads to less toxicity to healthy cells. This allows for patients to receive extended treatment courses and for the drug to be used in combination with other drugs.

CPI-613 is being administered in this clinical trial with a chemotherapy combination of fluorouracil, leucovorin, irinotecan, and oxaliplatin, called FOLFIRINOX.

SOURCE

https://www.jpost.com/HEALTH-SCIENCE/Breakthrough-pancreatic-cancer-treatment-phase-III-trial-opens-in-Israel-596059

 

New Targeted Cancer Therapy may be ‘Possible Hope’ for Some Pancreatic Cancer Patients

Pancreatic cancer is the 12th maximum common cancer and the fourth leading cause of cancer death. The cancer is often difficult to diagnose as there is no cost-effective ways to screen for the illness. For over 52% of people who are diagnosed after the cancer has spread and with a 5-year survival rate.

Scientists at Sheba Medical Center in Israel developed a targeted cancer therapy drug together with AstraZeneca and Merck which can offer a possible new solution for patients with a specific kind of pancreatic cancer by delaying the progression of the disease. To evaluate the safety and test the efficacy of a new drug treatment regimen based on Lynparza tablets. The tablets are a pharmacological inhibitor of the enzyme poly (ADP-ribose) polymerase which inhibit the enzyme. They were developed for a number of indications, but most prominently for the treatment of cancer, as numerous forms of cancer are more dependent for their development on the enzyme than regular cells are. This makes poly (ADP-ribose) polymerase an attractive target for cancer therapy.

Their study included 154 patients who were randomly assigned to get the tablets at a dose of 300 mg twice a day with metastatic pancreatic cancer who carried the genetic mutation called BRCA 1 and BRCA 2. BRCA1 and BRCA2 are human genes that produce proteins accountable for repairing damaged DNA and play a substantial role in preserving the genetic stability of cells. Once either of these genes is mutated, DNA damage can’t be repaired properly and cells become unstable. As a result, cells are more likely to develop additional genetic alterations that can lead to cancer.

Patients with these mutations make up six to seven percent of the metastatic pancreatic cancer patients. The trial using the using the medicine Lynparza offers possible hope for those who suffer from metastatic pancreatic cancer and have a BRCA mutation and slows down the disease progression. According to the researchers this is the first Phase 3 biomarker that is positive in pancreatic cancer and the drug gives incredible hope for patients with the advanced stage of the cancer.

SOURCE
https://www.timesofisrael.com/israeli-researchers-find-potential-hope-for-some-pancreatic-cancer-patients/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Protein kinase C (PKC) isozymes function as tumor suppressors in increasing contexts. These enzymes are crucial for a number of cellular activities, including cell survival, proliferation and migration — functions that must be carefully controlled if cells get out of control and form a tumor. In contrast to oncogenic kinases, whose function is acutely regulated by transient phosphorylation, PKC is constitutively phosphorylated following biosynthesis to yield a stable, autoinhibited enzyme that is reversibly activated by second messengers. Researchers at University of California San Diego School of Medicine found that another enzyme, called PHLPP1, acts as a “proofreader” to keep careful tabs on PKC.

 

The researchers discovered that in pancreatic cancer high PHLPP1 levels lead to low PKC levels, which is associated with poor patient survival. They reported that the phosphatase PHLPP1 opposes PKC phosphorylation during maturation, leading to the degradation of aberrantly active species that do not become autoinhibited. They discovered that any time an over-active PKC is inadvertently produced, the PHLPP1 “proofreader” tags it for destruction. That means the amount of PHLPP1 in patient’s cells determines his amount of PKC and it turns out those enzyme levels are especially important in pancreatic cancer.

 

This team of researchers reversed a 30-year paradigm when they reported evidence that PKC actually suppresses, rather than promotes, tumors. For decades before this revelation, many researchers had attempted to develop drugs that inhibit PKC as a means to treat cancer. Their study implied that anti-cancer drugs would actually need to do the opposite — boost PKC activity. This study sets the stage for clinicians to one day use a pancreatic cancer patient’s PHLPP1/PKC levels as a predictor for prognosis, and for researchers to develop new therapeutic drugs that inhibit PHLPP1 and boost PKC as a means to treat the disease.

 

The ratio — high PHLPP1/low PKC — correlated with poor prognoses: no pancreatic patient with low PKC in the database survived longer than five-and-a-half years. On the flip side, 50 percent of the patients with low PHLPP1/high PKC survived longer than that. While still in the earliest stages, the researchers hope that this information might one day aid pancreatic diagnostics and treatment. The researchers are next planning to screen chemical compounds to find those that inhibit PHLPP1 and restore PKC levels in low-PKC-pancreatic cancer cells in the lab. These might form the basis of a new therapeutic drug for pancreatic cancer.

 

References:

 

https://health.ucsd.edu/news/releases/Pages/2019-03-20-two-enzymes-linked-to-pancreatic-cancer-survival.aspx?elqTrackId=b6864b278958402787f61dd7b7624666

 

https://www.ncbi.nlm.nih.gov/pubmed/30904392

 

https://www.ncbi.nlm.nih.gov/pubmed/29513138

 

https://www.ncbi.nlm.nih.gov/pubmed/18511290

 

https://www.ncbi.nlm.nih.gov/pubmed/28476658

 

https://www.ncbi.nlm.nih.gov/pubmed/28283201

 

https://www.ncbi.nlm.nih.gov/pubmed/24231509

 

https://www.ncbi.nlm.nih.gov/pubmed/28112438

 

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »


Li -Fraumeni Syndrome and Pancreatic Cancer

Curator: Marzan Khan, B.Sc.

Li-Fraumeni syndrome (LFS) is a condition that makes individuals prone to developing a wide variety of cancers that occur early on in life, the most common types being- soft tissue sarcoma, osteosarcoma, breast cancer, brain tumors, adrenocortical carcinoma (ACC), and leukemia. (1) Pancreatic cancer is minimally associated with the condition. (2) A survey found the presence of pancreatic cancer in only 1% of 475 tumor samples collected from 91 families who were carriers of p53 mutations, with half of them having LFS. The incidence of breast cancer amongst them was the highest -24%. (2) Pancreatic carcinoma in LFS patients usually occurs in the later stages of life. (3)

The underlying cause of LFS is germline mutations in TP53 gene on chromosome 17p, that encodes the transcription factor p53, crucial in cell cycle regulation and the repair of damaged and/or abnormal cells. (4) In the majority of cases, this mutation is obtained by inheritance. (5) De-novo germline mutations in p53 occur in 7%-20% of the cases. (5)

A person showing symptoms of any type of cancer at an early age or having first or second-degree relatives with cancer are at risk of developing LFS. (5) That is why tracing family history is an important part of diagnosis in LFS patients. Genetic testing can confirm mutations present in the gene, however, there are controversial ethical issues regarding their use, particularly in children and fetuses.

In patients with LFS, it is important to control the manifestations of the disease. They should be monitored closely so that any new cancers that arise are diagnosed and treated during the early stages. (6) Patients are also at risk of developing radiation-induced second and third primary tumors. (6) Therefore, radiation and alkylating agents should be used minimally (6) People at risk can be cautioned to avoid exposure to carcinogens such as sunlight, cigarette smoke, and alcohol consumption. (5) Therapeutic approaches that are aimed at restoring wild-type p53 by gene therapy as well as reactivating non-functional p53 by the use of small-molecule drugs are currently being investigated in many cancers. (7) Unlike radiation therapy, these small-molecule drugs are non-toxic to healthy cells, thus eliminating the risk of forming new tumors.

So far, PRIMA-1 has proven to be quite effective at correcting non-functional p53. (8) PRIMA-1 is changed to its methylated form, PRIMA-1MET   that forms covalent adducts to thiol groups in the mutated protein and modifies them. (8) As a result, p53 regains its ability to destroy malignant cells. (8) A research study also found that PRIMA-1 induces apoptosis and increases the sensitivity of pancreatic cancer cells to various chemotherapeutic agents. (9)

  1. Magali Olivier, David E. Goldgar, Nayanta Sodha, Hiroko Ohgaki, Paul Kleihues, Pierre Hainaut and Rosalind A. Eeles. Li-Fraumeni and Related Syndromes. Cancer Res October 15 2003 63 (20) 6643-6650 http://cancerres.aacrjournals.org/content/63/20/6643.abstract
  2. Kleihues P, Schauble B, zur Hausen H, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 1997; 150:1-13 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858532/
  3. John P. Neoptolemos, Raul Urrutia, James L. Abbruzzese, Markus W. Buchler. Pancreatic Cancer. 2010.1st ed, pp-6, 2010, Springer, Verlag, New York
  4. Mishra B and Patel RR. Gene Therapy for Treatment of Pancreatic Cancer. Austin Therapeutics. 2014;1(1): 10. https://books.google.ca/books?id=NmBB5ZoKkk4C&pg=PA6&lpg=PA6&dq=connection+between+li+fraumeni+and+Pancreatic+cancer&source=bl&ots=H0iCeaPP0N&sig=pqJT1tPMR6C-NIig3S_NkFKFsD0&hl=en&sa=X&ved=0ahUKEwi4nLrgzuPQAhUUIWMKHS3wBoc4ChDoAQhNMAg#v=onepage&q=connection%20between%20li%20fraumeni%20and%20Pancreatic%20cancer&f=false
  5. Schneider K, Zelley K, Nichols KE, et al. Li-Fraumeni Syndrome. 1999 Jan 19 [Updated 2013 Apr 11]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2016. https://www.ncbi.nlm.nih.gov/pubmed/20301488
  6. Elisa Becze BA, ELS, 2011 Mar 1. An introduction to Li-Fraumeni Syndrome, Five-Minute-In-Service. http://connect.ons.org/columns/five-minute-in-service/an-introduction-to-li-fraumeni-syndrome
  7. Sorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013).TP53Testing and Li-Fraumeni Syndrome: Current Status of Clinical Applications and Future Directions. Molecular Diagnosis & Therapy17(1), 31–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627545/
  8. Emily J. Lewis. PRIMA-1 as a cancer therapy restoring mutant p53: a reviewBioscience Horizons (2015) 8: hzv006 http://biohorizons.oxfordjournals.org/content/8/hzv006.full
  9. Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94. https://www.ncbi.nlm.nih.gov/pubmed/24838627

Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94

Other related articles published in this Online Scientific Journal include the following:

p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/01/p53-mutation-li-fraumeni-syndrome-likelihood-of-genetic-or-hereditary-conditions-playing-a-role-in-intergenerational-incidence-of-cancer/

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »


Recent Research On SMAD4 In Pancreatic Cancer

Curator: David Orchard-Webb, PhD

 

Deleted in Pancreatic Cancer, locus 4 (DPC4) officially known as SMAD4 is a component of the Transforming Growth Factor Beta (TGFß) pathway with tumour suppressive properties. As its name suggests it is frequently lost in pancreatic cancer, although through a variety of mechanisms in addition to gene deletion. The loss of SMAD4 is important in the progression of pancreatic intraepithelial neoplasia (PanIN) towards pancreatic ductal adenocarcinoma (PDAC). The expression of SMAD4 can suppress metastasis, angiogenesis, and cancer stem-like cell generation. SMAD4 can promote cancer cell apoptosis through a recently described mechanism involving a lethal epithelial to mesenchymal transition (EMT). SMAD4 status has a predictive role in pancreatic cancer personalised medicine. This curation categorises recent publications of note regarding SMAD4.

 

Role of SMAD4 in neoplastic progression towards PDAC

 

Garcia-Carracedo, Dario, Chih-Chieh Yu, Nathan Akhavan, Stuart A. Fine, Frank Schönleben, Naoki Maehara, Dillon C. Karg, et al. ‘Smad4 Loss Synergizes with TGFα Overexpression in Promoting Pancreatic Metaplasia, PanIN Development, and Fibrosis’. Edited by Ilse Rooman. PLOS ONE 10, no. 3 (24 March 2015): e0120851. doi:10.1371/journal.pone.0120851.

 

Norris, A M, A Gore, A Balboni, A Young, D S Longnecker, and M Korc. ‘AGR2 Is a SMAD4-Suppressible Gene That Modulates MUC1 Levels and Promotes the Initiation and Progression of Pancreatic Intraepithelial Neoplasia’. Oncogene 32, no. 33 (15 August 2013): 3867–76. doi:10.1038/onc.2012.394.

 

Leung, Lisa, Nikolina Radulovich, Chang-Qi Zhu, Dennis Wang, Christine To, Emin Ibrahimov, and Ming-Sound Tsao. ‘Loss of Canonical Smad4 Signaling Promotes KRAS Driven Malignant Transformation of Human Pancreatic Duct Epithelial Cells and Metastasis’. Edited by Hidayatullah G Munshi. PLoS ONE 8, no. 12 (27 December 2013): e84366. doi:10.1371/journal.pone.0084366.

 

Mechanism of SMAD4 deactivation

 

Xia, Xiang, Kundong Zhang, Gang Cen, Tao Jiang, Jun Cao, Kejian Huang, Chen Huang, Qian Zhao, and Zhengjun Qiu. ‘MicroRNA-301a-3p Promotes Pancreatic Cancer Progression via Negative Regulation of SMAD4’. Oncotarget 6, no. 25 (28 August 2015): 21046–63. doi:10.18632/oncotarget.4124.

 

Murphy, Stephen J., Steven N. Hart, Geoffrey C. Halling, Sarah H. Johnson, James B. Smadbeck, Travis Drucker, Joema Felipe Lima, et al. ‘Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease’. Cancer Research 76, no. 3 (1 February 2016): 749–61. doi:10.1158/0008-5472.CAN-15-2198.

 

Sawai, Yugo, Yuzo Kodama, Takahiro Shimizu, Yuji Ota, Takahisa Maruno, Yuji Eso, Akira Kurita, et al. ‘Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations’. Cancer Research 75, no. 16 (15 August 2015): 3292–3301. doi:10.1158/0008-5472.CAN-14-3028.

 

Demagny, Hadrien, and Edward M De Robertis. ‘Point Mutations in the Tumor Suppressor Smad4/DPC4 Enhance Its Phosphorylation by GSK3 and Reversibly Inactivate TGF-β Signaling’. Molecular & Cellular Oncology 3, no. 1 (2 January 2016): e1025181. doi:10.1080/23723556.2015.1025181.

 

Foster, David. ‘BxPC3 Pancreatic Cancer Cells Express a Truncated Smad4 Protein upon PI3K and mTOR Inhibition’. Oncology Letters, 28 January 2014. doi:10.3892/ol.2014.1833.

 

Hao, Jun, Shuyu Zhang, Yingqi Zhou, Cong Liu, Xiangui Hu, and Chenghao Shao. ‘MicroRNA 421 Suppresses DPC4/Smad4 in Pancreatic Cancer’. Biochemical and Biophysical Research Communications 406, no. 4 (25 March 2011): 552–57. doi:10.1016/j.bbrc.2011.02.086.

 

SMAD4 effects on cell motility

 

Zhang, Xueying, Junxia Cao, Yujun Pei, Jiyan Zhang, and Qingyang Wang. ‘Smad4 Inhibits Cell Migration via Suppression of JNK Activity in Human Pancreatic Carcinoma PANC‑1 Cells’. Oncology Letters, 7 April 2016. doi:10.3892/ol.2016.4427.

 

Kang, Ya ’an, Jianhua Ling, Rei Suzuki, David Roife, Xavier Chopin-Laly, Mark J. Truty, Deyali Chatterjee, et al. ‘SMAD4 Regulates Cell Motility through Transcription of N-Cadherin in Human Pancreatic Ductal Epithelium’. Edited by Neil A. Hotchin. PLoS ONE 9, no. 9 (29 September 2014): e107948. doi:10.1371/journal.pone.0107948.

 

Chen, Yu-Wen, Pi-Jung Hsiao, Ching-Chieh Weng, Kung-Kai Kuo, Tzu-Lei Kuo, Deng-Chyang Wu, Wen-Chun Hung, and Kuang-Hung Cheng. ‘SMAD4 Loss Triggers the Phenotypic Changes of Pancreatic Ductal Adenocarcinoma Cells’. BMC Cancer 14, no. 1 (2014): 1. https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-14-181.

 

SMAD4 effects on angiogenesis

 

Zhou, Zhichao, Juming Lu, Jingtao Dou, Zhaohui Lv, Xi Qin, and Jing Lin. ‘FHL1 and Smad4 Synergistically Inhibit Vascular Endothelial Growth Factor Expression’. Molecular Medicine Reports 7, no. 2 (February 2013): 649–53. doi:10.3892/mmr.2012.1202.

 

SMAD4 mediated repression of cancer stem-like cells

 

Hoshino, Yukari, Jun Nishida, Yoko Katsuno, Daizo Koinuma, Taku Aoki, Norihiro Kokudo, Kohei Miyazono, and Shogo Ehata. ‘Smad4 Decreases the Population of Pancreatic Cancer–Initiating Cells through Transcriptional Repression of ALDH1A1’. The American Journal of Pathology 185, no. 5 (2015): 1457–1470. http://www.sciencedirect.com/science/article/pii/S0002944015000802.

 

SMAD4 mediated growth inhibition/ apoptosis induction

 

David, Charles J., Yun-Han Huang, Mo Chen, Jie Su, Yilong Zou, Nabeel Bardeesy, Christine A. Iacobuzio-Donahue, and Joan Massagué. ‘TGF-β Tumor Suppression through a Lethal EMT’. Cell 164, no. 5 (February 2016): 1015–30. doi:10.1016/j.cell.2016.01.009.

 

Wang, Qi, Juanjuan Li, Wei Wu, Ruizhe Shen, He Jiang, Yuting Qian, Yanping Tang, et al. ‘Smad4-Dependent Suppressor Pituitary Homeobox 2 Promotes PPP2R2A-Mediated Inhibition of Akt Pathway in Pancreatic Cancer’. Oncotarget 7, no. 10 (8 March 2016): 11208–22. doi:10.18632/oncotarget.7158.

 

Poorly characterised targets of SMAD4

 

Fullerton, Paul T., Chad J. Creighton, and Martin M. Matzuk. ‘Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-β Signaling’. Molecular Endocrinology (Baltimore, Md.) 29, no. 10 (October 2015): 1440–53. doi:10.1210/me.2015-1102.

 

Li, Lei, Zhaoshen Li, Xiangyu Kong, Dacheng Xie, Zhiliang Jia, Weihua Jiang, Jiujie Cui, et al. ‘Down-Regulation of MicroRNA-494 via Loss of SMAD4 Increases FOXM1 and β-Catenin Signaling in Pancreatic Ductal Adenocarcinoma Cells’. Gastroenterology 147, no. 2 (August 2014): 485–497.e18. doi:10.1053/j.gastro.2014.04.048.

 

Drugs that restore SMAD4

 

Lin, Sheng-Zhang, Jin-Bo Xu, Xu Ji, Hui Chen, Hong-Tao Xu, Ping Hu, Liang Chen, et al. ‘Emodin Inhibits Angiogenesis in Pancreatic Cancer by Regulating the Transforming Growth Factor-Β/drosophila Mothers against Decapentaplegic Pathway and Angiogenesis-Associated microRNAs’. Molecular Medicine Reports 12, no. 4 (October 2015): 5865–71. doi:10.3892/mmr.2015.4158.

 

Predictive value of SMAD4 status in personalised medicine

 

Whittle, Martin C., Kamel Izeradjene, P. Geetha Rani, Libing Feng, Markus A. Carlson, Kathleen E. DelGiorno, Laura D. Wood, et al. ‘RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma’. Cell 161, no. 6 (June 2015): 1345–60. doi:10.1016/j.cell.2015.04.048.

 

Boone, Brian A., Shirin Sabbaghian, Mazen Zenati, J. Wallis Marsh, A. James Moser, Amer H. Zureikat, Aatur D. Singhi, Herbert J. Zeh, and Alyssa M. Krasinskas. ‘Loss of SMAD4 Staining in Pre-Operative Cell Blocks Is Associated with Distant Metastases Following Pancreaticoduodenectomy with Venous Resection for Pancreatic Cancer’. Journal of Surgical Oncology 110, no. 2 (August 2014): 171–75. doi:10.1002/jso.23606.

 

Herman, Joseph M., Katherine Y. Fan, Aaron T. Wild, Laura D. Wood, Amanda L. Blackford, Ross C. Donehower, Manuel Hidalgo, et al. ‘Correlation of Smad4 Status With Outcomes in Patients Receiving Erlotinib Combined With Adjuvant Chemoradiation and Chemotherapy After Resection for Pancreatic Adenocarcinoma’. International Journal of Radiation Oncology*Biology*Physics 87, no. 3 (November 2013): 458–59. doi:10.1016/j.ijrobp.2013.06.2039.

 

Other Related Articles Published In This Open Access Online Journal Include The Following:

 

https://pharmaceuticalintelligence.com/2016/06/10/pancreatic-cancer-modeling-using-retrograde-viral-vector-delivery-and-in-vivo-crisprcas9-mediated-somatic-genome-editing/

https://pharmaceuticalintelligence.com/2015/04/10/wnt%CE%B2-catenin-signaling-7-10/

 

Read Full Post »

Older Posts »