Advertisements
Feeds:
Posts
Comments

Archive for the ‘Cancer Prevention: Research & Programs’ Category


Live Conference Coverage @Medcitynews Converge 2018 @Philadelphia: Promising Drugs and Breaking Down Silos

Reporter: Stephen J. Williams, PhD

Promising Drugs, Pricing and Access

The drug pricing debate rages on. What are the solutions to continuing to foster research and innovation, while ensuring access and affordability for patients? Can biosimilars and generics be able to expand market access in the U.S.?

Moderator: Bunny Ellerin, Director, Healthcare and Pharmaceutical Management Program, Columbia Business School
Speakers:
Patrick Davish, AVP, Global & US Pricing/Market Access, Merck
Robert Dubois M.D., Chief Science Officer and Executive Vice President, National Pharmaceutical Council
Gary Kurzman, M.D., Senior Vice President and Managing Director, Healthcare, Safeguard Scientifics
Steven Lucio, Associate Vice President, Pharmacy Services, Vizient

What is working and what needs to change in pricing models?

Robert:  He sees so many players in the onStevencology space discovering new drugs and other drugs are going generic (that is what is working).  However are we spending too much on cancer care relative to other diseases (their initiative Going Beyond the Surface)

Steven:  the advent of biosimilars is good for the industry

Patrick:  large effort in oncology, maybe too much (750 trials on Keytruda) and he says pharma is spending on R&D (however clinical trials take large chunk of this money)

Robert: cancer has gotten a free ride but cost per year relative to benefit looks different than other diseases.  Are we overinvesting in cancer or is that a societal decision

Gary:  maybe as we become more specific with precision medicines high prices may be a result of our success in specifically targeting a mutation.  We need to understand the targeted drugs and outcomes.

Patrick: “Cancer is the last big frontier” but he says prices will come down in most cases.  He gives the example of Hep C treatment… the previous only therapeutic option was a very toxic yearlong treatment but the newer drugs may be more cost effective and safer

Steven: Our blockbuster drugs could diffuse the expense but now with precision we can’t diffuse the expense over a large number of patients

President’s Cancer Panel Recommendation

Six recommendations

  1. promoting value based pricing
  2. enabling communications of cost
  3. financial toxicity
  4. stimulate competition biosimilars
  5. value based care
  6. invest in biomedical research

Patrick: the government pricing regime is hurting.  Alot of practical barriers but Merck has over 200 studies on cost basis

Robert:  many concerns/impetus started in Europe on pricing as they are a set price model (EU won’t pay more than x for a drug). US is moving more to outcomes pricing. For every one health outcome study three studies did not show a benefit.  With cancer it is tricky to establish specific health outcomes.  Also Medicare gets best price status so needs to be a safe harbor for payers and biggest constraint is regulatory issues.

Steven: They all want value based pricing but we don’t have that yet and there is a challenge to understand the nuances of new therapies.  Hard to align all the stakeholders together so until some legislation starts to change the reimbursement-clinic-patient-pharma obstacles.  Possibly the big data efforts discussed here may help align each stakeholders goals.

Gary: What is the data necessary to understand what is happening to patients and until we have that information it still will be complicated to determine where investors in health care stand at in this discussion

Robert: on an ICER methods advisory board: 1) great concern of costs how do we determine fair value of drug 2) ICER is only game in town, other orgs only give recommendations 3) ICER evaluates long term value (cost per quality year of life), budget impact (will people go bankrupt)

4) ICER getting traction in the public eye and advocates 5) the problem is ICER not ready for prime time as evidence keeps changing or are they keeping the societal factors in mind and they don’t have total transparancy in their methodology

Steven: We need more transparency into all the costs associated with the drug and therapy and value-based outcome.  Right now price is more of a black box.

Moderator: pointed to a recent study which showed that outpatient costs are going down while hospital based care cost is going rapidly up (cost of site of care) so we need to figure out how to get people into lower cost setting

Breaking Down Silos in Research

“Silo” is healthcare’s four-letter word. How are researchers, life science companies and others sharing information that can benefit patients more quickly? Hear from experts at institutions that are striving to tear down the walls that prevent data from flowing.

Moderator: Vini Jolly, Executive Director, Woodside Capital Partners
Speakers:
Ardy Arianpour, CEO & Co-Founder, Seqster @seqster
Lauren Becnel, Ph.D., Real World Data Lead for Oncology, Pfizer
Rakesh Mathew, Innovation, Research, & Development Lead, HealthShareExchange
David Nace M.D., Chief Medical Officer, Innovaccer

Seqster: Seqster is a secure platform that helps you and your family manage medical records, DNA, fitness, and nutrition data—all in one place. Founder has a genomic sequencing background but realized sequence  information needs to be linked with medical records.

HealthShareExchange.org :

HealthShare Exchange envisions a trusted community of healthcare stakeholders collaborating to deliver better care to consumers in the greater Philadelphia region. HealthShare Exchange will provide secure access to health information to enable preventive and cost-effective care; improve quality of patient care; and facilitate care transitions. They have partnered with multiple players in healthcare field and have data on over 7 million patients.

Innovacer

Data can be overwhelming, but it doesn’t have to be this way. To drive healthcare efficiency, we designed a modular suite of products for a smooth transition into a data-driven world within 4 weeks. Why does it take so much money to move data around and so slowly?

What is interoperatibility?

Ardy: We knew in genomics field how to build algorithms to analyze big data but how do we expand this from a consumer standpoint and see and share your data.

Lauren: how can we use the data between patients, doctors, researchers?  On the research side genomics represent only 2% of data.  Silos are one issue but figuring out the standards for data (collection, curation, analysis) is not set. Still need to improve semantic interoperability. For example Flatiron had good annotated data on male metastatic breast cancer.

David: Technical interopatabliltiy (platform), semantic interopatability (meaning or word usage), format (syntactic) interopatibility (data structure).  There is technical interoperatiblity between health system but some semantic but formats are all different (pharmacies use different systems and write different prescriptions using different suppliers).  In any value based contract this problem is a big issue now (we are going to pay you based on the quality of your performance then there is big need to coordinate across platforms).  We can solve it by bringing data in real time in one place and use mapping to integrate the format (need quality control) then need to make the data democratized among players.

Rakesh:  Patients data should follow the patient. Of Philadelphia’s 12 health systems we had a challenge to make data interoperatable among them so tdhey said to providers don’t use portals and made sure hospitals were sending standardized data. Health care data is complex.

David: 80% of clinical data is noise. For example most eMedical Records are text. Another problem is defining a patient identifier which US does not believe in.

 

 

 

 

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Advertisements

Read Full Post »


Medcity Converge 2018 Philadelphia: Live Coverage @pharma_BI

Stephen J. Williams: Reporter

MedCity CONVERGE is a two-day executive summit that gathers innovative thought leaders from across all healthcare sectors to provide actionable insight on where oncology innovation is heading.

On July 11-12, 2018 in Philadelphia, MedCity CONVERGE will gather technology disruptors, payers, providers, life science companies, venture capitalists and more to discuss how AI, Big Data and Precision Medicine are changing the game in cancer. See agenda.

The conference highlights innovation and best practices across the continuum—from research to technological innovation to transformations of treatment and care delivery, and most importantly, patient empowerment—from some of the country’s most innovative healthcare organizations managing the disease.

Meaningful networking opportunities abound, with executives driving the innovation from diverse entities: leading hospital systems, medical device firms, biotech, pharma, emerging technology startups and health IT, as well as the investment community.

Day 1: Wednesday, July 11, 2018

7:30 AM

2nd Floor – Paris Foyer

Registration + Breakfast

8:15 AM–8:30 AM

Paris Ballroom

Welcome Remarks: Arundhati Parmar, VP and Editor-in-Chief, MedCity News

8:30 AM–9:15 AM

Paris Ballroom

Practical Applications of AI in Cancer

We are far from machine learning dictating clinical decision making, but AI has important niche applications in oncology. Hear from a panel of innovative startups and established life science players about how machine learning and AI can transform different aspects in healthcare, be it in patient recruitment, data analysis, drug discovery or care delivery.

Moderator: Ayan Bhattacharya, Advanced Analytics Specialist Leader, Deloitte Consulting LLP
Speakers:
Wout Brusselaers, CEO and Co-Founder, Deep 6 AI @woutbrusselaers ‏
Tufia Haddad, M.D., Chair of Breast Medical Oncology and Department of Oncology Chair of IT, Mayo Clinic
Carla Leibowitz, Head of Corporate Development, Arterys @carlaleibowitz
John Quackenbush, Ph.D., Professor and Director of the Center for Cancer Computational Biology, Dana-Farber Cancer Institute

9:15 AM–9:45 AM

Paris Ballroom

Opening Keynote: Dr. Joshua Brody, Medical Oncologist, Mount Sinai Health System

The Promise and Hype of Immunotherapy

Immunotherapy is revolutionizing oncology care across various types of cancers, but it is also necessary to sort the hype from the reality. In his keynote, Dr. Brody will delve into the history of this new therapy mode and how it has transformed the treatment of lymphoma and other diseases. He will address the hype surrounding it, why so many still don’t respond to the treatment regimen and chart the way forward—one that can lead to more elegant immunotherapy combination paths and better outcomes for patients.

Speaker:
Joshua Brody, M.D., Assistant Professor, Mount Sinai School of Medicine @joshuabrodyMD

9:45 AM–10:00 AM

Paris Foyer

Networking Break + Showcase

10:00 AM–10:45 AM

Paris Ballroom

The Davids vs. the Cancer Goliath Part 1

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
10:00 10:08 Belong.Life
10:09 10:17 Care+Wear
10:18 10:26 OncoPower
10:27 10:35 PolyAurum LLC
10:36 10:44 Seeker Health

Speakers:
Karthik Koduru, MD, Co-Founder and Chief Oncologist, OncoPower
Eliran Malki, Co-Founder and CEO, Belong.Life
Chaitenya Razdan, Co-founder and CEO, Care+Wear @_crazdan
Debra Shipley Travers, President & CEO, PolyAurum LLC @polyaurum
Sandra Shpilberg, Founder and CEO, Seeker Health @sandrashpilberg

10:45 AM–11:00 AM

Paris Foyer

Networking Break + Showcase

11:00 AM–11:45 AM

Montpellier – 3rd Floor

Breakout: Biopharma Gets Its Feet Wet in Digital Health

In the last few years, biotech and pharma companies have been leveraging digital health tools in everything from oncology trials, medication adherence to patient engagement. What are the lessons learned?

Moderator: Anthony Green, Ph.D., Vice President, Technology Commercialization Group, Ben Franklin Technology Partners
Speakers:
Derek Bowen, VP of Business Development & Strategy, Blackfynn, Inc.
Gyan Kapur, Vice President, Activate Venture Partners
Tom Kottler, Co-Founder & CEO, HealthPrize Technologies @HealthPrize

11:00 AM–11:45 AM

Paris Ballroom

Breakout: How to Scale Precision Medicine

The potential for precision medicine is real, but is limited by access to patient datasets. How are government entities, hospitals and startups bringing the promise of precision medicine to the masses of oncology patients

Moderator: Sandeep Burugupalli, Senior Manager, Real World Data Innovation, Pfizer @sandeepburug
Speakers:
Ingo ​Chakravarty, President and CEO, Navican @IngoChakravarty
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Andrew Norden, M.D., Chief Medical Officer, Cota @ANordenMD
Ankur Parikh M.D, Medical Director of Precision Medicine, Cancer Treatment Centers of America @CancerCenter

11:50 AM–12:30 PM

Paris Ballroom

Fireside Chat with Michael Pellini, M.D.

Building a Precision Medicine Business from the Ground Up: An Operating and Venture Perspective

Dr. Pellini has spent more than 20 years working on the operating side of four companies, each of which has pushed the boundaries of the standard of care. He will describe his most recent experience at Foundation Medicine, at the forefront of precision medicine, and how that experience can be leveraged on the venture side, where he now evaluates new healthcare technologies.

Speaker:
Michael Pellini, M.D., Managing Partner, Section 32 and Chairman, Foundation Medicine @MichaelPellini

12:30 PM–1:30 PM

Chez Colette Restaurant – Lobby

Lunch Reception

1:30 PM–2:15 PM

Paris Ballroom

Clinical Trials 2.0

The randomized, controlled clinical trial is the gold standard, but it may be time for a new model. How can patient networks and new technology be leveraged to boost clinical trial recruitment and manage clinical trials more efficiently?

Moderator: John Reites, Chief Product Officer, Thread @johnreites
Speakers:
Andrew Chapman M.D., Chief of Cancer Services , Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital
Michelle Longmire, M.D., Founder, Medable @LongmireMD
Sameek Roychowdhury MD, PhD, Medical Oncologist and Researcher, Ohio State University Comprehensive Cancer Center @OSUCCC_James

2:20 PM–3:00 PM

Paris Ballroom

CONVERGEnce on Steroids: Why Comcast and Independence Blue Cross?

This year has seen a great deal of convergence in health care.  One of the most innovative collaborations announced was that of Cable and Media giant Comcast Corporation and health plan Independence Blue Cross.  This fireside chat will explore what the joint venture is all about, the backstory of how this unlikely partnership came to be, and what it might mean for our industry.

sponsored by Independence Blue Cross

Moderator: Tom Olenzak, Managing Director Strategic Innovation Portfolio, Independence Blue Cross @IBX
Speakers:
Marc Siry, VP, Strategic Development, Comcast
Michael Vennera, SVP, Chief Information Officer, Independence Blue Cross

3:00 PM–3:15 PM

Paris Foyer

Networking Break + Showcase

3:15 PM–4:00 PM

Montpellier – 3rd Floor

Breakout: Charting the Way Forward in Gene and Cell Therapy

There is a boom underway in cell and gene therapies that are being wielded to tackle cancer and other diseases at the cellular level. FDA has approved a few drugs in the space. These innovations raise important questions about patient access, patient safety, and personalized medicine. Hear from interesting startups and experts about the future of gene therapy.

Moderator: Alaric DeArment, Senior Reporter, MedCity News
Speakers:
Amy DuRoss, CEO, Vineti
Andre Goy, M.D., Chairman and Director of John Theurer Cancer Center , Hackensack University Medical Center

3:15 PM–4:00 PM

Paris Ballroom

Breakout: What’s A Good Model for Value-Based Care in Oncology?

How do you implement a value-based care model in oncology? Medicare has created a bundled payment model in oncology and there are lessons to be learned from that and other programs. Listen to two presentations from experts in the field.

Moderator: Mahek Shah, M.D., Senior Researcher, Harvard Business School @Mahek_MD
Speakers:
Charles Saunders M.D., CEO, Integra Connect
Mari Vandenburgh, Director of Value-Based Reimbursement Operations, Highmark @Highmark

4:00 PM–4:10 PM

Paris Foyer

Networking Break + Showcase

4:10 PM–4:55 PM

Montpellier – 3rd Floor

Breakout: Trends in Oncology Investing

A panel of investors interested in therapeutics, diagnostics, digital health and emerging technology will discuss what is hot in cancer investing.

Moderator: Stephanie Baum, Director of Special Projects, MedCity News @StephLBaum
Speakers:
Karen Griffith Gryga, Chief Investment Officer, Dreamit Ventures @karengg 
Stacey Seltzer, Partner, Aisling Capital
David Shaywitz, M.D., Ph.D., Senior Partner, Takeda Ventures

4:10 PM–4:55 PM

Paris Ballroom

Breakout: What Patients Want and Need On Their Journey

Cancer patients are living with an existential threat every day. A panel of patients and experts in oncology care management will discuss what’s needed to make the journey for oncology patients a bit more bearable.

sponsored by CEO Council for Growth

Moderator: Amanda Woodworth, M.D., Director of Breast Health, Drexel University College of Medicine
Speakers:
Kezia Fitzgerald, Chief Innovation Officer & Co-Founder, CareAline® Products, LLC
Sara Hayes, Senior Director of Community Development, Health Union @SaraHayes_HU
Katrece Nolen, Cancer Survivor and Founder, Find Cancer Help @KatreceNolen
John Simpkins, Administrative DirectorService Line Director of the Cancer Center, Children’s Hospital of Philadelphia

5:00 PM–5:45 PM

Paris Ballroom

Early Diagnosis Through Predictive Biomarkers, NonInvasive Testing

Diagnosing cancer early is often the difference between survival and death. Hear from experts regarding the new and emerging technologies that form the next generation of cancer diagnostics.

Moderator: Heather Rose, Director of Licensing, Thomas Jefferson University
Speakers:
Bonnie Anderson, Chairman and CEO, Veracyte @BonnieAndDx
Kevin Hrusovsky, Founder and Chairman, Powering Precision Health @KevinHrusovsky

5:45 PM–7:00 PM

Paris Foyer

Networking Reception

Day 2: Thursday, July 12, 2018

7:30 AM

Paris Foyer

Breakfast + Registration

8:30 AM–8:40 AM

Paris Ballroom

Opening Remarks: Arundhati Parmar, VP and Editor-in-Chief, MedCity News

8:40 AM–9:25 AM

Paris Ballroom

The Davids vs. the Cancer Goliath Part 2

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
8:40 8:48 3Derm
8:49 8:57 CNS Pharmaceuticals
8:58 9:06 Cubismi
9:07 9:15 CytoSavvy
9:16 9:24 PotentiaMetrics

Speakers:
Liz Asai, CEO & Co-Founder, 3Derm Systems, Inc. @liz_asai
John M. Climaco, CEO, CNS Pharmaceuticals @cns_pharma 
John Freyhof, CEO, CytoSavvy
Robert Palmer, President & CEO, PotentiaMetrics @robertdpalmer 
Moira Schieke M.D., Founder, Cubismi, Adjunct Assistant Prof UW Madison @cubismi_inc

9:30 AM–10:15 AM

Paris Ballroom

Liquid Biopsy and Gene Testing vs. Reimbursement Hurdles

Genetic testing, whether broad-scale or single gene-testing, is being ordered by an increasing number of oncologists, but in many cases, patients are left to pay for these expensive tests themselves. How can this dynamic be shifted? What can be learned from the success stories?

Moderator: Shoshannah Roth, Assistant Director of Health Technology Assessment and Information Services , ECRI Institute @Ecri_Institute
Speakers:
Rob Dumanois, Manager – reimbursement strategy, Thermo Fisher Scientific
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Michael Nall, President and Chief Executive Officer, Biocept

10:15 AM–10:25 AM

Paris Foyer

Networking Break + Showcase

10:25 AM–11:10 AM

Paris Ballroom

Promising Drugs, Pricing and Access

The drug pricing debate rages on. What are the solutions to continuing to foster research and innovation, while ensuring access and affordability for patients? Can biosimilars and generics be able to expand market access in the U.S.?

Moderator: Bunny Ellerin, Director, Healthcare and Pharmaceutical Management Program, Columbia Business School
Speakers:
Patrick Davish, AVP, Global & US Pricing/Market Access, Merck
Robert Dubois M.D., Chief Science Officer and Executive Vice President, National Pharmaceutical Council
Gary Kurzman, M.D., Senior Vice President and Managing Director, Healthcare, Safeguard Scientifics
Steven Lucio, Associate Vice President, Pharmacy Services, Vizient

11:10 AM–11:20 AM

Networking Break + Showcase

11:20 AM–12:05 PM

Paris Ballroom

Breaking Down Silos in Research

“Silo” is healthcare’s four-letter word. How are researchers, life science companies and others sharing information that can benefit patients more quickly? Hear from experts at institutions that are striving to tear down the walls that prevent data from flowing.

Moderator: Vini Jolly, Executive Director, Woodside Capital Partners
Speakers:
Ardy Arianpour, CEO & Co-Founder, Seqster @seqster
Lauren Becnel, Ph.D., Real World Data Lead for Oncology, Pfizer
Rakesh Mathew, Innovation, Research, & Development Lead, HealthShareExchange
David Nace M.D., Chief Medical Officer, Innovaccer

12:10 PM–12:40 PM

Paris Ballroom

Closing Keynote: Anne Stockwell, Cancer Survivor, Founder, Well Again

Finding Your Well Again
Anne Stockwell discusses her mission to help cancer survivors heal their emotional trauma and regain their balance after treatment. A multi-skilled artist as well as a three-time cancer survivor, Anne learned through experience that the emotional impact of cancer often strikes after treatment, isolating a survivor rather than lighting the way forward. Anne realized that her well-trained imagination as an artist was key to her successful reentry after cancer. Now she helps other survivors develop their own creative tools to help them find their way forward with joy.

Speaker:
Anne Stockwell, Founder and President, Well Again @annewellagain

12:40 PM–12:45 PM

Closing Remarks

 

Please follow on Twitter using the following #hashtags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

 

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

https://pharmaceuticalintelligence.com/press-coverage/

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The CRISPR-Cas9 system has proven to be a powerful tool for genome editing allowing for the precise modification of specific DNA sequences within a cell. Many efforts are currently underway to use the CRISPR-Cas9 system for the therapeutic correction of human genetic diseases. CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells.

 

CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies utilizing CRISPR–Cas9.

 

Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells. Using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), an average insertion or deletion (indel) efficiency greater than 80% was achieved. This high efficiency of insertion or deletion generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs.

 

The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. These results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. As hPSCs can acquire P53 mutations, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

 

CRISPR-based editing of T cells to treat cancer, as scientists at the University of Pennsylvania are studying in a clinical trial, should also not have a p53 problem. Nor should any therapy developed with CRISPR base editing, which does not make the double-stranded breaks that trigger p53. But, there are pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans, a factor which must be taken into account as the CRISPR-Cas9 system moves forward into clinical trials.

 

References:

 

https://techonomy.com/2018/06/new-cancer-concerns-shake-crispr-prognosis/

 

https://www.statnews.com/2018/06/11/crispr-hurdle-edited-cells-might-cause-cancer/

 

https://www.biorxiv.org/content/early/2017/07/26/168443

 

https://www.nature.com/articles/s41591-018-0049-z.epdf?referrer_access_token=s92jDP_yPBmDmi-USafzK9RgN0jAjWel9jnR3ZoTv0MRjuB3dEnTctGtoy16n3DDbmISsvbln9SCISHVDd73tdQRNS7LB8qBlX1vpbLE0nK_CwKThDGcf344KR6RAm9k3wZiwyu-Kb1f2Dl7pArs5yYSiSLSdgeH7gst7lOBEh9qIc6kDpsytWLHqX_tyggu&tracking_referrer=www.statnews.com

 

https://www.nature.com/articles/s41591-018-0050-6.epdf?referrer_access_token=2KJ0L-tmvjtQdzqlkVXWVNRgN0jAjWel9jnR3ZoTv0Phq6GCpDlJx7lIwhCzBRjHJv0mv4zO0wzJJCeuxJjzoUWLeemH8T4I3i61ftUBkYkETi6qnweELRYMj4v0kLk7naHF-ujuz4WUf75mXsIRJ3HH0kQGq1TNYg7tk3kamoelcgGp4M7UTiTmG8j0oog_&tracking_referrer=www.statnews.com

 

https://www.biorxiv.org/content/early/2018/01/05/243345

 

https://www.nature.com/articles/nmeth.4293.epdf

 

Read Full Post »


Centers for Medicare & Medicaid Services announced that the federal healthcare program will cover the costs of cancer gene tests that have been approved by the Food and Drug Administration

 

Reporter: Aviva Lev-Ari, PhD, RN

genetic testing just became routine care for patients with advanced cancers. And that means precision medicine has finally broken into the mainstream.

Any tests that gain FDA clearance in the future will automatically receive full coverage.

In 3/2018 there are three FDA approved Genetic Tests for Cancer:

UNDER development and not included in the agreement , above, includes:

  • Olivier Elemento, Director of the Caryl and Israel Englander Institute for Precision Medicine at Cornell, the team at Cornell, for example, has developed a whole exome test that compares mutations in tumors against healthy cells across 22,000 genes. To date, it’s been used to help match more than 1,000 patients in New York state with the best available treatment options.

Under the final decision, doctors are still free to order non-FDA approved tests, but coverage isn’t guaranteed; each case will be evaluated by local Medicare administrative contractors. Which means Elemento’s test could still be covered. “To me this is a vote of confidence that next generation sequencing is useful for cancer patients,” says Elemento.

So far, CMS is only covering these tests for stage three and stage four metastatic cancer sufferers. Most of them aren’t going to be cured. They might get a few more good months, maybe a year, tops.

Cancerous Genes

SOURCE

WITH MEDICARE SUPPORT, GENETIC CANCER TESTING GOES MAINSTREAM

https://www.wired.com/story/with-medicare-support-genetic-cancer-testing-goes-mainstream/?mbid=social_twitter_onsiteshare

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A mutated gene called RAS gives rise to a signalling protein Ral which is involved in tumour growth in the bladder. Many researchers tried and failed to target and stop this wayward gene. Signalling proteins such as Ral usually shift between active and inactive states.

 

So, researchers next tried to stop Ral to get into active state. In inacvtive state Ral exposes a pocket which gets closed when active. After five years, the researchers found a small molecule dubbed BQU57 that can wedge itself into the pocket to prevent Ral from closing and becoming active. Now, BQU57 has been licensed for further development.

 

Researchers have a growing genetic data on bladder cancer, some of which threaten to overturn the supposed causes of bladder cancer. Genetics has also allowed bladder cancer to be reclassified from two categories into five distinct subtypes, each with different characteristics and weak spots. All these advances bode well for drug development and for improved diagnosis and prognosis.

 

Among the groups studying the genetics of bladder cancer are two large international teams: Uromol (named for urology and molecular biology), which is based at Aarhus University Hospital in Denmark, and The Cancer Genome Atlas (TCGA), based at institutions in Texas and Boston. Each team tackled a different type of cancer, based on the traditional classification of whether or not a tumour has grown into the muscle wall of the bladder. Uromol worked on the more common, earlier form, non-muscle-invasive bladder cancer, whereas TCGA is looking at muscle-invasive bladder cancer, which has a lower survival rate.

 

The Uromol team sought to identify people whose non-invasive tumours might return after treatment, becoming invasive or even metastatic. Bladder cancer has a high risk of recurrence, so people whose non-invasive cancer has been treated need to be monitored for many years, undergoing cystoscopy every few months. They looked for predictive genetic footprints in the transcriptome of the cancer, which contains all of a cell’s RNA and can tell researchers which genes are turned on or off.

 

They found three subgroups with distinct basal and luminal features, as proposed by other groups, each with different clinical outcomes in early-stage bladder cancer. These features sort bladder cancer into genetic categories that can help predict whether the cancer will return. The researchers also identified mutations that are linked to tumour progression. Mutations in the so-called APOBEC genes, which code for enzymes that modify RNA or DNA molecules. This effect could lead to cancer and cause it to be aggressive.

 

The second major research group, TCGA, led by the National Cancer Institute and the National Human Genome Research Institute, that involves thousands of researchers across USA. The project has already mapped genomic changes in 33 cancer types, including breast, skin and lung cancers. The TCGA researchers, who study muscle-invasive bladder cancer, have looked at tumours that were already identified as fast-growing and invasive.

 

The work by Uromol, TCGA and other labs has provided a clearer view of the genetic landscape of early- and late-stage bladder cancer. There are five subtypes for the muscle-invasive form: luminal, luminal–papillary, luminal–infiltrated, basal–squamous, and neuronal, each of which is genetically distinct and might require different therapeutic approaches.

 

Bladder cancer has the third-highest mutation rate of any cancer, behind only lung cancer and melanoma. The TCGA team has confirmed Uromol research showing that most bladder-cancer mutations occur in the APOBEC genes. It is not yet clear why APOBEC mutations are so common in bladder cancer, but studies of the mutations have yielded one startling implication. The APOBEC enzyme causes mutations early during the development of bladder cancer, and independent of cigarette smoke or other known exposures.

 

The TCGA researchers found a subset of bladder-cancer patients, those with the greatest number of APOBEC mutations, had an extremely high five-year survival rate of about 75%. Other patients with fewer APOBEC mutations fared less well which is pretty surprising.

 

This detailed knowledge of bladder-cancer genetics may help to pinpoint the specific vulnerabilities of cancer cells in different people. Over the past decade, Broad Institute researchers have identified more than 760 genes that cancer needs to grow and survive. Their genetic map might take another ten years to finish, but it will list every genetic vulnerability that can be exploited. The goal of cancer precision medicine is to take the patient’s tumour and decode the genetics, so the clinician can make a decision based on that information.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29117162

 

https://www.ncbi.nlm.nih.gov/pubmed/27321955

 

https://www.ncbi.nlm.nih.gov/pubmed/28583312

 

https://www.ncbi.nlm.nih.gov/pubmed/24476821

 

https://www.ncbi.nlm.nih.gov/pubmed/28988769

 

https://www.ncbi.nlm.nih.gov/pubmed/28753430

 

Read Full Post »


City of Hope, Duarte, California – Combining Science with Soul to Create Miracles at a Comprehensive Cancer Center designated by the National Cancer InstituteAn Interview with the Provost and Chief Scientific Officer of City of Hope, Steven T. Rosen, M.D.

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

City of Hope (https://www.cityofhope.org/homepage), a world leader in the research and treatment of cancer, diabetes, and other serious diseases, is an independent, biomedical research institution and comprehensive cancer center committed to researching, treating and preventing cancer, with an equal commitment to curing and preventing diabetes and other life-threatening diseases. Founded in 1913, City of Hope is one of only 47 comprehensive cancer centers in the nation, as designated by the National Cancer Institute.

City of Hope possesses flexibility that larger institutions typically lack. Innovative concepts move quickly from the laboratory to patient trials — and then to market, where they benefit patients around the world.

As a founding member of the National Comprehensive Cancer Network, their research and treatment protocols advance care throughout the nation. They are also part of ORIEN (Oncology Research Information Exchange Network), the world’s largest cancer research collaboration devoted to precision medicine. And they continue to receive the highest level of accreditation by the American College of Surgeons Commission on Cancer for their exceptional level of cancer care.

As an innovator, City of Hope is a pioneer in bone marrow and stem cell transplants with one of the largest and most successful of its kind in the world. Other examples of its leadership and innovation include,

  • Numerous breakthrough cancer drugs, including Herceptin, Rituxan, Erbitux, and Avastin, are based on technology pioneered by City of Hope and are saving lives worldwide.
  • To date, City of Hope surgeons have performed more than 10,000 robotic procedures for prostate, kidney, colon, liver, bladder, gynecologic, oral and other cancers.
  • They are a national leader in islet cell transplantation, which has the potential to reverse type 1 diabetes, and also provide islet cells for research at other institutions throughout the U.S.
  • Millions of people with diabetes benefit from synthetic human insulin, developed through research conducted at City of Hope.
  • Their scientists are pioneering the application of blood stem cell transplants to treat patients with HIV- and AIDS related lymphoma. Using a new form of gene therapy, their researchers achieved the first long-term persistence of anti-HIV genes in patients with AIDS-related lymphoma — a treatment that may ultimately cure lymphoma and HIV/AIDS.

 

Additionally, City of Hope has three on-campus manufacturing facilities producing biologic and chemical compounds to good manufacturing practice (GMP) standards.

City of Hope launched its Alpha Clinic, thanks to an $8 million, five-year grant from the California Institute for Regenerative Medicine (CIRM). The award is part of CIRM’s Alpha Stem Cell Clinics program, which aims to create one-stop centers for clinical trials focused on stem cell treatments for currently incurable diseases. The Alpha Clinics Network is already running 35 different clinical trials involving hundreds of patients, 17 of which are being conducted at City of Hope. Current clinical trials include transplants of blood stem cells modified to treat patients with AIDS and lymphoma, neural stem cells to deliver drugs directly to cancers hiding in the brain, and T cell immunotherapy trials.

Located just northeast of Los Angeles, landscaped gardens and open spaces surround City of Hope’s leading-edge medical and research facilities at its main campus in Duarte, California. City of Hope also has 14 community practice clinics throughout Southern California.

COH robotic (1)COH Helford H (1)COH1 Dr__Rosen_Clinic-2 (2)COH8 Janice_Huss-7COH7 COH_1369COH6 GMP_0454COH4 DSC_9279

Image SOURCE: Photographs courtesy of City of Hope, Duarte, California. Interior and exterior photos of the City of Hope, including Dr. Steven T. Rosen and his team.

 

Below is my interview with the Provost and Chief Scientific Officer of City of Hope, Steven T. Rosen, M.D., which occurred in April, 2017.

 

What sets City of Hope apart from other hospitals and research centers?

Dr. Rosen: City of Hope offers a unique blend of compassionate care and research innovation that simply can’t be found anywhere else.

We’re more than a medical center, and more than a research facility. We take the most compassionate patient-focused care available, combine it with today’s leading-edge medical advances, and infuse both with a quest to deliver better outcomes.

I’m proud to say that we’re known for rapidly translating scientific research into new treatments and cures, and that our technology has led to the development of four of the most widely used cancer-fighting drugs, Herceptin (trastuzumab), Avastin (bevacizumab), Erbitux (cetuximab), and Rituxin (rituximab).

City of Hope is a family. Our special team of experts treats the whole person and the family, not just a body, or a case or a disease. In fact, some of our patients have shared their stories of success. It is gratifying for me and our many health professionals to be able to make a positive difference in their lives.

Eleven years ago, Los Angeles firefighter Gus Perez was facing a battle far greater than any he’d ever known. He was diagnosed with CML (chronic myelogenous leukemia). Gus began receiving the drug Gleevec, which put him into remission. Given the drug’s success, he almost resigned himself to staying on it, yet was drawn to another option: undergoing a bone marrow transplant at City of Hope. “I went to my favorite ocean spot,” Gus recalls. “I put on my wetsuit, like I’ve done thousands of times, and paddled out. Every wave was special because I wasn’t sure if I was ever going to be back. And I remember getting out of the water and counting the steps to my car, thinking, ‘I’m going to beat this. I’m going to retrace those steps.’ And I’m happy to say I was able to do it.” Gus and his family recently celebrated the 10th anniversary of his bone marrow transplant. “City of Hope is more than just medical treatment,” Gus says. “They have to put you back together from the ground up. And to me, that’s truly a miracle.”

 

As an active 14-year-old, Nicole Schulz loved cheerleading and hanging out with her friends. Then her whole world changed. Nicole learned that her fatigue and other symptoms weren’t “just the flu,” but the effects of acute myelogenous leukemia (AML), an aggressive disease that rendered her bone marrow 97 percent cancerous. Nicole spent the next three and a half months at City of Hope, fighting the cancer with a daily regimen of chemotherapy and blood and platelet transfusions. “It put me into remission,” Nicole says. “But I wasn’t cured. And I wanted a cure.” Fortunately, Nicole was a candidate for a bone marrow transplant. Her malfunctioning marrow cells would be replaced with healthy marrow from a matching unrelated donor. “I never gave up — and neither did City of Hope,” Nicole says. After two bone marrow transplants and tremendous perseverance, Nicole is back to living the life she once knew and quickly making up for lost time.

 

When Jim Murphy’s doctor called and asked to see him on Christmas Eve, Jim knew it wasn’t going to be good news. And he was right. “The diagnosis was esophageal cancer,” Jim says. “Once they tell you that, there’s nothing you can do but formulate your action plan.” Jim would need to undergo chemotherapy, radiation and surgery to remove the tumor from his esophagus. It would require taking two-thirds of his esophagus and a third of his stomach. Despite the intense treatment, Jim was determined to keep his life as normal as possible. Throughout his chemotherapy and radiation therapy, he never missed a day of work, even riding his mountain bike to and from City of Hope to take his treatments. “I needed to show myself one victory after another,” Jim says. “I know City of Hope appreciated the fact that I was fighting as hard as they were.” Now cancer-free for several years, Jim credits City of Hope with giving him the best chance to fight his disease. “What really impressed me was that the research was right there at City of Hope. If they have something experimental, it goes from the researcher, right to the doctor and right to you. It’s the ultimate weapon — doctors reaching out for researchers, researchers reaching out for doctors. And the patient wins.”

 

City of Hope is a pioneer in the fields of bone marrow transplantation, diabetes and breakthrough cancer drugs based on technology developed at the institution.  How are you transforming the future of health care by turning science into a practical benefit for patients? 

Dr. Rosen: This is a distinctive place where brilliant research moves rapidly from concept to cure. That’s what we do—we speed breakthroughs in the lab to benefit patients in the clinic

Many know us for our leadership in fighting cancer, but fighting cancer is only part of our story. For decades, we’ve been making history in the fight against diabetes and other life-threatening illnesses that can be just as dangerous, and shattering, to patients and their families.

Every year, we conduct 400+ clinical trials, enrolling 6,000+ patients; hold 300+ patents and submit nearly 30 applications to the U.S. Food and Drug Administration (FDA) for investigational new drugs; and offer comprehensive assistance for patients and their families, including patient education, support groups, social resources, mind-body therapies and patient navigators.

We also translate breakthrough laboratory findings into real, lifesaving treatments and cures, and manufacture them at three on-campus facilities. Our goal is to get patients the treatments they need as fast as humanly possible.

We are in the race to save lives – and win. In our research efforts, we are teaching immune cells to attack tumors and Don J. Diamond [Ph.D.], Vincent Chung, [M.D.], and other City of Hope researchers launched a clinical trial seeking ways to effectively activate a patient’s own immune system to fight his or her cancer. The team is combining an immune-boosting vaccine with a drug that inhibits tumor cells’ ability to grow — to encourage immune cells to attack and eliminate tumors such as non-small cell lung cancer, melanoma, triple-negative breast cancer, renal cell carcinoma and many other cancer types.

City of Hope’s Diabetes & Metabolism Research Institute is committed to developing a cure for type 1 diabetes (T1D) within six years, fueled by a $50 million funding program led by the Wanek family. Research is already underway to unlock the immune system’s role in diabetes, including T cell modulation and stem cell-based therapies that may reverse the autoimmune attack on islet cells in the pancreas, which is the cause of T1D. City of Hope’s Bart Roep [Ph.D.], previously worked at Leiden University Medical Center in the Netherlands, where he was instrumental in launching a phase 1 clinical trial for a vaccine that aims to spur the immune system to fight, and possibly cure, T1D. Plans are developing for a larger, phase 2 trial to launch in the future at City of Hope.

 

What makes your recent alliance with Translational Genomics Research Institute (TGen) different from other efforts in precision medicine around the country and within our Government to identify treatments for cancer?

Dr. Rosen: Precision medicine is the future of cancer care. Since former Vice President’s Joe Biden’s Moonshot Cancer program was launched to achieve 10 years of progress in preventing, diagnosing and treating cancer, within five years, federal cancer funding has been prioritized to address these aims.

City of Hope and the Translational Genomics Research Institute (TGen) have formed an alliance to fast-track the future of precision medicine for patients. Our clinical leadership as a comprehensive cancer center combined with TGen’s leadership in molecular cancer research will propel us to the forefront of precision medicine and is further evidence of our momentum in transforming the future of health.

In fact, most recently scientists at TGen have identified a potent compound in the fight for an improved treatment against glioblastoma multiforme (GBM), the most common and deadly type of adult brain cancer. This research could represent a breakthrough for us to find an effective long-term treatment. The compound prevents glioblastoma from spreading, and leaves cancer vulnerable to chemotherapy and radiation.  Aurintricarboxylic Acid (ATA) is a chemical compound that in laboratory tests was shown to block the chemical cascade that otherwise allows glioblastoma cells to invade normal brain tissue and resist both chemo and radiation therapy.

The goal is to accelerate the speed at which we advance research discoveries into the clinic to benefit patients worldwide.

 

As a prestigious Comprehensive Cancer Center, City of Hope was named this year as one of the top 20 cancer centers for the past 10 years. How do you achieve that designation year after year? And what specific collaborations, clinical trials and multidisciplinary research programs are under way that offer benefits to patients?

Dr. Rosen: It’s simple – we achieve this through the compassion, commitment and excellence of the City of Hope family, which includes our world-class physicians, staff, supporters and donors.

We look to find the best and brightest professionals and bring them to City of Hope to work with our amazing staff on research, treatments and cures that not only change people’s lives, but also change the world.

We also have a community of forward-looking, incredibly generous and deeply committed supporters and donors. People who get it. People who share our vision. People who take their capacity for business success and apply it to helping others. They provide the fuel that drives us forward, enabling us to do great things.

City of Hope has a long track record of research breakthroughs and is constantly working to turn novel scientific research into the most advanced medical services.

Right now, we have a number of collaborative programs underway, including: Our alliance with TGen to make precision medicine a reality for patients, The Wanek Family Project to Cure Type 1 Diabetes, and Immunotherapy and CAR-T cell therapy clinical trials, which aim to fight against brain tumors and blood cancers.

More specifically, our research team led by Hua Yu, [Ph.D.] and Andreas Herrmann, [Ph.D.], developed a drug to address the way in which cancer uses the STAT3 protein to “corrupt” the immune system. The drug, CpG-STAT3 siRNA, halts the protein’s ability to “talk” to the immune system. It blocks cancer cell growth while sending a message to surrounding immune cells to destroy a tumor, and it may also enhance the effectiveness of other immunotherapies, such as T-cell therapy.

We could also see a functional cure for HIV in the next 5 to 10 years. Gene therapy pioneer, John A. Zaia, [M.D.], the Aaron D. Miller and Edith Miller Chair in Gene Therapy, the director of the Center for Gene Therapy within City of Hope’s Hematologic Malignancies and Stem Cell Transplantation Institute, as well as principal director of our Alpha Clinic, and researchers are building on knowledge gained from the case of the so-called “Berlin patient” whose HIV infection vanished after receiving a stem cell transplant for treatment of leukemia. The donor’s CCR5 gene, HIV’s typical pathway into the body, had a mutation that blocked the virus. The team launched a clinical trial that used a zinc finger nuclease to “cut out” the CCR5 gene, leaving HIV with no place to go. Their goal: to someday deliver a one-time treatment that produces a lifetime change. Integral to the first-in-human trials are the nurses who understand the study protocols, potential side effects and symptoms.

 

Would you share some of the current science under way on breakthrough cures for cancer?

Dr. Rosen: We are achieving promising results in many innovative approaches – gene therapy, targeted therapy, immunotherapy and all aspects of precision medicine. We are also forging new partnerships and collaboration agreements around the world.

Let me share with you a few examples of our cutting-edge science.

City of Hope researchers identified a promising new strategy for dealing with PDAC, an aggressive form of pancreatic cancer. The bacterial-based therapy homes to tumors and provokes an extremely effective tumor-killing response.

Teams at City of Hope are working to load nanoparticles with small snippets of DNA molecules that can stimulate the immune system to attack tumor cells in the brain. This innovative approach can overcome the blood-brain barrier, which blocks many drugs from reaching the tumor site.

A pioneer in islet cell transplantation for the treatment of diabetes, City of Hope conducted a clinical trial to refine its transplantation protocol. Because this new protocol includes an ATG (antithymoglobulin) induction, the immune system will not harm the transplant. The immune-suppression strategy used in the trial is considered a significant improvement over the protocol used in previous islet cell transplant trials.

City of Hope physicians and scientists joined a multinational team in reporting the success of a phase II clinical trial of a novel drug against essential thrombocythemia (ET). ET patients make too many platelets (cells essential for blood clotting), which puts them at risk for abnormal clotting and bleeding. All 18 patients treated with the drug, imetelstat, exhibited decreased platelet levels, and 16 showed normalized blood cell counts.

Researchers found that the CMVPepVax vaccine — developed at City of Hope to boost cellular immunity against cytomegalovirus (CMV) — is safe and effective in stem cell transplant recipients. Building on this discovery, City of Hope and Fortress Biotech formed a company to develop two vaccines, PepVax and Triplex, against CMV, a life-threatening illness in people who have weakened or underdeveloped immune systems such as cancer patients and developing fetuses. The vaccines are the subjects of multisite clinical trials. These City of Hope vaccines could open the door to a new way of protecting cancer patients from CMV, a devastating infection that affects hundreds of thousands of people worldwide.

 

In what ways does the initial vision of Samuel H. Golter impact the work you are doing today? What does the tagline – “The Miracle of Science with Soul” – mean?

Dr. Rosen: 100+ years ago, Samuel Golter, one of the founders of City of Hope said: “There is no profit in curing the body if in the process we destroy the soul.” For decades, City of Hope has lived by this credo, providing a comprehensive, compassionate and research-based treatment approach.

“The Miracle of Science with Soul” refers to the lives that we save by uniting science and research with compassionate care.

“Miracle” represents what people with cancer and other deadly diseases say they want most of all.

“Science” speaks to the many innovations we’ve pioneered, which demonstrate that medical miracles happen here.

“Soul” represents our compassionate care. We’re an untraditional health system — and our people, culture and campus reflect this.

 

Can you please describe how City of Hope has evolved throughout its 100-year history from a tuberculosis sanitorium into a world-class research-centered institution? 

Dr. Rosen: City of Hope is a leading comprehensive cancer center and independent biomedical research institution. Over the years, our discoveries have changed the lives of millions of patients around the world.

We pioneered the research leading to the first synthetic insulin and the technology behind numerous cancer-fighting drugs, including Herceptin (trastuzumab), Avasatin (bevacizumab), Erbitux (cetuximab), and Rituxin (rituximab).

As previously mentioned, we hold 300+ patents, have numerous potential therapies in the pipeline at any given time, and treat 1,000+ patients a year in therapeutic clinical trials.

These numbers reflect our commitment to innovation and rapid translation of science into therapies to benefit patients.

We are home to Beckman Research Institute of City of Hope, the first of only five Beckman Research Institutes established by funding from the Arnold and Mabel Beckman Foundation. It is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.

Recognizing our team’s accomplishments in cancer research, treatment, patient care, education and prevention, the National Cancer Institute has designated City of Hope as a comprehensive cancer center. This is an honor reserved for only 47 institutions nationwide. Our five Cancer Center Research Programs run the gamut from basic and translational studies, to Phase I and II clinical protocols and follow-up studies in survivorship and symptom management.

City of Hope’s Diabetes & Metabolism Research Institute offers a broad diabetes and endocrinology program combining groundbreaking research, unique treatments and comprehensive education to help people with diabetes and other endocrine diseases live longer, better lives.

Our dedicated, multidisciplinary team of healthcare professionals at the Hematologic Malignancies & Stem Cell Institute combine innovative research discoveries with superior clinical treatments to improve outcomes for patients with hematologic cancers.

Working closely with the City of Hope comprehensive cancer center’s Developmental Cancer Therapeutics Program and other cancer centers, the Medical Oncology & Therapeutics Research multidisciplinary program includes basic, translational and clinical research and fosters collaborations among scientists and clinicians.

City of Hope’s Radiation Oncology Department is on the forefront of improving patient care, and our staff is constantly studying new research technologies, clinical trials and treatment methods that can lead to better outcomes and quality of life for our patients.

What attracted you to City of Hope? And how do you define success in your present role as provost and CSO?

Dr. Rosen: Helping cancer patients and their families gives me a sense of purpose. I encourage everyone to find a passion and find an organization that fits their passion. City of Hope is a special place. What we do is bigger than ourselves.

I define success as finding cures and helping patients live stronger, better lives. I am focused on leading a diverse team of scientists, clinicians and administrative leaders committed to discovering breakthroughs and specialized therapies.

COH2 Dr__Steve_Rosen_

Image SOURCE: Photograph of Provost and Chief Scientific Officer Steven T. Rosen, M.D., courtesy of City of Hope, Duarte, California.

 

Steven T. Rosen, M.D.
Provost and Chief Scientific Officer

City of Hope
Duarte, California

Steven T. Rosen, M.D., is provost and chief scientific officer for City of Hope and a member of City of Hope’s Executive Team. He also is director of the Comprehensive Cancer Center and holds the Irell & Manella Cancer Center Director’s Distinguished Chair, and he is director of Beckman Research Institute (BRI) and the Irell & Manella Graduate School of Biological Sciences.

Dr. Rosen sets the scientific direction of City of Hope, shaping the research and educational vision for the biomedical research, treatment and education institution. Working closely and collaboratively with City of Hope’s scientists, clinicians and administrative leaders, he develops strategies that contribute to the organization’s mission.

As director of BRI, he works with faculty across the institution to help shape and direct the scientific vision for BRI while leading the vital basic and translational research that is fundamental to our strategic plan and mission. He focuses on opportunities for expanding and integrating our research initiatives; recruiting and leading talented scientists; helping our talented researchers achieve national and international recognition; and promoting our national standing as a premier scientific organization.

Prior to joining City of Hope, Dr. Rosen was the Genevieve Teuton Professor of Medicine at the Feinberg School of Medicine at Northwestern University in Chicago. He served for 24 years as director of Northwestern’s Robert H. Lurie Comprehensive Cancer Center. Under his leadership, the center received continuous National Cancer Institute (NCI) funding beginning in 1993 and built nationally recognized programs in laboratory sciences, clinical investigations, translational research and cancer prevention and control. The center attained comprehensive status in 1997.

Dr. Rosen has published more than 400 original reports, editorials, books and book chapters. His research has been funded by the National Cancer Institute, American Cancer Society, Leukemia & Lymphoma Society of America and Multiple Myeloma Research Foundation.

Dr. Rosen also has served as an adviser for several of these organizations and on the external advisory boards of more than a dozen NCI-designated Comprehensive Cancer Centers. He is the current editor-in-chief of the textbook series “Cancer Treatment & Research.”

Recognized as one of the Best Doctors in America, Dr. Rosen is a recipient of the Martin Luther King Humanitarian Award from Northwestern Memorial Hospital and the Man of Distinction Award from the Israel Cancer Research Fund. He earned his bachelor’s degree and medical degree with distinction from Northwestern University from which he also earned the Alumni Merit Award, and is a member of the Alpha Omega Alpha Honor Society.

Editor’s Note: 

We would like to thank Mary-Fran Faraji, David Caouette, and Chantal Roshetar of the Communications and Public Affairs department at the City of Hope, for the gracious help and invaluable support they provided during this interview.

 

REFERENCE/SOURCE

The City of Hope (https://www.cityofhope.org/homepage), Duarte, California.

Other related articles

Retrieved from https://www.cityofhope.org/people/rosen-steven

Retrieved from https://www.cityofhope.org/research/beckman-research-institute

Retrieved from https://www.cityofhope.org/research/comprehensive-cancer-center

Retrieved from https://www.cityofhope.org/research/research-overview/diabetes-metabolism-research-institute

Retrieved from https://www.cityofhope.org/patients/departments-and-services/hematologic-malignancies-and-stem-cell-transplantation-institute

Retrieved from https://www.cityofhope.org/patients/departments-and-services/medical-oncology-and-therapeutics-research/medical-oncology-research

Retrieved from https://www.cityofhope.org/patients/cancers-and-treatments/departments-and-services/radiation-oncology/radiation-oncology-research

                        

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2017

Expedite Use of Agents in Clinical Trials: New Drug Formulary Created – The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies

https://pharmaceuticalintelligence.com/2017/01/12/expedite-use-of-agents-in-clinical-trials-new-drug-formulary-created-the-nci-formulary-is-a-public-private-partnership-between-nci-part-of-the-national-institutes-of-health-and-pharmaceutical-and/

The top 15 best-selling cancer drugs in 2022 & Projected Sales in 2020 of World’s Top Ten Oncology Drugs

https://pharmaceuticalintelligence.com/2017/01/03/projected-sales-in-2020-of-worlds-top-ten-oncology-drugs/

2016

Funding Opportunities for Cancer Research

https://pharmaceuticalintelligence.com/2016/12/08/funding-opportunities-for-cancer-research/

Recent Breakthroughs in Cancer Research at the Technion-Israel Institute of Technology- 2015

https://pharmaceuticalintelligence.com/2016/02/03/recent-breakthroughs-in-cancer-research-at-the-technion-israel-institute-of-technology-2015/

New York Times Articles on Cancer Immunotherapy and Cancer Treatment Options

https://pharmaceuticalintelligence.com/2016/08/09/new-york-times-articles-on-immunotherapy-and-cancer-treatment-options/

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

https://pharmaceuticalintelligence.com/biomed-e-books/series-c-e-books-on-cancer-oncology/volume-2-immunotherapy-in-oncology/

Read Full Post »


University Children’s Hospital Zurich (Universitäts-Kinderspital Zürich), Switzerland – A Prominent Center of Pediatric Research and Medicine

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

University Children’s Hospital Zurich (Universitäts-Kinderspital Zürich —  http://www.kispi.uzh.ch), in Switzerland, is the largest specialized, child and adolescent hospital in the country and one of the leading research centers for pediatric and youth medicine in Europe. The hospital, which has about 220 beds, numerous outpatient clinics, a day clinic, an interdisciplinary emergency room, and a specialized rehabilitation center, is a non-profit private institution that offers a comprehensive range of more than 40 medical sub-specializations, including heart conditions, bone marrow transplantation and burns. There are approximately 2,200 physicians, nurses, and other allied health care and administrative personnel employed at the hospital.

Just as important, the hospital houses the Children’s Research Center (CRC), the first research center in Switzerland that is solely dedicated to pediatric research, and is on par with the largest children’s clinics in the world. The research center provides a strong link between research and clinical experience to ensure that the latest scientific findings are made available to patients and implemented in life-saving therapies. By developing highly precise early diagnoses, innovative therapeutic approaches and effective new drugs, the researchers aim to provide a breakthrough in prevention, treatment and cure of common and, especially, rare diseases in children.

Several significant milestones have been reached over the past year. One important project under way is approval by the hospital management board and Zurich city council to construct a new building, projected to be completed in 2021. The new Children’s Hospital will constitute two main buildings; one building will house the hospital with around 200 beds, and the other building will house university research and teaching facilities.

In the ongoing quest for growing demands for quality, safety and efficiency that better serve patients and their families, the hospital management established a new role of Chief Operating Officer. This new position is responsible for the daily operation of the hospital, focusing on safety and clinical results, building a service culture and producing strong financial results. Greater emphasis on clinical outcomes, patient satisfaction and partnering with physicians, nurses, and other medical and administrative staff is all part of developing a thriving and lasting hospital culture.

Recently, the hospital’s Neurodermatitis Unit in cooperation with Christine Kuehne – Center for Allergy Research and Education (CK-Care), one of Europe’s largest private initiatives in the field of allergology, has won the “Interprofessionality Award” from the Swiss Academy of Medical Sciences.  This award highlights best practices among doctors, nurses and medical staff in organizations who work together to diagnose and treat the health and well-being of patients, especially children with atopic dermatitis and their families.

At the northern end of Lake Zurich and between the mountain summit of the Uetliberg and Zurichberg, Children’s Hospital is located in the center of the residential district of Hottingen.

 

childrens-hospital4childrens-hospital3childrens-hospital2childrens-hospital1

Image SOURCE: Photograph courtesy of Children’s Hospital Zurich (Universitäts-Kinderspital Zürich), Switzerland. Interior and exterior photographs of the hospital.

 

Below is my interview with Hospital Director and Chief Executive Officer Markus Malagoli, Ph.D., which occurred in December, 2016.

How do you keep the spirit of innovation alive? 

Dr. Malagoli: Innovation in an organization, such as the University Children’s Hospital, correlates to a large extent on the power to attract the best and most innovative medical team and administrative people. It is our hope that by providing our employees with the time and financial resources to undertake needed research projects, they will be opened to further academic perspectives. At first sight, this may seem to be an expensive opportunity. However, in the long run, we have significant research under way in key areas which benefits children ultimately. It also gives our hospital the competitive edge in providing quality care and helps us recruit the best physicians, nurses, therapists, social workers and administrative staff.

The Children’s Hospital Zurich is nationally and internationally positioned as highly specialized in the following areas:

  • Cardiology and cardiac surgery: pediatric cardiac center,
  • Neonatal and malformation surgery as well as fetal surgery,
  • Neurology and neurosurgery as well as neurorehabilitation,
  • Oncology, hematology and immunology as well as oncology and stem cell transplants,
  • Metabolic disorders and endocrinology as well as newborn screening, and
  • Combustion surgery and plastic reconstructive surgery.

We provide patients with our special medical expertise, as well as an expanded  knowledge and new insights into the causes, diagnosis, treatment and prophylaxis of diseases, accidents or deformities. We have more than 40 medical disciplines that cover the entire spectrum of pediatrics as well as child and youth surgery.

As an example, for many years, we have treated all congenital and acquired heart disease in children. Since 2004, specialized heart surgery and post-operative care in our cardiac intensive care unit have been carried out exclusively in our child-friendly hospital. A separate heart operation area was set up for this purpose. The children’s heart center also has a modern cardiac catheter laboratory for children and adolescents with all diagnostic and catheter-interventional therapeutic options. Heart-specific non-invasive diagnostic possibilities using MRI are available as well as a large cardiology clinic with approximately 4,500 outpatient consultations per year. In April 2013, a special ward only for cardiac patients was opened and our nursing staff is highly specialized in the care of children with heart problems.

In addition to the advanced medical diagnostics and treatment of children, we also believe in the importance of caring and supporting families of sick children with a focus on their psychosocial well-being. For this purpose, a team of specialized nurses, psychiatrists, psychologists, and social workers are available. Occasionally, the children and their families need rehabilitation and we work with a team of specialists to plan and organize the best in-house or out-patient rehabilitation for the children and their families.

We also provide therapeutic, rehabilitation and social services that encompass nutritional advice, art and expression therapy, speech therapy, physical therapy, psychomotor therapy, a helpline for rare diseases, pastoral care, social counseling, and even hospital clowns. Our hospital teams work together to provide our patients with the best care so they are on the road to recovery in the fastest possible way.

What draws patients to Children’s Hospital?

Dr. Malagoli: Our hospital depends heavily on complex, interdisciplinary cases. For many diagnosis and treatments, our hospital is the last resort for children and adolescents in Switzerland and even across other countries. Our team is fully committed to the welfare of the patients they treat in order to deal with complex medical cases, such as diseases and disorders of the musculo-skeletal system and connective tissue, nervous system, respiratory system, digestive system, and ear, nose and throat, for example.

Most of our patients come from Switzerland and other cantons within the country, yet other patients come from as far away as Russia and the Middle East. Our hospital sees about 80,000 patients each year in the outpatient clinic for conditions, such as allergic pulmonary diseases, endocrinology and diabetology, hepatology, and gastroenterology; about 7,000 patients a year are seen for surgery; and about 37,000 patients a year are treated in the emergency ward.

We believe that parents are not visitors; they belong to the sick child’s healing, growth, and development. This guiding principle is a challenge for us, because we care not only for sick children, but also for their families, who may need personal or financial resources. Many of our services for parents, for example, are not paid by the Swiss health insurance and we depend strongly on funds from private institutions. We want to convey the feeling of security to children and adolescents of all ages and we involve the family in the recovery process.

What are the hospital’s strengths?

Dr. Malagoli: A special strength of our hospital is the interdisciplinary thinking of our teams. In addition to the interdisciplinary emergency and intensive care units, there are several internal institutionalized meetings, such as the uro-nephro-radiological conference on Mondays, the oncological conference and the gastroenterological meeting on Tuesdays,  and the pneumological case discussion on Wednesdays, where complex cases are discussed among our doctors. Foreign doctors are welcome to these meetings, and cases are also discussed at the appropriate external medical conferences.

Can you discuss some of the research projects under way at the Children’s Research Center (CRC)?

Dr. Malagoli: Our Children’s Research Center, the first research center in Switzerland focused on pediatric research, works closely with our hospital team. From basic research to clinical application, the hospital’s tasks in research and teaching is at the core of the Children’s Research Center for many young and established researchers and, ultimately, also for patients.

Our research projects focus on:

  • Behavior of the nervous, metabolic, cardiovascular and immune system in all stages of growth and development of the child’s condition,
  • Etiology (causes of disease) and treatment of genetic diseases,
  • Tissue engineering of the skin and skin care research: from a few cells of a child,  complex two-layered skin is produced in the laboratory for life-saving measures after severe burns and treatment of congenital anomalies of the skin,
  • Potential treatment approaches of the most severe infectious diseases, and
  • Cancer diseases of children and adolescents.

You are making great strides in diagnostic work in the areas of Hematology, Immumology, Infectiology and Oncology. Would you elaborate on this particular work that is taking place at the hospital?

Dr. Malagoli: The Department of Image Diagnostics handles radiological and ultrasonographic examinations, and the numerous specialist labs offer a complete  range of laboratory diagnostics.

The laboratory center makes an important contribution to the clarification and treatment of disorders of immune defense, blood and cancer, as well as infections of all kinds and severity. Our highly specialized laboratories offer a large number of analyzes which are necessary in the assessment of normal and pathological cell functions and take into account the specifics and requirements of growth and development in children and infants.

The lab center also participates in various clinical trials and research projects. This allows on-going validation and finally introducing the latest test methods.

The laboratory has been certified as ISO 9001 by the Swiss Government since 2002 and has met the quality management system requirements on meeting patient expectations and delivering customer satisfaction. The interdisciplinary cooperation and careful communication of the laboratory results are at the center of our activities. Within the scope of our quality assurance measures, we conduct internal quality controls on a regular basis and participate in external tests. Among other things, the work of the laboratory center is supervised by the cantonal medicine committee and Swissmedic organization.

Additionally, the Metabolism Laboratory  offers a wide variety of biochemical and molecular diagnostic analysis, including those for the following areas:

  • Disorders in glycogen and fructose metabolism,
  • Lysosomal disorders,
  • Disorders of biotin and vitamin B12 metabolism,
  • Urea cycle disorders and Maple Syrup Urine Disease (MSUD),
  • Congenital disorders of protein glycosylation, and
  • Hereditary disorders of connective tissue, such as Ehlers-Danlos Syndrome and Marfan Syndrome.

Screening for newborn conditions is equally important. The Newborn Screening Laboratory examines all newborn children in Switzerland for congenital metabolic and hormonal diseases. Untreated, the diseases detected in the screening lead in most cases to serious damage to different organs, but especially to the development of the brain. Thanks to the newborn screening, the metabolic and hormonal diseases that are being sought can be investigated by means of modern methods shortly after birth. For this, only a few drops of blood are necessary, which are taken from the heel on the third or fourth day after birth. On a filter paper strip, these blood drops are sent to the laboratory of the Children’s Hospital Zurich, where they are examined for the following diseases:

  • Phenylketonuria (PKU),
  • Hypothyroidism,
  • MCAD deficiency,
  • Adrenogenital Syndrome (AGS),
  • Galactosemia,
  • Biotinide deficiency,
  • Cystic Fibrosis (CF),
  • Glutaraziduria Type 1 (GA-1), and
  • Maple Syrup Urine Disease (MSUD).

Ongoing physician medical education and executive training is important for the overall well-being of the hospital. Would you describe the program and the courses?

Dr. Malagoli:  We place a high priority on medical education and training with a focus on children, youth, and their families. The various departments of the hospital offer regular specialist training courses for interested physicians at regular intervals. Training is available in the following areas:

  • Anesthesiology,
  • Surgery,
  • Developmental Pediatrics,
  • Cardiology,
  • Clinical Chemistry and Biochemistry,
  • Neuropediatrics,
  • Oncology,
  • Pediatrics, and
  • Rehabilitation.

As a training hospital, we have built an extensive network or relationships with physicians in Switzerland as well as other parts of the world, who take part in our ongoing medical education opportunities that focus on specialized pediatrics and  pediatric surgery. Also, newly trained, young physicians who are in private practice or affiliated with other children’s hospitals often take part in our courses.

We also offer our hospital management and leaders from other organizations professional development in the areas of leadership or specialized competence training. We believe that all executives in leadership or management roles contribute significantly to our success and to a positive working climate. That is why we have developed crucial training in specific, work-related courses, including planning and communications skills, professional competence, and entrepreneurial development.

How is Children’s Hospital transforming health care? 

Dr. Malagoli: The close cooperation between doctors, nurses, therapists and social workers is a key success factor in transforming health care. We strive for comprehensive child care that does not only focus on somatic issues but also on psychological support for patients and their families and social re-integration. However, it becomes more and more difficult to finance all the necessary support services.

Many supportive services, for example, for parents and families of sick children are not paid by health insurance in Switzerland and we do not receive financial support from the Swiss Government. Since 2012, we have the Swiss Diagnosis Related Groups (DRG) guidelines, a new tariff system for inpatient hospital services, that regulates costs for treatment in hospitals all over the country and those costs do not consider the amount of extra services we provide for parents and families as a children’s hospital. Those DRG principles mostly are for hospitals who treat adult patients.

Since you stepped into your role as CEO, how have you changed the way that you deliver health care?

Dr. Malagoli: I have definitely not reinvented health care! Giving my staff the space for individual development and the chance to realize their ideas is probably my main contribution to our success. Working with children is for many people motivating and enriching. We benefit from that, too. Moreover, we have managed to build up a culture of confidence and mutual respect – we call it the “Kispi-spirit”. “Kispi” as abbreviation of “Kinderspital.” Please visit our special recruiting site, which is www.kispi-spirit.ch.

I can think of a few examples where our doctors and medical teams have made a difference in the lives of our patients. Two of our physicians – PD (Privatdozent, a private university teacher) Dr. med. Alexander Moller and Dr. med. Florian Singer, Ph.D. – are involved in the development of new pulmonary functions tests which allow us to diagnose chronic lung diseases at an early stage in young children.

  • Often times, newly born babies have a lung disease but do not show any specific symptoms, such as coughing. One of these new tests measures lung function based on inhaling and exhaling pure oxygen, rather than using the standard spirometry test used in children and adults to assess how well an infant’s lungs work by measuring how much air they inhale, how much they exhale and how quickly they exhale. The new test is currently part of a clinical routine in children with cystic fibrosis as well as in clinical trials in Europe. The test is so successful that the European Respiratory Society presented Dr. med. Singer, Ph.D., with the ‘Pediatric Research Award’ in 2015.
  • Another significant research question among the pediatric pulmonary disease community is how asthma can be diagnosed reliably and at an earlier stage. PD Dr. med. Moller, chief physician of Pneumology at the hospital, has high hopes in a new way to measure exhaled air via mass spectrometry. If it succeeds, it will be able to evaluate changes in the lungs of asthmatics or help with more specific diagnoses of pneumonia.

In what ways have you built greater transparency, accountability and quality improvement for the benefit of patients?

Dr. Malagoli: Apart from the quality measures which are prescribed by Swiss law, we have decided not to strive for quality certifications and accreditations. We focus on outcome quality, record our results in quality registers and compare our outcome internationally with the best in class.

Our team of approximately 2,200 specialized physicians largely comes from Switzerland, although we have attracted a number of doctors from countries such as Germany, Portugal, Italy, Austria, and even Serbia, Turkey, Macedonia, Slovakia, and Croatia.

We recently conducted an employee satisfaction survey, which showed about 88 percent of employees were very satisfied or satisfied with their working conditions at the hospital and the job we are doing with patients and their families. This ranking is particularly gratifying for us as a service provider for the children and families we serve.

How does your volunteer program help families better deal with hospitalized children?

Dr. Malagoli: We have an enormous commitment from volunteers to care for hospitalized children and we are grateful to them. We offer our patients and their families child care, dog therapy, and even parenting by the Aladdin Foundation, a volunteer visiting service for hospitalized children to relieve parents and relatives and help young patients stay in hospital to recover quickly. The volunteers visit the child in the absence of the parents and are fully briefed on the child’s condition and care plan. The handling of care request usually takes no more than 24 hours and is free of charge. The assignments range from one-off visits to daily care for several weeks.

malagoli_m_905

Image SOURCE: Photograph of Hospital Director and Chief Executive Officer Markus Malagoli, Ph.D., courtesy of Children’s Hospital Zurich (Universitäts-Kinderspital Zürich), Switzerland.  

Markus Malagoli, Ph.D.
Director and Chief Executive Officer

Markus Malagoli, Ph.D., has been Hospital Director and Chief Executive Officer of the University Children’s Hospital Zurich (Universitäts-Kinderspital Zürich), since 2007.

Prior to his current role, Dr. Malagoli served as Chairman of Hospital Management and Head of Geriatrics of the Schaffhausen-Akutspital, the only public hospital in the Canton of Schaffhausen, from 2003 through 2007, where he was responsible for 10 departments, including surgery, internal medicine, obstetrics/gynecology, rheumatology/rehabilitation, throat and nose, eyes, radiology, anesthesia, hospital pharmacy and administration. The hospital employs approximately 1,000 physicians, nursing staff, other medical personal, as well as administration and operational services employees. On average, around 9,000 individuals are treated in the hospital yearly. Previously, he was Administrative Director at the Hospital from 1996 through 2003.

Dr. Malagoli began his career at Ciba-Geigy in 1985, spending 11 years in the company. He worked in Business Accounting in Basel, and a few years later, became Head of the Production Information System department in Basel. He then was transferred to Ciba-Geigy in South Africa as Controller/Treasurer and returned to Basel as Project Manager for the SAP Migration Project in Accounting.

Dr. Malagoli received his B.A. degree in Finance and Accounting and a Ph.D. in Business Administration at the University of St. Gallen.

He is a member of the Supervisory Board of Schaffhausen-Akutspital and President of the Ungarbühl in Schaffhausen, a dormitory for individuals with developmental impairments.

Editor’s note:

We would like to thank Manuela Frey, communications manager, University Children’s Hospital Zurich, for the help and support she provided during this interview.

 

REFERENCE/SOURCE

University Children’s Hospital Zurich (Universitäts-Kinderspital Zürich —  http://www.kispi.uzh.ch)

Other related articles

Retrieved from http://www.swisshealth.ch/en/patienten/spitaeler/Kispi.php

Retrieved from http://hospitals.webometrics.info/en/europe/switzerland%20

Retrieved from http://www.gruner.ch/en/projects/university-childrens-hospital-zurich

Retrieved from http://www.ebmt-swiss-ng.org/university-childrens-hospital-zurich.html

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

Healthcare conglomeration to access Big Data and lower costs

https://pharmaceuticalintelligence.com/2016/01/13/healthcare-conglomeration-to-access-big-data-and-lower-costs/

A New Standard in Health Care – Farrer Park Hospital, Singapore’s First Fully Integrated Healthcare/Hospitality Complex

https://pharmaceuticalintelligence.com/2016/06/22/a-new-standard-in-health-care-farrer-park-hospital-singapores-first-fully-integrated-healthcarehospitality-complex/

A Rich Tradition of Patient-Focused Care — Richmond University Medical Center, New York’s Leader in Health Care and Medical Education

https://pharmaceuticalintelligence.com/2016/10/17/a-rich-tradition-of-patient-focused-care-richmond-university-medical-center-new-yorks-leader-in-health-care-and-medical-education/

2013

Risk Factor for Health Systems: High Turnover of Hospital CEOs and Visionary’s Role of Hospitals In 10 Years

https://pharmaceuticalintelligence.com/2013/08/08/risk-factor-for-health-systems-high-turnover-of-hospital-ceos-and-visionarys-role-of-hospitals-in-10-years/

Nation’s Biobanks: Academic institutions, Research institutes and Hospitals – vary by Collections Size, Types of Specimens and Applications: Regulations are Needed

https://pharmaceuticalintelligence.com/2013/01/26/nations-biobanks-academic-institutions-research-institutes-and-hospitals-vary-by-collections-size-types-of-specimens-and-applications-regulations-are-needed/

 

 

 

 

Read Full Post »

Older Posts »