Feeds:
Posts
Comments

 

 

News in Exploration of the Biological Causes of Mental Illness: Potential for New Treatments

Reporter: Aviva Lev-Ari, PhD,RN

Broad’s Stanley Center for Psychiatric Genome Research: Ted Stanley Pledges $650M

Initially opened with a gift from Stanley and his late wife in 2007, the Broad’s Stanley Center has already made progress in identifying genetic risk factors for schizophrenia and bipolar disorder and investigating therapeutic efforts based on those discoveries. This week researchers from Broad and other institutes published a GWAS analysis inNature that identified more than 100 regions of DNA associated with schizophrenia.

“Ten years ago, finding the biological causes of psychiatric disorders was like trying to climb a wall with no footholds,” Stanley Center Director Steven Hyman said in a statement. “But in the last few years, we’ve turned this featureless landscape into something we can exploit. If this is a wall, we’ve put toeholds into it. Now, we have to start climbing.”

SOURCE

http://www.genomeweb.com/clinical-genomics/ted-stanley-pledges-650m-broads-stanley-center-psychiatric-genome-research?utm_source=SilverpopMailing&utm_medium=email&utm_campaign=Broad%20Gets%20$650M%20for%20Psychiatric%20Genomics%20Research;%20Personalized%20Medicine%20Survey;%20Waters%20Q2%20-%2007/22/2014%2011:05:00%20AM

 

The Nature paper1 was produced by the Psychiatric Genomics Consortium (PGC) — a collaboration of more than 80 institutions, including the Broad Institute. Hundreds of researchers from the PGC pooled samples from more than 150,000 people, of whom 36,989 had been diagnosed with schizophrenia. This enormous sample size enabled them to spot 108 genetic locations, or loci, where the DNA sequence in people with schizophrenia tends to differ from the sequence in people without the disease. “This paper is in some ways proof that genomics can succeed,” Hyman says.

 

“This is a pretty exciting moment in the history of this field,” agrees Thomas Insel, director of the National Institute of Mental Health (NIMH) in Bethesda, Maryland, who was not involved in the study.

SOURCE

http://www.nature.com/news/gene-hunt-gain-for-mental-health-1.15602#/b1

 

 

Biological insights from 108 schizophrenia-associated genetic loci

Ripke, S. et alNature http://dx.doi.org/10.1038/nature13595 (2014).

SOURCE

Nature (2014) doi:10.1038/nature13595
Published online 22 July 2014

 

Abstract

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

 

Discussion

In the largest (to our knowledge) molecular genetic study of schizophrenia, or indeed of any neuropsychiatric disorder, ever conducted, we demonstrate the power of GWAS to identify large numbers of risk loci. We show that the use of alternative ascertainment and diagnostic schemes designed to rapidly increase sample size does not inevitably introduce a crippling degree of heterogeneity. That this is true for a phenotype like schizophrenia, in which there are no biomarkers or supportive diagnostic tests, provides grounds to be optimistic that this approach can be successfully applied to GWAS of other clinically defined disorders.

We further show that the associations are not randomly distributed across genes of all classes and function; rather they converge upon genes that are expressed in certain tissues and cellular types. The findings include molecules that are the current, or the most promising, targets for therapeutics, and point to systems that align with the predominant aetiological hypotheses of the disorder. This suggests that the many novel findings we report also provide an aetiologically relevant foundation for mechanistic and treatment development studies. We also find overlap between genes affected by rare variants in schizophrenia and those within GWAS loci, and broad convergence in the functions of some of the clusters of genes implicated by both sets of genetic variants, particularly genes related to abnormal glutamatergic synaptic and calcium channel function. How variation in these genes impact function to increase risk for schizophrenia cannot be answered by genetics, but the overlap strongly suggests that common and rare variant studies are complementary rather than antagonistic, and that mechanistic studies driven by rare genetic variation will be informative for schizophrenia.

 

 

 

Manhattan plot showing schizophrenia associations.

Manhattan plot of the discovery genome-wide association meta-analysis of 49 case control samples (34,241 cases and 45,604 controls) and 3 family based association studies (1,235 parent affected-offspring trios). The x axis is chromosomal position and the y axis is the significance (–log10 P; 2-tailed) of association derived by logistic regression. The red line shows the genome-wide significance level (5×10−8). SNPs in green are in linkage disequilibrium with the index SNPs (diamonds) which represent independent genome-wide significant associations.

 

SOURCE

 

Biological insights from 108 schizophrenia-associated genetic loci

 

Schizophrenia Working Group of the Psychiatric Genomics Consortium

 

Nature (2014) doi:10.1038/nature13595

 

nature13595-f1


In vitro Models of Tumor Microenvironment for New Cancer Target and Drug Discovery, 11/17 – 11/19/2014, Hyatt Boston Harbor

Reporter: Aviva Lev-Ari, PhD, RN

 

On 7/21/2014 Cambridge Healthtech Institute Announced:

Cambridge Healthtech Institute, 250 First Avenue, Suite 300, Needham, MA 02494, http://www.healthtech.com

 

FINAL AGENDA ANNOUNCEMENT: REGISTER BY AUGUST 22 & SAVE UP TO $400!

Traditional drug screening relies on monolayer cell culture, which is not always predictive of natural physiological state. This is especially problematic in cancer drug discovery, where simple cell cultures are not predictive of complex tumor microenvironment that consists of various cell types that interact in 3-dimensional structures. As the cost of drug development rises, there is increasing pressure for more predictive in vitro models for functional analysis and compound characterization. Cambridge Healthtech Institute’s Second Annual Physiologically-Relevant Cellular Tumor Models for Drug Discovery meeting will focus on the latest advances in 3D cellular tumor models and complex co-culture systems for functional analysis studies and compound screening/characterization.

 

KEYNOTE PRESENTATION:

An All-Human Microphysiologic Liver System for Carcinoma Metastasis

Alan H. Wells, M.D., D.M.Sc., Vice Chair and Thomas J. Gill III Professor, Pathology, University of Pittsburgh

 

ENGINEERING AND SCREENING TUMOR SPHEROID MODELS

New Tricks for Spheroids: Mimicking Stromal Interactions, Investigating Nanoparticle Drug Delivery, and Modeling Resection

Mark Grinstaff, Ph.D., Professor, Chemistry, Boston University

Functional Analysis of Therapeutic Antibodies and Antigens Using ex vivo Tumor Spheroids

Mitchell Ho, Ph.D., Chief, Antibody Therapy Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health

 

TECHNOLOGY SHOWCASE: 3D CELLULAR MODELS FOR DRUG AND TARGET SCREENING

High-Throughput Compatible Co-Spheroid Model Analyzing Compound Effects on Both Tumor and Stroma Cells

Jan E. Ehlert, Ph.D., Head, Cellular Drug Discovery, ProQinase GmbH

Sponsored by: ProQinase GmbH

Additional sponsorship opportunities available. Contact Ilana Quigley at iquigley@healthtech.com.HIGH-CONTENT ANALYSIS OF TUMOR SPHEROID MODELS

Drug Discovery and Development of Novel Anticancer Agents: Applications of Novel 3D Multicellular Tumor Spheroid Models

Daniel V. LaBarbera, Ph.D., Assistant Professor, Drug Discovery and Medicinal Chemistry, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado

Novel Stromal Targets that Support Tumor Spheroid Formation

Shane R. Horman, Ph.D., Research Investigator, Advanced Assay Group, Genomics Institute of the Novartis Research Foundation

Developing Biodynamic Screening Assays for 3D Live-Tissue Models

David Nolte, Ph.D., Professor, Physics, Purdue University; President, Animated Dynamics, Inc.

 

ENGINEERING COMPLEX 3D MODELS OF TUMOR MICROENVIRONMENT FOR DRUG SCREENING AND FUNCTIONAL ANALYSIS

Targeted Electric Field Therapy Development in 3D Models of the Heterogeneous Glioma Microenvironment

Scott S. Verbridge, Ph.D., Assistant Professor, School of Biomedical Engineering and Sciences, Virginia Tech – Wake Forest University

Targeting Physical and Stromal Determinants of Tumor Heterogeneity in Bioengineered 3D Models

Imran Rizvi, Ph.D., Instructor, Medicine and Dermatology, Harvard Medical School; Associate Bioengineer, Brigham and Women’s Hospital; Assistant, Biomedical Engineering, Wellman Center for Photomedicine, Massachusetts General Hospital

Hydrogel Co-Culture Systems for Growing Patient-Derived Xenografts: Use in Selective Drug Screening

Mary C. Farach-Carson, Ph.D., Ralph and Dorothy Looney Professor, Biochemistry and Cell Biology; Scientific Director, BioScience Research Collaborative, Rice University

Human Stroma-Derived Extracellular Matrices: 3D ECM Physiological Systems

Edna Cukierman, Ph.D., Associate Professor, Cancer Biology, Fox Chase Cancer Center

ENGINEERING IN VITRO MODELS OF CANCER METASTASIS

Microfluidic Models with Microvascular Networks to Study Metastatic Disease

Roger D. Kamm, Ph.D., Cecil and Ida Green Distinguished Professor, Biological and Mechanical Engineering, MIT

Monitoring Extravascular Migratory Metastasis of Angiotropic Cancer Cells Using a 3D in vitro Co-Culture System

Claire Lugassy, M.D., Research Associate Professor, Pathology and Lab Medicine, UCLA School of Medicine; Member, Jonsson Comprehensive Cancer Center

Using Block Cell Printing to Develop Single Cell Arrays for Drug Screening

Lidong Qin, Ph.D., Associate Member, Nanomedicine, Methodist Hospital Research Institute; Assistant Professor, Cell and Developmental Biology, Weill Cornell Medical College

 

————————————————————————

RECOMMENDED DINNER SHORT COURSES*

Stem Cell Models for Drug Discovery

Monday Evening, November 17 | 6:30-9:30 pm

Instructors:

Anne G. Bang, Ph.D., Director, Cell Biology, Prebys Center, Sanford-Burnham Medical Research Institute

Pamela J. Hornby, Ph.D., Senior Scientific Director and Research Fellow, Cardiovascular and Metabolic Disease, Translational Models, Janssen Pharmaceutical Companies of Johnson & Johnson

Wei Zheng, Ph.D., Group Leader, National Center for Advancing Translational Sciences, National Institutes of Health

Expert ThinkTank: How to Meet the Need for Physiologically-Relevant Assays?

Tuesday Evening, November 18 | 6:00-9:00 pm

Moderator:

Lisa Minor, Ph.D., President, In Vitro Strategies, LLC

Panelists:

Beverley Isherwood, Ph.D., Team Leader, AstraZeneca R&D

Michael Jackson, Ph.D., Senior Vice President, Drug Discovery and Development, Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute (tentative)

Jean-Louis Klein, Ph.D., Principal Scientist, Target and Pathway Validation, Platform Technology and Science, GlaxoSmithKline

Caroline Shamu, Ph.D., Director, ICCB-Longwood Screening Facility and Assistant Professor, Harvard Medical School

D. Lansing Taylor, Ph.D., Director, University of Pittsburgh Drug Discovery Institute and Allegheny Foundation; Professor, Computational and Systems Biology, University of Pittsburgh

Scott S. Verbridge, Ph.D., Assistant Professor, School of Biomedical Engineering and Sciences, Virginia Tech – Wake Forest University


Soft Tissue Transponder for Radiotherapy and Radiosurgery Treatments for Cancer got FDA Approval

Reporter: Aviva Lev-Ari, PhD, RN

Varian Medical Systems ($VAR) scored FDA 510(k) clearance for its soft tissue transponder for radiotherapy and radiosurgery treatments

 

FDA clears Varian soft tissue transponder to treat cancer

Varian Medical Systems’ Calypso soft tissue Beacon transponder–Courtesy of Varian

Varian Medical Systems ($VAR) scored FDA 510(k) clearance for its soft tissue transponder for radiotherapy and radiosurgery treatments.

The Palo Alto, CA-based company’s Calypso soft tissue Beacon transponders are implanted in soft tissue throughout the body, allowing physicians to target high energy treatment beam radiation at tumors without damaging surrounding tissue. The grain-sized device includes a real-time GPS monitoring system that continuously tracks and monitors the position of transponders during radiosurgery.

An earlier version of the product was cleared for use in the prostate and prostatic bed, but the new indication expands the device’s applications for other types of cancer, the company said in a statement. Varian plans to release the transponders toward the end of this year, and expects a full commercial roll-out in 2015.

“We’re pleased to be able to make the system available to clinicians who want to use it more broadly, not just for conventional radiotherapy but for some of the newer approaches, like stereotactic body radiotherapy (SBRT), which involves delivering higher radiation doses very quickly,” Andrea Morgan, Calypso product manager said in a statement. “For treatments like that, accurate targeting is essential, and the new Calypso transponders have an important role to play.”

The FDA nod bodes well for Varian, as the company struggles to recover from a disappointing second quarter. The devicemaker saw its net earnings fall nearly 18% in Q2, with profits of $92.7 million down from $112.8 million the same period last year. Revenue increased 1% to $779 million, primarily due to a 4% jump in oncology sales and a slight uptick in imaging components.

Regulatory blessings also help Varian forge ahead in its emerging markets, where the company sees strong demand for its oncology and medical imaging products. Last year, Varian built its first Asian subsidiary in South Korea, giving it an expanded market for its cancer-treating radiotherapy devices and imaging equipment. In January, the company renewed a three-year, $515 billion deal withToshiba Medical Systems to supply medical imaging components. The companies originally charted the deal in January 2011 for an estimated $450 billion.

Varian Medical Systems

Varian Medical Systems, Inc., of Palo Alto, California, is the world’s leading manufacturer of medical devices and software for treating cancer and other medical conditions with radiotherapy, radiosurgery, and brachytherapy. The company supplies informatics software for managing comprehensive cancer clinics, radiotherapy centers and medical oncology practices. Varian is a premier supplier of tubes, digital detectors, and image processing workstations for X-ray imaging in medical, scientific, and industrial applications and also supplies high-energy X-ray devices for cargo screening and non-destructive testing applications.  Varian Medical Systems employs approximately 6500 people who are located at manufacturing sites in North America, Europe, and China and approximately 70 sales and support offices around the world. For more information, visit http://www.varian.com or follow us on Twitter .

 

- read the release

Related Articles:
Varian’s profits slip as revenue ticks up slightly
Varian Medical pays $35M to settle Pitt patent spat
Varian touts emerging markets as looming Medicare changes take a toll
Varian, Toshiba announce a $515M medical imaging deal
Korean government ramps up plans to boost medical equipment exports

SOURCE

 


Originally posted on What's The Big Data?:

WebIn60Seconds

Source: Qmee

View original


Why did this occur? The matter of Individual Actions Undermining Trust, The Patent Dilemma and The Value of a Clinical Trials

Reporter and Curator: Larry H. Bernstein, MD, FCAP

 

he large amount of funding tied to continued research and support of postdoctoral fellows leads one to ask how following the money can lead to discredited work in th elite scientific community.

Moreover, the pressure to publish in prestigious journals with high impact factors is a road to academic promotion.  In the last twenty years, it is unusual to find submissions for review with less than 6-8 authors, with the statement that all contributed to the work.  These factors can’t be discounted outright, but it is easy for work to fall through the cracks when a key investigator has over 200 publications and holds tenure in a great research environment.  But that is where we find ourselves today.

There is another issue that comes up, which is also related to the issue of carrying out research, and then protecting the work for commercialization.  It is more complicated in the sense that it is necessary to determine whether there is prior art, and then there is the possibility that after the cost of filing patent and a 6 year delay in obtaining protection, there is as great a cost in bringing the patent to finasl production.

I.  Individual actions undermining trust.

II. The patent dilemma.

III. The value of a clinical trial.

IV. The value contributions of RAP physicians
(radiologists, anesthesiologists, and pathologists – the last for discussion)
Those who maintain and inform the integrity of medical and surgical decisions

 

I. Top heart lab comes under fire

Kelly Servick

Science 18 July 2014: Vol. 345 no. 6194 p. 254 DOI: 10.1126/science.345.6194.25

 

In the study of cardiac regeneration, Piero Anversa is among the heavy hitters. His research into the heart’s repair mechanisms helped kick-start the field of cardiac cell therapy (see main story). After more than 4 decades of research and 350 papers, he heads a lab at Harvard Medical School’s Brigham and Women’s Hospital (BWH) in Boston that has more than $6 million in active grant funding from the National Institutes of Health (NIH). He is also an outspoken voice in a field full of disagreement.

So when an ongoing BWH investigation of the lab came to light earlier this year, Anversa’s colleagues were transfixed. “Reactions in the field run the gamut from disbelief to vindication,” says Mark Sussman, a cardiovascular researcher at San Diego State University in California who has collaborated with Anversa. By Sussman’s account, Anversa’s reputation for “pushing the envelope” and “challenging existing dogma” has generated some criticism. Others, however, say that the disputes run deeper—to doubts about a cell therapy his lab has developed and about the group’s scientific integrity. Anversa told Science he was unable to comment during the investigation.

“People are talking about this all the time—at every scientific meeting I go to,” says Charles Murry, a cardiovascular pathologist at the University of Washington, Seattle. “It’s of grave concern to people in the field, but it’s been frustrating,” because no information is available about BWH’s investigation. BWH would not comment for this article, other than to say that it addresses concerns about its researchers confidentially.

In April, however, the journal Circulation agreed to Harvard’s request to retract a 2012 paper on which Anversa is a corresponding author, citing “compromised” data. The Lancet also issued an “Expression of Concern” about a 2011 paper reporting results from a clinical trial, known as SCIPIO, on which Anversa collaborated. According to a notice from the journal, two supplemental figures are at issue.

For some, Anversa’s status has earned him the benefit of the doubt. “Obviously, this is very disconcerting,” says Timothy Kamp, a cardiologist at the University of Wisconsin, Madison, but “I would be surprised if it was an implication of a whole career of research.”

Throughout that career, Anversa has argued that the heart is a prolific, lifelong factory for new muscle cells. Most now accept the view that the adult heart can regenerate muscle, but many have sparred with Anversa over his high estimates for the rate of this turnover, which he maintained in the retracted Circulation paper.

Anversa’s group also pioneered a method of separating cells with potential regenerative abilities from other cardiac tissue based on the presence of a protein called c-kit. After publishing evidence that these cardiac c-kit+cells spur new muscle growth in rodent hearts, the group collaborated in the SCIPIO trial to inject them into patients with heart failure. In The Lancet, the scientists reported that the therapy was safe and showed modest ability to strengthen the heart—evidence that many found intriguing and provocative. Roberto Bolli, the cardiologist whose group at the University of Louisville in Kentucky ran the SCIPIO trial, plans to test c-kit+ cells in further clinical trials as part of the NIH-funded Cardiovascular Cell Therapy Research Network.

But others have been unable to reproduce the dramatic effects Anversa saw in animals, and some have questioned whether these cells really have stem cell–like properties. In May, a group led by Jeffery Molkentin, a molecular biologist at Cincinnati Children’s Hospital Medical Center in Ohio, published a paper in Nature tracing the genetic lineage of c-kit+ cells that reside in the heart. He concluded that although they did make new muscle cells, the number is “astonishingly low” and likely not enough to contribute to the repair of damaged hearts. Still, Molkentin says that he “believe[s] in their therapeutic potential” and that he and Anversa have discussed collaborating.

Now, an anonymous blogger claims that problems in the Anversa lab go beyond controversial findings. In a letter published on the blog Retraction Watch on 30 May, a former research fellow in the Anversa lab described a lab culture focused on protecting the c-kit+ cell hypothesis: “[A]ll data that did not point to the ‘truth’ of the hypothesis were considered wrong,” the person wrote. But another former lab member offers a different perspective. “I had a great experience,” says Federica Limana, a cardiovascular disease researcher at IRCCS San Raffaele Pisana in Rome who spent 2 years of her Ph.D. work with the group in 1999 and 2000, as it was beginning to investigate c-kit+ cells. “In that period, there was no such pressure” to produce any particular result, she says.

Accusations about the lab’s integrity, combined with continued silence from BWH, are deeply troubling for scientists who have staked their research on theories that Anversa helped pioneer. Some have criticized BWH for requesting retractions in the midst of an investigation. “Scientific reputations and careers hang in the balance,” Sussman says, “so everyone should wait until all facts are clearly and fully disclosed.”

 

II.  Trolling Along: Recent Commotion About Patent Trolls

July 17, 2014

PriceWaterhouseCoopers recently released a study about 2014 Patent Litigation. PwC’s ultimate conclusion was that case volume increased vastly and damages continue a general decline, but what’s making headlines everywhere is that “patent trolls” now account for 67% of all new patent lawsuits (see, e.g., Washington Post and Fast Company).

Surprisingly, looking at PwC’s study, the word “troll” is not to be found. So, with regard to patent trolls, what does this study really mean for companies, patent owners and casual onlookers?

First of all, who are these trolls?

“Patent Troll” is a label applied to patent owners who do not make or manufacture a product, or offer a service. Patent trolls live (and die) by suing others for allegedly practicing an invention that is claimed by their patents.

The politically correct term is Non-practicing Entity (NPE). PwC solely uses the term NPE, which it defines as an entity that does not have the capability to design, manufacture, or distribute products with features protected by the patent.

So, what’s so bad about them?

The common impression of an NPEs is a business venture looking to collect and monetize assets (i.e., patents). In the most basic strategy, an NPE typically buys patents with broad claims that cover a wide variety of technologies and markets, and then sues a large group of alleged patent infringers in the hope to collect a licensing royalty or a settlement. NPEs typically don’t want to spend money on a trial unless they have to, and one tactic uses settlements with smaller businesses to build a “war chest” for potential suits with larger companies.

NPEs initiating a lawsuit can be viewed positively, such as a just defense of the lowly inventor who sold his patent to someone (with deeper pockets) who could fund the litigation to protect the inventor’s hard work against a mega-conglomerate who ripped off his idea.

Or NPE litigation can be seen negatively, such as an attorney’s demand letter on behalf of an anonymous shell corporation to shake down dozens of five-figure settlements from all the local small businesses that have ever used a fax machine.

NPEs can waste a company’s valuable time and resources with lawsuits, yet also bring value to their patent portfolios by energizing a patent sales and licensing market. There are unscrupulous NPEs, but it’s hardly the black and white situation that some media outlets are depicting.

What did PwC say about trolls?

Well, the PwC study looked at the success rates and awards of patent litigation decisions. One conclusion is that damages awards for NPEs averaged more than triple those for practicing entities over the last four years. We’ll come back to this statistic.

Another key observation is that NPEs have been successful 25% of the time overall, versus 35% for practicing entities. This makes sense because of the burden of proof the NPEs carry as a plaintiff at trial and the relative lack of success for NPEs at summary judgment. However, PwC’s report states that both types of entities win about two-thirds of their trials.

But what about this “67% of all patent trials are initiated by trolls” discussion?

The 67% number comes from the RPX Corporation’s litigation report (produced January 2014) that quantified the percentage of NPE cases filed in 2013 as 67%, compared to 64% in 2012, 47% in 2011, 30% in 2010 and 28% in 2009.

PwC refers to the RPX statistics to accentuate that this new study indicates that only 20% ofdecisions in 2013 involved NPE-filed cases, so the general conclusion would be that NPE cases tend to settle or be dismissed prior to a court’s decision. Admittedly, this is indicative of the prevalent “spray and pray” strategy where NPEs prefer to collect many settlement checks from several “targets” and avoid the courtroom.

In this study, who else is an NPE?

If someone were looking to dramatize the role of “trolls,” the name can be thrown around liberally (and hurtfully) to anyone who owns and asserts a patent without offering a product or a service. For instance, colleges and universities fall under the NPE umbrella as their research and development often ends with a series of published papers rather than a marketable product on an assembly line.

In fact, PwC distinguishes universities and non-profits from companies and individuals within their NPE analysis, with only about 5% of the NPE cases from 1995 to 2013 being attributed to universities and non-profits. Almost 50% of the NPE cases are attributed to an “individual,” who could be the listed inventor for the patent or a third-party assignee.

The word “troll” is obviously a derogatory term used to connote greed and hiding (under a bridge), but the term has adopted a newer, meme-like status as trolls are currently depicted as lacking any contribution to society and merely living off of others’ misfortunes and fears. [Three Billy Goats Gruff]. This is not always the truth with NPEs (e.g., universities).

No one wants to be called a troll—especially in front of a jury—so we’ve even recently seen courts bar defendants from referring to NPEs as such colorful terms as a “corporate shell,” “bounty hunter,” “privateer,” or someone “playing the lawsuit lottery.” [Judge Koh Bans Use Of Term " Patent Troll" In Apple Jury Trial]

Regardless of the portrayal of an NPE, most people in the patent world distinguish the “trolls” by the strength of the patent, merits of the alleged infringement and their behavior upon notification. Often these are expressed as “frivolity” of the case and “gamesmanship” of the attorneys. Courts are able to punish plaintiffs who bring frivolous claims against a party and state bar associations are tasked with monitoring the ethics of attorneys. The USPTO is tasked with working to strengthen the quality of patents.

What’s the take-away from this study regarding NPEs?

The study focuses on patent litigation that produced a decision, therefore the most important and relevant conclusion is that, over the last four years, average damages awards for NPEs are more than triple the damages for practicing entities. Everything else in these articles, such as the initiation of litigation by NPEs, settlement percentages, and the general behavior of patent trolls is pure inference beyond the scope of the study.

This may sound sympathetic to trolls, but keep in mind that the study highlights that NPEs have more than triple the damages on average compared to practicing entities and it is meant to shock the reader a bit. One explanation for this is that NPEs are in the best position to choose the patents they want to assert and choose the targets they wish to sue—especially when the NPE is willing to ride that patent all the way to the end of a long, expensive trial. Sometimes settling is not an option. Chart 2b indicates that the disparity in the damages awarded to NPEs relative to practicing entities has always been big (since 2000), but perhaps going from two-fold from 2000 – 2009 to three times as much in the past 4 years indicates that NPEs are improving at finding patents and/or picking battles to take all the way to a court decision. More than anything, this seems to reflect the growth in the concept of patents as a business asset.

The PwC report is chock full of interesting patterns and trends of litigation results, so it’s a shame that the 67% number makes the headlines—far more interesting are the charts comparing success rates by 4-year periods (Chart 6b) or success rates for NPEs and practicing entities in front of a jury verusin front of a bench (Chart 6c), as well as other tables that reveal statistics for specific districts of the federal courts. Even the stats that look at the success rates of each type of NPE are telling because the reader sees that universities and non-profits have a higher success rate than non-practicing companies or individuals.

What do we do about the trolls?

The White House has recently called for Congress to do something about the trolls as horror stories of scams and shake-downs are shared. A bill was gaining momentum in the Senate, when Senator Leahy took it off the agenda in early July. That bill had miraculously passed 325-91 in the House and President Obama was willing to sign it if the Senate were to pass it. The bill was opposed by trial attorneys, universities, and bio-pharmaceutical businesses who felt as though the law would severely inhibit everyone’s access to the courts in order to hinder just the trolls. Regardless, most people think that the sitting Congressmen merely wanted a “win” prior to the mid-term elections and that patent reform is unlikely to reappear until next term.

In the meantime, the Supreme Court has recently reiterated rules concerning attorney fee-shifting on frivolous patent cases, as well as clarifying the validity of software patents. Time will tell if these changes have any effects on the damages awards that PwC’s study examined or even if they cause a chilling of the number of patent lawsuit filings.

Furthermore, new ways to challenge the validity of asserted patents have been initiated via the America Invents Act. For example, the Inter Partes Review (IPR) has yielded frightening preliminary statistics as to slowing, if not killing, patents that have been asserted in a suit. While these administrative trials are not cheap, many view these new tools at the Patent Trial and Appeals Board as anti-troll measures. It will be interesting to watch how the USPTO implements these procedures in the near future, especially while former Google counsel, Acting Director Michelle K. Lee, oversees the office.

In the private sector, Silicon Valley has recently seen a handful of tech companies come together as the License on Transfer Network, a group hoping to disarm the “Patent Assertion Entities.” Joining the LOT Network comes via an agreement that creates a license for use of a patent by anyone in the LOT network once that patent is sold. The thought is that the NPEs who consider purchasing patents from companies in the LOT Network will have fewer companies to sue since the license to the other active LOT participants will have triggered upon the transfer and, thus, the NPE will not be as inclined to “troll.” For instance, if a member-company such as Google were to sell a patent to a non-member company and an NPE bought that patent, the NPE would not be able to sue any members of the LOT Network with that patent.

Other notes

NPEs are only as evil as the people who run them—that being said, there are plenty of horror stories of small businesses receiving phantom demand letters that threaten a patent infringement suit without identifying themselves or the patent. This is an out-and-out scam and a plague on society that results in wasted time and resource, and inevitably higher prices on the consumer end.

It is a sin and a shame that patent rights can be misused in scams and shake-downs of businesses around us, but there is a reason that U.S. courts are so often used to defend patent rights. The PwC study, at minimum, reflects the high stakes of the patent market and perhaps the fragility. Nevertheless, merely monitoring the courts may not keep the trolls at bay.

I’d love to hear your thoughts.

*This is provided for informational purposes only, and does not constitute legal or financial advice. The information expressed is subject to change at any time and should be checked for completeness, accuracy and current applicability. For advice, consult a suitably licensed attorney or patent agent.

 

III. Large-scale analysis finds majority of clinical trials don’t provide meaningful evidence

Ineffective TreatmentsMedical Ethics • Tags: Center for Drug Evaluation and ResearchClinical trialCTTIDuke University HospitalFDAFood and Drug AdministrationNational Institutes of HealthUnited States National Library of Medicine

04 May 2012

DURHAM, N.C.— The largest comprehensive analysis of ClinicalTrials.gov finds that clinical trials are falling short of producing high-quality evidence needed to guide medical decision-making. The analysis, published today in JAMA, found the majority of clinical trials is small, and there are significant differences among methodical approaches, including randomizing, blinding and the use of data monitoring committees.

“Our analysis raises questions about the best methods for generating evidence, as well as the capacity of the clinical trials enterprise to supply sufficient amounts of high quality evidence to ensure confidence in guideline recommendations,” said Robert Califf, M.D., first author of the paper, vice chancellor for clinical research at Duke University Medical Center, and director of the Duke Translational Medicine Institute.

The analysis was conducted by the Clinical Trials Transformation Initiative (CTTI), a public private partnership founded by the Food and Drug Administration (FDA) and Duke. It extends the usability of the data in ClinicalTrials.gov for research by placing the data through September 27, 2010 into a database structured to facilitate aggregate analysis. This publically accessible database facilitates the assessment of the clinical trials enterprise in a more comprehensive manner than ever before and enables the identification of trends by study type.

 

The National Library of Medicine (NLM), a part of the National Institutes of Health, developed and manages ClinicalTrials.gov. This site maintains a registry of past, current, and planned clinical research studies.

“Since 2007, the Food and Drug Administration Amendment Act has required registration of clinical trials, and the expanded scope and rigor of trial registration policies internationally is producing more complete data from around the world,” stated Deborah Zarin, MD, director, ClinicalTrials.gov, and assistant director for clinical research projects, NLM. “We have amassed over 120,000 registered clinical trials. This rich repository of data has a lot to say about the national and international research portfolio.”

This CTTI project was a collaborative effort by informaticians, statisticians and project managers from NLM, FDA and Duke. CTTI comprises more than 60 member organizations with the goal of identifying practices that will improve the quality and efficiency of clinical trials.

“Since the ClinicalTrials.gov registry contains studies sponsored by multiple entities, including government, industry, foundations and universities, CTTI leaders recognized that it might be a valuable source for benchmarking the state of the clinical trials enterprise,” stated Judith Kramer, MD, executive director of CTTI.

The project goal was to produce an easily accessible database incorporating advances in informatics to permit a detailed characterization of the body of clinical research and facilitate analysis of groups of studies by therapeutic areas, by type of sponsor, by number of participants and by many other parameters.

“Analysis of the entire portfolio will enable the many entities in the clinical trials enterprise to examine their practices in comparison with others,” says Califf. “For example, 96% of clinical trials have ≤1000 participants, and 62% have ≤ 100. While there are many excellent small clinical trials, these studies will not be able to inform patients, doctors and consumers about the choices they must make to prevent and treat disease.”

The analysis showed heterogeneity in median trial size, with cardiovascular trials tending to be twice as large as those in oncology and trials in mental health falling in the middle. It also showed major differences in the use of randomization, blinding, and data monitoring committees, critical issues often used to judge the quality of evidence for medical decisions in clinical practice guidelines and systematic overviews.

“These results reinforce the importance of exploration, analysis and inspection of our clinical trials enterprise,” said Rachel Behrman Sherman, MD, associate director for the Office of Medical Policy at the FDA’s Center for Drug Evaluation and Research. “Generation of this evidence will contribute to our understanding of the number of studies in different phases of research, the therapeutic areas, and ways we can improve data collection about clinical trials, eventually improving the quality of clinical trials.”

Related articles

 

IV.  Lawmakers urge CMS to extend MU hardship exemption for pathologists

 

Eighty-nine members of Congress have asked the Centers for Medicare & Medicaid Services to give pathologists a break and extend the hardship exemption they currently enjoy for all of Stage 3 of the Meaningful Use program.In the letter–dated July 10 and addressed to CMS Administrator Marilyn Tavenner–the lawmakers point out that CMS had recognized in its 2012 final rule implementing Stage 2 of the program that it was difficult for pathologists to meet the Meaningful Use requirements and granted a one year exception for 2015, the first year that penalties will be imposed. They now are asking that the exception be expanded to include the full five-year maximum allowed under the American Recovery and Reinvestment Act.

“Pathologists have limited direct contact with patients and do not operate in EHRs,” the letter states. “Instead, pathologists use sophisticated computerized laboratory information systems (LISs) to support the work of analyzing patient specimens and generating test results. These LISs exchange laboratory and pathology data with EHRs.”

Interestingly, the lawmakers’ exemption request is only on behalf of pathologists, even though CMS had granted the one-year hardship exception to pathologists, radiologists and anesthesiologists.

Rep. Tom Price (R-Ga.), one of the members spearheading the letter, had also introduced a bill (H.R. 1309) in March 2013 that would exclude pathologists from the incentives and penalties of the Meaningful Use program. The bill, which has 31 cosponsors, is currently sitting in committee. That bill also does not include relief for radiologists or anesthesiologists.

CMS has provided some flexibility about the hardship exceptions in the past, most recently by allowing providers to apply for one due to EHR vendor delays in upgrading to Stage 2 of the program.

However, CMS also noted in the 2012 rule granting the one-year exception that it was granting the exception in large part because of the then-current lack of health information exchange and that “physicians in these three specialties should not expect that this exception will continue indefinitely, nor should they expect that we will grant the exception for the full 5-year period permitted by statute.”

To learn more:
- read the letter (.pdf)


larryhbern:

This is not quite new on artemisin, but encouraging. It needs to be followed up.

Originally posted on Clinicalnews.org:

Public release date: 13-Oct-2008

Researchers at the University of Washington have updated a traditional Chinese medicine to create a compound that is more than 1,200 times more specific in killing certain kinds of cancer cells than currently available drugs, heralding the possibility of a more effective chemotherapy drug with minimal side effects.

The new compound puts a novel twist on the common anti-malarial drug artemisinin, which is derived from the sweet wormwood plant (Artemisia annua L). Sweet wormwood has been used in herbal Chinese medicine for at least 2,000 years, and is eaten in salads in some Asian countries.

The scientists attached a chemical homing device to artemisinin that targets the drug selectively to cancer cells, sparing healthy cells. The results were published online Oct. 5 in the journal Cancer Letters.

View original 645 more words


larryhbern:

Interesting observations to share on Lactoferrin

Originally posted on Clinicalnews.org:

04 May 2012

University of Calgary researcher edits special issue on disease fighting properties of lactoferrin

Hans Vogel, a professor in the biological sciences department, is the guest editor of a special issue of the journal Biochemistry and Cell Biology that focuses on lactoferrin, an important iron-binding protein with many health benefits.

“Some people describe this protein as the ‘Swiss army knife’ of the human host defense system,” says Vogel. “We now know that lactoferrin has many functions in innate immunity and that it plays a role in protecting us from bacterial, viral, fungal, and protozoal infections. It can even protect us from some forms of cancer.”

View original 269 more words

Follow

Get every new post delivered to your Inbox.

Join 1,374 other followers