Advertisements
Feeds:
Posts
Comments

Archive for the ‘Reproductive Andrology, Embryology, Genomic Endocrinology, Preimplantation Genetic Diagnosis and Reproductive Genomics’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Anti-Müllerian Hormone (AMH), is secreted by growing follicles that contains the egg or ovum. According to regular practice low AMH and high Follicle Stimulating Hormone (FSH) are generally considered as indicators of diminished egg quantity in a female. But, there are several cases the female conceived absolutely normally without any support even after low AMH was reported.

 

Therefore, a new research published in the Journal of the American Medical Association declares that AMH doesn’t dictate a woman’s reproductive potential. Although AMH testing is one of the most common ways that doctors assess a woman’s fertility. Present research says that all it takes is one egg each cycle and AMH is not a marker of whether a female can or cannot become pregnant. So, for women who haven’t yet tried to get pregnant and who are wondering whether they are fertile, an AMH value isn’t going to be helpful in that context. In addition, AMH is not necessarily a good marker to predict that whether one has to cryopreserve her eggs. So, practically doctors don’t yet have a way to definitively predict egg quality or a woman’s long-term ability to conceive, but age is obviously one of the most important factors.

 

The above mentioned study followed 750 women between the ages of 30 and 44 who had been trying to conceive for three months or less. During the 12-month observation period, those with low AMH values of less than 0.7 were not less likely to conceive than those who had normal AMH values. The study had various limitations, however, that are worth noting. The researchers only included women who did not have a history of infertility. Women who sought fertility treatments (about 6 percent) were withdrawn. And only 12 percent of the women were in the 38-to-44 age range. In addition, the number of live births was unavailable.

 

Among women aged 30 to 44 years without a history of infertility who had been trying to conceive for 3 months or less, biomarkers indicating diminished ovarian reserve compared with normal ovarian reserve were not associated with reduced fertility. These findings do not support the use of urinary or blood FSH tests or AMH levels to assess natural fertility for women with these characteristics. The researchers’ next want to see whether low AMH is associated with a higher risk of miscarriage among the women who conceived.

 

Although AMH testing isn’t designed to be an overall gauge of a woman’s fertility, it can still provide valuable information, especially for women who are infertile and seeking treatment. It can assist in diagnosing polycystic ovarian syndrome, and identify when a woman is getting closer to menopause. Previous research also showed that AMH is good predictor of a woman’s response to ovarian stimulation for in vitro fertilization and therefore it can predict the probability of conceiving via in vitro fertilization (I.V.F.).

 

References:

 

https://jamanetwork.com/journals/jama/article-abstract/2656811?JamaNetworkReader=True

 

https://www.nytimes.com/2017/10/16/health/fertility-test-ovarian-reserve.html

 

https://academic.oup.com/humrep/article/26/11/2925/656065

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339896/

 

https://www.ncbi.nlm.nih.gov/pubmed/27179263

 

Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists at the Stanford University School of Medicine have completed the first-ever characterization of the meticulously timed immune system changes in women that occur during pregnancy. The findings were published in Science Immunology revealed that there is an immune clock of pregnancy and suggest it may help doctors predict preterm birth.

 

The timing of immune system changes follows a precise and predictable pattern in normal pregnancy. Although physicians have long known that the expectant mother’s immune system adjusts to prevent her body from rejecting the fetus, no one had investigated the full scope of these changes, nor asked if their timing was tightly controlled.

 

Nearly 10 percent of U.S. infants are born prematurely, arriving three or more weeks early, but physicians lack a reliable way to predict premature deliveries. Previous research at Stanford and other places suggested that inflammatory immune responses may help in triggering early labor. It suggested that if scientists identify an immune signature of impending preterm birth, they should be able to design a blood test to detect it.

 

The researchers used mass cytometry, a technique developed at Stanford, to simultaneously measure up to 50 properties of each immune cell in the blood samples. They counted the types of immune cells, assessed what signaling pathways were most active in each cell, and determined how the cells reacted to being stimulated with compounds that mimic infection with viruses and bacteria.

 

The researchers developed an algorithm that captures the immunological timeline during pregnancy that both validates previous findings and sheds new light on immune cell interaction during gestation. By defining this immunological chronology during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

 

With an advanced statistical modeling technique, introduced for the first time in this study, the scientists then described in detail how the immune system changes throughout pregnancy. Instead of grouping the women’s blood samples by trimester for analysis, the model treated gestational age as a continuous variable, allowing the researchers to account for the exact time during pregnancy at which each sample was taken. The mathematical model also incorporated knowledge from the existing scientific literature of how immune cells behave in nonpregnant individuals to help determine which findings were most likely to be important.

 

The study confirmed immune features of pregnancy that were already known. Such as the scientists saw that natural killer cells and neutrophils have enhanced action during pregnancy. The researchers also uncovered several previously unappreciated features of how the immune system changes, such as the finding that activity of the STAT5 signaling pathway in CD4+T cells progressively increases throughout pregnancy on a precise schedule, ultimately reaching levels much higher than in nonpregnant individuals. The STAT5 pathway is involved in helping another group of immune cells, regulatory T cells, to differentiate. Interestingly, prior research in animals has indicated that regulatory T cells are important for maintaining pregnancy.

 

The next step will be to conduct similar research using blood samples from women who deliver their babies prematurely to see where their trajectories of immune function differ from normal.

 

This study revealed a precisely timed chronology of immune adaptations in peripheral blood over the course of a term pregnancy. This finding was enabled by high-content, single-cell mass cytometry coupled with a csEN algorithm accounting for the modular structure of the immune system and previous knowledge. The study provided the conceptual backbone and the analytical framework to examine whether disruption of this chronology is a diagnostically useful characteristic of preterm birth and other pregnancy-related pathologies.

 

References:

 

http://immunology.sciencemag.org/content/2/15/eaan2946.full

 

http://med.stanford.edu/news/all-news/2017/09/immune-system-changes-during-pregnancy-are-precisely-timed.html

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078586/

 

http://www.nature.com/nm/journal/v19/n5/full/nm.3160.html?foxtrotcallback=true

 

https://www.ncbi.nlm.nih.gov/pubmed/14758358

Read Full Post »


Decline in Sperm Count – Epigenetics, Well-being and the Significance for Population Evolution and Demography

 

Dr. Marc Feldman, Expert Opinion on the significance of Sperm Count Decline on the Future of Population Evolution and Demography

Dr. Sudipta Saha, Effects of Sperm Quality and Quantity on Human Reproduction

Dr. Aviva Lev-Ari, Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions affecting Sperm Quality and Quantity

 

Recent studies concluded via rigorous and comprehensive analysis found that Sperm Count (SC) declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.

1.Temporal trends in sperm count: a systematic review and meta-regression analysis 

Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H SwanHuman Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.

Link: https://academic.oup.com/humupd/article-lookup/doi/10.1093/humupd/dmx022.

2. Sperm Counts Are Declining Among Western Men – Interview with Dr. Hagai Levine

https://news.afhu.org/news/sperm-counts-are-declining-among-western-men?utm_source=Master+List&utm_campaign=dca529d919-EMAIL_CAMPAIGN_2017_07_27&utm_medium=email&utm_term=0_343e19a421-dca529d919-92801633

3. Trends in Sperm Count – Biological Reproduction Observations

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4. Long, mysterious strips of RNA contribute to low sperm count – Long non-coding RNAs can be added to the group of possible non-structural effects, possibly epigenetic, that might regulate sperm counts.

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=689

https://scienmag.com/long-mysterious-strips-of-rna-contribute-to-low-sperm-count/

Dynamic expression of long non-coding RNAs reveals their potential roles in spermatogenesis and fertility

Published: 29 July 2017
Thus, we postulated that some lncRNAs may also impact mammalian spermatogenesis and fertility. In this study, we identified a dynamic expression pattern of lncRNAs during murine spermatogenesis. Importantly, we identified a subset of lncRNAs and very few mRNAs that appear to escape meiotic sex chromosome inactivation (MSCI), an epigenetic process that leads to the silencing of the X- and Y-chromosomes at the pachytene stage of meiosis. Further, some of these lncRNAs and mRNAs show strong testis expression pattern suggesting that they may play key roles in spermatogenesis. Lastly, we generated a mouse knock out of one X-linked lncRNA, Tslrn1 (testis-specific long non-coding RNA 1), and found that males carrying a Tslrn1 deletion displayed normal fertility but a significant reduction in spermatozoa. Our findings demonstrate that dysregulation of specific mammalian lncRNAs is a novel mechanism of low sperm count or infertility, thus potentially providing new biomarkers and therapeutic strategies.

This article presents two perspectives on the potential effects of Sperm Count decline.

One Perspective identifies Epigenetics and male well-being conditions

  1. as a potential explanation to the Sperm Count decline, and
  2. as evidence for decline in White male longevity in certain geographies in the US since the mid 80s.

The other Perspective, evaluates if Sperm Count Decline would have or would not have a significant long term effects on Population Evolution and Demography.

The Voice of Prof. Marc Feldman, Stanford University – Long term significance of Sperm Count Decline on Population Evolution and Demography

Poor sperm count appears to be associated with such demographic statistics as life expectancy (1), infertility (2), and morbidity (3,4). The meta-analysis by Levine et al. (5) focuses on the change in sperm count of men from North America, Europe, Australia, and New Zealand, and shows a more than 50% decline between 1973 and 2011. Although there is no analysis of potential environmental or lifestyle factors that could contribute to the estimated decline in sperm count, Levine et al. speculate that this decline could be a signal for other negative changes in men’s health.

Because this study focuses mainly on Western men, this remarkable decline in sperm count is difficult to associate with any change in actual fertility, that is, number of children born per woman. The total fertility rate in Europe, especially Italy, Spain, and Germany, has slowly declined, but age at first marriage has increased at the same time, and this increase may be more due to economic factors than physiological changes.

Included in Levine et al.’s analysis was a set of data from “Other” countries from South America, Asia, and Africa. Sperm count in men from these countries did not show significant trends, which is interesting because there have been strong fertility declines in Asia and Africa over the same period, with corresponding increases in life expectancy (once HIV is accounted for).

What can we say about the evolutionary consequences for humans of this decrease? The answer depends on the minimal number of sperm/ml/year that would be required to maintain fertility (per woman) at replacement level, say 2.1 children, over a woman’s lifetime. Given the smaller number of ova produced per woman, a change in the ovulation statistics of women would be likely to play a larger role in the total fertility rate than the number of sperm/ejaculate/man. In other words, sperm count alone, absent other effects on mortality during male reproductive years, is unlikely to tell us much about human evolution.

Further, the major declines in fertility over the 38-year period covered by Levine et al. occurred in China, India, and Japan. Chinese fertility has declined to less than 1.5 children per woman, and in Japan it has also been well below 1.5 for some time. These declines have been due to national policies and economic changes, and are therefore unlikely to signal genetic changes that would have evolutionary ramifications. It is more likely that cultural changes will continue to be the main drivers of fertility change.

The fastest growing human populations are in the Muslim world, where fertility control is not nearly as widely practiced as in the West or Asia. If this pattern were to continue for a few more generations, the cultural evolutionary impact would swamp any effects of potentially declining sperm count.

On the other hand, if the decline in sperm count were to be discovered to be associated with genetic and/or epigenetic phenotypic effects on fetuses, newborns, or pre-reproductive humans, for example, due to stress or obesity, then there would be cause to worry about long-term evolutionary problems. As Levine et al. remark, “decline in sperm count might be considered as a ‘canary in the coal mine’ for male health across the lifespan”. But to date, there is little evidence that the evolutionary trajectory of humans constitutes such a “coal mine”.

References

  1. Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. 2009. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol 170: 559-565.
  2. Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, Lipshultz LI. 2014. Semen quality, infertility and mortality in the USA. Hum Reprod 29: 1567-1574.
  3. Eisenberg ML, Li S, Cullen MR, Baker LC. 2016. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil Steril 105: 629-636.
  4. Latif T, Kold Jensen T, Mehlsen J, Holmboe SA, Brinth L, Pors K, Skouby SO, Jorgensen N, Lindahl-Jacobsen R. Semen quality is a predictor of subsequent morbidity. A Danish cohort study of 4,712 men with long-term follow-up. Am J Epidemiol. Doi: 10.1093/aje/kwx067. (Epub ahead of print]
  5. Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R, Swan SH. 2017. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update pp. 1-14. Doi: 10.1093/humupd/dmx022.

SOURCE

From: Marcus W Feldman <mfeldman@stanford.edu>

Date: Monday, July 31, 2017 at 8:10 PM

To: Aviva Lev-Ari <aviva.lev-ari@comcast.net>

Subject: Fwd: text of sperm count essay

Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions as POTENTIAL effects on Sperm Quality and Quantity and Evidence of its effects on Male Longevity

The Voice of Carol GrahamSergio Pinto, and John Juneau II , Monday, July 24, 2017, Report from the Brookings Institute

  1. The IMPACT of Well-being, Stress induced by Worry, Pain, Perception of Hope related to Employment and Lack of employment on deterioration of Physiological Conditions as evidence by Decrease Longevity

  2. Epigenetics and Environmental Factors

The geography of desperation in America

Carol GrahamSergio Pinto, and John Juneau II Monday, July 24, 2017, Report from the Brookings Institute

In recent work based on our well-being metrics in the Gallup polls and on the mortality data from the Centers for Disease Control and Prevention, we find a robust association between lack of hope (and high levels of worry) among poor whites and the premature mortality rates, both at the individual and metropolitan statistical area (MSA) levels. Yet we also find important differences across places. Places come with different economic structures and identities, community traits, physical environments and much more. In the maps below, we provide a visual picture of the differences in in hope for the future, worry, and pain across race-income cohorts across U.S. states. We attempted to isolate the specific role of place, controlling for economic, socio-demographic, and other variables.

One surprise is the low level of optimism and high level of worry in the minority dense and generally “blue” state of California, and high levels of pain and worry in the equally minority dense and “blue” states of New York and Massachusetts. High levels of income inequality in these states may explain these patterns, as may the nature of jobs that poor minorities hold.

We cannot answer many questions at this point. What is it about the state of Washington, for example, that is so bad for minorities across the board? Why is Florida so much better for poor whites than it is for poor minorities? Why is Nevada “good” for poor white optimism but terrible for worry for the same group? One potential issue—which will enter into our future analysis—is racial segregation across places. We hope that the differences that we have found will provoke future exploration. Readers of this piece may have some contributions of their own as they click through the various maps, and we welcome their input. Better understanding the role of place in the “crisis” of despair facing our country is essential to finding viable solutions, as economic explanations, while important, alone are not enough.

https://www.brookings.edu/research/the-geography-of-desperation-in-america/?utm_medium=social&utm_source=facebook&utm_campaign=global

 

Read Full Post »


Trends in Sperm Count

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There has been a genuine decline in semen quality over the past 50 years. There is lot of controversy about this as there are limitations in studies that have attempted to address it. Sperm count is of considerable public health importance for several reasons. First, sperm count is closely linked to male fecundity and is a crucial component of semen analysis, the first step to identify male factor infertility.

Reduced sperm count is associated with cryptorchidism, hypospadias and testicular cancer. It may be associated with multiple environmental influences, including endocrine disrupting chemicals, pesticides, heat and lifestyle factors, including diet, stress, smoking and BMI. Therefore, sperm count may sensitively reflect the impacts of the modern environment on male health throughout the life span.

This study provided a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. Analyzing trends by birth cohorts instead of year of sample collection may aid in assessing the causes of the decline (prenatal or in adult life) but was not feasible owing to lack of information.

This rigorous and comprehensive analysis found that SC declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.

Declines in sperm count have implications beyond fertility and reproduction. The decline reported in this study is consistent with reported trends in other male reproductive health indicators, such as testicular germ cell tumors, cryptorchidism, onset of male puberty and total testosterone levels. The public health implications are even wider. Recent studies have shown that poor sperm count is associated with overall morbidity and mortality. While the current study is not designed to provide direct information on the causes of the observed declines, sperm count has been plausibly associated with multiple environmental and lifestyle influences, both prenatally and in adult life. In particular, endocrine disruption from chemical exposures or maternal smoking during critical windows of male reproductive development may play a role in prenatal life, while lifestyle changes and exposure to pesticides may play a role in adult life.

These findings strongly suggest a significant decline in male reproductive health, which has serious implications beyond fertility concerns. Research on causes and implications of this decline is urgently needed.

 

REFERENCES

Temporal trends in sperm count: a systematic review and meta-regression analysis 

Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H Swan. Human Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.

Link: https://academic.oup.com/humupd/article-lookup/doi/10.1093/humupd/dmx022.

Sperm Counts Are Declining Among Western Men – Interview with Dr. Hagai Levine

https://news.afhu.org/news/sperm-counts-are-declining-among-western-men?utm_source=Master+List&utm_campaign=dca529d919-EMAIL_CAMPAIGN_2017_07_27&utm_medium=email&utm_term=0_343e19a421-dca529d919-92801633

J Urol. 1983 Sep;130(3):467-75.

A critical method of evaluating tests for male infertility.

https://www.ncbi.nlm.nih.gov/pubmed/6688444

Hum Reprod. 1993 Jan;8(1):65-70.

Estimating fertility potential via semen analysis data.

https://www.ncbi.nlm.nih.gov/pubmed/8458929

Lancet. 1998 Oct 10;352(9135):1172-7.

Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners.

https://www.ncbi.nlm.nih.gov/pubmed/9777833

Hum Reprod Update. 2010 May-Jun;16(3):231-45. doi: 10.1093/humupd/dmp048. Epub 2009 Nov 24.

World Health Organization reference values for human semen characteristics.

https://www.ncbi.nlm.nih.gov/pubmed/19934213

J Nutr. 2016 May;146(5):1084-92. doi: 10.3945/jn.115.226563. Epub 2016 Apr 13.

Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men.

https://www.ncbi.nlm.nih.gov/pubmed/27075904

Reprod Toxicol. 2003 Jul-Aug;17(4):451-6.

Semen quality of Indian welders occupationally exposed to nickel and chromium.

https://www.ncbi.nlm.nih.gov/pubmed/12849857

Fertil Steril. 1996 May;65(5):1009-14.

Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality.

https://www.ncbi.nlm.nih.gov/pubmed/8612826

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.

 

But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.

 

Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.

 

The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.

 

They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.

 

Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.

 

As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.

 

The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.

 

References:

 

https://www.technologyreview.com/s/603676/the-search-for-a-perfect-male-birth-control-pill/

 

https://futurism.com/videos/the-perfect-male-birth-control-pill-is-coming-soon/?utm_source=Digest&utm_campaign=c42fc7b9b6-EMAIL_CAMPAIGN_2017_03_20&utm_medium=email&utm_term=0_03cd0a26cd-c42fc7b9b6-246845533

 

http://www.telegraph.co.uk/women/sex/the-male-pill-is-coming—and-its-going-to-change-everything/

 

http://www.mensfitness.com/women/sex-tips/male-birth-control-pill-making

 

http://health.howstuffworks.com/sexual-health/contraception/male-bc-pill.htm

 

http://europe.newsweek.com/male-contraception-side-effects-study-pill-injection-518237?rm=eu

 

http://edition.cnn.com/2016/01/07/health/male-birth-control-pill/index.html

 

http://www.nhs.uk/Conditions/contraception-guide/Pages/male-pill.aspx

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Mitochondrial disease

 

Mitochondria are present in almost all human cells, and vary in number from a few tens to many thousands. They generate the majority of a cell’s energy supply which powers every part of our body. Mitochondria have their own separate DNA, which carries just a few genes. All of these genes are involved in energy production but determine no other characteristics. And so, any faults in these genes lead only to problems in energy production. Around 1 in 6500 children is thought to be born with a serious mitochondrial disorder due to faults in mitochondrial DNA.

 

Unlike nuclear genes, mitochondrial DNA is inherited only from our mothers. Mothers can carry abnormal mitochondria and be at risk of passing on serious disease to their children, even if they themselves show only mild or no symptoms. It is for such women who by chance have a high proportion of faulty mitochondrial DNA in their eggs for which the methods of mitochondrial replacement or “donation” have been developed. This technique is also referred as the three parent technique and it involves a couple and a donor.

 

Mitochondrial Donation

 

The most developed techniques, maternal spindle transfer (MST) and pro-nuclear transfer (PNT), are based on an IVF cycle but have additional steps. Other techniques are being developed.

 

In both MST and PNT, nuclear DNA is moved from a patient’s egg or embryo containing unhealthy mitochondria to a donor’s egg or embryo containing healthy mitochondria, from which the donor’s nuclear DNA has been removed.

 

mst

Maternal spindle transfer Bredenoord, A and P. Braude (2010) “Ethics of mitochondrial gene replacement: from bench to bedside” BMJ 341.

 

pnt

Pronuclear transfer Bredenoord, A and P. Braude (2010) “Ethics of mitochondrial gene replacement: from bench to bedside” BMJ 341.

 

Research Carried Out and Safety Issues

 

There have been many experiments conducted using MST and PNT in animals. PNT has been carried out since the mid-1980s in mice. MST has been carried out in a wide range of animals. More recently mice, monkeys and human embryos have been created with the specific aim of developing MST and PNT for avoiding mitochondrial disease.

 

  • There is no evidence to show that mitochondrial donation is unsafe
  • Research is progressing well and the recommended further experiments are expected to confirm this view.

 

The main area of research needed is to observe cells derived from embryos created by MST and PNT, to see how mitochondria behave.

 

Concerns about Mitochondrial Donation

 

The scientific evidence raises some potential concerns about mitochondrial donation. Just as we all have different blood groups, we also have different types of mitochondria, called haplotypes. Some scientists have suggested that if the patient and the mitochondria donor have different mitochondrial haplotypes, there is a theoretical risk that the donor’s mitochondria won’t be able to ‘talk’ properly to the patient’s nuclear DNA, which could cause problems in the embryo and resulting child. So, mitochondria haplotype matching in the process of selecting donors may be done to avoid problems.

 

Another potential concern is that a small amount of unhealthy mitochondrial DNA may be transferred into the donor’s egg along with the mother’s nuclear DNA. Studies carried out on MST and PNT show that some so-called mitochondrial ‘carry-over’ occurs. However, the carry-over is lower than 2% of the mitochondria in the resulting embryo, an amount which is very unlikely to be problematic for the children born.

 

References:

 

http://mitochondria.hfea.gov.uk/mitochondria/what-is-mitochondrial-disease/

 

http://mitochondria.hfea.gov.uk/mitochondria/what-is-mitochondrial-disease/new-techniques-to-prevent-mitochondrial-disease/

 

https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/

 

https://www.newscientist.com/article/2108549-exclusive-3-parent-baby-method-already-used-for-infertility/

 

http://www.frontlinegenomics.com/news/7889/ethical-concerns-raised-first-three-parent-ivf-baby/

 

http://www.hfea.gov.uk/docs/2011-04-18_Mitochondria_review_-_final_report.PDF

 

http://www.hfea.gov.uk/docs/Mito-Annex_VIII-science_review_update.pdf

 

http://www.hfea.gov.uk/docs/Third_Mitochondrial_replacement_scientific_review.pdf

 

https://pharmaceuticalintelligence.com/2014/02/26/three-parent-baby-making-practice-of-modifying-oocytes-for-use-in-in-vitro-fertilization-fda-hearing/

 

 

Read Full Post »

Older Posts »