Feeds:
Posts
Comments

Posts Tagged ‘single-cell RNA sequencing’

Renal tumor macrophages linked to recurrence are identified using single-cell protein activity analysis

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

When malignancy returns after a period of remission, it is called a cancer recurrence. After the initial or primary cancer has been treated, this can happen weeks, months, or even years later. The possibility of recurrence is determined by the type of primary cancer. Because small patches of cancer cells might stay in the body after treatment, cancer might reoccur. These cells may multiply and develop large enough to cause symptoms or cause cancer over time. The type of cancer determines when and where cancer recurs. Some malignancies have a predictable recurrence pattern.

Even if primary cancer recurs in a different place of the body, recurrent cancer is designated for the area where it first appeared. If breast cancer recurs distantly in the liver, for example, it is still referred to as breast cancer rather than liver cancer. It’s referred to as metastatic breast cancer by doctors. Despite treatment, many people with kidney cancer eventually develop cancer recurrence and incurable metastatic illness.

The most frequent type of kidney cancer is Renal Cell Carcinoma (RCC). RCC is responsible for over 90% of all kidney malignancies. The appearance of cancer cells when viewed under a microscope helps to recognize the various forms of RCC. Knowing the RCC subtype can help the doctor assess if the cancer is caused by an inherited genetic condition and help to choose the best treatment option. The three most prevalent RCC subtypes are as follows:

  • Clear cell RCC
  • Papillary RCC
  • Chromophobe RCC

Clear Cell RCC (ccRCC) is the most prevalent subtype of RCC. The cells are clear or pale in appearance and are referred to as the clear cell or conventional RCC. Around 70% of people with renal cell cancer have ccRCC. The rate of growth of these cells might be sluggish or rapid. According to the American Society of Clinical Oncology (ASCO), clear cell RCC responds favorably to treatments like immunotherapy and treatments that target specific proteins or genes.

Researchers at Columbia University’s Vagelos College of Physicians and Surgeons have developed a novel method for identifying which patients are most likely to have cancer relapse following surgery.

The study

Their findings are detailed in a study published in the journal Cell entitled, “Single-Cell Protein Activity Analysis Identifies Recurrence-Associated Renal Tumor Macrophages.” The researchers show that the presence of a previously unknown type of immune cell in kidney tumors can predict who will have cancer recurrence.

According to co-senior author Charles Drake, MD, PhD, adjunct professor of medicine at Columbia University Vagelos College of Physicians and Surgeons and the Herbert Irving Comprehensive Cancer Center,

the findings imply that the existence of these cells could be used to identify individuals at high risk of disease recurrence following surgery who may be candidates for more aggressive therapy.

As Aleksandar Obradovic, an MD/PhD student at Columbia University Vagelos College of Physicians and Surgeons and the study’s co-first author, put it,

it’s like looking down over Manhattan and seeing that enormous numbers of people from all over travel into the city every morning. We need deeper details to understand how these different commuters engage with Manhattan residents: who are they, what do they enjoy, where do they go, and what are they doing?

To learn more about the immune cells that invade kidney cancers, the researchers employed single-cell RNA sequencing. Obradovic remarked,

In many investigations, single-cell RNA sequencing misses up to 90% of gene activity, a phenomenon known as gene dropout.

The researchers next tackled gene dropout by designing a prediction algorithm that can identify which genes are active based on the expression of other genes in the same family. “Even when a lot of data is absent owing to dropout, we have enough evidence to estimate the activity of the upstream regulator gene,” Obradovic explained. “It’s like when playing ‘Wheel of Fortune,’ because I can generally figure out what’s on the board even if most of the letters are missing.”

The meta-VIPER algorithm is based on the VIPER algorithm, which was developed in Andrea Califano’s group. Califano is the head of Herbert Irving Comprehensive Cancer Center’s JP Sulzberger Columbia Genome Center and the Clyde and Helen Wu professor of chemistry and systems biology. The researchers believe that by including meta-VIPER, they will be able to reliably detect the activity of 70% to 80% of all regulatory genes in each cell, eliminating cell-to-cell dropout.

Using these two methods, the researchers were able to examine 200,000 tumor cells and normal cells in surrounding tissues from eleven patients with ccRCC who underwent surgery at Columbia’s urology department.

The researchers discovered a unique subpopulation of immune cells that can only be found in tumors and is linked to disease relapse after initial treatment. The top genes that control the activity of these immune cells were discovered through the VIPER analysis. This “signature” was validated in the second set of patient data obtained through a collaboration with Vanderbilt University researchers; in this second set of over 150 patients, the signature strongly predicted recurrence.

These findings raise the intriguing possibility that these macrophages are not only markers of more risky disease, but may also be responsible for the disease’s recurrence and progression,” Obradovic said, adding that targeting these cells could improve clinical outcomes

Drake said,

Our research shows that when the two techniques are combined, they are extremely effective at characterizing cells within a tumor and in surrounding tissues, and they should have a wide range of applications, even beyond cancer research.

Main Source

Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages

https://www.cell.com/cell/fulltext/S0092-8674(21)00573-0

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/05/04/machine-learning-ml-in-cancer-prognosis-prediction-helps-the-researcher-to-identify-multiple-known-as-well-as-candidate-cancer-diver-genes/

Renal (Kidney) Cancer: Connections in Metabolism at Krebs cycle  and Histone Modulation

Curator: Demet Sag, PhD, CRA, GCP

https://pharmaceuticalintelligence.com/2015/10/14/renal-kidney-cancer-connections-in-metabolism-at-krebs-cycle-through-histone-modulation/

Artificial Intelligence: Genomics & Cancer

https://pharmaceuticalintelligence.com/ai-in-genomics-cancer/

Bioinformatic Tools for Cancer Mutational Analysis: COSMIC and Beyond

Curator: Stephen J. Williams, Ph.D.

https://pharmaceuticalintelligence.com/2015/12/02/bioinformatic-tools-for-cancer-mutational-analysis-cosmic-and-beyond-2/

Deep-learning AI algorithm shines new light on mutations in once obscure areas of the genome

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/12/24/deep-learning-ai-algorithm-shines-new-light-on-mutations-in-once-obscure-areas-of-the-genome/

Premalata Pati, PhD, PostDoc in Biological Sciences, Medical Text Analysis with Machine Learning

https://pharmaceuticalintelligence.com/2021-medical-text-analysis-nlp/premalata-pati-phd-postdoc-in-pharmaceutical-sciences-medical-text-analysis-with-machine-learning/

Read Full Post »

Bioinformatic Tools for RNASeq: A Curation

Curator: Stephen J. Williams, Ph.D. 

 

 

Note:  This will be an ongoing curation as new information and tools become available.

RNASeq is a powerful tool for the analysis of the transcriptome profile and has been used to determine the transcriptional changes occurring upon stimuli such as drug treatment or detecting transcript differences between biological sample cohorts such as tumor versus normal tissue.  Unlike its genomic companion, whole genome and whole exome sequencing, which analyzes the primary sequence of the genomic DNA, RNASeq analyzes the mRNA transcripts, thereby more closely resembling the ultimate translated proteome. In addition, RNASeq and transcriptome profiling can determine if splicing variants occur as well as determining the nonexomic sequences, such as miRNA and lncRNA species, all of which have shown pertinence in the etiology of many diseases, including cancer.

However, RNASeq, like other omic technologies, generates enormous big data sets, which requires multiple types of bioinformatic tools in order to correctly analyze the sequence reads, and to visualize and interpret the output data.  This post represents a curation by the RNA-Seq blog of such tools useful for RNASeq studies and lists and reviews published literature using these curated tools.

 

From the RNA-Seq Blog

List of RNA-Seq bioinformatics tools

Posted by: RNA-Seq Blog in Data Analysis, Web Tools September 16, 2015 6,251 Views

from: https://en.wiki2.org/wiki/List_of_RNA-Seq_bioinformatics_tools

A review of some of the literature using some of the aforementioned curated tools are discussed below:

 

A.   Tools Useful for Single Cell RNA-Seq Analysis

 

B.  Tools for RNA-Seq Analysis of the Sliceasome

 

C.  Tools Useful for RNA-Seq read assembly visualization

 

Other articles on RNA and Transcriptomics in this Open Access Journal Include:

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics, sample preparation, transcriptomics and epigenomics, and genome-wide functional analysis.

Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Complex rearrangements and oncogene amplification revealed by long-read DNA and RNA sequencing of a breast cancer cell line

Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

First challenge to make use of the new NCI Cloud Pilots – Somatic Mutation Challenge – RNA: Best algorithms for detecting all of the abnormal RNA molecules in a cancer cell

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis

 

Read Full Post »

Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.3.6

4.3.6  Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

Pancreatic cancer is a significant cause of cancer mortality; therefore, the development of early diagnostic strategies and effective treatment is essential. Improvements in imaging technology, as well as use of biomarkers are changing the way that pancreas cancer is diagnosed and staged. Although progress in treatment for pancreas cancer has been incremental, development of combination therapies involving both chemotherapeutic and biologic agents is ongoing.

Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (PDAC) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease.

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology.

PDAC is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. In the present study to comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, single-cell RNA-seq (scRNA-seq) was employed to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases. The diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, were identified in PDAC.

The researchers found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, it was found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, the findings provided a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.

References:

https://www.ncbi.nlm.nih.gov/pubmed/31273297

https://www.ncbi.nlm.nih.gov/pubmed/21491194

https://www.ncbi.nlm.nih.gov/pubmed/27444064

https://www.ncbi.nlm.nih.gov/pubmed/28983043

https://www.ncbi.nlm.nih.gov/pubmed/24976721

https://www.ncbi.nlm.nih.gov/pubmed/27693023

Read Full Post »

scPopCorn: A New Computational Method for Subpopulation Detection and their Comparative Analysis Across Single-Cell Experiments

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.2.5

4.2.5   scPopCorn: A New Computational Method for Subpopulation Detection and their Comparative Analysis Across Single-Cell Experiments, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

Present day technological advances have facilitated unprecedented opportunities for studying biological systems at single-cell level resolution. For example, single-cell RNA sequencing (scRNA-seq) enables the measurement of transcriptomic information of thousands of individual cells in one experiment. Analyses of such data provide information that was not accessible using bulk sequencing, which can only assess average properties of cell populations. Single-cell measurements, however, can capture the heterogeneity of a population of cells. In particular, single-cell studies allow for the identification of novel cell types, states, and dynamics.

One of the most prominent uses of the scRNA-seq technology is the identification of subpopulations of cells present in a sample and comparing such subpopulations across samples. Such information is crucial for understanding the heterogeneity of cells in a sample and for comparative analysis of samples from different conditions, tissues, and species. A frequently used approach is to cluster every dataset separately, inspect marker genes for each cluster, and compare these clusters in an attempt to determine which cell types were shared between samples. This approach, however, relies on the existence of predefined or clearly identifiable marker genes and their consistent measurement across subpopulations.

Although the aligned data can then be clustered to reveal subpopulations and their correspondence, solving the subpopulation-mapping problem by performing global alignment first and clustering second overlooks the original information about subpopulations existing in each experiment. In contrast, an approach addressing this problem directly might represent a more suitable solution. So, keeping this in mind the researchers developed a computational method, single-cell subpopulations comparison (scPopCorn), that allows for comparative analysis of two or more single-cell populations.

The performance of scPopCorn was tested in three distinct settings. First, its potential was demonstrated in identifying and aligning subpopulations from single-cell data from human and mouse pancreatic single-cell data. Next, scPopCorn was applied to the task of aligning biological replicates of mouse kidney single-cell data. scPopCorn achieved the best performance over the previously published tools. Finally, it was applied to compare populations of cells from cancer and healthy brain tissues, revealing the relation of neoplastic cells to neural cells and astrocytes. Consequently, as a result of this integrative approach, scPopCorn provides a powerful tool for comparative analysis of single-cell populations.

This scPopCorn is basically a computational method for the identification of subpopulations of cells present within individual single-cell experiments and mapping of these subpopulations across these experiments. Different from other approaches, scPopCorn performs the tasks of population identification and mapping simultaneously by optimizing a function that combines both objectives. When applied to complex biological data, scPopCorn outperforms previous methods. However, it should be kept in mind that scPopCorn assumes the input single-cell data to consist of separable subpopulations and it is not designed to perform a comparative analysis of single cell trajectories datasets that do not fulfill this constraint.

Several innovations developed in this work contributed to the performance of scPopCorn. First, unifying the above-mentioned tasks into a single problem statement allowed for integrating the signal from different experiments while identifying subpopulations within each experiment. Such an incorporation aids the reduction of biological and experimental noise. The researchers believe that the ideas introduced in scPopCorn not only enabled the design of a highly accurate identification of subpopulations and mapping approach, but can also provide a stepping stone for other tools to interrogate the relationships between single cell experiments.

References:

https://www.sciencedirect.com/science/article/pii/S2405471219301887

https://www.tandfonline.com/doi/abs/10.1080/23307706.2017.1397554

https://ieeexplore.ieee.org/abstract/document/4031383

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0927-y

https://www.sciencedirect.com/science/article/pii/S2405471216302666

Read Full Post »

%d bloggers like this: