Feeds:
Posts
Comments

Posts Tagged ‘tumor’

Rare earth-doped nanoparticles applications in biological imaging and tumor treatment

Reporter: Irina Robu, PhD

Bioimaging  aims to interfere as little as possible with life processes and can be used to gain information on the 3-D structure of the observed specimen from the outside. Bioimaging ranges from  the observation of subcellular structures and the entire cells over tissues up to entire multicellular organisms. The technology uses light, fluorescence, ultrasound, X-ray, magnetic resonance as sources of imaging. The more common imaging is fluorescence imaging which is used to monitor the dynamic interaction between the drug molecules and tumor cells and the ability to monitor the real time dynamic process in biological tissues.

Researchers from the Xi’an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences (CAS) described the recent progress they made in the rare earth-doped nanoparticles in the field of bio-engineering and tumor treatment. It is well known that producing small nanoparticles with good dispersion and exploitable optical coherence properties is highly challenging. According to them, these rare earth-doped nanoparticles can be vested with additional capabilities such as water solubility, biocompatibility, drug-loading ability and the target ability for different tumors by surface functionalization. The luminescent properties and structure design were also looked at.

According to the Chinese researchers, for applying the RE-doped NPs to the diagnosis and treatment of tumors, their first goal is to improve water solubility and biocompatibility.  The second goal would be to give the nanoparticles the ability to target tumors by surface functionalization. Lastly, biocompatible water-soluble tumor-targeting NPs can be used as carriers to load drugs for treatment of tumor cells. All things considered, the recent research progress on the development of fluorescence intensity of NPs, surface modification, and tumor targeted diagnosis and treatment has also been emphasized.

SOURCE

https://nano-magazine.com/news/2020/8/20/application-of-rare-earth-doped-nanoparticles-in-biological-imaging-and-tumor-treatment?ss_source=sscampaigns

Read Full Post »

The Puzzle of Stem Cells and Cancer Stem Cells: The MIT Stem Cell Initiative

Reporter: Irina Robu, PhD

The MIT Stem Cell Initiative is looking to research fundamental biological questions about normal adult stem cells and their malignant counterparts, cancer stem cells. The MIT Stem Cell Initiative is applying new technologies and approaches in pursuit of this goal. In particular, the MIT Stem Cell Initiative has focused on the breast and colon, as these tissues are quite different from each other, yet each constitutes a major portion of cancer occurrence. The program purposes are to

(a) identify the stem cells and cancer stem cells in various tissues and tumor types,

(b) control how these cells change during aging or with disease progression and

(c) determine the similarities and differences between

  • normal cells, and
  • cancer stem cells,

with the goal of finding weaknesses in cancer stem cells that can be feasible and exact targets for treatment.

In due course, the ability to identify, purify, and establish several populations of stem cells and cancer stem cells could aid researchers to understand the biology of these cells, and learn how to exploit them more efficiently in regenerative medicine applications and target them in cancer.

Normal adult stem cells are undifferentiated cells within a tissue that divide to produce two daughter cells and divide periodically to replenish or repair the tissue. One of the two daughter cells remain in the stem cell state and the other adopts a partially differentiated state, then goes on to divide and differentiate further to harvest multiple cell types that form that tissue. The division process is through a precise process to ensure that tissues are restricted to the appropriate size and cell content.

Cancer stem cells perform the same division but, rather than differentiating, the additional cells produced by the second daughter cell amass to form the bulk of the tumor.

  • Cancer stem cells can regrow the tumor, and
  • are frequently resistant to chemotherapy.

This exclusive ability of normal and cancer stem cells to both self-renew and form a tissue or tumor is referred to by researchers as “stemness,” and has important implications for biomedical applications.

As a result, cancer stem cells are thought to be responsible for

  • tumor recurrence after remission, and also for the
  • formation of metastases, which account for the majority of cancer-associated deaths.

Accordingly, an anti-cancer stem cell therapy that can target and kill cancer stem cells is one of the holy grail of cancer treatment as means to suppress both tumor recurrence and metastatic disease. One of the important tasks to studying normal and cancer stem cells, and to ultimately harnessing that knowledge is developing the ability to identify, purify, and propagate these cells. Accordingly, the main goal in stem cell and cancer stem cell research is discovering ways to distinguish them, preferably by identifying unique surface markers that can be used to cleanse stem cell and cancer stem cell populations and enable their study.

New technologies are permitting the researchers to make significant headway in these investigations, progress that was not possible just a few years ago. Explicitly, they are using

  • a mixture of specially cultured cells,
  • highly controllable mouse models of cancer, and s
  • ingle-cell RNA sequencing and
  • computational analysis techniques that are extremely matched to extracting an excessive deal of information from the moderately small number of stem cells.

SOURCE

http://news.mit.edu/2018/mit-initiative-delves-into-stem-cell-biology-1015

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MRI-guided focused ultrasound (MRgFUS) surgery is a noninvasive thermal ablation method that uses magnetic resonance imaging (MRI) for target definition, treatment planning, and closed-loop control of energy deposition. Ultrasound is a form of energy that can pass through skin, muscle, fat and other soft tissue so no incisions or inserted probes are needed. High intensity focused ultrasound (HIFU) pinpoints a small target and provides a therapeutic effect by raising the temperature high enough to destroy the target with no damage to surrounding tissue. Integrating FUS and MRI as a therapy delivery system allows physicians to localize, target, and monitor in real time, and thus to ablate targeted tissue without damaging normal structures. This precision makes MRgFUS an attractive alternative to surgical resection or radiation therapy of benign and malignant tumors.

 

Hypothalamic hamartoma is a rare, benign (non-cancerous) brain tumor that can cause different types of seizures, cognitive problems or other symptoms. While the exact number of people with hypothalamic hamartomas is not known, it is estimated to occur in 1 out of 200,000 children and teenagers worldwide. In one such case at Nicklaus Children’s Brain Institute, USA the patient was able to return home the following day after FUS, resume normal regular activities and remained seizure free. Patients undergoing standard brain surgery to remove similar tumors are typically hospitalized for several days, require sutures, and are at risk of bleeding and infections.

 

MRgFUS is already approved for the treatment of uterine fibroids. It is in ongoing clinical trials for the treatment of breast, liver, prostate, and brain cancer and for the palliation of pain in bone metastasis. In addition to thermal ablation, FUS, with or without the use of microbubbles, can temporarily change vascular or cell membrane permeability and release or activate various compounds for targeted drug delivery or gene therapy. A disruptive technology, MRgFUS provides new therapeutic approaches and may cause major changes in patient management and several medical disciplines.

 

References:

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005559/

 

https://www.mayoclinic.org/tests-procedures/focused-ultrasound-surgery/about/pac-20384707

 

https://www.mdtmag.com/news/2017/04/nicklaus-childrens-hospital-performs-worlds-first-focused-ultrasound-surgery-hypothalamic-hamartoma?et_cid=5922034&et_rid=765461457&location=top&et_cid=5922034&et_rid=765461457&linkid=https%3a%2f%2fwww.mdtmag.com%2fnews%2f2017%2f04%2fnicklaus-childrens-hospital-performs-worlds-first-focused-ultrasound-surgery-hypothalamic-hamartoma%3fet_cid%3d5922034%26et_rid%3d%%subscriberid%%%26location%3dtop

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097768/

 

https://stanfordhealthcare.org/medical-treatments/m/mr-guided-focused-ultrasound.html

 

Read Full Post »

Brain Surgeons Use 3D printing to Practice

Reporter: Irina Robu, PhD

Mechanical thrombectomy is a hopeful new modality of interventional stroke treatment. The countless devices on the market differ with regard to where they apply force on the thrombus, taking a proximal approach such as aspiration devices or a distal approach such as basket-like devices. In 2012, the Food and Drug Administration (FDA) approved mechanical thrombectomy – using a wire to pull clots out of the brains of stroke victims. At the end of the wire a trap exists which is like a noose that that captures the clot. Considering that the mechanical thrombectomy is a very risky procedure, interventional radiologists and neurosurgeons need to train extensively before they work on a real person.

Because of the procedure is very risky, a UConn Health radiologist and medical physicist made it easier for surgeons to practice first before the actual procedure. The team made a life size model of the arteries that the wire must pass through using brain scans and a 3D printer. The life size model will allow the surgeon to be more confident when guiding the wire and will give them the basic techniques on how to move the catheter. Holding the life size model of arteries, brings home how small they are even in an adult man. According to Dr. Ketan Bulsara, this life size model will be used a training model to learn mechanical thrombectomy and being able to model the tumor in advance could personalize and advance patient care.

SOURCE

https://www.mdtmag.com/news/2017/09/uconn-healths-new-3-d-printed-model-allows-brain-surgeons-practice

 

Read Full Post »

PROGRAM ANNOUNCEMENT

Conference Program is available at

http://www.sachsforum.com/newyork14/


Event’s agenda available at:
http://www.sachsforum.com/newyork14/newyork14-agenda.html

Wednesday, 19th March 2014
Registration and coffee begins – 08.00
Program begins – 08.15
Networking reception will take place at 18.00 – 20.00

Once you arrive at 7 World Trade Center (250 Greenwich St, New York, NY10007, USA).
Please use the D Elevator Bank to the 40th floor where Sachs Team will welcome you at the registration desk.

For urgent issues, please contact:
Tomas@sachsforum.com (cell number +44 77 043 158 71)
Or Mina@sachsforum.com (cell number +44 74 636 695 04) Cells available from 15th March.

Announcement

LEADERS IN PHARMACEUTICAL BUSINESS INTELLIGENCE will cover the event for the Scientific Media

Dr. Lev-Ari will be in attendance on 3/19/2014 at 

The New York Academy of Sciences.

Editorials of event coverage via our 

Open Access Scientific Journal

http://pharmaceuticalintelligence.com

Date             Views to Date      # of articles      “NIH Clicks”  “Nature Clicks”

3/05/2014      338,958                 1,717                 1,830                   965

  • 369 Articles on Cancer
  • 74 articles on Imaging-based Cancer Patient Management

http://pharmaceuticalintelligence.com/?s=Cancer+

  • Cancer e-Book

Series C: e-Books on Cancer & Oncology

Series C Content Consultant: Larry H. Bernstein, MD, FCAP 

VOLUME ONE 

Cancer Biology and Genomics for Disease Diagnosis

2014

Stephen J. Williams, PhD, Senior Editor

sjwilliamspa@comcast.net

Tilda Barliya, PhD, Editor

tildabarliya@gmail.com

Ritu Saxena, PhD, Editor

ritu.uab@gmail.com

http://pharmaceuticalintelligence.com/biomed-e-books/series-c-e-books-on-cancer-oncology/cancer-biology-and-genomics-for-disease-diagnosis/

SIX SOURCES of INVESTMENT for BioMed INVENTIONS

Curator: Aviva Lev-Ari, PhD, RN

Investing and inventing: Is the Tango of Mars and Venus Still on

MEDIA COVERAGE

The Event will be broadcasted via our distributions channels on the Internet and all Search Engines featuring WordPress.com

  • Scientific Journal

http://pharmaceuticalintelligence.com

http://pharmaceuticalintelligence.com/2014/03/05/milestone-for-our-venture-we-celebrate-our-top-authors-by-number-of-articles-in-the-journal-to-date-1000-301-58-49-46-43-40-28-20/

  • Facebook HomePage of LEADERS IN PHARMACEUTICAL BUSINESS INTELLIGENCE

http://www.facebook.com/LeadersInPharmaceuticalBusinessIntelligence

  • On Twitter.com  @pharma_BI

http://twitter.com/pharma_BI

  • 53 BioMed Groups on LinkedIn.com

http://www.linkedin.com/in/avivalevari

  • Dr. Lev-Ari’s BioMed Group launched by and managed by on LinkedIn.com – LEADERS IN PHARMACEUTICAL BUSINESS INTELLIGENCE

http://www.linkedin.com/groups?gid=4346921&trk=hb_side_g

2nd ANNUAL

Sachs Cancer Bio Partnering &
Investment Forum

Promoting Public & Private Sector Collaboration & Investment

in Drug Development

19th March 2014 • New York Academy of Sciences • USA  
spi2012

http://www.sachsforum.com/newyork14/

 

The 2nd Annual Sachs Cancer Bio Partnering & Investment Forum is designed to bring together thought leaders from cancer research institutes, patient advocacy groups, pharma and biotech to facilitate partnering and funding/investment. We expect around 200 delegates and there is an online meeting system and meeting facilities to make the event transactional. There will also be a track of about 30 presentations by listed and private biotechnology companies seeking licensing/investment.

divider

The 2nd Annual Sachs Cancer Bio Partnering & Investment Forum will cover the following topics in the program:

  • Advances in Translational Research
  • Strategies for Small Molecule and Biologicals Drug Development
  • Deal Making
  • Public & Private Partnerships
  • Diagnostics
  • Immunotherapies and Cancer Vaccines
  • Case Study

Confirmed Speakers & Chairs include:
Anne Altmeyer, Executive Director Business Development & LicensingNovartis Pharmaceuticals
Ariel Jasie, Executive Director of Business DevelopmentCelgene
Beth Jacobs, Managing PartnerExcellentia Global Partners
Boris Peaker, Executive Director, Biotechnology Equity ResearchOppenheimer & Co. Inc.
Carole Nuechterlein, Head Roche Venture FundF.Hoffmann-La Roche AG Roche Venture Fund
Dan Snyder, President and COOMolecularMD
Daryl Mitteldorf, Executive DirectorGlobal Prostate Cancer Alliance
Dennis Purcell, Senior Managing PartnerAisling Capital
Doug Plessinger, Vice President of Clinical and Medical AffairsArgos Therapeutics, Inc.
Elizabeth Bachert, Senior Director Worldwide Business DevelopmentPfizer
Esteban Pombo-Villar, COOOxford BioTherapeutics AG
Florian Schodel, CEO, Philimmune LLC
Frederick Cope, President and CSONavidea Biopharmaceuticals
Guillaume Vignon, Director of Global BD Oncology, Merck Serono SA
Harren Jhoti, PresidentAstex Pharmaceuticals Inc.
Harry Glorikan, Managing DirectorPrecision for Medicine
James Mulé, Executive Vice President and Associate Center Director for Translational Research,
H Lee Moffit Cancer Center
Keith Knutson, Program Director and Principal Investigator of the Cancer Vaccines and immune Therapies ProgramVaccine and Gene Therapy Institute of Florida
Kevin DeGeeter, AnalystLadenburg Thalmann & Co, Inc.
Klaus Urbahns, Head, Discovery TechnologiesMerck Serono
Kristina Khodova, Project Manager, OncologySkolkovo Foundation
Lorenza Castellon, Business Development ConsultantSuda Ltd.
Louis DeGennaro, Executive VP, CMO, The Leukemia and Lymphoma Society
Louise Perkins, Chief Science OfficerMelanoma Research Alliance
Mara Goldstein, Managing Director, Senior Healthcare AnalystCantor Fitzgerald
Michael Goldberg, Managing PartnerMontaur Capital
Nathan Tinker, Executive DirectorNewYorkBIO
Nicholas Dracopoli, Vice President and Head of OncologyJanssen Research & Development
Peter Hoang, Managing Director, Office of Innovations, Technology Based VenturesThe University of Texas MD Anderson Cancer Center
Philip Gotwals, Executive Director, Oncology Research CollaborationsNovartis Institutes for BioMedical Research
Robert Petit, CSOAdvaxis Inc.
Stephen Brozak, Managing Partner and PresidentWBB Securities, LLC
Steven Tregay, CEOForma Therapeutics
Steven W. Young, PresidentAddario lung Cancer Medical Institute
Stuart Barich, Managing Director, Healthcare Investment BankingOppenheimer & Company
Tariq Kassum MD, Vice President, Business Development and StrategyMillennium Pharmaceuticals
TBC, Cardinal Health
TBC, UCSD
Timothy Herpin, Vice President, Head of Transactions (UK), Business DevelopmentAstraZeneca
Vikas Sharma, Director, Business DevelopmentRexahn Pharmaceuticals, Inc.
Walter Capone, PresidentThe Multiple Myeloma Research Foundation

View the full list of 2013 Forum Speakers & Chairs >>

divider

Presenting Opportunities for Biotech, Pharmaceutical companies  and Patient Advocacy Groups

Presenting at the forum offers excellent opportunities to showcase activities and highlight investment and partnership opportunities. Biotech companies will be able to communicate investment and licensing opportunities. These are for both public and private companies. The audience is comprised of financial and industry investors. These are streamed 15 minute presentations. The patient advocacy presentations are 30 minutes.

Sachs forums are recognised as the leading international stage for those interested in investing in the biotech and life science industry and are highly transactional. They draw together an exciting cross-section of early-stage/pre-IPO, late-stage and public companies with leading investors, analysts, money managers and pharmas. The Boston forum provides the additional interaction with the academic/scientific and patient advocacy communities.

Sponsorship and Exhibition

Sachs Associates has developed an extensive knowledge of the key individuals operating within the European and global biotech industry. This together with a growing reputation for excellence puts Sachs Associates at the forefront of the industry and provides a powerful tool by which to increase the position of your company in this market.

Raise your company’s profile directly with your potential clients. All of our sponsorship packages are tailor made to each client, allowing your organisation to gain the most out of attending our industry driven events.

To learn more about presenting, exhibition or sponsorship opportunities, please contact
Mina Orda + 44 (0)203 463 4890 or by email: Mina Orda.

 

spi2012
Register Now
Register
To Exhibit
Register
To Present
OVERVIEW sachs Speakers sachs Presenting Companies sachs Attendees sachs Program sachs Sponsors / Supporters sachs Venue sachs Accommodation
Biotech i Europe Investor Forum
sachs sachs
Companies Who Presented at the 2013 Forum Included:
Aileron Therapeutics, Inc.
AnaptysBio, Inc
Argos Therpeutics, Inc
Atossa Genetics
BioCancell Ltd.
BioLineRx Ltd.
Cellectis
CENTROSE
Churchill Pharmaceuticals
Constellation Pharmaceuticals
CureVac GmbH
Dicerna Pharmaceuticals
Etubics Corporation
Genisphere
immatics biotechnologies GmbH
ImmunoGen, Inc
Life Science Nation
MacroGenics, Inc
Melanovus Oncology
MiNA Therapeutics
MolecularMD
Oncolix, Inc.
OncoSec Medical Incorporated
Oxford BioTherapeutics
RAMOT at Tel Aviv University
Rescue Therapeutics, Inc.
Sialix, Inc.
Sorrento Therapeutics
to-BBB technologies BV
TVAX Biomedical, Inc.
The 2nd Annual Sachs Cancer Bio Partnering & Investment Forum is designed to bring together thought leaders from cancer research institutes, patient advocacy groups, pharma and biotech to facilitate partnering and funding/investment. We expect around 200 delegates and there is an online meeting system and meeting facilities to make the event transactional. There will also be a track of about 30 presentations by listed and private biotechnology companies seeking licensing/investment.dividerThe 2nd Annual Sachs Cancer Bio Partnering & Investment Forum will cover the following topics in the program:

  • Advances in Translational Research
  • Strategies for Small Molecule and Biologicals Drug Development
  • Deal Making
  • Public & Private Partnerships

Confirmed Speakers & Chairs include:

The 2nd Annual Sachs Cancer Bio Partnering & Investment Forum will cover the following topics in the program:

  • Advances in Translational Research
  • Strategies for Small Molecule and Biologicals Drug Development
  • Deal Making
  • Public & Private Partnerships
  • Diagnostics
  • Immunotherapies and Cancer Vaccines

Confirmed Speakers & Chairs include:
Anne Altmeyer, Executive Director Business Development & LicensingNovartis Pharmaceuticals
Ariel Jasie, Executive Director of Business DevelopmentCelgene
Beth Jacobs, Managing PartnerExcellentia Global Partners
Boris Peaker, Executive Director, Biotechnology Equity ResearchOppenheimer & Co. Inc.
Carole Nuechterlein, Head Roche Venture FundF.Hoffmann-La Roche AG Roche Venture Fund
Daryl Mitteldorf, Executive DirectorGlobal Prostate Cancer Alliance
Dennis Purcell, Senior Managing PartnerAisling Capital
Doug Plessinger, Vice President of Clinical and Medical AffairsArgos Therapeutics, Inc.
Elizabeth Bachert, Senior Director Worldwide Business DevelopmentPfizer
Esteban Pombo-Villar, COOOxford BioTherapeutics AG
Florian Schodel, CEO, Philimmune LLC
Guillaume Vignon, Director of Global BD Oncology, Merck Serono SA
Harren Jhoti, PresidentAstex Pharmaceuticals Inc.
Harry Glorikan, Managing DirectorPrecision for Medicine
James Mulé, Executive Vice President and Associate Center Director for Translational Research,
H Lee Moffit Cancer Center
Keith Knutson, Program Director and Principal Investigator of the Cancer Vaccines and immune Therapies ProgramVaccine and Gene Therapy Institute of Florida
Klaus Urbahns, Head, Discovery TechnologiesMerck Serono
Kristina Khodova, Project Manager, OncologySkolkovo Foundation
Lorenza Castellon, Business Development ConsultantSuda Ltd.
Louis DeGennaro, Executive VP, CMO, The Leukemia and Lymphoma Society
Louise Perkins, Chief Science OfficerMelanoma Research Alliance
Mara Goldstein, Managing Director, Senior Healthcare AnalystCantor Fitzgerald
Nathan Tinker, Executive DirectorNewYorkBIO
Nicholas Dracopoli, Vice President and Head of OncologyJanssen Research & Development
Peter Hoang, Managing Director, Office of Innovations, Technology Based VenturesThe University of Texas MD Anderson Cancer Center
Philip Gotwals, Executive Director, Oncology Research CollaborationsNovartis Institutes for BioMedical Research
Robert Petit, CSOAdvaxis Inc.
Steven Tregay, CEOForma Therapeutics
Steven W. Young, PresidentAddario lung Cancer Medical Institute
Stuart Barich, Managing Director, Healthcare Investment BankingOppenheimer & Company
Tariq Kassum MD, Vice President, Business Development and StrategyMillennium Pharmaceuticals
Timothy Herpin, Vice President, Head of Transactions (UK), Business DevelopmentAstraZeneca
Walter Capone, PresidentThe Multiple Myeloma Research Foundation

_______

View the full list of 2013 Forum Speakers & Chairs >>

dividerPresenting Opportunities for Biotech, Pharmaceutical companies  and Patient Advocacy Groups

Presenting at the forum offers excellent opportunities to showcase activities and highlight investment and partnership opportunities. Biotech companies will be able to communicate investment and licensing opportunities. These are for both public and private companies. The audience is comprised of financial and industry investors. These are streamed 15 minute presentations. The patient advocacy presentations are 30 minutes.

Sachs forums are recognised as the leading international stage for those interested in investing in the biotech and life science industry and are highly transactional. They draw together an exciting cross-section of early-stage/pre-IPO, late-stage and public companies with leading investors, analysts, money managers and pharmas. The Boston forum provides the additional interaction with the academic/scientific and patient advocacy communities.

Sponsorship and Exhibition

Sachs Associates has developed an extensive knowledge of the key individuals operating within the European and global biotech industry. This together with a growing reputation for excellence puts Sachs Associates at the forefront of the industry and provides a powerful tool by which to increase the position of your company in this market.

Raise your company’s profile directly with your potential clients. All of our sponsorship packages are tailor made to each client, allowing your organisation to gain the most out of attending our industry driven events.

To learn more about presenting, exhibition or sponsorship opportunities, please contact
Mina Orda + 44 (0)203 463 4890 or by email: Mina Orda.

SOURCE

http://www.sachsforum.com/newyork14/index.html

From: Mina@sachsforum.com
To: AvivaLev-Ari@alum.berkeley.edu
Sent: Mon Dec 16 12:01:21 UTC 2013

From: Tomas Andrulionis <Tomas@sachsforum.com>
Date: Tue, 10 Dec 2013 16:13:53 +0000
To: “avivalev-ari@alum.berkeley.edu” <avivalev-ari@alum.berkeley.edu>
Conversation: Complimentary Invitation for the 2nd Annual Sachs Cancer Bio Partnering & Investment Forum, 19th March 2014, New York Academy of Sciences

Read Full Post »

The Delicate Connection:  IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

Author and Curator: Demet Sag, PhD, CRA, GCP      

Table of Contents:

  1. Abstract
  2. Dual role for IDO
  3. Immune System and IDO
  4. Autoimmune disorders and IDO
  5. Cancer and Ido
  6. Clinical Interventions
  7. Clinical Trials
  8. Future Actions for Molecular Dx and Targeted Therapies:
  9. Conclusion
  10. References

TABLE 1- IDO Clinical Trials

TABLE 2- Kyn induced Genes

TABLE 3 Possible biomarkers and molecular diagnostics targets

TABLE 4: Current Interventions ______________________________________________________________________________________________________________

ABSTRACT:

Overall purpose is to find a method to manipulate IDO for clinical applications, mainly the focus of this review is is cancer prevention and treatment.  The first study proving the connection between IDO and immune response came from, a very natural event, a protection of pregnancy in human. This led to discover that high IDO expression is a common factor in cancer tumors. Thus, attention promoted investigations on IDO’s role in various disease states, immune disorders, transplantation, inflammation, women health, mood disorders.
Many approaches, vaccines and adjuvants are underway to find new immunotherapies by combining the power of DCs in immune response regulation and specific direction of siRNA.  As a result, with this unique qualities of IDO, DCs and siRNA, we orchestrated a novel intervention for immunomodulation of IDO by inhibiting with small interference RNA, called siRNA-IDO-DCvax.  Proven that our DCvax created a delay and regression of tumor growth without changing the natural structure and characterization of DCs in melanoma and breast cancers in vivo. (** The shRNA IDO- DCvax is developed by Regen BioPhrama, San Diego, CA ,  Thomas Ichim, Ph.D, CSO. and David Koos, CEO)

______________________________________________________________________________________________________________

Double-Edged Sword of IDO: The Good and The Bad for Clinical intervention and Developments

IDO almost has a dual role. There is a positive side of high expression of IDO during pregnancy (29; 28; 114), transplants (115; 116; 117; 118; 119), infectious diseases (96) and but this tolerance is negative during autoimmune-disorders (120; 121; 122), tumors of cancer (123; 124; 117; 121; 125; 126; 127) (127), and mood disorders (46). The increased IDO expression has a double-edged sword in human physiology provides a positive role during protection of fetus and grafts after transplantations but becomes a negative factor during autoimmune disorders, cancer, sepsis and mood disorders.

Prevention of allogeneic fetal rejection is possible by tryptophan metabolism (26) rejecting with lack of IDO but allocating if IDO present (29; 28; 114). These studies lead to find “the natural regulation mechanism” for protecting the transplants from graft versus host disease GVHD (128) and getting rid of tumors.

The plasticity of  mammary and uterus during reproduction may hold some more answers to prevent GVHD and tumors of cancer with good understanding of IDO and tryptophan mechanism (129; 130). After allogeneic bone marrow transplants the risk of solid tumor development increased about 80% among 19,229 patients even with a greater risk among patients under 18 years old (117).  The adaptation of tolerance against host mechanism is connected to the IDO expression (131). During implantation and early pregnancy IDO has a role by making CD4+CD25+Foxp3+ regulatory T cells (Tregs) and expressing in DCs and  MQs  (114; 132; 133).

Clonal deletion mechanism prevents mother to react with paternal products since female mice accepted the paternal MHC antigen-expressing tumor graft during pregnancy and rejected three weeks after delivery (134). CTLA-4Ig gene therapy alleviates abortion through regulation of apoptosis and inhibition of spleen lymphocytes (135).  

 Immune System and IDO DCs are the orchestrator of the immune response (56; 57; 58) with list of functions in uptake, processing, and presentation of antigens; activation of effector cells, such as T-cells and NK-cells; and secretion of cytokines and other immune-modulating molecules to direct the immune response. The differential regulation of IDO in distinct DC subsets is widely studied to delineate and correct immune homeostasis during autoimmunity, infection and cancer and the associated immunological outcomes. Genesis of antigen presenting cells (APCs), eventually the immune system, require migration of monocytes (MOs), which is originated in bone marrow. Then, these MOs move from bloodstream to other tissues to become macrophages and DCs (59; 60).

Initiation of immune response requires APCs to link resting helper T-cell with the matching antigen to protect body. DCs are superior to MQs and MOs in their immune action model. When DCs are first described (61) and classified, their role is determined as a highly potent antigen-presenting cell (APC) subset with 100 to 1000-times more effective than macrophages and B-cells in priming T-cells. Both MQs and monocytes phagocytize the pathogen, and their cell structure contains very large nucleus and many internal vesicles. However, there is a nuance between MQ and DCs, since DCs has a wider capacity of stimulation, because MQs activates only memory T cells, yet DCs can activate both naïve and memory T cells.

DCs are potent activators of T cells and they also have well controlled regulatory roles. DC properties determine the regulation regardless of their origin or the subset of the DCs. DCs reacts after identification of the signals or influencers for their inhibitory, stimulatory or regulatory roles, before they express a complex repertoire of positive and negative cytokines, transmembrane proteins and other molecules. Thus, “two signal theory” gains support with a defined rule.  The combination of two signals, their interaction with types of cells and time are critical.

In short, specificity and time are matter for a proper response. When IDO mRNA expression is activated with CTL40 ligand and IFNgamma, IDO results inhibition of T cell production (4).  However, if DCs are inhibited by 1MT, an inhibitor of IDO, the response stop but IgG has no affect (10).  In addition, if the stimulation is started by a tryptophan metabolite, which is downstream of IDO, such as 3-hydroxyantranilic or quinolinic acids, it only inhibits Th1 but not Th2 subset of T cells (62).

Furthermore, inclusion of signal molecules, such as Fas Ligand, cytochrome c, and pathways also differ in the T cell differentiation mechanisms due to combination, time and specificity of two-signals.  The co-culture experiments are great tool to identify specific stimuli in disease specific microenvironment (63; 12; 64) for discovering the mechanism and interactions between molecules in gene regulation, biochemical mechanism and physiological function during cell differentiation.

As a result, the simplest differential cell development from the early development of DCs impact the outcome of the data. For example, collection of MOs from peripheral blood mononuclear cells (PBMCs) with IL4 and GM-CSF leads to immature DCs (iDCs). On next step, treatment of iDCs with tumor necrosis factor (TNF) or other plausible cytokines (TGFb1, IFNgamma, IFNalpha,  IFNbeta, IL6 etc.) based on the desired outcome differentiate iDCs  into mature DCs (mDCs). DCs live only up to a week but MOs and generated MQs can live up to a month in the given tissue. B cells inhibit T cell dependent immune responses in tumors (65).

AutoImmune Disorders:

The Circadian Clock Circuitry and the AHR

The balance of IDO expression becomes necessary to prevent overactive immune response self-destruction, so modulation in tryptophan and NDA metabolisms maybe essential.  When splenic IDO-expressing CD11b (+) DCs from tolerized animals applied, they suppressed the development of arthritis, increased the Treg/Th17 cell ratio, and decreased the production of inflammatory cytokines in the spleen (136).

The role of Nicotinamide prevention on type 1 diabetes and ameliorates multiple sclerosis in animal model presented with activities of  NDAs stimulating GPCR109a to produce prostaglandins to induce IDO expression, then these PGEs and PGDs converted to the anti-inflammatory prostaglandin, 15d-PGJ(2) (137; 138; 139).  Thus, these events promotes endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma. (137).

Modulating the immune response at non-canonical at canonocal pathway while keeping the non-canonical Nf-KB intact may help to mend immune disorders. As a result, the targeted blocking in canonical at associated kinase IKKβ and leaving non-canonocal Nf-kB pathway intact, DCs tips the balance towards immune supression. Hence, noncanonical NF-κB pathway for regulatory functions in DCs required effective IDO induction, directly or indirectly by endogenous ligand Kyn and negative regulation of proinflammatory cytokine production. As a result, this may help to treat autoimmune diseases such as rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, and multiple sclerosis, or allergy or transplant rejection.

While the opposite action needs to be taken during prevention of tumors, that is inhibition of non-canonical pathway.  Inflammation induces not only relaxation of veins and lowering blood pressure but also stimulate coagulopathies that worsen the microenvironment and decrease survival rate of patients after radio or chemotherapies.Cancer Generating tumor vaccines and using adjuvants underway (140).

Clinical correlation and genetic responses also compared in several studies to diagnose and target the system for cancer therapies (127; 141; 131).  The recent surveys on IDO expression and human cancers showed that IDO targeting is a candidate for cancer therapy since IDO expression recruiting Tregs, downregulates MHC class I and creating negative immune microenvironment for protection of development of tumors (125; 27; 142).  Inhibition of IDO expression can make advances in immunotherapy and chemotherapy fields (143; 125; 131; 144).

IDO has a great importance on prevention of cancer development (126). There are many approaches to create the homeostasis of immune response by Immunotherapy.  However, given the complexity of immune regulations, immunomodulation is a better approach to correct and relieve the system from the disease.  Some of the current IDO targeted immunotherapy or immmunomodulations with RNA technology for cancer prevention (145; 146; 147; 148; 149; 150) or applied on human or animals  (75; 151; 12; 115; 152; 9; 125) or chemical, (153; 154) or  radiological (155).  The targeted cell type in immune system generally DCs, monocytes (94)T cells (110; 156)and neutrophils (146; 157). On this paper, we will concentrate on DCvax on cancer treatments.

 T-reg, regulatory T cells; Th, T helper; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; TCR, T cell receptor; IDO, indoleamine 2,3-dioxygenase. (refernece: http://www.pnas.org/content/101/28/10398/suppl/DC)

T-reg, regulatory T cells; Th, T helper; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; TCR, T cell receptor; IDO, indoleamine 2,3-dioxygenase. (refernece: http://www.pnas.org/content/101/28/10398/suppl/DC)

IDO and the downstream enzymes in tryptophan pathway produce a series of immunosuppressive tryptophan metabolites that may lead into Tregs proliferation or increase in T cell apoptosis (62; 16; 27; 158), and some can affect NK cell function (159).

The interesting part of the mechanism is even without presence of IDO itself, downstream enzymes of IDO in the kynurenine tryptophan degradation still show immunosuppressive outcome (160; 73) due to not only Kyn but also TGFbeta stimulated long term responses. DC vaccination with IDO plausible (161) due to its power in immune response changes and longevity in the bloodstream for reversing the system for Th17 production (162).

Clinical Interventions are taking advantage of the DC’s central role and combining with enhancing molecules for induction of immunity may overcome tolerogenic DCs in tumors of cancers (163; 164).

The first successful application of DC vaccine used against advanced melanoma after loading DCs with tumor peptides or autologous cell lysate in presence of adjuvants keyhole limpet hematocyanin (KLH) (165).  Previous animal and clinical studies show use of DCs against tumors created success (165; 166; 167) as well as some problems due to heterogeneity of DC populations in one study supporting tumor growth rather than diminishing (168).

DC vaccination applied onto over four thousand clinical trial but none of them used siRNA-IDO DC vaccination method. Clinical trials evaluating DCs loaded ex vivo with purified TAAs as an anticancer immunotherapeutic interventions also did not include IDO (Table from (169). This table presented the data from 30 clinical trials, 3 of which discontinued, evaluating DCs loaded ex vivo with TAAs as an anticancer immunotherapy for 12 types of cancer [(AML(1), Breast cancer (4), glioblastoma (1), glioma (2), hepatocellular carcinoma (1), hematological malignancies (1), melanoma (6), neuroblastoma sarcoma (2), NSCLC (1), ovarian cancer (3), pancreatic cancer (3), prostate cancer (10)] at phase I, II or I/II.

Tipping the balance between Treg and Th17 ratio has a therapeutic advantage for restoring the health that is also shown in ovarian cancer by DC vaccination with adjuvants (161).  This rebalancing of the immune system towards immunogenicity may restore Treg/Th17 ratio (162; 170) but it is complicated. The stimulation of IL10 and IL12 induce Treg produce less Th17 and inhibiting CTL activation and its function (76; 171; 172) while animals treated with anti-TGFb before vaccination increase the plasma levels of IL-15 for tumor specific T cell survival in vivo (173; 174) ovarian cancer studies after human papilloma virus infection present an increase of IL12 (175).

Opposing signal mechanism downregulates the TGFb to activate CTL and Th1 population with IL12 and IL15 expression (162; 173).  The effects of IL17 on antitumor properties observed by unique subset of CD4+ T cells (176) called also CD8+ T cells secrete even more IL17 (177).

Using cytokines as adjuvants during vaccination may improve the efficacy of vaccination since cancer vaccines unlike infections vaccines applied after the infection or disease started against the established adoptive immune response.  Adjuvants are used to improve the responses of the given therapies commonly in immunotherapy applications as a combination therapy (178).

Enhancing cancer vaccine efficacy via modulation of the microenvironment is a plausible solution if only know who are the players.  Several molecules can be used to initiate and lengthen the activity of intervention to stimulate IDO expression without compromising the mechanism (179).  The system is complicated so generally induction is completed ex-vivo stimulation of DCs in cell lysates, whole tumor lysates, to create the microenvironment and natural stimulatory agents. Introduction of molecules as an adjuvants on genetic regulation on modulation of DCs are critical, because order and time of the signals, specific location/ tissue, and heterogeneity of personal needs (174; 138; 180). These studies demonstrated that IL15 with low TGFb stimulates CTL and Th1, whereas elevated TGFb with IL10 increases Th17 and Tregs in cancer microenvironments.

IDO and signaling gene regulation

For example Ret-peptide antitumor vaccine contains an extracellular fragment of Ret protein and Th1 polarized immunoregulator CpG oligonucleotide (1826), with 1MT, a potent inhibitor of IDO, brought a powerful as well as specific cellular and humoral immune responses in mice (152).

The main idea of choosing Ret to produce vaccine in ret related carcinomas fall in two criterion, first choosing patients self-antigens for cancer therapy with a non-mutated gene, second, there is no evidence of genetic mutations in Ret amino acids 64-269. Demonstration of proliferating hemangiomas, benign endothelial tumors and often referred as hemangiomas of infancy appearing at head or neck, express IDO and slowly regressed as a result of immune mediated process.

After large scale of genomic analysis show insulin like growth factor 2 as the key regulator of hematoma growth (Ritter et al. 2003). We set out to develop new technology with our previous expertise in immunotherapy and immunomodulation (181; 182; 183; 184), correcting Th17/Th1 ratio (185), and siRNA technology (186; 187).  We developed siRNA-IDO-DCvax. Patented two technologies “Immunomodulation using Altered DCs (Patent No: US2006/0165665 A1) and Method of Cancer Treatments using siRNA Silencing (Patent No: US2009/0220582 A1).

In melanoma cancer DCs were preconditioned with whole tumor lysate but in breast cancer model pretreatment completed with tumor cell lysate before siRNA-IDO-DCvax applied. Both of these studies was a success without modifying the autanticity of DCs but decreasing the IDO expression to restore immunegenity by delaying tumor growth in breast cancer (147) and in melanoma (188).  Thus, our DCvax specifically interfere with Ido without disturbing natural structure and content of the DCs in vivo showed that it is possible to carry on this technology to clinical applications.

Furthermore, our method of intervention is more sophisticated since it has a direct interaction mechanism with ex-vivo DC modulation without creating long term metabolism imbalance in Trp/Kyn metabolite mechanisms since the action is corrective and non-invasive.

There were several reasons.

First, prevention of tumor development studies targeting non-enzymatic pathway initiated by pDCs conditioned with TGFbeta is specific to IDO1 (189).

Second, IDO upregulation in antigen presenting cells allowing metastasis show that most human tumors express IDO at high levels (123; 124).

Third, tolerogenic DCs secretes several molecules some of them are transforming growth factor beta (TGFb), interleukin IL10), human leukocyte antigen G (HLA-G), and leukemia inhibitory factor (LIF), and non-secreted program cell death ligand 1 (PD-1 L) and IDO, indolamine 2.3-dioxygenase, which promote tumor tolerance. Thus, we took advantage of DCs properties and Ido specificity to prevent the tolerogenicity with siRNA-IDO DC vaccine in both melanoma and breast cancer.

Fourth, IDO expression in DCs make them even more potent against tumor antigens and create more T cells against tumors. IDOs are expressed at different levels by both in broad range of tumor cells and many subtypes of DCs including monocyte-derived DCs (10), plasmacytoid DCs (142), CD8a+ DCs (190), IDO compotent DCs (17), IFNgamma-activated DCs used in DC vaccination.  These DCs suppress immune responses through several mechanisms for induction of apoptosis towards activated T cells (156) to mediate antigen-specific T cell anergy in vivo (142) and for enhancement of Treg cells production at sites of vaccination with IDO-positive DCs+ in human patients (142; 191; 192; 168; 193; 194). If DCs are preconditioned with tumor lysate with 1MT vaccination they increase DCvax effectiveness unlike DCs originated from “normal”, healthy lysate with 1MT in pancreatic cancer (195).  As a result, we concluded that the immunesupressive effect of IDO can be reversed by siRNA because Treg cells enhances DC vaccine-mediated anti-tumor-immunity in cancer patients.

Gene silencing is a promising technology regardless of advantages simplicity for finding gene interaction mechanisms in vitro and disadvantages of the technology is utilizing the system with specificity in vivo (186; 196).  siRNA technology is one of the newest solution for the treatment of diseases as human genomics is only producing about 25,000 genes by representing 1% of its genome. Thus, utilizing the RNA open the doors for more comprehensive and less invasive effects on interventions. Thus this technology is still improving and using adjuvants. Silencing of K-Ras inhibit the growth of tumors in human pancreatic cancers (197), silencing of beta-catenin in colon cancers causes tumor regression in mouse models (198), silencing of vascular endothelial growth factor (VGEF) decreased angiogenesis and inhibit tumor growth (199).

Combining siRNA IDO and DCvax from adult stem cell is a novel technology for regression of tumors in melanoma and breast cancers in vivo. Our data showed that IDO-siRNA reduced tumor derived T cell apoptosis and tumor derived inhibition of T cell proliferation.  In addition, silencing IDO made DCs more potent against tumors since treated or pretreated animals showed a delay or decreased the tumor growth (188; 147)

 

Clinical Trials:

First FDA approved DC-based cancer therapies for treatment of hormone-refractory prostate cancer as autologous cellular immunotherapy (163; 164).  However, there are many probabilities to iron out for a predictive outcome in patients.

Table 2 demonstrates the current summary of clinical trials report.  This table shows 38 total studies specifically Ido related function on cancer (16), eye (3), surgery (2), women health (4), obesity (1), Cardiovascular (2), brain (1), kidney (1), bladder (1), sepsis shock (1), transplant (1),  nervous system and behavioral studies (4), HIV (1) (Table 4).  Among these only 22 of which active, recruiting or not yet started to recruit, and 17 completed and one terminated.

Most of these studies concentrated on cancer by the industry, Teva GTC ( Phase I traumatic brain injury) Astra Zeneca (Phase IV on efficacy of CRESTOR 5mg for cardiovascular health concern), Incyte corporation (Phase II ovarian cancer) NewLink Genetics Corporation Phase I breast/lung/melanoma/pancreatic solid tumors that is terminated; Phase II malignant melanoma recruiting, Phase II active, not recruiting metastatic breast cancer, Phase I/II metastatic melanoma, Phase I advanced malignancies) , HIV (Phase IV enrolling by invitation supported by Salix Corp-UC, San Francisco and HIV/AIDS Research Programs).

Many studies based on chemotherapy but there are few that use biological methods completed study with  IDO vaccine peptide vaccination for Stage III-IV non-small-cell lung cancer patients (NCT01219348), observational study on effect of biological therapy on biomarkers in patients with untreated hepatitis C, metastasis melanoma, or Crohn disease by IFNalpha and chemical (ribavirin, ticilimumab (NCT00897312), polymorphisms of patients after 1MT drug application in treating patients with metastatic or unmovable refractory solid tumors by surgery (NCT00758537), IDO expression analysis on MSCs (NCT01668576), and not yet recruiting intervention with adenovirus-p53 transduced dendric cell vaccine , 1MT , radiation, Carbon C 11 aplha-methyltryptophan- (NCT01302821).

Among the registered clinical trials some of them are not interventional but  observational and evaluation studies on Trp/Kyn ratio (NCT01042847), Kyn/Trp ratio (NCT01219348), Kyn levels (NCT00897312, NCT00573300),  RT-PCR analysis for Kyn metabolism (NCT00573300, NCT00684736, NCT00758537), and intrinsic IDO expression of mesenchymal stem cells in lung transplant with percent inhibition of CD4+ and CD8+ T cell proliferation toward donor cells (NCT01668576), determining polymorphisms (NCT00426894). These clinical trials/studies are immensely valuable to understand the mechanism and route of intervention development with the data collected from human populations   

Future Actions for Molecular Dx and Targeted Therapies:

Viable tumor environment. Tumor survival is dependent upon an exquisite interplay between the critical functions of stromal development and angiogenesis, local immune suppression and tumor tolerance, and paradoxical inflammation. TEMs: TIE-2 expressing monocytes; “M2” TAMs: tolerogenic tumor-associated macrophages; MDSCs: myeloid-derived suppressor cells; pDCs: plasmacytoid dendritic cells; co-stim.: co-stimulation; IDO: indoleamine 2,3-dioxygenase; VEGF: vascular endothelial growth factor; EGF: epidermal growth factor; MMP: matrix metaloprotease; IL: interleukin; TGF-β: transforming growth factor-beta; TLRs: toll-like receptors.  (reference: http://www.hindawi.com/journals/cdi/2012/937253/fig1/)

Viable tumor environment. Tumor survival is dependent upon an exquisite interplay between the critical functions of stromal development and angiogenesis, local immune suppression and tumor tolerance, and paradoxical inflammation. TEMs: TIE-2 expressing monocytes; “M2” TAMs: tolerogenic tumor-associated macrophages; MDSCs: myeloid-derived suppressor cells; pDCs: plasmacytoid dendritic cells; co-stim.: co-stimulation; IDO: indoleamine 2,3-dioxygenase; VEGF: vascular endothelial growth factor; EGF: epidermal growth factor; MMP: matrix metaloprotease; IL: interleukin; TGF-β: transforming growth factor-beta; TLRs: toll-like receptors. (reference: http://www.hindawi.com/journals/cdi/2012/937253/fig1/)

Current survival or response rate is around 40 to 50 % range.  By using specific cell type, selected inhibition/activation sequence based on patient’s genomic profile may improve the efficacy of clinical interventions on cancer treatments. Targeted therapies for specific gene regulation through signal transduction is necessary but there are few studies with genomics based approach.

On the other hand, there are surveys, observational or evaluations (listed in clinical trials section) registered with www.clinicaltrials.gov that will provide a valuable short-list of molecules.  Preventing stimulation of Ido1 as well as Tgfb-1gene expression by modulating receptor mediated phosphorylation between TGFb/SMAD either at Mad-Homology 1 (MH1) or Mad-Homology 1 (MH2) domains maybe possible (79; 82; 80). Within Smads are the conserved Mad-Homology 1 (MH1) domain, which is a DNA binding module contains tightly bound Zinc atom.

Smad MH2 domain is well conserved and one the most diverse protein-signal interacting molecule during signal transduction due to two important Serine residues located extreme distal C-termini at Ser-Val-Ser in Smad 2 or at pSer-X-PSer in RSmads (80). Kyn activated orphan G protein–coupled receptor, GPR35 with unknown function with a distinct expression pattern that collides with IDO sites since its expression at high levels of the immune system and the gut (63) (200; 63).  

The first study to connect IDO with cancer shows that group (75).  The directly targeting to regulate IDO expression is another method through modulating ISREs in its promoter with RNA-peptide combination technology. Indirectly, IDO can be regulated through Bin1 gene expression control over IDO since Bin1 is a negative regulator of IDO and prevents IDO expression.  IDO is under negative genetic control of Bin1, BAR adapter–encoding gene Bin1 (also known as Amphiphysin2). Bin1 functions in cancer suppression since attenuation of Bin1 observed in many human malignancies (141; 201; 202; 203; 204; 205; 206) .  Null Bin-/- mice showed that when there is lack of Bin1, upregulation of IDO through STAT1- and NF-kB-dependent expression of IDO makes tumor cells to escape from T cell–dependent antitumor immunity.

This pathway lies in non-enzymatic signal transducer function of IDO after stimulation of DCs by TGFb1.  The detail study on Bin1 gene by alternative spicing also provided that Bin1 is a tumor suppressor.  Its activities also depends on these spliced outcome, such as  Exon 10, in muscle, in turn Exon 13 in mice has importance in role for regulating growth when Bin1 is deleted or mutated C2C12 myoblasts interrupted due to its missing Myc, cyclinD1, or growth factor inhibiting genes like p21WAF1 (207; 208).

On the other hand alternative spliced Exon12A contributing brain cell differentiation (209; 210). Myc as a target at the junction between IDO gene interaction and Trp metabolism.  Bin1 interacts with Myc either early-dependent on Myc or late-independent on Myc, when Myc is not present. This gene regulation also interfered by the long term signaling mechanism related to Kynurenine (Kyn) acting as an endogenous ligand to AHR in Trp metabolite and TGFb1 and/or IFNalpha and IFNbeta up regulation of DCs to induce IDO in noncanonical pathway for NF-kB and myc gene activations (73; 74).  Hence, Trp/Kyn, Kyn/Trp, Th1/Th17 ratios are important to be observed in patients peripheral blood. These direct and indirect gene interactions place Bin1 to function in cell differentiation (211; 212; 205).

Regulatory T-cel generation via reverse and non-canonical signaliing to pDCs

Table 3 contains the microarray analysis for Kyn affect showed that there are 25 genes affected by Kyn, two of which are upregulated and 23 of them downregulated (100). This list of genes and additional knowledge based on studies creating the diagnostics panel with these genes as a biomarker may help to analyze the outcomes of given interventions and therapies. Some of these molecules are great candidate to seek as an adjuvant or co-stimulation agents.  These are myc, NfKB at IKKA, C2CD2, CREB3L2, GPR115, IL2, IL8, IL6, and IL1B, mir-376 RNA, NFKB3, TGFb, RelA, and SH3RF1. In addition, Lip, Fox3P, CTLA-4, Bin1, and IMPACT should be monitored.

In addition, Table 4 presents the other possible mechanisms. The highlights of possible target/biomarkers are specific TLRs, conserved sequences of IDO across its homologous structures, CCR6, CCR5, RORgammat, ISREs of IDO, Jak, STAT, IRFs, MH1 and MH2 domains of Smads. Endothelial cell coagulation activation mechanism and pDC maturation or immigration from lymph nodes to bloodstream should marry to control not only IDO expression but also genesis of preferred DC subsets. Stromal mesenchymal cells are also activated by these modulation at vascular system and interferes with metastasis of cancer. First, thrombin (human factor II) is a well regulated protein in coagulation hemostasis has a role in cell differentiation and angiogenesis.

Protein kinase activated receptors (PARs), type of GPCRs, moderate the actions. Second, during hematopoietic response endothelial cells produce hematopoietic growth factors (213; 214). Third, components of bone marrow stroma cells include monocytes, adipocytes, and mesenchymal stem cells (215). As a result, addressing this issue will prevent occurrence of coagulapathologies, namely DIC, bleeding, thrombosis, so that patients may also improve response rate towards therapies. Personal genomic profiles are powerful tool to improve efficacy in immunotherapies since there is an influence of age (young vs. adult), state of immune system (innate vs. adopted or acquired immunity). Table 5 includes some of the current studies directly with IDO and indirectly effecting its mechanisms via gene therapy, DNA vaccine, gene silencing and adjuvant applications as an intervention method to prevent various cancer types.

CONCLUSION

IDO has a confined function in immune system through complex interactions to maintain hemostasis of immune responses. The genesis of IDO stem from duplication of bacterial IDO-like genes.  Inhibition of microbial infection and invasion by depleting tryptophan limits and kills the invader but during starvation of trp the host may pass the twilight zone since trp required by host’s T cells.  Thus, the host cells in these small pockets adopt to new microenvironment with depleted trp and oxygen poor conditions. Hence, the cell metabolism differentiate to generate new cellular structure like nodules and tumors under the protection of constitutively expressed IDO in tumors, DCs and inhibited T cell proliferation.

On the other hand, having a dichotomy in IDO function can be a potential limiting factor that means is that IDOs impact on biological system could be variable based on several issues such as target cells, IDO’s capacity, pathologic state of the disease and conditions of the microenvironment. Thus, close monitoring is necessary to analyze the outcome to prevent conspiracies since previous studies generated paradoxical results.

Current therapies through chemotherapies, radiotherapies are costly and effectiveness shown that the clinical interventions require immunotherapies as well as coagulation and vascular biology manipulations for a higher efficacy and survival rate in cancer patients. Our siRNA and DC technologies based on stem cell modulation will provide at least prevention of cancer development and hopefully prevention in cancer.

11.       References

1. Biochemistry of tryptophan in health and disease. BenderDA. 1983, Mol Aspects Med , pp. 6:101–197.

2. Molecular insights into substrate recognition and catalysis by indolamine 2,3-dioxygenase. Forouhar, F., Anderson, R., Mowat, C.F, et al. 2006, PNAS, pp. vol. 104, no:2, 473-478.

3. Importance of the Two Interferon-stimulated Response Element. Konan KV, Taylor, MW. 1996, J. Biol. Chem.-, pp. 19140-5.

4. Induction of indolamine 2,3 dioxygenase: A mechanism of the anti-tumor activity of interferon gamma. Ozaki, Y., Edelstein, M.P., Duch, D.S. 1998, PNAS USA., pp. vol:85, 1242-1246.

5. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome . Burkin, D. J., Kimbro, K. S., Barr, B. L., Jones, C., Taylor, M. W., Gupta, S. L. 1993, Genomics , pp. 17: 262-263.

6. Localization of indoleamine 2,3-dioxygenase gene (INDO) to chromosome 8p12-p11 by fluorescent in situ hybridization. Najfeld, V., Menninger, J., Muhleman, D., Comings, D. E., Gupta, S. L. 1993, Cytogenet. Cell Genet. , pp. 64: 231-232.

7. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA.  Dai, W., Gupta, S. L. 1990, Biochem. Biophys. Res. Commun. , pp. 168: 1-8.

8. Gene structure of human indoleamine 2,3-dioxygenase. Kadoya, A., Tone, S., Maeda, H., Minatogawa, Y., Kido, R. 1992, Biochem. Biophys. Res. Commun. , pp. 189: 530-536.

9. A gene atlas of th emouse and human protein-encoding transcriptomes. Andrew I. Su, Tim Wiltshire, Serge Batalov , Hilmar Lapp , Keith A. Ching , David Block, Jie Zhang , Richard Soden , Mimi Hayakawa , Gabriel Kreiman , Michael P. Cooke , John R. Walker , and John B. Hogenesch. 2004, PNAS, pp. vol. 101, no. 166062-6067 (http://dx.doi.org:/10.1073/pnas.0400782101).

10. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. 2000, J. Immunol, pp. 164:3596–3599.

11. Inhibition of T cell proliferation by acrophage tryptophan catabolism. Munn, D.H. et al. 1999, J. Exp. Med., p. 189:1363.

12. HeLa cells cocultured with peripheral blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity. Logan, G. J., Smyth, C. M. F., Earl, J. W., Zaikina, I., Rowe, P. B., Smythe, J. A., Alexander, I. E. 2002, Immunology, pp. 105:478-487.

13. Indoleamine 2,3-Dioxygenase – Is It an Immun Suppressor? Soliman H, Mediaville-Varela M, Antonia S. 2010, Cancer J. , pp. 16:354-359.

14. Targeting the immunoregulatory indoleamine 2,3-dioxygenase pathway in immunotherapy. Johnson BA, III, Baban B, Mellor AL. 2009, Immunotherapy. , pp. 645–661.

15. Indoleamine 2,3-dioxygenase and regulation of T cell immunity. AL., Mellor. 2005, Biochem Biophys Res Commun. , pp. 338(1):20–24.

16. Modulation of tryptophan catabolism by regulatory T cells. Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Alegre, M.-L., Puccetti, P. 2003, Nature Immun., pp. 4: 1206-1212.

17. CTLA-4-Ig regulates tryptophan catabolism in vivo. Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M. L., Bianchi, R., Fioretti, M. C., Puccetti, P. 2002, Nature Immun. , pp. 3: 1097-1101.

18. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Grohmann, U., Volpi, C., Fallarino, F., Bozza, S., Bianchi, R., Vacca, C., Orabona, C., Belladonna, M. L., Ayroldi, E., Nocentini, G., Boon, L., Bistoni, F., Fioretti, M. C., Romani, L., Riccardi, C., Puccetti, P. 2007, Nature Med., pp. 13:579-586.

19. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P., Munn, D. H. 2002, J. Immun. , pp. 168: 3771-3776.

20. Chon, SY, Hassanain, HH, Piine, R., and Gupta, SL. 1995, J. Interferon Cytokine Res. , pp. 15, 517-526.

21. Levy, ED, KEsler, DS, Pine, R., Reich, N, and Darnell, JE.Jr et al. 1988, Genes Dev, pp. 2,383-393.

22. Benoist, C. and Manthis, D. 1990, Annu. Rev of Immunol., pp. 8, 681-715.

23. Dorn, A, Durand, B., Marling, C., Meur, M.L., Beoist, C., and Mathis, D. 1987, PNAS USA, pp. 34, 6249-6253.

24. Konan, K.V. Ph.D. Thesis. Transcriptional Regulation of the Indolamine 2,3-oxygenase Gene. s.l. : Indiana University, Bloominigton, 1995.

25. Tryptophan pyrrolase of rabbit intestine: D- and L–tryptophan cleaving enzyme or enzymes. Yamamoto, S., and Hayashi, O. 1967, J Biol Chem, pp. 242: 5260-5266.

26. Prevention of allogeneic fetal rejection by tryptophan catabolism. Munn, DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. 1998, Science, pp. 281:1191–3.

27. Evidence for a tumoral immune resistance mechanismbased on tryptophan degradation by indoleamine 2,3-dioxygenase. Uyttenhove, C. et al. 2003, Nature Med. 9, pp. 1269–1274 .

28. Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Raghupathy, R. 2001., Seminars in Immunology, pp. Volume 13, Issue 4, Pages 219–227.

29. Why is the fetal allograft not rejected? Davies, C. J. March 2007 , J ANIM SCI , pp. vol. 85 no. 13 suppl E32-E35 .

30. Exploring the mechanism of tryptoophan 2,3-dioxygenase. Thackray, S., Mowat, C.G., Chapman, K. 2008, Biochem. Society Transaction., pp. 36, 1120-1123.

31. The new life of a centenarian: signalling functions of NAD(P). Berger F, Ramírez-Hernández MH, Ziegler M. 2004, Trends Biochem Sci , pp. 29:111–118 .

32. Biochemistry of tryptophan in health and disease. DA, Bender. 1983, Mol Aspects Med, pp. 6:101–197. 33. Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. Heyes MP, Saito K, Jacobowitz D, Markey SP, Takikawa O, Vickers JH. 1992, FASEB J., pp. 6:2977–2989.

34. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. . Sanni LA, Thomas SR, Tattam BN, Moore DE, Chaudhri G, Stocker R, Hunt NH. 1998, Am J Pathol, pp. 152:611–619.

35. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. . Yoshida R, Hayaishi O. 1978, Proc Natl Acad Sci USA , pp. 75:3998–4000.

36. Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Yoshida R, Urade Y, Tokuda M, Hayaishi O. 1979, Proc Natl Acad Sci USA , pp. 76:4084–4086.

37. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Yoshida R, Hayaishi. 1978, PNAS USA, pp. 3998-4000.

38. Sequence of human 2,3-dioxygenase (TDO2): presence of a glucorticoid response-like element composed of a GTT repeat and intronic CCCCT repeat. Comings DE, Muhleman D, Dietz G, Sherman M, Forest. 1995, Genomics, pp. 29:390-396165.

39. Studies on the biosynthesis of Nicotinamide adenine inucleotide. II.Arole of picolinic carboxylase in the Biosynthesisofnicotinamideadeninedinucleotidefromtryptophan in mammals. Ikeda M, Tsuji H, Nakamura S, Ichiyama A, Nishizuka Y, HayaishiO. 1965, J. Biol. Chem. , pp. 240: 1395-1401.

40. The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways. Houtkooper R.H., Carles Cantó C. , Wanders, R.J. and Auwerx, J. 2010, Endocrine Reviews , pp. vol. 31 no. 2 194-223, http://dx.doi.org:/10.1210/er.2009-0026.

41. Stimulation of Nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. Sasaki Y, Araki T, Milbrandt J. 2006, J Neurosci , pp. 26: 8484–8491.

42. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Gale EA, Bingley PJ, Emmett CL, CollierT. 2004, Lancet., pp. 363:925–931.

43. Safety of high-dose nicotinamide: a review. Knip M, Douek IF, Moore WP, Gillmor HA, McLean AE, Bingley PJ, Gale EA. 2000, Diabetologia, pp. 43:1337–1345.

44. Large supplements of nicotinic acid and nicotinamide increase tissue NAD and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. JacksonTM, Rawling JM, Roebuck BD, Kirkland JB. 1995, J Nutr , p. 125:1455.

45. Characterization and evolution of vertebrate indelamine 2,3-dihydrogenases IDOs from monotremes and marsupials. Yuasa, HJ, Ball, HJ, Ho, YF, Austin, CJ, et al. 2009, Comp. Biochem. Physiol. B. Biochem.. Mol. Biol., pp. 153 (2): 137-144.

46. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indolamine 2,3-dihydrogenase inhibitor compound D-1 methyl-tryptophan. Metz, R., Duhadaway, JB, Kamasani, U, Laury-Kleintop, L., Muller, AJ, Prendergast, GC. 2007, Cancer Res., pp. 67 (15): 7082-7087.

47. Total synthesis of exiguamines A and B inspired by catechollamine chemistry. Sofiyev, V, Lumb, JP, Volgraf, M., Trauner, D. 2012, Chemistry., pp. 18 (16): 4999-5005.

48. Molecular evolution of bacterial indolamine 2,3-dioxygenase. Yuasa, H J, Ushigoe, A, Ball, HJ. 2011, Gene., pp. 484 (1) : 22-31.

49. Infectious tolerance and the long-term acceptance of transplant tissue. Waldman, H., Adams, E., Fairchild, P., and Cobbold, S. 2006, J. Immunol., pp. 212:301-313.

50. Molecular evolution and characterizationof fungal indolamine 2,3-dioxygenases. Yuasa, HJ and Ball, HJ. 2012, J. Mol. Eval., pp. 72 (2): 160-168.

51. convergent evolution. The gene structure of Sulculus 41 kDa myoglobin is homologous with tht of human indolamine dioxygenase. Suzuki, T, Imai, K. 1996, Biochim. Biophys. Acta., pp. 1308(1):41-48.

52. Evolutionof myoglobin. Suzuki, T., Imai, K. 1998, Cell Mol Life Sci, pp. 54(9):979-1004.

53. A myoglobin evolved from indolamine 2,3-dioxygenase, trtptophan-degrading enzyme. Suzuki, T., Kawamichi, H., Imai, K. 1998, Comp Biochem Phisiol. Mol. Biol., pp. 121(2):117-128.

54. Do molluscs possess indolamine 2,3-dioxygenase? Yuasa, HJ and Suzuki, T. 2005, Comp. Biochem. Physiol. B. Biochem. Mol. Biol. , pp. (3) 445-454.

55. Comparison studies of the indolamine dioxygenase-like myoglobin from the abalone Sulculus diversicolor. Suzuki, T., Imai, K. 1997, Comp. Biohem. Phsiol B Biochem Mol Biol, pp. 117 (4)599-604.

56. Orchestration of the immune response by dendritic cells. Buckwalter MR, Albert ML. 2009, Curr Biol., pp. 19(9):355–361.

57. Dendritic cells and the control of immunity. Banchereau J, Steinman RM. 1998, Nature., pp. 245–52.

58. IDO expression by dendritic cells: tolerance and tryptophan catabolism. . Munn DH, Mellor AL. 2004, Nat Rev Immunol. , pp. 762–74.

59. Monocyte and Macrophage. Gordon, S. and Taylor, P.R. 2005, NATURE REVIEWS | IMMUNOLOGY , pp. vol:5, 953-964.

60. Blood monocytes consist of two principal subsets with distinct migratory properties. Geissmann F, Jung S, Littman DR. 2003, Immunity. , pp. 19:71–82.

61. Identification of a novel cell type in peripheral lymphoid organs of mice. I Morphology, quantitation, tissue distribution. . Steinman RM, Cohn ZA. 1973, J Exp Med., pp. 137(5):1142–1162.

62. T cell apoptosis by tryptophan catabolism. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P. 2002, Cell Death Differ , pp. 9:1069–1077.

63. Kynurenine is a novel endothelium derived relaxing factor produced during inflammation. Wang, et al. 2010, Nat. Med., pp. 16(3): 279-285.

64. Activation of the noncanonical NF-kB pathway by HIV controls a Dendritic cell immunoregulatory phenotype. Manches, O. Fernandez, V.M.,, Plumas, J., Chaperot, L., and Bhardwaj, N. 2012, PNAS, pp. vol: 109, 14122-14127.

65. B cells inhibit induction of T cell-dependent tumor immunity. Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X, Blakenstein, T. 1998, Nat. Med, p. 4:627.

66. Different partners, Opposite Outcmes: A new perspective of immunobiology of Indolamine 2,3 dioxygenase. Orabona, C., Pallotta, M.T., Grohman, U. 2012, Molecular Medicine., pp. 18:834-842.

67. Indolamine 2,3-dioxygenase: From catalyst to signaling function. Fallarino, F., Grohman, U., and Puccetti, P. 2012, Eurepean J. of Immunol. , pp. 42:1932-1937.

68. IDO: more than an enzyme. Chen, W. 2011, Nature Immonology, pp. 809-811.

69. Indolamine2,3-dehydrogenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Xu, H., Oriss, T.B., Fei, M., Henry, A.C., Melgert, B.N., Chen, L., Mellor, A.L. 2008, PNAS USA, pp. 105: 6690-6695.

70. The immunoregulatory enzyme IDO paradoxically drives B-cellmediated autoimmunity. Scott, G.N., DuHadaway, J., Pigott, E., Ridge, N., Prendergast, G.C., Muller, A.J., Mandik-Nayak, L. 2009, J. Immunol., pp. 182:7509-7517.

71. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. 2002, Immunology , pp. 107:452–460.

72. Enzymology of NAD+ homeostasis in man. . Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S. 2004, Cell Mol Life Sci , pp. 61:19–34.

73. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. . Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P. 2006, J Immunol. , pp. ;177:130–7.

74. An indogenous tumour promoting ligand of the human aryl hydrocarbon receptor. Opitz, et. al. 2011, pp. http://dx.doi.org:/10.1038/nature10491.

75. Inhibition of indoleamine 2,3-dioxygenase, animmunoregulatorytarget of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Muller, A. J. et al. 2005, Nature Med. , pp. 11, 312–319 .

76. TGF-b; a master of all T cell trades. Li, M.O., Fravell, R.A. 2008, Cell. , pp. 134: 392-404.

77. Palotta, M.T. et al. 2011, Nat. Immunol., pp. 12:870-878. 78. Chen, W. et al. 2003, J. Exp. Immunol., p. 198: 1875.

79. Smads: transcriptional activators of TGF-beta responses. . Derynck R, Zhang Y, Feng XH. 1998, Cell , pp. 95 (6): 737–40.
http://dx.doi.org:/10.1016/S0092-8674(00)81696-7.  PMID 9865691.

80. Smad transcription factors. Massagué J, Seoane J, Wotton D. 2005, Genes Dev, pp. 19 (23): 2783–810.
http://dx.doi.org:/10.1101/gad.1350705. PMID .

81. A structural basis for mutational inactivation of the tumour suppressor Smad4. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP. 1997, Nature., pp. 388 (6637): 87–93.   http://dx.doi.org:/10.1038/40431. PMID 9214508.

82. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S. 2001, EMBO J., pp. 20 (15): 4132–     http://dx.doi.org:/10.1093/emboj/20.15.4132. PMC 149146. PMID 11483516.

83. SMAD_Signaling_Network. http://www.sabiosciences.com. [Online] 2013. http://www.sabiosciences.com/pathway.php?sn=SMAD_Signaling_Network.

84. Immune inhibitory receptors. Revetch, J.V., and Lanier, L.L. 2000, Science., pp. 290:84-89.

85. Soc3 drives proteasomal degradation of indolamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Orabona, C., Pallotta, M., Volpi, C., et al. 2008, PNAS USA, pp. 105: 20828-20833.

86. Cutting edge; silencing supressor of cytokine signaling3 expression in dendritic cells turns CD28-Ig from immune adjuvant to supressant. Orabona, C.,, Belladonna, M.L., et all. 2005, J. Immunol., pp. 174: 6582-6586.

87. Molecular signatures of T-cell inhibition in HIV-1 infection. Larsson, M., Shankar. E.M, Che, K.F., Ellegard, R., Barathan, M., Velu, V., and Kamarulzaman, A. 2013, Retrovirology, p. 10:31.

88. TGF-beta and CD4+CD25+ regulatory cells. Huber, S. and Schramn, C. 2006, Front. Bioscie., pp. 11:1014-1023.

89. Immune Escape as a fundemental trait of cancer; focus on IDO. Prendergast, G.C. 2008, Oncogene., pp. 27, 3889-3900.

90. Il-6 inhibits the tolerogenic functionof CD8+ dendritic cells expressing indolamine 2,3-dioxygenase. Grohman, U., Fallarino, F., et al. 2001, J. Immunol., pp. 167:708-714.

91. Avoiding horror autotoxicus: Th eimportance of dentritic cells in peripheral T cell tolerance. Steinman, R.M., and Nussenzweig, M.C. 2002, PNAS, pp. no:1, 351-358.

92. Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice . Kaisho, T., Akira, S. 2001, Trends Immunol , pp. 22,78-83.

93. Innate sensing of self and non-self RNAs by Toll-like receptors. Sioud, M. 2006., Trends Mol Med., pp. 12:67–76.

94. Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Furset, G., Fløisand, Y. and Sioud, M. 2008, Immunology., pp. 123(2): 263–271,  http://dx.doi.org:/10.1111/j.1365-2567.2007.02695.x.

95. Toll-;ike receptor 9 mediated induction of the immunorepressor pathway of tryptophan metabolism. Fallarino, F., and Puccetti, P. 2006, Eur. J. of Imm., pp. 36:8-11.

96. Toll-like receptors and host defense against microbial pathogens: bringing specificity to the innate immune system. . Netea MG, der Graaf C, Van der Meer JWM, Kullberg BJ. 2004, J Leukoc Biol. , pp. 75:749–55.

97. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. . Heil F, Hemmi H, Hochrein H, et al. 2004, Science. , pp. 303:1526–9.

98. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. . Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. 2004., Science. , pp. 303:1529–31.

99. The role of CpG motifs in innate immunity. Krieg, A.M. 2000., Curr Opin Immunol., pp. 12:35–43.

100. Anendogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott,M., Tritschler, I., Trump, S. 2011, Nature, pp. vol 478; 197-203.

101. Impaired impression of Indolamine 2,3-deoxygenase in monocyte derived DCs in response to TLR-7/8. Furset, G., Floisand, Y., Sioud, M. 2007, Immunology, pp. 263-271.

102. Activationof the noncanonical NF-kB pathway by HIV controls a Dendritic cell immunoregulatory phenotype. Manches, O. Fernandez, V.M.,, Plumas, J., Chaperot, L., and Bhardwaj, N. 2012, PNAS, pp. vol: 109, 14122-14127.

103. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo . de Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., De Baetselier, P., Urbain, J., Leo, O., Moser, M. 1996, J. Exp. Med., pp. 184,1413-1424.

104. Subsets of dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens . Kadowaki, N., Ho, S., Antonenko, S., de Waal Malefyt, R., Kastelein, R. A., Bazan, F., Liu, Y-J. 2001, J. Exp. Med., pp. 194,863-869 .

105. TRAF6 is a critical factor for dendritic cell maturation and development . Kobayashi, T., Walsh, P. T., Walsh, M. C., Speirs, K. M., Chiffoleau, E., King, C. G., Hancock, W. W., Caamano, J. H., Hunter, C. A., Scott, P., Turka, L. A., Choi, Y. 2003, Immunity , pp. 19,353-363 .

106. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA. Sadik CD, Bachmann M, Pfeilschifter J, Mühl H. 2009, Nucleic Acids Res. , pp. 37(15):5041-56. http://dx.doi.org:/10.1093/nar/gkp525. Epub 2009 Jun 18.

107. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts. Karpus ON, Heutinck KM, Wijnker PJ, Tak PP, Hamann J. 2012, PLoS One., p. 7(5):e35606.  http://dx.doi.org:/10.1371/journal.pone.0035606. Epub 2012 May 10.

108. The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Lu J, Sun PD. 2012, Sci Signal., p. 5(216):pe11.  http://dx.doi.org:/10.1126/scisignal.2002963.

109. Flagellin/Toll-like receptor 5 response was specifically attenuated by keratan sulfate disaccharide via decreased EGFR phosphorylation in normal human bronchial epithelial cells. Shirato K, Gao C, Ota F, Angata T, Shogomori H, Ohtsubo K, Yoshida K, Lepenies B, Taniguchi N. 2013, Biochem Biophys Res Commun., pp. doi:pii: S0006-291X(13)00779-1. http://dx.doi.org:/10.1016/j.bbrc.2013.05.009. [Epub ahead of print].

110. Differential induction of interleukin-10 and interleukin-12 in dendritic cells by microbial Toll-like receptor activators and skewing of T-cell cytokine profiles Infect. Qi, H., Denning, T. L., Soong, L. 2003, Immun. , pp. 71,3337-3342 .

111. Activation of Toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10 . Thoma-Uszynski, S., Kiertscher, S. M., Ochoa, M. T., Bouis, D. A., Norgard, M. V., Miyake, K., Godowski, P. J., Roth, M. D., Modlin, R. L. 2000, J. Immunol. , pp. 165,3804-3810.

112. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells . Re, F., Strominger, J. L. 2001, J. Biol. Chem. , pp. 276,37692-37699.

113. Pasare, C., Medzhitov, R. (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Pasare, C., Medzhitov, R. 2003, Science , pp. 299,1033-1036 .

114. What is the role of regulatory T cells in the success of implantation and early pregnancy? Saito, S., Shima, T., Nakashima, A., Shiozaki, A., Ito, M., Sasaki, Y. 2007, J Assist Reprod Genet, pp. 24: 379-386.

115. Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. Liu H, Liu L, Fletcher BS, Visner GA. 2006, FASEB J, pp. 20:2384-2386.

116. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Alexander AM, Crawford M, Bertera S, et al. 2002, Diabetes. , pp. 51(2):356–365.

117. Solid Cancers after Bone Marrow Transplantatioin. Curtis, R.E., Rowlings, P.A., Deeg, J., Schirer, D.A. et al. 1997, The New England Journal of Medicine., pp. 336, No: 13: 897-904.

118. More ADO about IDO; GVHD (commentary). Curti, A., Trabanelli, S., Lemoli, M. 2008, Blood, p. 2950.

119. Jasperson, et al, . 2008, Blood, p. 3257.

120. Tolerance, DCs and tryptophan: much ado about IDO. Grohmann U, Fallarino F, Puccetti P. 2003, Trends Immunol, pp. 24:242-248.

121. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. 2003, Nat Med , pp. 9:1269–74.

122. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Lisa K. Jasperson, Christoph Bucher, Angela Panoskaltsis-Mortari, Patricia A. Taylor, Andrew L. Mellor, David H. Munn, and Bruce R. Blazar. 2008., Blood., pp. 111:3257-3265.

123. The metabolism of tryptophan. 2. The metabolism of tryptophan in patients suffering from cancer of the bladder. . Boyland, E. & Willliams, D.C. 1956, Biochem. J., pp. 64, 578−582 .

124. Tryptophan metabolism in carcinoma of the breast. . Rose, D. 1967, Lancet , pp. 1, 239−241. 

125. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? . Löb S, Königsrainer A, Rammensee HG, Opelz G, Terness P. 2009;, Nat Rev Cancer , pp. 9:445–52.  http://dx.doi.org:/10.1158/1078-0432.CCR-11-1331.

126. The hallmarks of cancer. . Hanahan, D. & Weinberg, R.A. 2000., Cell., pp. 100, 57−70.

127. Indoleamine 2,3-Dioxygenase Expression in Human Cancers: Clinical and Immunologic Perspectives. Godin-Ethier, J., Hanafi,L.A., Piccirillo,C.A. and Lapointe, R. 2011, Clin Cancer Res, pp. 17; 6985,  http://dx.doi.org:/10.1158/1078-0432.CCR-11-1331.

128. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Khan A, Fu H, Tan LA, Harper JE, Beutelspacher SC, Larkin DF, Lombardi G, McClure MO, George AJ. 2013, Eur J Immunol., pp. 43(3):734-46. http://dx.doi.org:/10.1002/eji.201242914. Epub 2013 Jan 18.

129. Possible role of the ‘IDO-AhR axis’ in maternal-foetal tolerance. . Hao K, Zhou Q, Chen W, Jia W, Zheng J, Kang J, Wang K, Duan T. 2013, Cell Biol Int., pp. 37(2):105-8.  http://dx.doi.org:/10.1002/cbin.10023. Epub 2013 Jan 2.

130. Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. . Dürr S, Kindler V. 2013, J Leukoc Biol. , pp. 93(5):681-7.
http://dx.doi.org:/10.1189/jlb.0712347. Epub 2013 Jan 16.

131. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. 2003, Nat Med, pp. 9:1269–74.

132. NAturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Sagaguchi, S. 2004, Annu. Rev. of Immunol., pp. 22: 531-562.

133. Regulatory T cells in transplantation tolerance. Wood, K.J., zZSakaguchi, S.,. 2003, Nat. Rev. Immunol., pp. 3; 199-210.

134. The cell awareness of paternal alloantigens during pregnancy. Tafuri, A., Alferink, J., Hammerling, G.J., Arnold, B. 1995, Science, pp. 270; 630-3.

135. Adenovirus mediated CTLA4Ig transgene therapy alleviates abortion by inhibiting spleen lymphocyte proliferation and regulating apoptosis in the feto-placental unit. Li W, Li B, Li S. 2013, J Reprod Immunol. , pp. 97(2):167-74.

136. A distinct tolerogenic subset of splenic IDO(+)CD11b(+) dendritic cells from orally tolerized mice is responsible for induction of systemic immune tolerance and suppression of collagen-induced arthritis. Park MJ, Park KS, Park HS, Cho ML, Hwang SY, Min SY, Park MK, Park SH, Kim HY. 2012, Cell Immunol. , pp. 278(1-2):45-54. http://dx.doi.org:/10.1016/j.cellimm.2012.06.009. Epub 2012 Jul 10.

137. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Penberthy, W.T. 2007, Curr. Drug Metab., pp. 8:(3):245-266.

138. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Alexander AM, Crawford M, Bertera S, et al. 2002, Diabetes. , pp. 51(2):356–365.

139. Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. . Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS. 2001., NeuroReport. , pp. 12(9):1841–1845.

140. Tumor vaccines in 2010: need for integration. Koos, D., Josephs, SF, Alexandrescu, DT et al. 2010, Cell Immunol, pp. 263: 138-147.

141. BIN1 is a novel MYC-interacting protein with features of a tumor suppressor. . Sakamuro, D., Elliott, K., Wechsler-Reya, R. & Prendergast, G.C. 1996, Nat. Genet. , pp. 14, 69−77.

142. Expression of Indolamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor draining nodes. Munn, S.H., Sharma, M.D., Hou, D., Baban, B. et al. 2004, J. Clin. Invest. , pp. 114: 280-290.

143. Indoleamine 2,3-Dioxygenase Expression in Human Cancers: Clinical and Immunologic Perspectives. Jessica Godin-Ethier, Laïla-Aïcha Hanafi, Ciriaco A. Piccirillo, and Réjean Lapointe. 2011 , Clin Cancer Res, pp. 17; 6985, http://dx.doi.org:/10.1158/1078-0432.CCR-11-1331.

144. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. . Munn, D.H. et al. 2002, Science 297, 1867−1870, pp. 297, 1867−1870 .

145. An HDAC inhibitor enhances cancer therapeutic efficiency of RNA polymerase III promoter-driven IDO shRNA. Yen MC, Weng TY, Chen YL, Lin CC, Chen CY, Wang CY, Chao HL, Chen CS, Lai MD. 2013, Cancer Gene Ther. , p. http://dx.doi.org:/10.1038/cgt.2013.27. [Epub ahead of print].

146. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, Diamond DJ. 2012, Cancer Res. , pp. 72(24):6447-56.
http://dx.doi.org:/ZZ1158/0008-5472.CAN-12-0193. Epub 2012 Oct 22.

147. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Zheng X, Koropatnick J, Chen D, Velenosi T, Ling H, Zhang X, Jiang N, Navarro B, Ichim TE, Urquhart B, Min W. 2013, Int J Cancer., pp.132(4):967-77. http://dx.doi.org:/10.1002/ijc.27710. Epub 2012 Jul 20.

148. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Mougiakakos D, Jitschin R, von Bahr L, Poschke I, Gary R, Sundberg B, Gerbitz A, Ljungman P, Le Blanc K. 2013, Leukemia. , pp. 27(2):377-88.
http://dx.doi.org:/10.1038/leu.2012.215. Epub 2012 Jul 25.

149. Upregulated expression of indoleamine 2, 3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis. Yu J, Sun J, Wang SE, Li H, Cao S, Cong Y, Liu J, Ren X. 2011, Clin Dev Immunol. , p. 11:469135.
http://dx.doi.org:/10.1155/2011/469135. Epub 2011 Oct 24.

150. Skin delivery of short hairpin RNA of indoleamine 2,3 dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer. Huang TT, Yen MC, Lin CC, Weng TY, Chen YL, Lin CM, Lai MD. 2011, Cancer Sci. , pp. 102(12):2214-20. http://dx.doi.org:/10.1111/j.1349-7006.2011.02094.x.

151. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. . Alexander AM, Crawford M, Bertera S, et al. 2002, Diabetes. , pp. 51(2):356–365.

152. Prevention of Spontaneous Tumor Development in a ret Transgenic Mouse Model by Ret Peptide Vaccination with Indoleamine 2,3-Dioxygenase Inhibitor 1-Methyl Tryptophan. Zeng, J., Cai, S., Yi, Y., et al. 2009, Cancer Res., pp. 69: 3963-3970,  http://dx.doi.org:/10.1158/0008-5472.CAN-08-2476.

153. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs. Hori H, Uto Y, Nakata E. 2010, Anticancer Res. , pp. 30(9):3233-42.

154. Synthesis of 4-cyano and 4-nitrophenyl 1,6-dithio-D-manno-, L-ido- and D-glucoseptanosides possessing antithrombotic activity. Bozó E, Gáti T, Demeter A, Kuszmann J. 2002, Carbohydr Res. , pp. 3;337(15):1351-65.

155. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, Ido T, MacGregor RR, Som P, Wan CN, Wolf AP, Kuhl DE, Reivich M. 1977, J Nucl Med. , pp. 18(10):990-6.

156. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. 2002, Immunology, pp. 107:452–460.

157. Induction of indoleamine 2,3-dioxygenase by uropathogenic bacteria attenuates innate responses to epithelial infection. Loughman JA, Hunstad DA. 2012 , J Infect Dis. , pp. 205(12):1830-9.  http://dx.doi.org:/10.1093/infdis/jis280.

158. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. . Terness, P., et al. 2002, J. Exp. Med.196:447–457., pp. 196:447–457.

159. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. . Chiesa, M.D., et al. 2006, Blood. , pp. 108:4118–4125.38.

160. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Weber, W.P., et al. 2006, Eur. J. Immunol. , pp. 36:296-304.

161. Dendritic cell vaccination against ovarian cancer–tipping the Treg/TH17 balance to therapeutic advantage? Cannon MJ, Goyne H, Stone PJ, Chiriva-Internati M. 2011, Expert Opin Biol Ther. , pp. 11(4):441-5. http://dx.doi.org:/10.1517/14712598.2011.554812.

162. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. . Kryczek I, Banerjee M, Cheng P, et al. 2009, Blood., pp. 114:1141–1149.

163. The use of dendritic cells in cancer immunitherapy. Schuler, G., Schuker-Turner, B., Steinman, RM, 2003, Curr. Opin. Immunol., pp. 15: 138-147.

164. Clinical applications of dentritic cell vaccines. Morse, MA, Lyerly, HK. 2000, Curr. Opin. Mol Ther., pp. 2:20-28.

165. Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nestle, FO, Alijagic, S., Gillet, M. et al. 1998, Nat. Med., pp. 4: 328-332.

166. Dentritic cell based tumor vaccination in prostate and renal cell cancer: a systamatic review. Draube, A., Klein-Gonzales, Matheus, S et al. 2011, Plos One, p. 6:e1881.

167. [Online] http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapy-Products/ApprovedProducts/ucm210215.htm.

168. Dendritic cell based antitumor vaccination: impact of functional indolamine 2,3-dioxygenase expression. Wobster, m., Voigt, H., Houben, R. et al. 2007, Cancer Immunol Immunother, pp. 56:1017-1024. 169. [Online] oncoimmunology.2012 October1; 1(17):1111-1134,  http://dx.doi.org:/10.4161/onci.21494.

170. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. 2007 , Nat Immunol. , pp. 8(9):942-9.

171. IFNgamma promotes generationof Il-10 secreting CD4+ T cells that suppress generationof CD8responses in an antigen-experienced host. Liu, X.S., Leerberg, J., MacDonald, K., Leggatt, G.R., Frazer, I.H. 2009, J. Immunol., pp. 183: 51-58.

172. Antigen, in the presence of TGF-beta, induces up-regulationof FoxP3gfp+ in CD4+ TCR transgenic T cells that mediate linked supressionof CD8+ T cell responses. . Kapp, J.A., Honjo, K., Kapp, L.M., Goldsmith, K., Bucy, R.P. 2007, J. Immunol., pp. 179: 2105-2114.

173. Opposing effects of TGF-beta and IL-15 cytokines control the number of short lived effecctor CD8+ T cells. Sanjabi, S, Mosaheb, M.M., Flavell, R.A. 2009, Immunity., pp. 31; 131-144.

174. Synergestic enhancement of CD8+ T cell mediated tumor vaccines efficacy by an anti-tumor forming growth factor-beta monoclonal antibody. . Terabe, M., Ambrosino, E., Takaku, S. et al. 2009, Clin. Cancer Res., pp. 15; 6560-9.

175. IL-12 enhances CTL synapse formationand induces self-reactivity. Markinewicz, MA, Wise, EL, Buchwald, ZS et al. 2009, J. Immunol., pp. 182: 1351-1362.

176. Tumor specific Th17-polarized cells eradicate large established melanoma. Muranski, P., Boni, A., Antony, PA, et al. 2008, Blood, pp. 112; 362-373.

177. Type17 CD8+ T cells dispplay enhanced antitumor immunity. Hinrichs, C.S., Kaiser, A., Paulos, C.M., et al. 2008, Blood., pp. 112:362-373.

178. Marying Immunotherapy with Chemotherapy: Why Say IDO? Muller, AJ, and Prendergrast, GC. 2005, Cancer Research, pp. 65: 8065-8068.

179. Enhancing Cancer Vaccine efficacy via Modulationof the Tumor Environment. Disis, ML. 2009, Clin Cancer Res, pp. 15: 6476-6478.

180. Systemic inhibition of transforming growth factor beta 1 in glioma bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Ueda, R., Fujita, M., Zhu, X., et al. 2009, Clin. Cancer res., pp. 15: 6551-9.

181. Immune modulation by silencing IL-12 productionin dendritic cells using smal interfering RNA. Hill, JA, Ichim, TE, Kusznieruk, KP, et al. 2003, J. Immunol, pp. 171:809-813.

182. Immune modulation and tolerance induction by RelB-silenced dentritic cells through RNA interference. Li, M. Zang, X, Zheng, X, et al. 2007, J. Immunol, pp. 178: 5480-7.

183. RNAi mediated CD40-CD54 interruption promotes tolerance in autoimmune arthritis. . Zheng, X., Suzuki, M., Zhang, X., et al. 2010, Arthritis Res. Ther., p. 12:R13.

184. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Min, WP. Gorczynki, R., huang, XY et al. 2000, J. Immunol., pp. 164:161-167.

185. LF15-0195 generates tolerogenic dendritic cells by supressionof NF-kappaB signaling through inhibitionof IKK activity. . Yang, J., Bernier, SM, Ichim, TE, et al. 2003, J Leukoc. Biol., pp. 74: 438-447.

186. RNA interfrence: A potent tool for gene specific therapeutics. . Ichim, TE, Li, M., Qian, H., Popov, HI, Rycerz, K., Zheng, X., White, D., Zhong, R., and Min, WP. 2004, Am. J. Transplant, pp. 4:1227-1236.

187. A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Zheng, X., Vladau, C., Zhang, X. et al. 2009, Blood, pp. 113:2646-2654.

188. Reinstalling Antitumor Immunity by Inhibiting Tumor derived ImmunoSupressive Molecule IDO through RNA interference. Zheng, X et al. 2006, Int. Journal of Immunology., pp. 177:5639-5646.

189. Roles of TGFbeta in metastasis. Padua, D., Massague, J. 2009, Cell Res., pp. 19;89-102.

190. Functional expression of indolamine2,3-dioxygenase by murine CDalpha+dendritic cells. Fallarino, F., Vacca, C, Orabona, C et al. 2002, Int Immunol., pp. 14:65-8.

191. Indolamine2,3-dioxygenase controls conversion of Fox3+ Tregs to TH17-like cells in tumor draining lymph nodes. Sharma, MD, Hou, DY, Liu, Y et al. 2009, Blood, pp.113: 6102-11.

192. IDO upregulates regulatory T cells via tryptoophan catabolite and supresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. Yan, Y, Zhang, GX, Gran, B et al. 2010, J Immunol, pp. 185; 5953-61.

193. IDO activates regulatory T cells and blocks their conversion into Th-17-like T cells. Baban, B, Chandler, PR, Sharma, MD et al. 2009, J Immunol, pp. 183; 2475-83.

194. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletionof regulatory T cells. Dannull, J., Farrand, KJ, Mathews, SA, et al. 2005, J Clin Invest, pp. 115: 3623-33.

195. 1-MT enhances potency of tumor cell lysate pulled dentritic cells against pancreatic adenocarcinoma by downregulating percentage of Tregs. Li, Y, Xu, J, Zhou, H. et al. 2010, J Huazhong Univ Sci Technol Med Sci , pp. 30: 344-8.

196. siRNA mediated antitumorigenesis for drug target validation and therapeutics. Lu, PY, Xie, FY and Woodle, MC. 2003, Curr Opin Mol. Ther., pp. 5:225-234.

197. Stable supression of tumorigenicity by virus-mediated RNA interference. Brumellkamp, TR, Bernards, R, Agami, R. 2002, Cancer Cell, pp. 2; 243-247.

198. Small interferring RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Verma, UN, Surabhi, RM, Schmaltieg, A., Becerra, C., Gaynor, RB. 2003, Clin. Cancer. Res., pp. 9:1291-1300.

199. siRNA mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogeneic thromboposdin-1 and slows tumor vascularization and growth. Filleur, S., Courtin, A, Ait-Si-Ali, S., Guglielmi, J., Merel, C., Harel-Bellan, A., CLezardin, P., and Cabon, F. 2003, Cancer Res, pp. 63; 3919-3922.

200. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. . Wang, J., et al. 2006, J. Biol.Chem. , pp. 281:22021–22028. 201. Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Elliott, K. et al. 1999, Oncogene , pp. 18, 3564−3573 .

202. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. . Ge, K. et al. 1999, Proc. Natl. Acad. Sci. USA, pp. 96, 9689−9694. 

203. Losses of the tumor suppressor Bin1 in breast carcinoma are frequent and reflect deficits in a programmed cell death capacity. Ge, K. et al. 2000, Int. J. Cancer , pp. 85, 376−383.

204. Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Ge, K. et al. 2000, Int. J. Cancer , pp. 86, 155−161.

205. Expression of a MYCN-interacting isoform of the tumor suppressor BIN1 is reduced in neuroblastomas with unfavorable biological features. . Tajiri, T. et al. 2003, Clin. Cancer Res., pp. 9, 3345−3355.

206. Targeted deletion of the suppressor gene Bin1/Amphiphysin2 enhances the malignant character of transformed cells. Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E. & Prendergast, G.C. 2004, Cancer Biol. Ther. , p. 3.

207. Interactions of myogenic factors and the retinoblastoma protein mediates muscle commitment and cell differentiation. Gu, WJ., Scheniider,W., Condrolli,G., Kaushal,, S, Mahdavi,V., Nadal-Gnard, B. 1993, Cell, pp. 72; 309-324.

208. Structural analysis of the human BIN1 gene: evidence of tissue-specific transcriptional regualtion and alternate splicing. Wechsler-Reya, R, Sakamuro, J., Zhang, J., DuHadaway, J., and Predengast. 1998, J of Biol Chem.

209. A role for th ePutative Tuimor Supressor Bin1 in Muscle Differentiation. Wechsler-Reya, R., Elliott, KJ, Prendergast, GC. 1998, Molecular and Cellular Biology, p. 18 (1) :566.

210. The putative tumor repressor BIN1 is a short lived nuclear phosphoprotein whose localization is altered in malignant cells. Wechsler-Reya, R., Elliot, K., Herlyn, M., Prendergast, GC. 1997, Cancer Res, pp. 57: 3258-3263.

211. Transformation selective apoptosis by farnesyltransferase inhibitors requires Bin1. DuHadaway, J.B. et al. 2003, Oncogene, pp. 22, 3578−3588 (2003).

212. The c-Myc-interacting adapter protein Bin1 activates a caspase-independent cell death program. Elliott, K., Ge, K., Du, W. & Prendergast, G.C. 2000., Oncogene , pp. 19, 4669−4684.

213. Growth stimulation of human bone marrow cells in agar culture by vascular cells. Knudtzon, S., and Mortensen, BT. 1975, Blood, pp. 46 (6) 937-943.

214. Exogenous endothelial cells as accelerators of hematopoietic reconstitution. Mizer, C., Ichim, TE, Alexandrescu, DT, DAsanu, CA, Ramos, F., Turner, A., Woods, EJ, Bogon, V., Murphy, MP, Koos, D., and Patel, A. 2013, J. Translational Medicine, p. 10: 231.

215. Dissecting the bone marrow microenvironment . Torok-Storb, B. et al. 1999, Annals of New York Academy of Science, pp. 872: 164-170. 217. Yuasa, XX and Ball YY. 2011.

218. Possible role of the ‘IDO-AhR axis’ in maternal-foetal tolerance. Hao K, Zhou Q, Chen W, Jia W, Zheng J, Kang J, Wang K, Duan T. 2013, Cell Biol Int. , pp. 37(2):105-8. http://dx.doi.org:/10.1002/cbin.10023.

219. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Pasare, C., Medzhitov, R. 2003, Science , pp. 299,1033-1036 .

220. Activation of Toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10. Thoma-Uszynski, S., Kiertscher, S. M., Ochoa, M. T., Bouis, D. A., Norgard, M. V., Miyake, K., Godowski, P. J., Roth, M. D., Modlin, R. L. 2000, J. Immunol. , pp. 165,3804-3810.

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

  • Multiple important and complex interactions exist between the endocrine and other systems (e.g. immune, nervous).
  • Definition of hormones: circulating molecules with a site of action distant from site of origin with ability to bind to cellular receptors and initiate signal transduction via conformational changes in the receptor.
  • Hormones participate in growth and development, reproduction, energy metabolism and maintenance of the internal environment.
  • In general, hormones are protein-derived molecules that bind to cell surface receptors or steroid hormones that bind to nuclear receptors. An exemption is thyroid hormone, a modified amino acid that binds to nuclear receptors.
  • Integrated feedback loops are very characteristic to the endocrine system and critical in maintaining normal hormonal function. Two major types of control exist: the hypothalamic-pituitary-peripheral organ unit and the free standing endocrine gland.
  • Pathology in endocrinology is due to abnormal hormone activity or neoplasms, leading to endocrine hyperfunction/hyperfunction or structural abnormalities.

Endocrine pathology is derived from defects found at any point in the hormonal synthesissecretiontransportaction, or regulatory control of a hormone. Endocrine pathology often occurs in one of the following broad categories:

  1. Abnormal Hormone Activity which can be subdivided into:
    • Endocrine organ hypofunction
      • Primary endocrine organ failure can be genetic or acquired
        • Endocrine organ agenesis (absence)
        • Genetic defect in hormone biosynthetic pathway (e.g. adrenal insufficiency due to 21-hydroxylase deficiency)
        • Destruction due to
          • Autoimmune disease (e.g. Hashimoto’s hypothyroidism)
          • A tumor, infection or hemorrhage
        • Deficiency of precursor (e.g. iodine deficiency leading to decreased thyroid hormone synthesis)
      • Production of abnormal hormone resulting in hypofunction (e.g. abnormal glycosylation of TSH). Secondary endocrine organ failure (e.g. hypothyroidism due to hypopituitarism)
    • Endocrine organ hyperfunction
      • Primary endocrine organ process due to a benign condition (e.g. autoimmune thyroid gland stimulation in Graves’ disease) or benign neoplasm (e.g. primary hyperparathyroidism causing hypercalcemia). Endocrine cancers are rare but they may also release hormones that cause endocrine hyperfunction (e.g. adrenocortical carcinoma secreting excessive androgens causing virilization).
        • Benign condition (e.g. thyroid gland stimulation in Graves’ disease by autoantibodies against the TSH receptor)
        • Benign neoplasm (e.g. primary hyperparathyroid adenoma secreting excessive PTH causing hypercalcemia).
        • Endocrine cancers (e.g. adrenocortical carcinoma secreting excessive androgens causing virilization).
      • Secondary due to stimulation by a trophic/stimulatory hormone, most often due to a benign neoplasm (e.g. hypersecretion of cortisol from adrenal cortex due to and ACTH-secreting pituitary adenoma).
      • Less commonly, ectopic production of a hormone may lead to endocrine hyperfunction (e.g. ACTH released from small cell lung cancer cause hypersecretion of cortisol by adrenal glands).
    • Abnormality in hormone transport or metabolism (e.g. genetic defects of abnormal thyroid binding globulin)
    • Abnormal hormone receptor binding and/or signal transduction. Most often causing endocrine hypofunction due to resistance to the action of hormone. The receptor itself being unable to bind the hormone (e.g. thyroid hormone resistance) or there may be a defect in post-receptor signal transduction (e.g. type 2 diabetes mellitus). Occasionally, abnormal hormone signaling may lead to endocrine hyperfunction (e.g. Gs protein mutation leading to unregulated secretion of Growth Hormone).
  2. Neoplasms. They can be both benign or malignant. Symptoms develop either due to
    • Overproduction of hormone by the tumor (e.g. ACTH producing pituitary adenoma causing hypersecretion of cortisol)
    • Underproduction of nearby hormones due to mass effect (e.g. pituitary hormone production is often affected by large pituitary tumors)
    • Structural damage (e.g. hypothalamic-pituitary tumors causing headache, visual problems).
  3. Iatrogenic. Most common iatrogenic cause of endocrine abnormality is exogenous administration of glucocorticoids (give to treat non-endocrine conditions, e.g. rheumatoid arthritis)

Source References:

http://www.vivo.colostate.edu/hbooks/pathphys/endocrine/

http://ocw.tufts.edu/Content/14/lecturenotes/265876

http://intranet.tdmu.edu.ua/data/kafedra/internal/magistr/classes_stud/English/First%20year/Clinical%20Pathophysiology%20of%20Diseases/CLINICAL%20PATHOPHYSIOLOGY%20OF%20THE%20ENDOCRINE%20SYSTEM.htm

Greenspan FS and Gardner DG. Basic and Clinical Endocrinology, 6th edition. Lange Medical Books, McGraw-Hill, 2001.

Wilson, JD, Foster, DW, Kronenberg, HM, and Larsen, PR. Principles of Endocrinology. In: Williams Textbook of Endocrinology, 9th edition, W.B. Saunders, Philadelphia, 1998.

Read Full Post »

Larry H Bernstein, MD, FCAP
Pharmaceutical Intelligence

UPDATED 4/23/2020:  New Design for Phase 1 pediatric oncology trials to expedite dose escalation studies.

Clinical Trials Revisited

http://pharmaceuticalintelligence.com/2013/04/03/clinical-trials-revisit/

Cancer Clinical Trials of Tomorrow

Advances in genomics and cancer biology will alter the design of human cancer studies

By Tomasz M. Beer | April 1, 2013   The Scientist
We stand on the cusp of significant change in the fundamental structure of cancer clinical trials, as the emphasis begins to shift from large-scale studies of relatively unselected patients to smaller studies testing more narrowly targeted therapies in molecularly characterized populations.
The previous (and still current) generation of trials established the cancer treatment standards used today. Trials that demonstrated the value of combination chemotherapy in the adjuvant treatment of breast cancer are an excellent example. Meticulous development of treatment regimens through Phase 1 and Phase 2 trials, followed by large-scale comparisons of the new regimens to established treatment protocols, have defined the modern practice of oncology for the last 4 decades. Future cancer clinical trials will be very different from those of the past, adopting a more personalized, sometimes called “precision,” approach.
It is, of course, not entirely true that past clinical trials did not include efforts to target treatments to the right patients. Where possible, targeted therapies are already being implemented. Using the presence of endocrine receptors to guide endocrine therapy for breast cancer was one of the first forays into molecular selection of patients. Unfortunately, the ability to select subgroups of patients for study has been severely curtailed by a still-limited knowledge of human cancer biology.
This is rapidly changing, however, thanks to advances in genomics and comprehensive cancer biology research over the last decade. Large-scale efforts, such as The Cancer Genome Atlas, are comprehensively defining many of the crucial molecular characteristics of human malignancies by illuminating genetic alterations that are clinically and biologically important, and which, by virtue of their functional roles, are viable targets for cancer treatment. At the same time, the ability to design small-molecule inhibitors of specific cancer targets is rapidly accelerating. In 2011, two new agents exemplified the power of these trends: crizotinib was approved for the treatment of lung cancers that harbor a specific mutation in the ALK gene, and vemurafenib was approved for the treatment of melanomas with a specific BRAF mutation. In both cases, the drugs were approved along with companion diagnostic tests that identify patients with the target mutation, who are therefore likely to benefit from treatment.

Smaller, more precise trials ahead

Clinical trials are being transformed by these trends. It will not happen overnight, as the knowledge of cancer biology and the availability of targeted agents are uneven. Unselected populations of patients will still be studied, but it is inevitable that there will be a rise in the number of trials that incorporate molecular tumor testing prior to treatment, with treatment selection informed by the molecular features of each individual’s cancer. Such personalized trials have the potential to yield better outcomes by increasing the probability of response and to employ less toxic therapies by increasingly targeting cancer-specific functions, rather than normal proliferative functions.
To the extent that targeted therapies will prove more effective when given to selected patients, clinical trials should get dramatically smaller. Trial size is largely driven by how effective the treatment is expected to be, so fewer participants are needed when the therapeutic benefit is larger. But the promise of smaller trials will not to be universal; for example, when two targeted agents are compared to one another in the same molecularly selected population, the differences in efficacy may be small and larger trials will be required.
As approaches to cancer treatment advance, there will need to be continual engagement with patients and with cancer survivors.
Furthermore, smaller trials may not necessarily move faster or be easier to complete, as they will require the “right patients,” who may be hard to find. Many of the mutations that represent promising targets are present in a minority of tumors. Today, molecular characterization of tumors is often done as part of the screening process for each trial. Many, and sometimes most, of the patients prove ineligible, making this approach frustrating and difficult to carry out. A better avenue of attack would be to make comprehensive molecular characterization of tumors a routine part of establishing a patient’s eligibility for a range of therapies. With the plummeting cost of genomic analysis, one can envision a day in the near future when a complete cancer genome (and perhaps other molecular evaluations) becomes a standard component of an initial diagnostic evaluation. Patients will be armed with molecular information about their own tumors, and thus able to make more-informed decisions about standard and investigational therapies that match the mutations driving their cancer.

New challenges

The road to personalized and targeted treatment strategies will offer new challenges. For rare targets that are present in a minority of cases across many different types of cancers, one will have to consider clinical trials that include a number of different cancers. There are many design pitfalls to such trials, chiefly the additional clinical and molecular heterogeneity introduced by the inclusion of more than one cancer type. Despite these challenges, it will inevitably make sense in some settings to select patients who share a particular tumor biology, regardless of the tissue of origin.
Another major challenge is how to combine targeted therapies to improve clinical outcomes. To date, targeted therapies have not been able to cure advanced solid tumors. Clinical benefits, while sometimes quite impressive when compared to marginally effective treatments, still fall far short. It stands to reason that redundant survival and growth pathways enable tumors to overcome therapies that inhibit a single target. The simultaneous inhibition of relevant redundant pathways may yield dramatically better results, but will also dramatically increase the complexity of molecularly personalized clinical trials.
As approaches to cancer treatment advance, there will need to be continual engagement with patients and with cancer survivors. Fewer than 5 percent of adult cancer patients participate in a clinical trial. To carry out meaningful clinical trials in the future, that number must increase. This will be most important for treatments that target relatively rare mutations; a large number of potential volunteers will have to be screened to identify a sufficient number who harbor the relevant target. To succeed, we must partner with a much larger fraction of cancer patients.
Designing and executing future cancer clinical trials will not be easy, but physician-scientists are armed with a fast-growing body of omics-informed knowledge with which to surmount these hurdles.
Tomasz M. Beer is deputy director of the Knight Cancer Institute and a professor of medicine at Oregon Health & Science University in Portland. He is the coauthor of Cancer Clinical Trials: A Commonsense Guide to Experimental Cancer Therapies and Clinical Trials. Written for people living with cancer, the book is accompanied by a blog (www.cancer-clinical-trials.com) that seeks to disseminate knowledge about clinical trials.

Tags

tumor suppression, tumor heterogeneity, genetics & genomics, disease/medicine, clinical trials, chemotherapy, cancer genomics and cancer

UPDATED 4/23/2020:  New Design for Phase 1 pediatric oncology trials to expedite dose escalation studies.

 

REVIEW

Ushering in the next generation of precision trials for pediatric cancer

Steven G. DuBois, Laura B. Corson, Kimberly Stegmaier, Katherine A. Janeway

Science  15 Mar 2019:Vol. 363, Issue 6432, pp. 1175-1181 DOI: 10.1126/science.aaw4153

 

Abstract

Cancer treatment decisions are increasingly based on the genomic profile of the patient’s tumor, a strategy called “precision oncology.” Over the past few years, a growing number of clinical trials and case reports have provided evidence that precision oncology is an effective approach for at least some children with cancer. Here, we review key factors influencing pediatric drug development in the era of precision oncology. We describe an emerging regulatory framework that is accelerating the pace of clinical trials in children as well as design challenges that are specific to trials that involve young cancer patients. Last, we discuss new drug development approaches for pediatric cancers whose growth relies on proteins that are difficult to target therapeutically, such as transcription factors.

Some terms from the bibliography:

3+3 design: A commonly used rule-based design for phase 1 clinical trials in which patients are enrolled in cohorts of three patients, and decisions to increase or decrease the dose level for the next three participants are based on toxicities observed in those three patients.

 

Basket trial: A precision oncology trial design in which patients with many different cancer types are enrolled, the tumor is tested for a set of biomarkers of interest, and then patients are assigned to one of several clinical trial subprotocols based on the presence of a biomarker corresponding to a particular molecularly targeted therapy.

 

Bayesian model–based trial designs: A broad class of trial designs that use data known before the trial as well as data obtained during the conduct of the trial to adapt trial parameters as more information becomes available

Continual reassessment method: One example of a Bayesian model–based trial design in which an initial mathematical model of the relationship between drug dose and probability of unacceptable toxicity is continually updated as new information becomes available to assign subsequent patients to a dose anticipated to have an unacceptable toxicity rate below a set rate.

First-in-child trial: The first clinical trial of a specific agent to include a pediatric population, traditionally considered patients <18 years of age.

 

Rolling 6 design: A variation of the 3+3 design in which up to six participants may be enrolled to a dosing cohort before enrollment pauses to assess toxicity.

Safety run-in: An initial component of a phase 2 or phase 3 trial in which a small group of patients are treated with a previously untested regimen to evaluate toxicity before opening the trial to a larger group of participants.

Umbrella trial: A precision oncology trial design in which patients with a specific cancer type are enrolled, tumor is tested for a set of biomarkers of interest, and then patients are assigned to one of several clinical trial subprotocols based on the presence of a biomarker corresponding to a particular molecularly targeted therapy.

 

In this review article, DuBois et al describe new paradigms for pediatric precision oncology trial design and how these designs should be contrasted with the old models and differentiate from the design for these types of trials in the adult.  As the genomic landscape of pediatric tumors is becoming clearer (12) the authors noticed two themes which are becoming evident:

  1. Pediatric cancers harbor certain genomic mutations rarely seen in adult cancers
  2. Pediatric cancers share some genomic alterations and mutational gene signatures with adult tumors

However there is only a small number of pediatric clinical trials to investigate if specific genetic mutations predict outcome to a given personalized therapy.

            Thus, there an urgent need for precision clinical trials in pediatric cancers.

Several reviews have described numerous ongoing and recently completed trials however most are phase 1 dose escalation trials including basket trials and umbrella trials but based on previous data from adult trials using the same precision drug.  For example, pediatric trials involving the TRK inhibitor laratrectinib in tumors harboring a NTRK fusion gene or a pediatric crizotinib trial for pediatric glioblastomas having an ALK fusion protein have shown great success yet most of the early phase 1 work was based on adults or carried out in a way that does not take advantage of the new regulatory framework designed to expedite new drugs for adult precision medicines.

Speeding up the early phase trials in pediatric cancers: new trial design paradigms

Dose escalation phase I trials have, traditionally been the starting point for clinical development of new pediatric anticancer drugs however these first in child trials have seriously lagged their adult counterparts by many years.  These trials relied on the standard 3 x 3  or rolling six trial design, and doses escalated until a pediatric MTD  (maximum tolerated dose) was achieved.  In recent years new precision medicine pediatric trial design has been adopted to expedite the process, based on the fundamental shift in thinking that many new oncology agents will not have a true MTD when tested in adults.

Doses in phase 1 trials for targeted therapies like those in precision medicine are usually escalated based on considerations other than toxicity, like pharmacodynamics or biomarker analysis.  A pediatric phase 1 dose escalation trial may require more subjects than an adult trial.  But

although these newer approaches to early-phase trial design more efficiently establish a pediatric dose, they do little to advance our understanding of with patients are most likely to benefit from a new therapy.

Thus the need for good biomarkers to be included early on in these initial trial designs.  For example, Dana Farber’s first in child clinical trial NCT03654716, a Phase 1 Study of the Dual MDM2/MDMX Inhibitor ALRN-6924 in Pediatric Cancer (as a possible treatment for resistant (refractory) solid tumor, brain tumor, lymphoma or leukemia), are reducing the time children are waiting for entry into a trial, as unselected patients can enroll and the biomarker, increased MDM2 expression is used to determine those patients who go on to phase 2 dose escalation. In other cases, such as NCI Children’s Oncology Group basket trials, they have completely supplanted formal phase 1 trial design and instead incorporated molecularly targeted therapies based on adult doses but adjusted for patient size.  The use of combinations with traditional therapies in trial design is also helping to speed up the process for enrollment.  The authors also suggest that tumor profiling is pertinent however should be put in trial design so the costs to patients can be covered by the trial funds.

 

Figure 1Fig. 1 Evolution of precision trials for pediatric cancer.

Illustration: Kellie Holoski/Science

Source: Ushering in the next generation of precision trials for pediatric cancer BY STEVEN G. DUBOIS, LAURA B. CORSON, KIMBERLY STEGMAIER, KATHERINE A. JANEWAY SCIENCE 15 MAR 2019 : 1175-1181 https://science.sciencemag.org/content/363/6432/1175

 

  1. S. N. Gröbner, B. C. Worst, J. Weischenfeldt, I. Buchhalter, K. Kleinheinz, V. A. Rudneva, P. D. Johann, G. P. Balasubramanian, M. Segura-Wang, S. Brabetz, S. Bender, B. Hutter, D. Sturm, E. Pfaff, D. Hübschmann, G. Zipprich, M. Heinold, J. Eils, C. Lawerenz, S. Erkek, S. Lambo, S. Waszak, C. Blattmann, A. Borkhardt, M. Kuhlen, A. Eggert, S. Fulda, M. Gessler, J. Wegert, R. Kappler, D. Baumhoer, S. Burdach, R. Kirschner-Schwabe, U. Kontny, A. E. Kulozik, D. Lohmann, S. Hettmer, C. Eckert, S. Bielack, M. Nathrath, C. Niemeyer, G. H. Richter, J. Schulte, R. Siebert, F. Westermann, J. J. Molenaar, G. Vassal, H. Witt, B. Burkhardt, C. P. Kratz, O. Witt, C. M. van Tilburg, C. M. Kramm, G. Fleischhack, U. Dirksen, S. Rutkowski, M. Frühwald, K. von Hoff, S. Wolf, T. Klingebiel, E. Koscielniak, P. Landgraf, J. Koster, A. C. Resnick, J. Zhang, Y. Liu, X. Zhou, A. J. Waanders, D. A. Zwijnenburg, P. Raman, B. Brors, U. D. Weber, P. A. Northcott, K. W. Pajtler, M. Kool, R. M. Piro, J. O. Korbel, M. Schlesner, R. Eils, D. T. W. Jones, P. Lichter, L. Chavez, M. Zapatka, S. M. Pfister, ICGC PedBrain-Seq Project, ICGC MMML-Seq Project, The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018). 10.1038/nature25480pmid:29489754

 

2.  X. Ma, Y. Liu, Y. Liu, L. B. Alexandrov, M. N. Edmonson, C. Gawad, X. Zhou, Y. Li, M. C. Rusch, J. Easton, R. Huether, V. Gonzalez-Pena, M. R. Wilkinson, L. C. Hermida, S. Davis, E. Sioson, S. Pounds, X. Cao, R. E. Ries, Z. Wang, X. Chen, L. Dong, S. J. Diskin, M. A. Smith, J. M. Guidry Auvil, P. S. Meltzer, C. C. Lau, E. J. Perlman, J. M. Maris, S. Meshinchi, S. P. Hunger, D. S. Gerhard, J. Zhang, Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018). 10.1038/nature25795pmid:29489755

Related articles

Clinical Trials (journal)

Clinical Trials (journal) (Photo credit: Wikipedia)

Contemporary Clinical Trials

Contemporary Clinical Trials (Photo credit: Wikipedia)

Cover of "Cancer Biology (3rd Edition)"
Cover of Cancer Biology (3rd Edition)

Read Full Post »

New Ecosystem of Cancer Research: Cross Institutional Team Science

Curator: Aviva Lev-Ari, PhD, RN

This image has an empty alt attribute; its file name is ArticleID-32.png

WordCloud Image Produced by Adam Tubman

SOURCE: Time Magazine, April 1, 2013: How to Cure Cancer by Bill Saporito

Key argument: Now the Cure for Cancer is possible thanks to the following innovations in the Division of Labor of the research process among institution.

1.  New Cancer Dream Teams deliver better results faster, better understand the metabolic changes of pancreatic cells.

Team Leader: Dan Von Hoff – A five phase parallel process of the Cancer Research endeavor: One tumor researched by FIVE Labs in parallel

  • Penn surgeon, Jeffrey Drebin removes tissue from a cancerous pancreas. Tissue is carried to Hospital Lab where it is prepared for analysis and frozen for preservation.
  • a piece will go to Princeton for metabolomic profiling, amino acids, sugar glutamine and up to 300 metabolites.
  • a piece will go to John Hopkins for DNA analysis by sequence analysis
  • a piece will go to Translational Genomics for chromosome analysis
  • a piece will go to Salk Institute for a look at the stellate (star shape. tissue repair function, also plays a role in cancer) cells – gene expression analysis Lab

Joint Lab work: Superior to any research ever known.

2. Drug agents in development for therapy targeting the genetic mutations

  • reactivate the body’s immune system
  • cut off a tumor’s blood or energy supply
  • restart apoptosis

3. New Biomarkers

  • Allows to identify, target and track cancer cells – PI3K mutation One pathway – three women’s Cancers: Ovarian, endometrial, Breast CA.
  • Dream Team led by

– Dr. Gordon Mills of MD Anderson, PI3K pathway investigator

Teams Science include:

– Women’s cancer specialist from MGH

– Dana Farber (Harvard)

– Vanderbilt University

– Columbia University

– BIDMC

– Memorial Sloan Kettering

Dream Teams results are better than Big Pharma: 95% failure rate for new oncology drugs 50% of Phase III trials – don’t cut it to FDA approval.

Dream Teams will launch Trial as soon as geneticists and biochemists match mutation to drug compound.

Big Targets: Pancreas, Breast Cancer, Lung Cancer

Example: Human trial at FIVE institutions (28-person team) with TWO unapproved drugs from TWO companies with one year of discovery

PARP inhibitor from AstraZeneca was combined with PI3K inhibitor from Novartis to combat BRCA1 gene mutation that develops ovarian cancer and triple negative Breast Cancer. Two unapproved drugs are combined. Result was without precedent.

4. Design and built of a smart chip device to trap circulating tumor cells (CTCs) in a blood sample – early identification of metastasis

5. Better chances of Five-year Survival Rates

  • 1975-1977 – 49%
  • 1978-1989 – 56%
  • 2002 – 2008 – 68%

6. More Americans who have a History of Cancer are alive today than in the past

[including Cancer-free and in-treatment]

  • 2004 – 10.8 millions
  • 2008 – 12 millions
  • 2012 – 13.7 millions

7. There are 94 millions ex-smokers in the US – elevated risk for lung Cancer. 175,00 new lung cancers diagnosed every year. MD Anderson is developing a simple blood test for protein marker that could detect lung cancer earlier than it is found, test to be used in combination with diagnostic imaging and risk models

8. Probability of developing some type of Cancer over one’s lifetime:

  • Men – 1 in 2
  • Women – 1 in 3

9. Funding of Dream Team Science by Stand Up to Cancer ( SU2C) Hollywood investment in Cancer Research

10. Cancer Statistics in the US

  • 2013: 580,350 will die of Cancer, NCI figures and 1.7 millions will be diagnosed, numbers will grow as population ages (1.4 millions in 2006)
  • 2013L Leading Types of Cancer: Prostate, Breast, Lung &Bronchus (~250,000 each type), colon (~100,000)
  • Cost of Cancer in 2008: Medical – $77.4 Billion, lost productivity – $124 Billion

11. Research at John Hopkins is focused on studying the the enzymatic on/off switches of gene expression including mutated genes that produce cancer cells.

12. Memorial Sloan Kettering Cancer Center – extensive research on Epigenetics, New epigenetic drugs can shrink tumors. Complete remission is experienced by patients treated with drugs that nudges T Cells.

Cancer is a complexed disease.

Read Full Post »

Reporter: Ritu Saxena, Ph.D.

On December 4, 2012, molecular diagnostic firm Invivoscribe Technologies launched a personalized medicine company. Genection is offering both routine and esoteric genetic tests, exome and whole-genome sequencing, cancer somatic mutation testing, and pharmacogenomics.

Image

Because the Genection model is not payor-driven, it said, it can provide doctors access to genetic tests that are currently unavailable, overlooked, or inaccessible through their patients’ health plans and healthcare institutions.

The privately held company added that it has agreements in place with several CLIA- and CAP-certified laboratories, including ARUP Laboratories, Foundation Medicine, Cypher Genomics, Invivoscribe’s wholly owned subsidiary the Laboratory for Personalized Molecular Medicine and LPMM’s laboratory in Martinsried, Germany. It also has relationships with Illumina and Ambry Genetics and agreements with “a consortium” of genetic counselors.

“In order to make personalized molecular medicine a clinical reality, new platforms need to be developed for the delivery of healthcare. Genection’s mission seeks to accelerate this adoption process,” Genection Chief Medical Officer Bradley Patay said in a statement. “The combination of CLIA-validated genetic testing, whole-exome or whole-genome sequencing, and broad targeted assays, along with critical bioinformatics, analytic tools, and interpretative guidelines will contribute to timely definitive diagnoses for patients with rare, unexplained diseases or complex diseases; in essence, this integration will speed delivery of genomic test results and improve patient care.”

The company profile states that because the cost of genomic sequencing has declined steeply, utilizing deep sequencing of tumors, doctors can now offer targeted treatments to the specific type of cancer for each patient. This personalized approach may offer better treatment options that are tailored for each individual versus conventional approaches.  For example, The Cancer Genome Atlas Research Network found a potential therapeutic target in most squamous cell lung cancers. Genetic testing would also be able to provide insight on drug’s effectiveness and help a physician tailor the dosage and/or select another drug if it’s determined that you have a genetic variant that could affect the drug’s efficacy.

Source:

http://www.genomeweb.com//node/1159221?hq_e=el&hq_m=1425051&hq_l=3&hq_v=e618131fd2

Invivoscribe Technologies: http://www.invivoscribe.com/

Genection: http://www.genection.com/

Read Full Post »

Older Posts »