Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘genetic testing’


Cambridge Healthtech Institute’s Third Annual

Clinical NGS Assays

Addressing Validation, Standards, and Clinical Relevance for Improved Outcomes

August 23-24, 2016 | Grand Hyatt Hotel | Washington, DC


View Preliminary Agenda

Molecular diagnostics, particularly next-generation sequencing (NGS), have become an integral component of disease diagnosis. Still, there is work to be done to establish these tools as the standard of care. The Third Annual Clinical NGS Assays event will address NGS assay validation, establishing NGS standards, and determining clinical relevance. The pros and cons of various techniques such as gene panels, whole exome, and whole genome sequencing will also be debated with regards to depth of coverage, clinical utility, and reimbursement. Overall, this event will address the needs of both researchers and clinicians while exploring strategies to increase collaboration for improved patient outcomes.

Special Early Registration Savings Available
Register Now to Save up to $450

Preliminary Agenda

ASSAY VALIDATION AND ANALYSIS

Best Practices for Using Genome in a Bottle Reference Materials to Benchmark Variant Calls
Justin Zook, National Institute of Standards and Technology

NGS in Clinical Diagnosis: Aspects of Quality Management
Pinar Bayrak-Toydemir, M.D., Ph.D., FACMG, Associate Professor, Pathology, University of Utah; Medical Director, Molecular Genetics and Genomics, ARUP Laboratories

Thorough Validation and Implementation of Preimplantation Genetic Screening for Aneuploidy by NGS
Rebekah Zimmerman, Ph.D., Laboratory Director, Clinical Genetics, Foundation for Embryonic Competence

EXOME INTERPRETATION CHALLENGES

Are We There Yet? The Odyssey of Exome Analysis and Interpretation
Avni B. Santani, Ph.D., Director, Genomic Diagnostics, Pathology and Lab Medicine, The Children’s Hospital of Philadelphia

Challenges in Exome Interpretation: Intronic Variants
Rong Mao, M.D., Associate Professor, Pathology, University of Utah; Medical Director, Molecular Genetics and Genomics, ARUP Laboratories

Exome Sequencing: Case Studies of Diagnostic and Ethical Challenges
Lora J. H. Bean, Ph.D., Assistant Professor, Human Genetics, Emory University

ESTABLISHING STANDARDS

Implementing Analytical and Process Standards
Karl V. Voelkerding, M.D., Professor, Pathology, University of Utah; Medical Director for Genomics and Bioinformatics, ARUP Laboratories

Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice
Shashikant Kulkarni, M.S., Ph.D., Professor, Pathology and Immunology; Head of Clinical Genomics, Genomics and Pathology Services; Director, Cytogenomics and Molecular Pathology, Washington University at St. Louis

Sponsored Presentation to be Announced by Genection

PANEL DISCUSSION: GENE PANEL VS. WHOLE EXOME VS. WHOLE GENOME

Panelists:
John Chiang, Ph.D., Director, Casey Eye Institute, Oregon Health & Science University
Avni B. Santani, Ph.D., Director, Genomic Diagnostics, Pathology and Lab Medicine, The Children’s Hospital of Philadelphia
Additional Panelist to be Announced

DETERMINING CLINICAL SIGNIFICANCE AND RETURNING RESULTS

Utility of Implementing Clinical NGS Assays as Standard-of-Care in Oncology
Helen Fernandes, Ph.D., Pathology & Laboratory Medicine, Weill Cornell Medical College

An NGS Inter-Laboratory Study to Assess Performance and QC – Sponsored by Seracare
Andrea Ferreira-Gonzalez, Ph.D., Chair, Molecular Diagnostics Division, Pathology, Virginia Commonwealth University Medical School

This conference is part of the Eighth Annual Next-Generation Dx Summit.


Track Sponsor: SeraCare


For exhibit & sponsorship opportunities, please contact:

Joseph Vacca, M.Sc.
Associate Director, Business Development
Cambridge Healthtech Institute
T: (+1) 781-972-5431
E: jvacca@healthtech.com

Advertisements

Read Full Post »


Reproductive Genetic Dx | Nov. 18-19 | Boston, MA
Reporter: Stephen J. Williams, Ph.D.
Reproductive Genetic Diagnostics
Advances in Carrier Screening, Preimplantation Diagnostics, and POC Testing
November 18-19, 2015  |  Boston, MA
healthtech.com/reproductive-genetic-diagnosticsMount Sinai Hospital’s Dr. Tanmoy Mukherjee to Present at Reproductive Genetic Diagnostics ConferenceTanmoy MukherjeePodcastNumerical Chromosomal Abnormalities after PGS and D&C
Tanmoy Mukherjee, M.D., Assistant Clinical Professor, Obstetrics, Gynecology and Reproductive Science, Mount Sinai Hospital
This review provides an analysis of the most commonly identified numerical chromosome abnormalities following PGS and first trimester D&C samples in an infertile population utilizing ART. Although monosomies comprised >50% of all cytogenetic anomalies identified following PGS, there were very few identified in the post D&C samples. This suggests that while monosomies occur frequently in the IVF population, they commonly do not implant.

In a CHI podcast, Dr. Mukherjee discusses the current challenges facing reproductive specialists in regards to genetic diagnosis of recurrent pregnancy loss, as well as how NGS is affecting this type of testing > Listen to Podcast

Register  SAVE up to $200, Register by October 9

Learn More  |  Present a Poster  |  Sponsorship & Exhibit Information  |  View Brochure

CONFERENCE-AT-A-GLANCE

ADVANCES IN NGS AND OTHER TECHNOLOGIES

Keynote Presentation: Current and Expanding Invitations for Preimplantation Genetic Diagnosis (PGD)
Joe Leigh Simpson, MD, President for Research and Global Programs, March of Dimes Foundation

Next-Generation Sequencing: Its Role in Reproductive Medicine
Brynn Levy, Professor of Pathology & Cell Biology, CUMC; Director, Clinical Cytogenetics Laboratory, Co-Director, Division of Personalized Genomic Medicine, College of Physicians and Surgeons, Columbia University Medical Center, and the New York Presbyterian Hospital

CCS without WGA
Nathan Treff, Director, Molecular Biology Research, Reproductive Medicine Associates of New Jersey, Associate Professor, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers-Robert Wood Johnson Medical School, Adjunct Faculty Member, Department of Genetics, Rutgers-The State University of New Jersey

Concurrent PGD for Single Gene Disorders and Aneuploidy on a Single Trophectoderm Biopsy
Rebekah S. Zimmerman, Ph.D., FACMG, Director, Clinical Genetics, Foundation for Embryonic Competence

Live Birth of Two Healthy Babies with Monogenic Diseases and Chromosome Abnormality Simultaneously Avoided by MALBAC-based Combined PGD and PGS
Xiaoliang Sunney Xie, Ph.D., Mallinckrodt Professor of Chemistry and Chemical Biology, Department of Chemistry and Chemical Biology, Harvard University

Good Start GeneticsAnalytical Validation of a Novel NGS-Based Pre-implantation Genetic Screening Technology
Mark Umbarger, Ph.D., Director, Research and Development, Good Start Genetics


CLINICAL APPLICATIONS FOR ADVANCED TESTING TECHNOLOGIES

Expanded Carrier Screening for Monogenic Disorders
Peter Benn, Professor, Department of Genetics and Genome Sciences, University of Connecticut Health Center

Oocyte Mitochondrial Function and Testing: Implications for Assisted Reproduction
Emre Seli, MD, Yale School of Medicine

Preventing the Transmission of Mitochondrial Diseases through Germline Genome Editing
Alejandro Ocampo, Ph.D., Research Associate, Gene Expression Laboratory – Belmonte, Salk Institute for Biological Studies

Silicon BiosystemsRecovery and Analysis of Single (Fetal) Cells: DEPArray Based Strategy to Examine CPM and POC
Farideh Bischoff, Ph.D., Executive Director, Scientific Affairs, Silicon Biosystems, Inc.

> Sponsored Presentation (Opportunities Available)

Numerical Chromosomal Abnormalities after PGS and D&C
Tanmoy Mukherjee, M.D., Assistant Clinical Professor, Obstetrics, Gynecology and Reproductive Science, Mount Sinai Hospital

EMBRYO PREPARATION, ASSESSMENT, AND TREATMENT

Guidelines and Standards for Embryo Preparation: Embryo Culture, Growth and Biopsy Guidelines for Successful Genetic Diagnosis
Michael A. Lee, MS, TS, ELD (ABB), Director, Laboratories, Fertility Solutions

Current Status of Time-Lapse Imaging for Embryo Assessment and Selection in Clinical IVF
Catherine Racowsky, Professor, Department of Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School; Director, IVF Laboratory, Brigham & Women’s Hospital

The Curious Case of Fresh versus Frozen Transfer
Denny Sakkas, Ph.D., Scientific Director, Boston IVF

Why Does IVF Fail? Finding a Single Euploid Embryo is Harder than You Think
Jamie Grifo, M.D., Ph.D., Program Director, New York University Fertility Center; Professor, New York University Langone Medical Center

BEST PRACTICES AND ETHICS

Genetic Counseling Bridges the Gap between Complex Genetic Information and Patient Care
MaryAnn W. Campion, Ed.D., MS, CGC; Director, Master’s Program in Genetic Counseling; Assistant Dean, Graduate Medical Sciences; Assistant Professor, Obstetrics and Gynecology, Boston University School of Medicine

Ethical Issues of Next-Generation Sequencing and Beyond
Eugene Pergament, M.D., Ph.D., FACMG, Professor, Obstetrics and Gynecology, Northwestern; Attending, Northwestern University Medical School Memorial Hospital

Closing Panel: The Future of Reproductive Genetic Diagnostics: Is Reproductive Technology Straining the Seams of Ethics?
Moderator:
Mache Seibel, M.D., Professor, OB/GYN, University of Massachusetts Medical School; Editor, My Menopause Magazine; Author, The Estrogen Window
Panelists:
Rebekah S. Zimmerman, Ph.D., FACMG, Director, Clinical Genetics, Foundation for Embryonic Competence
Denny Sakkas, Ph.D., Scientific Director, Boston IVF
Michael A. Lee, MS, TS, ELD (ABB), Director of Laboratories, Fertility Solutions
Nicholas Collins, MS, CGC, Manager, Reproductive Health Specialists, Counsyl

Arrive Early and Attend Advances in Prenatal Molecular Diagnostics – Register for Both Events and SAVE!

Prenatal Molecular Dx | Nov. 16-18 | Boston, MA

CHI, 250 First Avenue, Suite 300, Needham, MA, 02494, Tel: 781-972-5400 | Fax: 781-972-5425

 

 

Read Full Post »


1:00PM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

1:00 p.m. Panel Discussion Genomics in Prenatal and Childhood Disorders

Genomics in Prenatal and Childhood Disorders

     Moderator:

David Sweetser, M.D., Ph.D.
Unit Chief, Division of Medical Genetics; Attending Physician in Pediatric Hematology/Oncology,
Massachusetts General Hospital for Children

Genomics revolutionized medicine and genetic variation in a larger scale

Cases one on Causing Autism – mutations in a gene of synapse formation, clinical trials

Treatment: IGF1

Genetics: embryo – implant only the healthy embryo – newborn comprehensive genetics testing in the medical record integrated – Standard language of GENE-DRUG interaction not only drug-drug interaction

Potential Harms: May or may not happen disease – stigma issues

Explaining to parents the conditions is very difficult for MDs

Panelists:

3. Diana Bianchi, M.D.
Executive Director, Mother Infant Research Institute;
Vice Chair for Research and Academic Affairs,
Department of Pediatrics; Attending Geneticists and Neonatologist;
Natalie V. Zucker Professor, Tufts University School of Medicine

Medical Geneticist – Pediatrics

  • Prenatal screening and diagnosis – chromosomal abnormality – Down Syndrome, testing is more precise 70% fewer procedures to correct defects due to screening prenatally.
  • Prenatal diagnostics — patient is not in front of us, ultrasound examination, options to terminate pregnancies, genetic counseling — changed due to Genomics
  • Prenatal treatment to down syndrome before the birth – Transcriptomic approach, treat the fetus prebirth
  • Standard of care – all pregnant women – must receive from MD the option for screening for down syndrome, it is a test positive or negative
  • NOW – DNA allows to test for  fetal sex, chromosome in maternal circulation fetal and maternal genetics — Mother may have chromosomal variation
  • high false positive – DNA for Down Syndrome, 97% effective Micro duplication only 5%
  • genetics information protection act – sue prospective employer using Genome, life insurance issues
  • most data available is on Down Syndrome, of all parents informed of a fetus with Down Syndrome – 40% continues the pregnancy
  • accuracy in testing, offering choice and treatment are LEADING principles NOT elimination of a disease (i.e. down syndromes)
  • in ten years — GENOME OF EVERY FETUS TO BE SEQUENCE

for reference see Prenatal Treatment of Down’s Syndrome: a Reality?

and ref list by Dr. Bianchi

2. Holmes Morton, M.D. @ClinicSpecChild
Medical Director, Clinic for Special Children

Small population in Lancaster, PA – risk for untreatable disease 52,000 screens 4.2 millions in US are screened Target mutation analysis, diagnosis very effectively. Harrisburg, PA – small scale natural history studies

Carrier testing offered in 70s. Discourages  from marriage, culture reaction is different. Working in the community, clinical practice using exon sequencing, combine population genetics and molecular biology.Translate Genomics to Clinical, small number of risk factors

History of genetics in population important to establish treatment

Upon birth, affected newborns get matching bone marrow transplant, thus, bypass stem cells – Gene therapy is another thing

1. Benjamin Solomon, Ph.D., M.D.
Chief, Division of Medical Genomics,
Inova Translational Medicine Institute

Longer term, statistical model in asthma research,  rigorous process on patient consent, life insurance, mutation that parents also have. Consequences: actionable findings are communicated
135 Genes – sequencing for some conditions
100,000 deliveries 10% ENTER THE STUDY, CASE BY CASE BASIS O PARTICIPATE, WHO SHOULD BE TESTED

Questions from the Podium

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

@HarvardPMConf

#PMConf

@SachsAssociates

@MGH

@MassGeneral

@TuftsMedicalCtr

@MedscapePeds

@ClinicSpecChild

@InovaHealth

Read Full Post »


Reporter, Curator: Stephen J. Williams, Ph.D.

KJ Monohan reports in The Family History of Bowel Cancer Clinic blog, a report from the Cancer Research UK about a new program being initiated by a team consisting of The Institute of Cancer Research, The Royal Marsden, Illumina Inc and the Wellcome Trust Centre for Human Genetics to screen ovarian and breast cancer patients for genes known to increase cancer risk.

The program Mainstreaming Cancer Genetics Programme will evaluate 97 known cancer predisposition genes in breast and ovarian cancer patients (using the TruSight Cancer Panel; see below for description and link).

A link to the full story can be found here:

New scheme to routinely test patients for inherited cancer genes.

The program will complement Cancer Research UK’s own stratified medicine program, which aims to identify driver mutations (mutations in genes {usually tumor suppressor genes} which drive (responsible for) the initiation and growth of a patient’s tumor. For descriptions of driver mutations of tumors please see some articles posted on this site such as:

Rewriting the Mathematics of Tumor Growth; Teams Use Math Models to Sort Drivers from Passengers

Winning Over Cancer Progression: New Oncology Drugs to Suppress Passengers Mutations vs. Driver Mutations

 

Writer’s commentary: As I had commented on this posting, 10% of breast and ovarian cancers are considered hereditary, meaning germline mutations exist in cancer risk genes (notably BRCA1/2 for breast /ovarian) and the offspring who inherit these mutant genes from carriers have a greatly enhanced risk to develop cancer in their lifetime. Although not in the scope of this post, I will curate, in a future post, research on the identity and relative risk for various gene mutations for breast/ovarian cancer risk.

TruSight Cancer Panel

A description of Illumina’s TruSight Cancer Panel is given below:

Targeting genes previously linked to a predisposition towards cancer.

  • Developed in collaboration with Professor Nazneen Rahman and team at the Institute of Cancer Research (ICR), London
  • Targets 94 known genes and 284 SNPs associated with a predisposition towards cancer

TruSight Cancer includes genes associated with both common (e.g., breast, colorectal) and rare cancers. In addition, the set includes 284 SNPs found to correlate with cancer through genome-wide association studies (GWAS). Content selection was based on expert curation of the scientific literature and other high-quality resources.

The TruSight Cancer sequencing panel provides custom oligos targeting identified regions of interest. Sufficient product is supplied for four enrichment reactions. TruSight Cancer is compatible with TruSight Rapid Capture and is supported on the MiSeq, NextSeq, and HiSeq sequencing systems.

 

The authors note that in the US and UK, genetic testing is performed at a genetics clinic, at the request of physicians and/or the individual. With the new program the patient’s cancer doctor can manage the genetic testing, giving the oncologist access to critical genetic information which can help in treatment options and family risk assessments.

Some cancer centers already have integrated a genetic counseling department among their services. These departments also act as Family Risk Assessment Programs. A few family risk assessment programs which deal with breast/ovarian cancer are given below:

Fox Chase Cancer Center Risk Assessment Program

The Mariann and Robert MacDonald Women’s Cancer Risk Evaluation Center at Penn Medicine

Massachusetts General Hospital Breast and Ovarian Cancer Genetics and Risk Assessment Program

Breast & Ovarian Risk Evaluation Program at University of Michigan

The Breast & Ovarian Cancer Prevention Program at Seattle Cancer Care Alliance

Dana-Farber Cancer Institute’s Center for Cancer Genetics and Prevention

Cancer Risk Program are offered through the UCSF Medical Center

These are only a few cancer centers in the US which provide comprehensive counseling and testing.

 

Other posts on this site about Cancer Risk and Genetic Testing include:

Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test

(discussions on Angela Jolie’s experiences and issues through genetic testing and decision)

Host – Tumor Interactions during Cancer Therapy – Dr. Yuval Shaked’s Lab @Technion

(discussion by assistant professor on new paradigms in cancer treatment, detection)

Foundation Medicine reported 4,702 Clinical Tests in Q1, 715 were the FoundationOne Heme Cancer Test, average Reimbursement of $3,400 per Test

(report on success and use of Foundation Medicine’s cancer genetic testing kit)

Efficacy of Ovariectomy in Presence of BRCA1 vs BRCA2 and the Risk for Ovarian Cancer

Cancer Biomarkers for Companion Diagnostics

(Scientists from around the world gathered to share some of their newest biomarker research at the “Oncology Biomarkers Conference”)

Invitae been Sued for BRCA1/2 Patent Violation by Myriad Genetics

(legal problems may hinder the availability of BRCA1/2 testing)

Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

(discussion about issues mothers have informing their daughters about test results)

Read Full Post »


Genetic Testing for Women at Risk of Cancer

Reporter: Aviva Lev-Ari PhD, RN

Published: May 16, 2013

To the Editor:

Opinion Twitter Logo.

For Op-Ed, follow@nytopinion and to hear from the editorial page editor, Andrew Rosenthal, follow@andyrNYT.

In her thoughtful article about her choice to undergo a double mastectomy, Angelina Jolie said the cost of genetic testing for BRCA1 and BRCA2 mutations “remains an obstacle for many women” (“My Medical Choice,” Op-Ed, May 14).

Our BRACAnalysis test has been used by more than a million women to assess their risk of hereditary breast and ovarian cancer.

The test remains widely reimbursed by insurance companies, with more than 95 percent of at-risk women covered and with an average out-of-pocket cost of about $100. And, thanks to preventive care provisions in the Affordable Care Act, many patients can receive BRACAnalysis testing with no out-of-pocket costs.

For patients in need, Myriad offers a patient assistance program that offers testing at reduced costs or free of charge.

PETER MELDRUM

President and Chief Executive

Myriad Genetics

Salt Lake City, May 16, 2013

To the Editor:

Jolie’s Disclosure of Preventive Mastectomy Highlights Dilemma” (front page, May 15) discusses Angelina Jolie’s decision to undergo prophylactic surgery after testing positive for a BRCA1 mutation. It should be noted that not all hereditary breast and ovarian cancer is attributable to mutations in BRCA1 and BRCA2.

An alternative dilemma exists when a patient has a very strong family history of breast and ovarian cancer, especially diagnosed at young ages, and the BRCA test is negative.

The patient is left wondering what to do next. These patients should consider a new method of testing for multiple genetic mutations via next-generation sequencing, which can often be ordered as part of a research protocol in academic centers.

SUSAN KLUGMAN

Bronx, May 15, 2013

The writer, a clinical geneticist, is director of reproductive genetics at Montefiore Medical Center and an associate professor at Albert Einstein College of Medicine.

 

http://www.nytimes.com/2013/05/17/opinion/genetic-testing-for-women-at-risk-of-cancer.html?src=recg

Read Full Post »


Genomics in Medicine – Tomorrow’s Promise

Reporter: Larry H Bernstein, MD, FCAP

Genomics in Medicine: Today’s Issues, Tomorrow’s Promise

KM Beima-Sofie, EH Dorfman, JM Kocarnik, MY Laurino
Feb 13, 2013 Medscape Genomic Medicine

What do you think about these issues before reading this piece?

The Broader Implications of Genetic Sciences
The 62nd annual meeting of the American Society of Human Genetics (ASHG), which was held in San Francisco, California, in November 2012, featured a diverse array of research in basic, clinical, and population science contributed by human geneticists across the globe.
Genetic Sequencing Moves Beyond the Laboratory
Several presentations at the meeting focused on the lessons learned from the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project. The goal of the project was to
  • develop and validate a cost-effective and high-throughput sequencing technology
  • capable of analyzing the DNA sequence in the exome, which
  • consists of all protein-coding regions in the human genome.
At previous ASHG meetings, presentations and discussions largely focused on
  • the development of sequencing technology and on applications of this technology for research.
Now that sequencing is an increasing reality, this year’s conference featured presentations on
  • what to do with the resulting information, in both research and clinical settings.
Issues discussed include the challenges of
  • interpreting sequence data,
  • determining which results should be returned to various parties, and
  • the potential impacts of different testing techniques.
Results from the NHLBI Exome Sequencing Project and other projects are fueling the discussion on
legal issues surrounding gene patenting, a hotly debated topic that is currently under consideration by the US Supreme Court. During a plenary session on gene discovery and patent law,
Of particular focus was the lawsuit brought by the American Civil Liberties Union against Myriad Genetics,
  • contesting the company’s patent of the BRCA1 and BRCA2 genes for hereditary breast and ovarian cancer.
At present, Myriad has exclusive rights to offer clinical genetic testing for these genes; one of the main arguments of the lawsuit is
  • that gene patents hinder the pursuit of confirmatory tests and limit the testing options available to women.
DNAPrint Genomics

DNAPrint Genomics (Photo credit: Wikipedia)

English: Exome sequencing workflow: Part 2. Ta...

English: Exome sequencing workflow: Part 2. Target exons are enriched, eluted and then amplified by ligation-mediated PCR. Amplified target DNA is then ready for high-throughput sequencing. (Photo credit: Wikipedia)

Cost per Megabase of DNA Sequence (Why biologi...

Cost per Megabase of DNA Sequence (Why biologists panic about compute) (Photo credit: dullhunk)

Read Full Post »


Consumer Market for Personal DNA Sequencing: Part 4

Reporter: Aviva Lev-Ari, PhD RN

 

This Part 4 of the series on Present and Future Frontier of Research in Genomics has been 

UPDATED on 12/6/2013

23andMe Suspends Health Interpretations

December 06, 2013

Direct-to-consumer genetic testing company 23andMe hasstopped offering its health-related test to new customers, bringing it in line with a request from the US Food and Drug Administration.

In letter sent on Nov. 22, FDA said that 23andMe had not adequately responded to its concerns regarding the validity of their Personal Genome Service. The letter instructed 23andMe to “immediately discontinue marketing” the service until it receives authorization from the agency.

According to a post at the company’s blog from CEO Anne Wojcicki, 23andMe customers who purchased their kits on or after Nov. 22 “will not have access to health-related results.” They will, though, have access to ancestry information and their raw genetic data. Wojcicki notes that the customers may have access to the health interpretations in the future depending on FDA marketing authorization. Those customers are also being offered a refund.

Customers who purchased their kits before Nov. 22 will have access to all reports.

“We remain firmly committed to fulfilling our long-term mission to help people everywhere have access to their own genetic data and have the ability to use that information to improve their lives,” a notice at the 23andMe site says.

In a letter appearing in the Wall Street Journal earlier this week, FDA Commissioner Margaret Hamburg wrote that the agency “supports the development of innovative tests.” As an example, she pointed to its recent clearance of sequencing-based testsfrom Illumina.

She added that the agency also understands that some consumers do want to know more about their genomes and their genetic risk of disease, and that a DTC model would let consumers take an active role in their health.

“The agency’s desire to review these particular tests is solely to ensure that they are safe, do what they claim to do and that the results are communicated in a way that a consumer can understand,” Hamburg said.

In a statement, 23andMe’s Wojcicki says that the company remains committed to its ethos of allowing people access to their genetic information. “Our goal is to work cooperatively with the FDA to provide that opportunity in a way that clearly demonstrates the benefit to people and the validity of the science that underlies the test,” Wojcicki adds.

SOURCE

UPDATED on 11/27/2013

FDA Tells Google-Backed 23andMe to Halt DNA Test Service

VIEW VIDEO

http://www.bloomberg.com/news/2013-11-25/fda-tells-google-backed-23andme-to-halt-dna-test-service.html

FDA Letter to 23andME

Department of Health and Human Services logoDepartment of Health and Human Services

Public Health Service
Food and Drug Administration
10903 New Hampshire Avenue
Silver Spring, MD 20993

Nov 22, 2013

Ann Wojcicki
CEO
23andMe, Inc.
1390 Shoreline Way
Mountain View, CA 94043
Document Number: GEN1300666
Re: Personal Genome Service (PGS)
WARNING LETTER
Dear Ms. Wojcicki,
The Food and Drug Administration (FDA) is sending you this letter because you are marketing the 23andMe Saliva Collection Kit and Personal Genome Service (PGS) without marketing clearance or approval in violation of the Federal Food, Drug and Cosmetic Act (the FD&C Act).
This product is a device within the meaning of section 201(h) of the FD&C Act, 21 U.S.C. 321(h), because it is intended for use in the diagnosis of disease or other conditions or in the cure, mitigation, treatment, or prevention of disease, or is intended to affect the structure or function of the body. For example, your company’s website at http://www.23andme.com/health (most recently viewed on November 6, 2013) markets the PGS for providing “health reports on 254 diseases and conditions,” including categories such as “carrier status,” “health risks,” and “drug response,” and specifically as a “first step in prevention” that enables users to “take steps toward mitigating serious diseases” such as diabetes, coronary heart disease, and breast cancer. Most of the intended uses for PGS listed on your website, a list that has grown over time, are medical device uses under section 201(h) of the FD&C Act. Most of these uses have not been classified and thus require premarket approval or de novo classification, as FDA has explained to you on numerous occasions.
Some of the uses for which PGS is intended are particularly concerning, such as assessments for BRCA-related genetic risk and drug responses (e.g., warfarin sensitivity, clopidogrel response, and 5-fluorouracil toxicity) because of the potential health consequences that could result from false positive or false negative assessments for high-risk indications such as these. For instance, if the BRCA-related risk assessment for breast or ovarian cancer reports a false positive, it could lead a patient to undergo prophylactic surgery, chemoprevention, intensive screening, or other morbidity-inducing actions, while a false negative could result in a failure to recognize an actual risk that may exist. Assessments for drug responses carry the risks that patients relying on such tests may begin to self-manage their treatments through dose changes or even abandon certain therapies depending on the outcome of the assessment. For example, false genotype results for your warfarin drug response test could have significant unreasonable risk of illness, injury, or death to the patient due to thrombosis or bleeding events that occur from treatment with a drug at a dose that does not provide the appropriately calibrated anticoagulant effect. These risks are typically mitigated by International Normalized Ratio (INR) management under a physician’s care. The risk of serious injury or death is known to be high when patients are either non-compliant or not properly dosed; combined with the risk that a direct-to-consumer test result may be used by a patient to self-manage, serious concerns are raised if test results are not adequately understood by patients or if incorrect test results are reported.
Your company submitted 510(k)s for PGS on July 2, 2012 and September 4, 2012, for several of these indications for use. However, to date, your company has failed to address the issues described during previous interactions with the Agency or provide the additional information identified in our September 13, 2012 letter for(b)(4) and in our November 20, 2012 letter for (b)(4), as required under 21 CFR 807.87(1). Consequently, the 510(k)s are considered withdrawn, see 21 C.F.R. 807.87(1), as we explained in our letters to you on March 12, 2013 and May 21, 2013.  To date, 23andMe has failed to provide adequate information to support a determination that the PGS is substantially equivalent to a legally marketed predicate for any of the uses for which you are marketing it; no other submission for the PGS device that you are marketing has been provided under section 510(k) of the Act, 21 U.S.C. § 360(k).
The Office of In Vitro Diagnostics and Radiological Health (OIR) has a long history of working with companies to help them come into compliance with the FD&C Act. Since July of 2009, we have been diligently working to help you comply with regulatory requirements regarding safety and effectiveness and obtain marketing authorization for your PGS device. FDA has spent significant time evaluating the intended uses of the PGS to determine whether certain uses might be appropriately classified into class II, thus requiring only 510(k) clearance or de novo classification and not PMA approval, and we have proposed modifications to the device’s labeling that could mitigate risks and render certain intended uses appropriate for de novo classification. Further, we provided ample detailed feedback to 23andMe regarding the types of data it needs to submit for the intended uses of the PGS.  As part of our interactions with you, including more than 14 face-to-face and teleconference meetings, hundreds of email exchanges, and dozens of written communications, we provided you with specific feedback on study protocols and clinical and analytical validation requirements, discussed potential classifications and regulatory pathways (including reasonable submission timelines), provided statistical advice, and discussed potential risk mitigation strategies. As discussed above, FDA is concerned about the public health consequences of inaccurate results from the PGS device; the main purpose of compliance with FDA’s regulatory requirements is to ensure that the tests work.
However, even after these many interactions with 23andMe, we still do not have any assurance that the firm has analytically or clinically validated the PGS for its intended uses, which have expanded from the uses that the firm identified in its submissions. In your letter dated January 9, 2013, you stated that the firm is “completing the additional analytical and clinical validations for the tests that have been submitted” and is “planning extensive labeling studies that will take several months to complete.” Thus, months after you submitted your 510(k)s and more than 5 years after you began marketing, you still had not completed some of the studies and had not even started other studies necessary to support a marketing submission for the PGS. It is now eleven months later, and you have yet to provide FDA with any new information about these tests.  You have not worked with us toward de novo classification, did not provide the additional information we requested necessary to complete review of your 510(k)s, and FDA has not received any communication from 23andMe since May. Instead, we have become aware that you have initiated new marketing campaigns, including television commercials that, together with an increasing list of indications, show that you plan to expand the PGS’s uses and consumer base without obtaining marketing authorization from FDA.
Therefore, 23andMe must immediately discontinue marketing the PGS until such time as it receives FDA marketing authorization for the device. The PGS is in class III under section 513(f) of the FD&C Act, 21 U.S.C. 360c(f). Because there is no approved application for premarket approval in effect pursuant to section 515(a) of the FD&C Act, 21 U.S.C. 360e(a), or an approved application for an investigational device exemption (IDE) under section 520(g) of the FD&C Act, 21 U.S.C. 360j(g), the PGS is adulterated under section 501(f)(1)(B) of the FD&C Act, 21 U.S.C. 351(f)(1)(B).  Additionally, the PGS is misbranded under section 502(o) of the Act, 21 U.S.C. § 352(o), because notice or other information respecting the device was not provided to FDA as required by section 510(k) of the Act, 21 U.S.C. § 360(k).
Please notify this office in writing within fifteen (15) working days from the date you receive this letter of the specific actions you have taken to address all issues noted above. Include documentation of the corrective actions you have taken. If your actions will occur over time, please include a timetable for implementation of those actions. If corrective actions cannot be completed within 15 working days, state the reason for the delay and the time within which the actions will be completed. Failure to take adequate corrective action may result in regulatory action being initiated by the Food and Drug Administration without further notice. These actions include, but are not limited to, seizure, injunction, and civil money penalties.
We have assigned a unique document number that is cited above. The requested information should reference this document number and should be submitted to:
James L. Woods, WO66-5688
Deputy Director
Patient Safety and Product Quality
Office of In vitro Diagnostics and Radiological Health
10903 New Hampshire Avenue
Silver Spring, MD 20993
If you have questions relating to this matter, please feel free to call Courtney Lias, Ph.D. at 301-796-5458, or log onto our web site at www.fda.gov for general information relating to FDA device requirements.
Sincerely yours,
/S/
Alberto Gutierrez
Director
Office of In vitro Diagnostics
and Radiological Health
 Center for Devices and Radiological Health

SOURCE

http://www.fda.gov/ICECI/EnforcementActions/WarningLetters/2013/ucm376296.htm

Cancer Diagnostics by Genomic Sequencing: ‘No’ to Sequencing Patient’s DNA, ‘No’ to Sequencing Patient’s Tumor, ‘Yes’ to focus on Gene Mutation Aberration & Analysis of Gene Abnormalities

Symposia

http://aaas.confex.com/aaas/2013/webprogram/start.html

Personal Genetics: An Intersection Between Science, Society, and Policy

Saturday, February 16, 2013: 8:30 AM-11:30 AM

Room 203 (Hynes Convention Center)

On 26 June 2000, scientists announced the completion of a rough draft of the human genome, the result of the $3 billion publicly funded Human Genome Project. In the decade since, the cost of genome sequencing has plummeted, coinciding with the development of deep sequencing technologies and allowing, for the first time, personalized genetic medicine. The advent of personal genetics has profound implications for society that are only beginning to be discussed, even as the technologies are rapidly maturing and entering the market. This symposium will focus on how the genomic revolution may affect our society in coming years and how best to reach out to the general public on these important issues. How has the promise of genomics, as stated early in the last decade, matched the reality we observe today? What are the new promises — and pitfalls — of genomics and personal genetics as of 2013? What are the ethical implications of easy and inexpensive human genome sequencing, particularly with regard to ownership and control of genomic datasets, and what stakeholder interests must be addressed? How can the scientific community engage with the public at large to improve understanding of the science behind these powerful new technologies? The symposium will comprise three 15-minute talks from representatives of relevant sectors (academia/education, journalism, and industry), followed by a 45-minute panel discussion with the speakers.

Organizer:

Peter Yang, Harvard University

Co-organizers:

Brenna Krieger, Harvard University

and Kevin Bonham, Harvard University

Discussant:

James Thornton, Harvard University

Speakers:

 

Ting Wu, Harvard University

Personal Genetics and Education

Mary Carmichael, Boston Globe

The Media and the Personal Genetics Revolution

Brian Naughton, 23andMe Inc.

Commercialization of Personal Genomics: Promise and Potential Pitfalls

Mira Irons, Children’s Hospital Boston

Personal Genomic Medicine: How Physicians Can Adapt to a Genomic World

Sheila Jasanoff, Harvard University

Citizenship and the Personal Genomics

Jonathan Gitlin, National Human Genome Research Institute

Personal Genomics and Science Policy

THIS IS A SERIES OF FOUR POINTS OF VIEW IN SUPPORT OF the Paradigm Shift in Human Genomics

How to Tailor Cancer Therapy to the particular Genetics of a patient’s Cancer

‘No’ to Sequencing Patient’s DNA, ‘No’ to Sequencing Patient’s Tumor, ‘Yes’ to focus on Gene Mutation Aberration & Analysis of Gene Abnormalities PRESENTED in the following FOUR PARTS. Recommended to be read in its entirety for completeness and arrival to the End Point of Present and Future Frontier of Research in Genomics

Part 1:

Research Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine

https://pharmaceuticalintelligence.com/2013/01/13/paradigm-shift-in-human-genomics-predictive-biomarkers-and-personalized-medicine-part-1/

Part 2:

LEADERS in the Competitive Space of Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment

https://pharmaceuticalintelligence.com/2013/01/13/leaders-in-genome-sequencing-of-genetic-mutations-for-therapeutic-drug-selection-in-cancer-personalized-treatment-part-2/

Part 3:

Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research

https://pharmaceuticalintelligence.com/2013/01/13/personalized-medicine-an-institute-profile-coriell-institute-for-medical-research-part-3/

Part 4:

The Consumer Market for Personal DNA Sequencing

 

Part 4:

The Consumer Market for Personal DNA Sequencing

How does 23andMe genotype my DNA?

Technology and Standards

23andMe is a DNA analysis service providing information and tools for individuals to learn about and explore their DNA. We use the Illumina OmniExpress Plus Genotyping BeadChip (shown here). In addition to the variants already included on the chip by Illumina, we’ve included our own, customized set of variants relating to conditions and traits that are interesting. Technical information on the performance of the chip can be found on Illumina’s website.

All of the laboratory testing for 23andMe is done in a CLIA-certified laboratory.

Once our lab receives your sample, DNA is extracted from cheek cells preserved in your saliva. The lab then copies the DNA many times — a process called “amplification” — growing the tiny amount extracted from your saliva until there is enough to be genotyped.

In order to be genotyped, the amplified DNA is “cut” into smaller pieces, which are then applied to our DNA chip, a small glass slide with millions of microscopic “beads” on its surface (read more about this technology). Each bead is attached to a “probe”, a bit of DNA that matches one of the approximately one million genetic variants that we test. The cut pieces of your DNA stick to the matching DNA probes. A fluorescent signal on each probe provides information that can tell us which version of that genetic variant your DNA corresponds to.

Although the human genome is estimated to contain about 10-30 million genetic variants, many of them are correlated due to their proximity to each other. Thus, one genetic variant is often representative of many nearby variants, and the approximately one million variants on our genotyping chip provide very good coverage of common variation across the entire genome.

Our research team has also hand-picked tens of thousands of additional genetic variants linked to various conditions and traits in the scientific literature to analyze on our genotyping chip. As a result we can provide you with personal genetic information available only through 23andMe.

Genetics service 23andMe announced some new cash in the bank today with a $50 million raise from Yuri Milner, 23andMe CEO Anne Wojcicki, Google’s Sergey Brin (who also happens to be Wojcicki’s husband), New Enterprise Associates, MPM Capital, and Google Ventures.

With today’s new funding also comes the reduction of the price of its genome analysis service to $99. This isn’t special holiday pricing (as 23andMe has run repeatedly in the past) the company tells me, but rather what its normal pricing will be from now on.

This move is overdue, at least as far as 23andMe’s business model is concerned. Just yesterday TechCrunch Conference Chair Susan Hobbs told me she was waiting for another $99 pricing deal to buy the Personal Genome Analysis product. Sure 23andMe has experimented with various pricing models, including subscription, since its founding in 2007, but had been at an official and prohibitive $299 price point until today. It’s also apparently been rigorously beta-testing various price points in the past couple of weeks, at some point experimenting with some lower than $99.

For comparison, the company’s original pricing began at $999 and offered subscribers just 14 health and trait reports versus today’s 244 reports, as well as genetic ancestry information. Natera, Counsyl and Pathway Genomics are also in the genomics space, but they work by offering their services through doctors rather than direct to consumer.

Since the company’s launch five years ago, it’s had 180K civilians profile their DNA, and representative Catherine Afarian tells us that, post-price drop and funding, its goal is to reach a million customers in 2013. This is a supremely ambitious goal considering it wants to turn an average user acquisition rate of 36K per year into one of 820K in one year alone.

But Afarian isn’t fazed and brings up how the company once sold out 20k in $99 account inventory on something called “DNA Day.” “Once we can offer the service at $99 it means the average American will buy in,” she said.

That $299 was too pricey, according to Hobbs, but $99 might be just right. She said the $99 price point, which yes, is less than an iPhone, was the main factor in her decision to buy in. “23andMe is more ‘nice-to-know’ information rather than ‘need-to-know’ information. It’s nice to know your ancestry. It’s more of a need to know that you are predisposed genetically for a type of cancer, so that you may take precautionary measures,” she said, implying that the data given by 23andMe isn’t necessarily vital medical information, or actionable when it is. While 23andMe can give you indicators about certain disease risks, it doesn’t close the loop, as in tell you what to do to prevent these diseases.

“Its [utility] depends on your genetic data,” said Afarian when I asked her about the usefulness of the product. “If you’ve got a Factor 5 that puts you at risk for clotting, you might want to invest in anti-clotting socks. [And] there’s always something about themselves that people didn’t know.”

Hobbs said eventually that she wouldn’t buy it, but only because she was looking into more exact lineage information for her little girl, and you need a Y chromosome in all DNA tests to show paternal lineage. Afarian also countered this hesitation, saying that what makes 23andMe unique is that it’s not only looking at just your Y or your mitochondrial DNA, but also your autosomal DNA, which does show some patrilineal information for females who lack that precious Y.

While still sort of a novelty, the potential for 23andMe goes beyond lineage and hopefully that extra $50 million will go further than keeping the price low and into research. The company hopes that a million users will result in a giant database of 23andWe genetic info that can be used to spot trends, like which genes mean a higher risk of diabetes/cancer, etc. Which is great if it happens but for now remains a pipe dream for 23andMe/We.

http://techcrunch.com/2012/12/11/23andnotme/

12/13/2012 @ 5:23PM |6,471 views

What Is 23andMe Really Selling: The Moral Quandary At The Center Of The Personalized Genomics Revolution

This week, 23andme, the personalized genomics company founded by Anne Wojcicki, wife of Google co-founder Sergey Brin, got an influx of investment cash ($50 million). According to their press release, they are using the money to bring the cost of their genetic test down to $99 (it was previously $299) which, they hope, will inspire the masses to get tested.

So should the masses indulge?

I prefer a quantified self approach to this question. At the heart of the quantified self-movement lies a very simple idea: metrics make us better. For devotees, this means “self-tracking,” using everything from the Nike fuel band to the Narcissism Personality Index to gather large quantities of personal data and—the bigger idea—use that data to improve performance.

If you consider that performance suffers when health suffers then a genetic test can been seen as a kind of metric used to improve performance. This strikes me as the best way to evaluate this idea and leads us to ask the same question about personalized genomics that the quantified self movement asks about every other metric: will it improve performance.

Arguments rage all over the place on this one, but the short answer is that SNP tests—which is the kind of DNA scan 23andme relies upon— don’t tell us all that much (yet).  They analyze a million genes out of three billion total and the impact those million play in long term-health outcomes is still in dispute. For example, the nature/nurture split is normally viewed at 30/70—meaning environmental factors play a far more significant role in long-term health outcomes than genetics.

Moreover, all of the performance metrics used by the quantified self movement are used to for behavior modification—to drive self-improvement. Personalized genomics isn’t there yet. As Stanford University’s Nobel Prize-winning RNA researcher Andy Fire once told me, “if someone off the street is looking for pointers on how to live a healthier life, there’s nothing these tests will tell you besides basic physician advice like ‘eat right, don’t smoke and get plenty of exercise.’”

And even with more well-regarded SNP tests, like the ones that examine the BRCA 1 and 2 markers for breast cancer—which  . NYU Langone Medical Center bioethicist Arthur Caplan explains it like this, “Say you test positive for a breast cancer disposition—then what are you going to do? The only preventative step you can take is to chop off your breasts.”

So if prevention is not available the only thing left is fear and anxiety. Unfortunately, in the past few decades, there have been hundreds of studies linking stress to everything from immunological disorders to heart disease to periodonitic troubles. So while finding out you may be at risk for Parkinson’s may make you feel informed, that knowledge isn’t going to stop you from developing the disease—but the resulting stress may contribute to a host of other complications.

This brings up a different question: if personalized genomics can’t yet help us much and could possibly hurt us—where’s the upside?

Turns out there’s a big upside: Citizen science. SNP tests are not yet viable because we need more info. 23andme talks about the “power of one million people,” meaning, if one million take these tests then the resulting genetic database could lead to big research breakthroughs and these could lead to all sorts of health/performance improvements.

This is what 23andme is really selling for $99 bucks a pop—a crowdsourced shot at unraveling a few more DNA mysteries.

And this also means that the question at the heart of the personalized genomics industry is not about metrics at all—it’s about morals: Should I risk my health for the greater good?

http://www.forbes.com/sites/stevenkotler/2012/12/13/what-is-23andme-really-selling-the-moral-quandary-at-the-center-of-the-personalized-genomics-revolution/

You can browse your data for all of the variants we test using the Browse Raw Data feature, or download your data here.

before you buy (59) »

What unexpected things might I learn?

How does 23andMe genotype my DNA?

Can I use the saliva collection kit for infants and toddlers?

getting started (20) »

When and how do I get my data?

How do I collect saliva samples?

How long will it take for my sample to reach the lab?

account/profile settings (20) »

Which Ancestry setting in My Profile should I choose?

How do I use Browse Raw Data?

What do the options under the “Account” link in the upper right-hand corner control?

product features (145) »

I know that a particular person is my relative. What’s the probability that we share a sufficient amount of DNA to be detected by Relative Finder?

What is the average percent DNA shared for different types of cousins?

How does Relative Finder estimate the Predicted Relationship?

research initiatives (8) »

What do I get in return for taking surveys?

What is your research goal?

What is 23andMe Research?

https://customercare.23andme.com/categories/20021003-faqs

https://customercare.23andme.com/home

REFERENCES

http://www.foundationmedicine.com/diagnostics-publications.php

http://www.coriell.org/media-center/publications

Http://www.coriell.org/assets/pdfs/gronowski_etal_coriellinstitute_clinicalchemistry2011_humantissuesinresearch.pdf

http://scholar.google.com/scholar?start=10&q=Gene+Mutation+Aberration+%26+Analysis+of+Gene+Abnormalities&hl=en&as_sdt=0,22&as_vis=1

 

Read Full Post »

Older Posts »