Posts Tagged ‘Genomic imprinting’

1:00PM 11/13/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston

1:00 p.m. Panel Discussion Genomics in Prenatal and Childhood Disorders

Genomics in Prenatal and Childhood Disorders


David Sweetser, M.D., Ph.D.
Unit Chief, Division of Medical Genetics; Attending Physician in Pediatric Hematology/Oncology,
Massachusetts General Hospital for Children

Genomics revolutionized medicine and genetic variation in a larger scale

Cases one on Causing Autism – mutations in a gene of synapse formation, clinical trials

Treatment: IGF1

Genetics: embryo – implant only the healthy embryo – newborn comprehensive genetics testing in the medical record integrated – Standard language of GENE-DRUG interaction not only drug-drug interaction

Potential Harms: May or may not happen disease – stigma issues

Explaining to parents the conditions is very difficult for MDs


3. Diana Bianchi, M.D.
Executive Director, Mother Infant Research Institute;
Vice Chair for Research and Academic Affairs,
Department of Pediatrics; Attending Geneticists and Neonatologist;
Natalie V. Zucker Professor, Tufts University School of Medicine

Medical Geneticist – Pediatrics

  • Prenatal screening and diagnosis – chromosomal abnormality – Down Syndrome, testing is more precise 70% fewer procedures to correct defects due to screening prenatally.
  • Prenatal diagnostics — patient is not in front of us, ultrasound examination, options to terminate pregnancies, genetic counseling — changed due to Genomics
  • Prenatal treatment to down syndrome before the birth – Transcriptomic approach, treat the fetus prebirth
  • Standard of care – all pregnant women – must receive from MD the option for screening for down syndrome, it is a test positive or negative
  • NOW – DNA allows to test for  fetal sex, chromosome in maternal circulation fetal and maternal genetics — Mother may have chromosomal variation
  • high false positive – DNA for Down Syndrome, 97% effective Micro duplication only 5%
  • genetics information protection act – sue prospective employer using Genome, life insurance issues
  • most data available is on Down Syndrome, of all parents informed of a fetus with Down Syndrome – 40% continues the pregnancy
  • accuracy in testing, offering choice and treatment are LEADING principles NOT elimination of a disease (i.e. down syndromes)

for reference see Prenatal Treatment of Down’s Syndrome: a Reality?

and ref list by Dr. Bianchi

2. Holmes Morton, M.D. @ClinicSpecChild
Medical Director, Clinic for Special Children

Small population in Lancaster, PA – risk for untreatable disease 52,000 screens 4.2 millions in US are screened Target mutation analysis, diagnosis very effectively. Harrisburg, PA – small scale natural history studies

Carrier testing offered in 70s. Discourages  from marriage, culture reaction is different. Working in the community, clinical practice using exon sequencing, combine population genetics and molecular biology.Translate Genomics to Clinical, small number of risk factors

History of genetics in population important to establish treatment

Upon birth, affected newborns get matching bone marrow transplant, thus, bypass stem cells – Gene therapy is another thing

1. Benjamin Solomon, Ph.D., M.D.
Chief, Division of Medical Genomics,
Inova Translational Medicine Institute

Longer term, statistical model in asthma research,  rigorous process on patient consent, life insurance, mutation that parents also have. Consequences: actionable findings are communicated
135 Genes – sequencing for some conditions

Questions from the Podium

– See more at:











Read Full Post »

Genome Jigsaws

Genome Jigsaws (Photo credit: dullhunk)

Sequencing became the household name.  In 2000s, it was thought to be the key of the Pandora’s box for cure.  Then, after completion of Human Genome Projects showed that there are less number of genes than expected.  This outcome induce to originate yet another set of sequencing programs and collaborations around the world, such as Human Protein Project, Human Microorganisms Projects, ENCODE, Transcriptome Sequencing and Consortiums etc.

It is in humankind to believe in magic and illusion.  The strength of biological diversity and complex mechanism of expression may chalanges the set up of a simple but informative specific essay.  Thus, there is a new developing field to mash rules of biology with mathematical formulas to develop the best bioinformatics or also called computational biology.  Predicting transcription start or termination sites, exon boundaries, possible binding sites of transcription regulators for chromatin modification activities, like histone acetylates and enhancer- and insulator-associated factors based on the human genome sequence.  Deep in mind, this assumption supports that the sequence contains signatures for chromatin modifications essential for gene regulation and development.

There are three primary colors, red, yellow and blue, however, an artist can create many shades. Recently, scientists combining and organizing more data to make sense of our blueprint of life to transfer info generation to generation with the hope to cure diseases of human kind.

Analyzing genome and transcriptome open the door.  These studies suggested that all eukaryotic cells has a rich portfolio of RNAs. Among these long non-coding RNAs has impact on protein coding gene expression, regulating multiple processes even including epigenetic gene expression.

Epigenetics, stemness and non-coding RNAs  play a great role to manipulate and correct the gene expression not only at a proper cell type but also location and time within genome without disturbing the host.

Main concern is differentiation of embryonic stem cells under these epigenetics and influencers.  The best known post-transcriptional modifications, which include methylation, acetylation, ubiquination, and SUMOylation of lysine residues, methylation of arginine residues, and phosphorylation of serines, occur on histone tails. “Epi” means “top” or
“above” so this mechanism give a new direction to the genetic pathways as long as the organism live sometime and may lead into evolutions.  It is critical to show the complexity of
mechanism and relativity of a gene role with a single example for each. 

For example,  DNA methylation occurs mostly on cytosine residues on the CpG islands usually located on promoter regions that are associated with tissue-specific gene expression.  However, there are many other forms of DNA methylations, such as  monoallelic methylation in gene imprinting and inactivation of the X chromosome,  in repetitive elements, like transposons.  There are two main mechanisms but this is not our main topic.  Yet, Myc and hypoxia-inducible factor-1α versus certain methyl-CpG-binding proteins, such as MBD1,MBD2, MBD4, MeCP2, and Kaiso works differently.

Stemness is an important factor for an intervention to correct a pathological condition. In terms of epigenetics, regulation and non-coding RNA Vascular endothelial growth factor A (VEGF-A) is an interesting example for differentiation of endothelial cells and morphogenesis of the vascular system during development with several reasons, epigenetics, gene interactions, time and space.  Everything has to be just right, because neither less nor too much can fulfill the destiny to become a complete adult cell or an organism.   For example, both having only one VEGF-A allele and having two-fold excess of VEGF-A results in death during early embryogenesis, since mice can’t develop proper vascular network.  However, explaining diverse mechanisms and functions of VEGF-A is require more information with specific details.  VEGF-A plays many roles in many pathological cases, such as cancer, inflammation, retinopathies, and arthritis because VEGF-A has also function in epigenetic reprogramming of the promoter regions of Rex1 and Oct4 genes, that are critical for a stem cell. Preferred mechanism is anti-angiogeneic state but tumor cells prefer hypermethylation to induce pro-angiogeneic state, thus VEGF-A stimulates PIGF in tumour cells among many other factors.

Now, let’s turn around to observe development of a cell with Polycomb repressive complexes (PRCs) because they are important chromatin regulators of embryonic stem (ES) cell function.  Originally, RYBP shown to function  as transcriptional repressor in reporter assays from both in tissue culture cells and in fruit fly (Drosophila melanogaster ) and as a direct interactor with Ring1A during embryogenesis through methylation. In addition, RYBP in epigenetic resetting during preimplantation development through repression of germ line genes and PcG targets before formation of pluripotent epiblast cells.  However, I do believe that the most important element is efficient repression of endogenous retroviruses (murine endogenous retrovirus called MuERV class),  preimplantation containing zygotic genome activation stage and germ line specific genes. The selective repressor activity of  RYBP  is in the ES cell state. When RYBP−/− ES cells were analyzed by measuring gene expression during differentiation as embryo bodies formed from mutant and wild-type cells, the result presented that  expression of pluripotency genes Oct4 and Nanog was usually downregulated. However, RYBP is able to bind genomic regions independently of H3K27me3 and there is no relation between altered RYBP binding in Dnmt1-mutant cells to DNA methylation status. In sum, RYBP has a large value in undifferentiated ES cells and may affect or even reset epigenetic landscape during early developmental stages. These are the gaps filled by long non coding RNAs.

We learn more compelling information by comparing and contrasting what is normal and what is abnormal. As a result, pathology is a key learning canvas for basic mechanisms in molecular genetics. Then peppered with functional genomics completes the story for an edible outcome.  We generally refer this as a Translational Research.  For example, recent foundlings suggest that H19 contributes to cancer, including hepatocellular carcinoma (HCC) after reviewing Oncomine resource.  According to these observations, in most HCC cases there is a lower expression of  H19 level is compared to the liver. Thus, in vitro and in vivo studies were undertaken with classical genetic analyzes based on loss- and gain-of-function on H19 to characterize two outcomes depend on H19, that are the effects on gene expression and on HCC metastasis. First, the expression of H19 showed gene expression variation since H19 expression was low in tumor cells than peripheral tumor cells.  Second, the metastasis of cancer based on alteration of miR-200 pathway contributing mesenchymal-to-epithelial transition by H19. Therefore, H19 and miR-200 are targets to be utilized during molecular diagnostics development and establishing targeted therapies in cancer.

Long story short, there is a circle of life where everything is connected even though they look different.  As a result, when we see a sunflower or a baby we remember to smile, because life is still an act to puzzle human.

References and Further Readings:


Non-coding RNAs as regulators of gene expression and epigenetics” Cardiovascular Res 1 June 2011: 430-440.

Epigenetic regulation of key vascular genes and growth factors” Cardiovasc Res 1 June 2011: 441-446.

Epigenetic Regulation by Long Noncoding RNAs” Science 14 December 2012: 1435-1439.

Epigenetic control of embryonic stem cell fate” JEM 25 October 2010: 2287-2295.

Transcribed dark matter: meaning or myth?” Hum Mol Genet 15 October 2010: R162-R168.

Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma” Carcinogenesis 1 March 2013: 577-586.

Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA” Science 7 January 2011: 76-79.

Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context” Bioinformatics 1 May 2013: 1199-1205.


Further Readings specific to Embryonic Stem Cell Differentiation and Development :

“BMP Induces Cochlin Expression to Facilitate Self-renewal and Suppress Neural Differentiation of Mouse Embryonic Stem Cells” J. Biol. Chem. 2013 288:8053-8060


“Regulation of DNA Methylation in Rheumatoid Arthritis Synoviocytes”  J. Immunol. 2013 190:1297-1303


“DNA methylome signature in rheumatoid arthritis” Ann Rheum Dis 2013 72:110-117


“The histone demethylase Kdm3a is essential to progression through differentiation” Nucleic Acids Res 2012 40:7219-7232


“Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer” Nucleic Acids Res 2012 40:6725-6740


“Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells” Nucleic Acids Res 2012 40:3403-3418


“RYBP Represses Endogenous Retroviruses and Preimplantation- and Germ Line-Specific Genes in Mouse Embryonic Stem Cells” Mol. Cell. Biol. 2012 32:1139-1149


“Polycomb Repressor Complex-2 Is a Novel Target for Mesothelioma Therapy” Clin. Cancer Res. 2012 18:77-90


“OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes” Proc. Natl. Acad. Sci. USA 2011 108:14497-14502


“Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging” Blood 2011 117:e182-e189


“The CHD3 Chromatin Remodeler PICKLE and Polycomb Group Proteins Antagonistically Regulate Meristem Activity in the Arabidopsis” RootPlant Cell 2011 23:1047-1060


“Chromatin structure of pluripotent stem cells and induced pluripotent stem cells” Briefings in Functional Genomics 2011 10:37-49


Abbreviations used:

DNMT       DNA methyl transferase

ES             embryonic stem

JmjC         Jumonji C

lincRNA     long ncRNA

ncRNA       noncoding RNA

PcG          Polycomb group

PRC          Polycomb repressive complex

PRE          Polycomb repressive element

Previous Posts on Stem Cells:

…  Aviva Lev-Ari, PhD, RN New Life – The Healing Promise of Stem Cells View … p://       Diseases and conditions where stem cell treatment is promising or emerging. Source: Wikipedia Since the …

…  Aviva Lev-Ari, PhD, RN Stem cells create new heart cells in baby mice, but not in adults, study …  picture on the left shows green c-kit+ precursor stem cells within an infarct (lower right) in a

14 January 2013  by Dr. Sudipta Saha on Pharmaceutical Intelligence
…  and Curator: Dr. Sudipta Saha, Ph.D. Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in …  from adult mouse ovaries. A fluorescence-activated cell sorting-based protocol has been standardized that can be used with adult …  compared to the ESC-derived or induced pluripotent stem cell-derived germline cells that are currently used as models for human …

…  PhD, RN The two leading therapy classes are: Cell-based Therapies for angiogenesis and myocardial …  Research Projects Stem Cell biology Embryonic stem cells in cardiovascular repairEarly differentiation of human endothelial …

…  Stem Cells with Unread Genome: microRNAs Author, Demet Sag, PhD Life is …  a coherent outcome. Thus, providing an engineered whole cell as a system of correction for “Stem Cell Therapy” may resolve unmet health problems.  Only 1% of the genome …

…  are not yet known. Some studies suggest a high rate of stem cell activity with differentiation of progenitors to cardiomyocytes. Other …

…  T-cells, said Dr. Margaret Goodell, director of the Stem Cells and Regenerative Medicine Center of Baylor College of Medicine. …  of pediatrics at BCM and a member of the Center for Cell and Gene Therapy at BCM, Texas Children¹s Hospital and The Methodist …  found that mice lacking the gene for this factor had a T-cell deficiency and in particular, too few of these early progenitor …

28 March 2013  by ritusaxena on Pharmaceutical Intelligence
…  and Curator: Ritu Saxena, Ph.D Although cancer stem cells constitute only a small percentage of the tumor burden, their …  after therapeutic target in cancer. The post on cancer stem cells published on the 22nd of March, 2013, describes the identity of CSCs, their functional characteristics, possible cell of origin and biomarkers. This post focuses on the therapeutic potential …

…  programs in the fields of personalized medicine, cell biology, cytogenetics, genotyping, and biobanking drive our …  by playing an important role in induced pluripotent stem (iPS) cell research. Induced pluripotent stem cells are powerful cells which can be made from skin or blood cells, and …

30 November 2012  by sjwilliamspa on Pharmaceutical Intelligence
…  seen in hematologic malignancies such as cutaneous T-cell lymphoma and peripheral T-cell lymphoma and little or no positive outcome …  resistance to chemotherapeutics, and similarity to cancer stem cells(6-10). Figure 1. HDACis led to the induction of EMT phemotype. (A …

Read Full Post »