Archive for the ‘Microbiology’ Category

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.



















Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com


Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 





Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence




Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics


Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution


Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression


Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics


Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements


Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics


Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines


Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad


Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research


Read Full Post »

Phosphorylation-dependent interaction between antigenic peptides and MHC class I

Curator: Larry H. Bernstein, MD, FCAP



Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self.

Nat Immunol. 2008 Nov;9(11):1236-43.    http://dx.doi.org:/10.1038/ni.1660.  Epub 2008 Oct 5.
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphopeptides on cancer cells provides an immunological signature of ‘transformed self’. Here we demonstrate that phosphorylation can considerably increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide-HLA-A2 complexes. These identified a novel peptide-binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting binding to major histocompatibility complex molecules or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy.
Figure 1
Bioinformatic characterization of the HLA-A2–restricted phosphopeptide repertoire. (a) Distribution of phosphorylated residues among naturally processed (A2 phosphopeptide) and predicted HLA-A2 binding phosphopeptides (Phosphosite, EMBL). The frequency of phosphorylated residues at each position is displayed for naturally processed HLA-A2 associated phosphopeptides, and for peptides in EMBL and Phosphosite datasets that contain phosphorylation sites and are predicted, according to criteria described in Methods, to bind HLA-A2. (b) Representation of positively charged residues (Arg or Lys) at P1 among naturally processed HLA-A2 associated phosphopeptides, phosphopeptides from the EMBL or Phosphosite datasets that are predicted to bind HLA-A2 and contain a p-Ser residue at the P4 position, and datasets of naturally processed non-phosphorylated peptides (B-LCL) and known HLA-A2 binding peptides (Immune Epitope). Selection criteria for the latter two datasets are described in Methods. * = P<0.001, NS= not significant. (c, d) Representation of subdominant residues at the P2 anchor position (c) and the PC (P9) position (d) in naturally processed HLA-A2 associated phosphopeptides and in datasets of naturally processed non-phosphorylated peptides and known HLA-A2 binding peptides.
Changes in protein expression or metabolism due to intracellular infection or cellular transformation modify the repertoire of peptides generated and therefore displayed by class I MHC molecules, resulting in presentation of “altered self” to the immune system. T cell receptor (TCR)-mediated recognition of specific MHC-bound peptides by CD8 T lymphocytes results in cytolytic activity and release of pro-inflammatory cytokines, which are key components of anti-viral and anti-tumor immunity. Evidence suggests that peptides containing post-translational modifications (PTM), including deamidation, cysteinylation, glycosylation, and phosphorylation, contribute to the pool of MHC-bound peptides presented at the cell surface and represent potential targets for T cell recognition2. Indeed, the majority of naturally occurring PTM-bearing peptides defined to date can be discriminated from their unmodified homologs specifically by T cells2-4.  …..
Recent studies have highlighted protein phosphorylation as a process with the capacity to generate unique peptides bound to class I MHC molecules. Significant numbers of different phosphorylated peptides are presented by several HLA-A and HLA-B alleles that are prevalent in humans3,4, demonstrating their widespread potential as antigens. Moreover, CD8+ T lymphocytes recognize these phosphopeptides in a manner that is both peptide sequence-specific and phosphate-dependent3, 4. Thus, phosphopeptides can be immunologically distinguished from their non-phosphorylated counterparts. Consistent with their presentation by class I MHC molecules, most phosphorylated peptides are derived from proteins that function intracellularly, and processing of both model and naturally occurring phosphopeptides is dependent on transport into the endoplasmic reticulum (ER) by transporter associated with antigen processing (TAP)3, 5. Furthermore, rapid degradation by the proteasome, a process that regulates the activity of many transcription factors, cell growth modulators, signal transducers and cell cycle proteins6-8, is frequently dependent on target protein phosphorylation9-11. ….
Phosphopeptide antigens are of significant therapeutic interest because deregulation of protein kinase activity, normally tightly controlled, is one of the hallmarks of malignant transformation and is thought to contribute directly to oncogenic signaling pathways involved in cell growth, differentiation and survival13-15. In addition, mutation-induced deregulation of a limited number of critical kinases can often lead to activation of several signaling cascades and increases in the extent of protein phosphorylation within the cell16-18. These considerations strongly suggest that alterations in protein phosphorylation during malignancy represent a distinctive immunological signature of “transformed self”. Consistent with this notion, the phosphopeptides presented by HLA-A*0201….

Nα-Terminal Acetylation for T Cell Recognition: Molecular Basis of MHC Class I–Restricted Nα-Acetylpeptide Presentation

As one of the most common posttranslational modifications (PTMs) of eukaryotic proteins, Nα-terminal acetylation (Nt-acetylation) generates a class of Nα-acetylpeptides that are known to be presented by MHC class I at the cell surface. Although such PTM plays a pivotal role in adjusting proteolysis, the molecular basis for the presentation and T cell recognition of Nα-acetylpeptides remains largely unknown. In this study, we determined a high-resolution crystallographic structure of HLA (HLA)-B*3901 complexed with an Nα-acetylpeptide derived from natural cellular processing, also in comparison with the unmodified-peptide complex. Unlike the α-amino–free P1 residues of unmodified peptide, of which the α-amino group inserts into pocket A of the Ag-binding groove, the Nα-linked acetyl of the acetylated P1-Ser protrudes out of the groove for T cell recognition. Moreover, the Nt-acetylation not only alters the conformation of the peptide but also switches the residues in the α1-helix of HLA-B*3901, which may impact the T cell engagement. The thermostability measurements of complexes between Nα-acetylpeptides and a series of MHC class I molecules derived from different species reveal reduced stability. Our findings provide the insight into the mode of Nα-acetylpeptide–specific presentation by classical MHC class I molecules and shed light on the potential of acetylepitope-based immune intervene and vaccine development.

Produced by Ag processing and proteasomal degradation of intracellular proteins, polypeptides serve as CTL epitopes presented by MHC class I molecules, which play a critical role in cellular immunity (1). Eukaryotic proteins bearing various posttranslational modifications (PTMs) can generate a group of modified Ags, which contribute to a special repertoire of MHC-associated peptides presented at the cell surface as potential targets for TCR-mediated recognition. A modified peptide may become a new Ag because of the distinguished antigenicity compared with its unmodified homolog. A variety of natural peptide Ags containing modification have been observed that can be immunologically discriminated by T cells from their unmodified homologs as “altered self” (2). Thus, the significance of PTMs on epitopes and the application of modified peptides in vaccine development for immunotherapy against cancer and autoimmune diseases have been increasingly appreciated (3, 4).

The molecular bases of the presentation of peptides with several PTMs by MHC class I molecules have been successfully explicated. For instance, the formyl group on an Nt-formylated peptide binds to the bottom of the peptide-binding groove of H2-M3 (5); both the glycan and the phosphate moieties of the central region of the glycopeptides (6, 7) and the phosphopeptides (8, 9), respectively, are exposed to enable TCR binding, and the deimination (citrullination) of arginine on a peptide presented by two HLA-B27 subtypes induces distinct peptide conformations (10).

Nα-terminal acetylation (Nt-acetylation) is one of the most common PTMs, occurring on the vast majority of eukaryotic proteins. In humans, >80% of the different varieties of intracellular proteins are irreversibly Nt-acetylated by Nα-acetyltransferases, often after the removal of the initiator methionine. Only a subset of the penultimate residues (Ala, Ser, Thr, Cys, and Val) or the retained initiator methionine can be acetylated at the α-amino (NH2) groups (11). A recent study found that acetylated N-terminal residues of eukaryotic proteins act as specific degradation signals (Ac-N-degrons) that are recognized by specific ubiquitin ligases (12). A subsequent systematic analysis demonstrated that Nt-acetylation can also represent an early determining factor in the cellular sorting for prevention of protein targeting to the secretory pathway (13). These findings suggested that Nt-acetylation–mediated inhibition of secretion could contribute to the retention of proteins in the cytosol where they may subsequently be ubiquitinylated through the specific recognition of their Ac-N-degrons and thereby generating Nt-acetylated proteasomal digestion products (14). Hence, these Nt-acetylated polypeptides in the form of MHC-associated neoantigens stand a good chance to be recognized by T cells. This has indeed been illuminated in an Nt-acetylated MHC class II–restricted peptide derived from myelin basic protein, which stimulates murine T cells to elicit experimental autoimmune encephalomyelitis, whereas the nonacetylated form does not (15). A structural study subsequently suggested that the Nt-acetylation of this peptide is essential for MHC class II binding (16).

For MHC class I, the first Nt-acetylated natural ligand was identified more than a decade ago (17). However, the mode of interaction of this acetylated peptide with class I molecules remained largely enigmatic. To understand this, we determined the crystal structures of a naturally occurring Nt-acetylated self-peptide (NAc-SL9) and two nonmodified variants (SL9 and HL8), respectively, in complex with HLA-B*3901. Taken together with the thermostability analyses of Nα-acetylpeptides complexed with a series of class I molecules of human and murine origin, we elucidated that Nt-acetylation exerts a destabilizing effect on peptide–MHC (pMHC) complex, thereby influencing TCR recognition.


Our results here provide the structural and thermodynamic insights into the presentation of Nt-acetylated peptides by MHC class I molecules. The structure of the Nα-acetylpeptide in complex with HLA-B*3901 outlines a molecular interpretation of the reduced stability of MHC class I–bound Nt-acetylated peptides and also highlights a potential influence of Nt-acetylation on antigenic identity and T cell recognition. In addition, the structure elucidation of HLA-B*3901, the predominant B39 subtype, also is valuable in studying immune diseases associated with this MHC allele.

In a previous report, the Nt-formyl group on an Nt-formylated peptide binds to the bottom of the peptide-binding groove of the murine MHC class I H2-M3 playing an anchoring role for MHC class I binding (Supplemental Fig. 2A) (5). In our study, the methyl and carbonyl groups of the acetyl are rotated upwards like two arms that push the peptide-binding groove open (Fig. 2G, Supplemental Fig. 2B), thereby altering its immunogenicity at the expense of the pMHC stability. The thermostability we tested from seven human and one murine complexes indicates a general feature of Nα-acetylpeptide in weakening the binding affinity to MHC class I, which could be revealed by the gel-filtration chromatography of pMHC refolding assays as well (Supplemental Fig. 3). Their instability would partially explain why, as yet, such epitopes are rarely found. Within N-terminal residues of eukaryotic proteins, Ser is the most frequently acetylated in vivo (11). The Ala, Thr, Cys, and Val residues can also be Nt-acetylated and have small side chains like Ser. Thus, the rotation of P1 residues observed in the pHLA-B*3901 complex with an acetylated P1-Ser could very well be a general mode in Nα-acetylpeptide binding. In contrast, the long side chain of Met precludes it from being rotated into pocket A, but a certain reorientation is presumed to take place in the acetylated P1-Met based on the thermal instability (Fig. 6H). Besides the accommodation of the acetyl moiety, Nt-acetylation is presumed to decrease the stability of the pHLA-B*3901 complex as a result of the conformational switch of the Arg62. Arg62 in the α1-helix is largely conserved in almost all HLA-B and -C allotypes (Table V). For other HLA class I (Table V, Fig. 8), the long charged side chains of the residues in position 62 (Glu62 of A24 and Gln62 of A11 and so on) also may interact with the acetyl. Hence, the residue in position 62 plays a key role in the interaction between acetyl group and the H chain, which may influence not only the Nα-acetylpeptide binding to HLA molecules but also the TCR docking.

The discoveries that intracellular proteins with Ac-N-degrons are inhibited from being secreted (13) and then are degraded via ubiquitylation (12) raise many questions on the biological significance of acetylation-mediated proteolysis (14). The Nt-acetylated peptides with the size of MHC class I ligands (8–11 aa) as neoepitopes for CD8+ T cells, represent one of the possible roles of the Nt-acetylated digestion products. The vast armory of intracellular proteins that are frequently Nt-acetylated can create a large pool of Nα-acetylpeptides for Ag presentation and T cell surveying. The Nt-acetylation potentially impacts the TCR-MHC interaction in three different aspects: 1) the direct interaction of the solvent-exposed acetyl moiety; 2) the altered conformation of the central region of the peptide main chain; and 3) the conformational switches of the MHC residues. The Nt-acetylation creation of a distinctive pMHC landscape and participation in a potential binding element for TCR engagement described in our results highlights needs for further investigation into the Nα-acetylpeptide–specific TCR repertoires.  ……

see…J Immunol 2014; 192:5509-5519   http://dx.doi.org:/10.4049/jimmunol.1400199   http://www.jimmunol.org/content/192/12/5509

Supplementary http://www.jimmunol.org/content/suppl/2014/05/14/jimmunol.1400199.DCSupplemental.html
References http://www.jimmunol.org/content/192/12/5509.full#ref-list-1


The Cellular Redox Environment Alters Antigen Presentation*

Jonathan A. Trujillo,§12Nathan P. Croft,1Nadine L. Dudek,1Rudragouda ChannappanavarAlex TheodossisAndrew I. Webb,…., Jamie Rossjohn,‡‡,§§5Stanley Perlman,§6 and Anthony W. Purcell,7
The Journal of Biological Chemistry 289; 27979-27991.


Background: Modification of cysteine residues, including glutathionylation, commonly occurs in peptides bound to and presented by MHC molecules.

Results: Glutathionylation of a coronavirus-specific T cell epitope results in diminished CD8 T cell recognition.

Conclusion: Cysteine modification of a T cell epitope negatively impacts the host immune response.

Significance: Cross-talk between virus-induced oxidative stress and the T cell response probably occurs, diminishing host cell recognition of infected cells.

Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.

Antigen Presentation     Antigen Processing     Glutathionylation     Mass Spectrometry (MS)     Oxidation-Reduction (Redox)     Redox Regulation     T-cell     Viral Immunology

Small fragments of proteins (peptides) derived from both intracellular and extracellular sources are displayed on the surface of cells by molecules encoded within the major histocompatibility complex (MHC). These peptides are recognized by T lymphocytes and provide the immune system with a surveillance mechanism for the detection of pathogens and cancer cells. The fidelity with which antigen presentation communicates changes in the intracellular proteome is critical for immune surveillance. Not only do antigens expressed at vastly different abundances need to be represented within the array of peptides selected and presented at the cell surface (collectively termed the immunopeptidome (1, 2)), but changes in their post-translational state also need to be conveyed within this complex mixture of peptides. For example, changes in antigen phosphorylation have been linked to cancer, and the presentation of phosphorylated peptides has been shown to communicate the cancerous state of cells to the immune system (36). Other types of post-translational modification play a central role in the pathogenesis of autoimmune diseases (7), such as arginine citrullination in arthritis (810), deamidation of glutamine residues in wheat proteins in celiac disease (1115), and cysteine oxidation in type 1 diabetes (16, 17). Cysteine is predicted to be present in up to 14% of potential T cell epitopes based on its prevalence in various pathogen and host proteomes (18). However, reports of cysteine-containing epitopes are much less frequent due to technical difficulties associated with synthesis and handling of cysteine-containing peptides and their subsequent avoidance in many epitope mapping studies (19). Cysteine can be modified in numerous ways, including cysteinylation (the disulfide linkage of free cysteine to peptide or protein cysteine residues), oxidation to cysteine sulfenic (oxidation), sulfinic (dioxidation) and sulfonic acids (trioxidation), S-nitrosylation, and S-glutathionylation. Such modifications may occur prior to or during antigen processing; however, the role of cysteine modification in T-cell-mediated immunity has not been systematically addressed.

In addition to constitutive presentation of a subset of oxidatively modified peptides, it is anticipated that changes in the proportion of these ligands will occur upon infection because oxidative stress, triggering of the unfolded protein response, and modulation of host cell synthesis by the virus are hallmarks of this process (2027). For example, host cell stress responses modulate expression, localization, and function of Toll-like receptors, a key event in the initiation of the immune response (28). Oxidative stress would also be predicted to affect protein function through post-translational modification of amino acids, such as cysteine. Indeed, because of the reactive nature of cysteine and the requirements for cells to regulate the redox state of proteins to maintain function, a number of scavenging systems for redox-reactive intermediates exist. The tripeptide glutathione (GSH) is one of the key intracellular antioxidants, acting as a scavenger for reactive oxygen species. Reduced GSH is equilibrated with its oxidized form, GSSG, with normal cytosolic conditions being that of the reduced state in a ratio of ∼50:1 (GSH/GSSG) (29). Modification of proteins and peptides with GSH (termed S-glutathionylation) occurs following reaction of GSSG with the thiol group of cysteine in a reaction catalyzed by the detoxifying enzyme, glutathione S-transferase (GST). A variety of cellular processes and signaling pathways, such as the induction of innate immunity, apoptosis, redox homeostasis, and cytokine production, are modulated by this GST-catalyzed post-translational modification (3032). S-Glutathionylation can eventuate via oxidative stress, whereby the intracellular levels of GSSG increase.

Given that viruses are known to induce oxidative stress (3335), the intracellular environment of viral infection may lead to an increase inS-glutathionylated cellular proteins and viral antigens. For instance, HSV infection induces an early burst of reactive oxygen species, resulting in S-glutathionylation of TRAF family members, which in turn is linked to downstream signaling and interferon production (36). The potential for modification of viral antigens subsequent to reactive oxygen species production is highlighted by S-glutathionylation of several retroviral proteases, leading to host modulation of protease function (37). Indeed large scale changes in protein S-glutathionylation are observed in HIV-infected T cell blasts (38), suggesting that functional modulation of both host and viral proteins occurs via this mechanism. Whether these S-glutathionylated proteins inhibit or enhance immune responses to the unmodified epitope or generate novel T-cell epitopes that are subsequently recognized by the adaptive immune system is unclear.

Here, we investigate the frequency of modification of cysteine-containing MHC-bound peptides by interrogating a large database of naturally processed self-peptides derived from B-lymphoblastoid cells, murine tissues, and cytokine-treated cells. In addition, the functional consequences of Cys modification of T cell epitopes was investigated using an established model of infection that involves an immunodominant cysteine-containing epitope derived from a neurotropic strain of mouse hepatitis virus, strain JHM (JHMV)8(3941). We describe S-glutathionylation of this viral T cell epitope and the functional and structural implications of redox-modulated antigen presentation. Collectively our studies suggest that S-glutathionylation plays a key, previously unappreciated role in adaptive immune recognition.



Read Full Post »

Bacterial synthetic factories

Larry H. Bernstein, MD, FCAP, Curator



Bacteria seeded with synthetic pathways



Chinese scientists have taken a biosynthetic pathway from plants and introduced it into bacteria to create potentially health-boosting chemicals. Their route provides an alternative to complicated chemical syntheses or farming hectares of crops.

Shared photosynthetic components between plant chloroplasts and cyanobacteria make these microbes ideal hosts for expressing foreign plant enzymes. Ping Xu and colleagues at the Shanghai Jiao Tong University have genetically engineered the cyanobacterium Synechococcus elongatusPC7942 with plant-derived enzymes. In total, the team created 18 bacterial strains expressing different combinations of enzymes. The different strains generate a variety of compounds with a six-carbon, phenyl group and three-carbon propene tail, called phenylpropanoids.

Phenylpropanoids perform diverse functions in plants, ranging from ultraviolet light protection to pathogen defence. One such compound, resveratrol, is made when the bacteria express the plant enzyme stilbene synthase downstream of enzymes tyrosine ammonia lyase and 4-coumarate:coenzyme A-ligase. Found in the skin of grapes and other berries, resveratrol reduces the risk of heart disease and is a valuable pharmaceutical commodity. Different versions of the engineered bacteria can also churn out the phenylpropanoid antioxidants caffeic acid, naringenin and coumaric acid.

The Shanghai Jia Tong University team genetically engineered cyanobacteria to produce compounds like flavonoids, stilbenes and curcuminoids usually only found in plants


What’s more, the team added feedback-inhibition resistant enzymes to the bacteria so that the chemical yields would surpass physiological levels. Photosynthesis within the cyanobacteria generates the chemicals from just water, carbon dioxide and a few mineral nutrients.

The bacterial growth medium houses the products, but isolating them at an industrially relevant yield is currently the biggest challenge. However, by not needing to harvest crops, generating the compounds from bacteria is potentially more sustainable. Xu stresses the potential of this point: ‘For the production of 1 tonne of natural resveratrol, our method may save about 485 hectare of farmland at its current production level.’

‘The approach deftly sidesteps major economic challenges by targeting chemicals with high intrinsic value,’ comments Paul Fowler, executive director of the Wisconsin Institute for Sustainable Technology in the US.  A world-scale production plant under these circumstances is not a pre-requisite for commercialising this research.’


This article is free until 06 June 2016

J Ni et al, Green Chem., 2016, DOI: 10.1039/c6gc00317f

A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2

Jun Ni,ab   Fei Tao,ab   Yu Wang,ab   Feng Yaoab and   Ping Xu
Many plant natural products have remarkable pharmacological activities. They are mainly produced directly by extraction from higher plants, which can hardly keep up with the surging global demand. Furthermore, the over-felling of many medicinal plants has undesirable effects on the ecological balance. In this study, we constructed a photoautotrophic platform with the unicellular cyanobacterium Synechococcus elongatus PCC7942 to directly convert the greenhouse gas CO2 into an array of valuable healthcare products, including resveratrol, naringenin, bisdemethoxycurcumin, p-coumaric acid, caffeic acid, and ferulic acid. These six compounds can be further branched to many other precious and useful natural products. Various strategies including introducing a feedback-inhibition-resistant enzyme, creating functional fusion proteins, and increasing malonyl-CoA supply have been systematically investigated to increase the production. The highest titers of these natural products reached 4.1–128.2 mg L−1 from the photoautotrophic system, which are highly comparable with those obtained by many other heterotrophic microorganisms using carbohydrates. Several advantages such as independence from carbohydrate feedstocks, functionally assembling P450s, and availability of plentiful NADPH and ATP support that this photosynthetic platform is uniquely suited for producing plant natural products. This platform also provides a green route for direct conversion of CO2 to many aromatic building blocks, a promising alternative to petrochemical-based production of bulk aromatic compounds.
Graphical abstract: A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2

Read Full Post »

CRISPR/Cas9, Familial Amyloid Polyneuropathy ( FAP) and Neurodegenerative Disease

CRISPR/Cas9, Familial Amyloid Polyneuropathy ( FAP) and Neurodegenerative Disease

Curator: Larry H. Bernstein, MD, FCAP


CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology


The development of efficient and reliable ways to make precise, targeted changes to the genome of living cells is a long-standing goal for biomedical researchers. Recently, a new tool based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from Streptococcus pyogenes has generated considerable excitement (1). This follows several attempts over the years to manipulate gene function, including homologous recombination (2) and RNA interference (RNAi) (3). RNAi, in particular, became a laboratory staple enabling inexpensive and high-throughput interrogation of gene function (4, 5), but it is hampered by providing only temporary inhibition of gene function and unpredictable off-target effects (6). Other recent approaches to targeted genome modification – zinc-finger nucleases [ZFNs, (7)] and transcription-activator like effector nucleases [TALENs (8)]– enable researchers to generate permanent mutations by introducing doublestranded breaks to activate repair pathways. These approaches are costly and time-consuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies.

The Biology of Cas9

The functions of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material. These repeats were initially discovered in the 1980s in E. coli (9), but their function wasn’t confirmed until 2007 by Barrangou and colleagues, who demonstrated that S. thermophilus can acquire resistance against a bacteriophage by integrating a genome fragment of an infectious virus into its CRISPR locus (10).

Three types of CRISPR mechanisms have been identified, of which type II is the most studied. In this case, invading DNA from viruses or plasmids is cut into small fragments and incorporated into a CRISPR locus amidst a series of short repeats (around 20 bps). The loci are transcribed, and transcripts are then processed to generate small RNAs (crRNA – CRISPR RNA), which are used to guide effector endonucleases that target invading DNA based on sequence complementarity (Figure 1) (11).

Figure 1. Cas9 in vivo: Bacterial Adaptive Immunity


In the acquisition phase, foreign DNA is incorporated into the bacterial genome at the CRISPR loci. CRISPR loci is then transcribed and processed into crRNA during crRNA biogenesis. During interference, Cas9 endonuclease complexed with a crRNA and separate tracrRNA cleaves foreign DNA containing a 20-nucleotide crRNA complementary sequence adjacent to the PAM sequence. (Figure not drawn to scale.)


One Cas protein, Cas9 (also known as Csn1), has been shown, through knockdown and rescue experiments to be a key player in certain CRISPR mechanisms (specifically type II CRISPR systems). The type II CRISPR mechanism is unique compared to other CRISPR systems, as only one Cas protein (Cas9) is required for gene silencing (12). In type II systems, Cas9 participates in the processing of crRNAs (12), and is responsible for the destruction of the target DNA (11). Cas9’s function in both of these steps relies on the presence of two nuclease domains, a RuvC-like nuclease domain located at the amino terminus and a HNH-like nuclease domain that resides in the mid-region of the protein (13).

To achieve site-specific DNA recognition and cleavage, Cas9 must be complexed with both a crRNA and a separate trans-activating crRNA (tracrRNA or trRNA), that is partially complementary to the crRNA (11). The tracrRNA is required for crRNA maturation from a primary transcript encoding multiple pre-crRNAs. This occurs in the presence of RNase III and Cas9 (12).

During the destruction of target DNA, the HNH and RuvC-like nuclease domains cut both DNA strands, generating double-stranded breaks (DSBs) at sites defined by a 20-nucleotide target sequence within an associated crRNA transcript (11, 14). The HNH domain cleaves the complementary strand, while the RuvC domain cleaves the noncomplementary strand.

The double-stranded endonuclease activity of Cas9 also requires that a short conserved sequence, (2–5 nts) known as protospacer-associated motif (PAM), follows immediately 3´- of the crRNA complementary sequence (15). In fact, even fully complementary sequences are ignored by Cas9-RNA in the absence of a PAM sequence (16).

Cas9 and CRISPR as a New Tool in Molecular Biology

The simplicity of the type II CRISPR nuclease, with only three required components (Cas9 along with the crRNA and trRNA) makes this system amenable to adaptation for genome editing. This potential was realized in 2012 by the Doudna and Charpentier labs (11). Based on the type II CRISPR system described previously, the authors developed a simplified two-component system by combining trRNA and crRNA into a single synthetic single guide RNA (sgRNA). sgRNAprogrammed Cas9 was shown to be as effective as Cas9 programmed with separate trRNA and crRNA in guiding targeted gene alterations (Figure 2A).

To date, three different variants of the Cas9 nuclease have been adopted in genome-editing protocols. The first is wild-type Cas9, which can site-specifically cleave double-stranded DNA, resulting in the activation of the doublestrand break (DSB) repair machinery. DSBs can be repaired by the cellular Non-Homologous End Joining (NHEJ) pathway (17), resulting in insertions and/or deletions (indels) which disrupt the targeted locus. Alternatively, if a donor template with homology to the targeted locus is supplied, the DSB may be repaired by the homology-directed repair (HDR) pathway allowing for precise replacement mutations to be made (Figure 2A) (17, 18).

Cong and colleagues (1) took the Cas9 system a step further towards increased precision by developing a mutant form, known as Cas9D10A, with only nickase activity. This means it cleaves only one DNA strand, and does not activate NHEJ. Instead, when provided with a homologous repair template, DNA repairs are conducted via the high-fidelity HDR pathway only, resulting in reduced indel mutations (1, 11, 19). Cas9D10A is even more appealing in terms of target specificity when loci are targeted by paired Cas9 complexes designed to generate adjacent DNA nicks (20) (see further details about “paired nickases” in Figure 2B).

The third variant is a nuclease-deficient Cas9 (dCas9, Figure 2C) (21). Mutations H840A in the HNH domain and D10A in the RuvC domain inactivate cleavage activity, but do not prevent DNA binding (11, 22). Therefore, this variant can be used to sequence-specifically target any region of the genome without cleavage. Instead, by fusing with various effector domains, dCas9 can be used either as a gene silencing or activation tool (21, 23–26). Furthermore, it can be used as a visualization tool. For instance, Chen and colleagues used dCas9 fused to Enhanced Green Fluorescent Protein (EGFP) to visualize repetitive DNA sequences with a single sgRNA or nonrepetitive loci using multiple sgRNAs (27).

Figure 2. CRISPR/Cas9 System Applications


  1. Wild-type Cas9 nuclease site specifically cleaves double-stranded DNA activating double-strand break repair machinery. In the absence of a homologous repair template non-homologous end joining can result in indels disrupting the target sequence. Alternatively, precise mutations and knock-ins can be made by providing a homologous repair template and exploiting the homology directed repair pathway.
    B. Mutated Cas9 makes a site specific single-strand nick. Two sgRNA can be used to introduce a staggered double-stranded break which can then undergo homology directed repair.
    C. Nuclease-deficient Cas9 can be fused with various effector domains allowing specific localization. For example, transcriptional activators, repressors, and fluorescent proteins.

Targeting Efficiency and Off-target Mutations

Targeting efficiency, or the percentage of desired mutation achieved, is one of the most important parameters by which to assess a genome-editing tool. The targeting efficiency of Cas9 compares favorably with more established methods, such as TALENs or ZFNs (8). For example, in human cells, custom-designed ZFNs and TALENs could only achieve efficiencies ranging from 1% to 50% (29–31). In contrast, the Cas9 system has been reported to have efficiencies up to >70% in zebrafish (32) and plants (33), and ranging from 2–5% in induced pluripotent stem cells (34). In addition, Zhou and colleagues were able to improve genome targeting up to 78% in one-cell mouse embryos, and achieved effective germline transmission through the use of dual sgRNAs to simultaneously target an individual gene (35).

A widely used method to identify mutations is the T7 Endonuclease I mutation detection assay (36, 37) (Figure 3). This assay detects heteroduplex DNA that results from the annealing of a DNA strand, including desired mutations, with a wildtype DNA strand (37).

Figure 3. T7 Endonuclease I Targeting Efficiency Assay


Genomic DNA is amplified with primers bracketing the modified locus. PCR products are then denatured and re-annealed yielding 3 possible structures. Duplexes containing a mismatch are digested by T7 Endonuclease I. The DNA is then electrophoretically separated and fragment analysis is used to calculate targeting efficiency.

Another important parameter is the incidence of off-target mutations. Such mutations are likely to appear in sites that have differences of only a few nucleotides compared to the original sequence, as long as they are adjacent to a PAM sequence. This occurs as Cas9 can tolerate up to 5 base mismatches within the protospacer region (36) or a single base difference in the PAM sequence (38). Off-target mutations are generally more difficult to detect, requiring whole-genome sequencing to rule them out completely.

Recent improvements to the CRISPR system for reducing off-target mutations have been made through the use of truncated gRNA (truncated within the crRNA-derived sequence) or by adding two extra guanine (G) nucleotides to the 5´ end (28, 37). Another way researchers have attempted to minimize off-target effects is with the use of “paired nickases” (20). This strategy uses D10A Cas9 and two sgRNAs complementary to the adjacent area on opposite strands of the target site (Figure 2B). While this induces DSBs in the target DNA, it is expected to create only single nicks in off-target locations and, therefore, result in minimal off-target mutations.

By leveraging computation to reduce off-target mutations, several groups have developed webbased tools to facilitate the identification of potential CRISPR target sites and assess their potential for off-target cleavage. Examples include the CRISPR Design Tool (38) and the ZiFiT Targeter, Version 4.2 (39, 40).

Applications as a Genome-editing and Genome Targeting Tool

Following its initial demonstration in 2012 (9), the CRISPR/Cas9 system has been widely adopted. This has already been successfully used to target important genes in many cell lines and organisms, including human (34), bacteria (41), zebrafish (32), C. elegans (42), plants (34), Xenopus tropicalis (43), yeast (44), Drosophila (45), monkeys (46), rabbits (47), pigs (42), rats (48) and mice (49). Several groups have now taken advantage of this method to introduce single point mutations (deletions or insertions) in a particular target gene, via a single gRNA (14, 21, 29). Using a pair of gRNA-directed Cas9 nucleases instead, it is also possible to induce large deletions or genomic rearrangements, such as inversions or translocations (50). A recent exciting development is the use of the dCas9 version of the CRISPR/Cas9 system to target protein domains for transcriptional regulation (26, 51, 52), epigenetic modification (25), and microscopic visualization of specific genome loci (27).

The CRISPR/Cas9 system requires only the redesign of the crRNA to change target specificity. This contrasts with other genome editing tools, including zinc finger and TALENs, where redesign of the protein-DNA interface is required. Furthermore, CRISPR/Cas9 enables rapid genome-wide interrogation of gene function by generating large gRNA libraries (51, 53) for genomic screening.

The Future of CRISPR/Cas9

The rapid progress in developing Cas9 into a set of tools for cell and molecular biology research has been remarkable, likely due to the simplicity, high efficiency and versatility of the system. Of the designer nuclease systems currently available for precision genome engineering, the CRISPR/Cas system is by far the most user friendly. It is now also clear that Cas9’s potential reaches beyond DNA cleavage, and its usefulness for genome locus-specific recruitment of proteins will likely only be limited by our imagination.


Scientists urge caution in using new CRISPR technology to treat human genetic disease

By Robert Sanders, Media relations | MARCH 19, 2015


The bacterial enzyme Cas9 is the engine of RNA-programmed genome engineering in human cells. (Graphic by Jennifer Doudna/UC Berkeley)

A group of 18 scientists and ethicists today warned that a revolutionary new tool to cut and splice DNA should be used cautiously when attempting to fix human genetic disease, and strongly discouraged any attempts at making changes to the human genome that could be passed on to offspring.

Among the authors of this warning is Jennifer Doudna, the co-inventor of the technology, called CRISPR-Cas9, which is driving a new interest in gene therapy, or “genome engineering.” She and colleagues co-authored a perspective piece that appears in the March 20 issue of Science, based on discussions at a meeting that took place in Napa on Jan. 24. The same issue of Science features a collection of recent research papers, commentary and news articles on CRISPR and its implications.    …..

A prudent path forward for genomic engineering and germline gene modification

David Baltimore1,  Paul Berg2, …., Jennifer A. Doudna4,10,*, et al.
Science  19 Mar 2015.  http://dx.doi.org:/10.1126/science.aab1028


Correcting genetic defects

Scientists today are changing DNA sequences to correct genetic defects in animals as well as cultured tissues generated from stem cells, strategies that could eventually be used to treat human disease. The technology can also be used to engineer animals with genetic diseases mimicking human disease, which could lead to new insights into previously enigmatic disorders.

The CRISPR-Cas9 tool is still being refined to ensure that genetic changes are precisely targeted, Doudna said. Nevertheless, the authors met “… to initiate an informed discussion of the uses of genome engineering technology, and to identify proactively those areas where current action is essential to prepare for future developments. We recommend taking immediate steps toward ensuring that the application of genome engineering technology is performed safely and ethically.”


Amyloid CRISPR Plasmids and si/shRNA Gene Silencers


Santa Cruz Biotechnology, Inc. offers a broad range of gene silencers in the form of siRNAs, shRNA Plasmids and shRNA Lentiviral Particles as well as CRISPR/Cas9 Knockout and CRISPR Double Nickase plasmids. Amyloid gene silencers are available as Amyloid siRNA, Amyloid shRNA Plasmid, Amyloid shRNA Lentiviral Particles and Amyloid CRISPR/Cas9 Knockout plasmids. Amyloid CRISPR/dCas9 Activation Plasmids and CRISPR Lenti Activation Systems for gene activation are also available. Gene silencers and activators are useful for gene studies in combination with antibodies used for protein detection.    Amyloid CRISPR Knockout, HDR and Nickase Knockout Plasmids


CRISPR-Cas9-Based Knockout of the Prion Protein and Its Effect on the Proteome

Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana C.G, Wang H, et al.
PLoS ONE 2014; 9(12): e114594. http://dx.doi.org/10.1371/journal.pone.0114594

The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer’s disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.




Development and Applications of CRISPR-Cas9 for Genome Engineering

Patrick D. Hsu,1,2,3 Eric S. Lander,1 and Feng Zhang1,2,*
Cell. 2014 Jun 5; 157(6): 1262–1278.   doi:  10.1016/j.cell.2014.05.010

Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.

The development of recombinant DNA technology in the 1970s marked the beginning of a new era for biology. For the first time, molecular biologists gained the ability to manipulate DNA molecules, making it possible to study genes and harness them to develop novel medicine and biotechnology. Recent advances in genome engineering technologies are sparking a new revolution in biological research. Rather than studying DNA taken out of the context of the genome, researchers can now directly edit or modulate the function of DNA sequences in their endogenous context in virtually any organism of choice, enabling them to elucidate the functional organization of the genome at the systems level, as well as identify causal genetic variations.

Broadly speaking, genome engineering refers to the process of making targeted modifications to the genome, its contexts (e.g., epigenetic marks), or its outputs (e.g., transcripts). The ability to do so easily and efficiently in eukaryotic and especially mammalian cells holds immense promise to transform basic science, biotechnology, and medicine (Figure 1).


For life sciences research, technologies that can delete, insert, and modify the DNA sequences of cells or organisms enable dissecting the function of specific genes and regulatory elements. Multiplexed editing could further allow the interrogation of gene or protein networks at a larger scale. Similarly, manipulating transcriptional regulation or chromatin states at particular loci can reveal how genetic material is organized and utilized within a cell, illuminating relationships between the architecture of the genome and its functions. In biotechnology, precise manipulation of genetic building blocks and regulatory machinery also facilitates the reverse engineering or reconstruction of useful biological systems, for example, by enhancing biofuel production pathways in industrially relevant organisms or by creating infection-resistant crops. Additionally, genome engineering is stimulating a new generation of drug development processes and medical therapeutics. Perturbation of multiple genes simultaneously could model the additive effects that underlie complex polygenic disorders, leading to new drug targets, while genome editing could directly correct harmful mutations in the context of human gene therapy (Tebas et al., 2014).

Eukaryotic genomes contain billions of DNA bases and are difficult to manipulate. One of the breakthroughs in genome manipulation has been the development of gene targeting by homologous recombination (HR), which integrates exogenous repair templates that contain sequence homology to the donor site (Figure 2A) (Capecchi, 1989). HR-mediated targeting has facilitated the generation of knockin and knockout animal models via manipulation of germline competent stem cells, dramatically advancing many areas of biological research. However, although HR-mediated gene targeting produces highly precise alterations, the desired recombination events occur extremely infrequently (1 in 106–109 cells) (Capecchi, 1989), presenting enormous challenges for large-scale applications of gene-targeting experiments.

Genome Editing Technologies Exploit Endogenous DNA Repair Machinery


To overcome these challenges, a series of programmable nuclease-based genome editing technologies have been developed in recent years, enabling targeted and efficient modification of a variety of eukaryotic and particularly mammalian species. Of the current generation of genome editing technologies, the most rapidly developing is the class of RNA-guided endonucleases known as Cas9 from the microbial adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats), which can be easily targeted to virtually any genomic location of choice by a short RNA guide. Here, we review the development and applications of the CRISPR-associated endonuclease Cas9 as a platform technology for achieving targeted perturbation of endogenous genomic elements and also discuss challenges and future avenues for innovation.   ……

Figure 4   Natural Mechanisms of Microbial CRISPR Systems in Adaptive Immunity


……  A key turning point came in 2005, when systematic analysis of the spacer sequences separating the individual direct repeats suggested their extrachromosomal and phage-associated origins (Mojica et al., 2005Pourcel et al., 2005Bolotin et al., 2005). This insight was tremendously exciting, especially given previous studies showing that CRISPR loci are transcribed (Tang et al., 2002) and that viruses are unable to infect archaeal cells carrying spacers corresponding to their own genomes (Mojica et al., 2005). Together, these findings led to the speculation that CRISPR arrays serve as an immune memory and defense mechanism, and individual spacers facilitate defense against bacteriophage infection by exploiting Watson-Crick base-pairing between nucleic acids (Mojica et al., 2005Pourcel et al., 2005). Despite these compelling realizations that CRISPR loci might be involved in microbial immunity, the specific mechanism of how the spacers act to mediate viral defense remained a challenging puzzle. Several hypotheses were raised, including thoughts that CRISPR spacers act as small RNA guides to degrade viral transcripts in a RNAi-like mechanism (Makarova et al., 2006) or that CRISPR spacers direct Cas enzymes to cleave viral DNA at spacer-matching regions (Bolotin et al., 2005).   …..

As the pace of CRISPR research accelerated, researchers quickly unraveled many details of each type of CRISPR system (Figure 4). Building on an earlier speculation that protospacer adjacent motifs (PAMs) may direct the type II Cas9 nuclease to cleave DNA (Bolotin et al., 2005), Moineau and colleagues highlighted the importance of PAM sequences by demonstrating that PAM mutations in phage genomes circumvented CRISPR interference (Deveau et al., 2008). Additionally, for types I and II, the lack of PAM within the direct repeat sequence within the CRISPR array prevents self-targeting by the CRISPR system. In type III systems, however, mismatches between the 5′ end of the crRNA and the DNA target are required for plasmid interference (Marraffini and Sontheimer, 2010).  …..

In 2013, a pair of studies simultaneously showed how to successfully engineer type II CRISPR systems from Streptococcus thermophilus (Cong et al., 2013) andStreptococcus pyogenes (Cong et al., 2013Mali et al., 2013a) to accomplish genome editing in mammalian cells. Heterologous expression of mature crRNA-tracrRNA hybrids (Cong et al., 2013) as well as sgRNAs (Cong et al., 2013Mali et al., 2013a) directs Cas9 cleavage within the mammalian cellular genome to stimulate NHEJ or HDR-mediated genome editing. Multiple guide RNAs can also be used to target several genes at once. Since these initial studies, Cas9 has been used by thousands of laboratories for genome editing applications in a variety of experimental model systems (Sander and Joung, 2014). ……

The majority of CRISPR-based technology development has focused on the signature Cas9 nuclease from type II CRISPR systems. However, there remains a wide diversity of CRISPR types and functions. Cas RAMP module (Cmr) proteins identified in Pyrococcus furiosus and Sulfolobus solfataricus (Hale et al., 2012) constitute an RNA-targeting CRISPR immune system, forming a complex guided by small CRISPR RNAs that target and cleave complementary RNA instead of DNA. Cmr protein homologs can be found throughout bacteria and archaea, typically relying on a 5 site tag sequence on the target-matching crRNA for Cmr-directed cleavage.

Unlike RNAi, which is targeted largely by a 6 nt seed region and to a lesser extent 13 other bases, Cmr crRNAs contain 30–40 nt of target complementarity. Cmr-CRISPR technologies for RNA targeting are thus a promising target for orthogonal engineering and minimal off-target modification. Although the modularity of Cmr systems for RNA-targeting in mammalian cells remains to be investigated, Cmr complexes native to P. furiosus have already been engineered to target novel RNA substrates (Hale et al., 20092012).   ……

Although Cas9 has already been widely used as a research tool, a particularly exciting future direction is the development of Cas9 as a therapeutic technology for treating genetic disorders. For a monogenic recessive disorder due to loss-of-function mutations (such as cystic fibrosis, sickle-cell anemia, or Duchenne muscular dystrophy), Cas9 may be used to correct the causative mutation. This has many advantages over traditional methods of gene augmentation that deliver functional genetic copies via viral vector-mediated overexpression—particularly that the newly functional gene is expressed in its natural context. For dominant-negative disorders in which the affected gene is haplosufficient (such as transthyretin-related hereditary amyloidosis or dominant forms of retinitis pigmentosum), it may also be possible to use NHEJ to inactivate the mutated allele to achieve therapeutic benefit. For allele-specific targeting, one could design guide RNAs capable of distinguishing between single-nucleotide polymorphism (SNP) variations in the target gene, such as when the SNP falls within the PAM sequence.



CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases

Zhuchi Tu, Weili Yang, Sen Yan, Xiangyu Guo and Xiao-Jiang Li

Molecular Neurodegeneration 2015; 10:35  http://dx.doi.org:/10.1186/s13024-015-0031-x

Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.

Neurodegenerative diseases — Alzheimer’s disease(AD),Parkinson’s disease(PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and frontotemporal dementia (FTD) — are characterized by age-dependent and selective neurodegeneration. As the life expectancy of humans lengthens, there is a greater prevalence of these neurodegenerative diseases; however, the pathogenesis of most of these neurodegenerative diseases remain unclear, and we lack effective treatments for these important brain disorders.

CRISPR/Cas9,  Non-human primates,  Neurodegenerative diseases,  Animal model

There are a number of excellent reviews covering different types of neurodegenerative diseases and their genetic mouse models [812]. Investigations of different mouse models of neurodegenerative diseases have revealed a common pathology shared by these diseases. First, the development of neuropathology and neurological symptoms in genetic mouse models of neurodegenerative diseases is age dependent and progressive. Second, all the mouse models show an accumulation of misfolded or aggregated proteins resulting from the expression of mutant genes. Third, despite the widespread expression of mutant proteins throughout the body and brain, neuronal function appears to be selectively or preferentially affected. All these facts indicate that mouse models of neurodegenerative diseases recapitulate important pathologic features also seen in patients with neurodegenerative diseases.

However, it seems that mouse models can not recapitulate the full range of neuropathology seen in patients with neurodegenerative diseases. Overt neurodegeneration, which is the most important pathological feature in patient brains, is absent in genetic rodent models of AD, PD, and HD. Many rodent models that express transgenic mutant proteins under the control of different promoters do not replicate overt neurodegeneration, which is likely due to their short life spans and the different aging processes of small animals. Also important are the remarkable differences in brain development between rodents and primates. For example, the mouse brain takes 21 days to fully develop, whereas the formation of primate brains requires more than 150 days [13]. The rapid development of the brain in rodents may render neuronal cells resistant to misfolded protein-mediated neurodegeneration. Another difficulty in using rodent models is how to analyze cognitive and emotional abnormalities, which are the early symptoms of most neurodegenerative diseases in humans. Differences in neuronal circuitry, anatomy, and physiology between rodent and primate brains may also account for the behavioral differences between rodent and primate models.


Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases

Hsiuchen Chen and David C. Chan
Human Molec Gen 2009; 18, Review Issue 2 R169–R176

Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseases—including Parkinson’s, Alzheimer’s and Huntington’s disease—involve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.


Applications of CRISPR–Cas systems in Neuroscience

Matthias Heidenreich  & Feng Zhang
Nature Rev Neurosci 2016; 17:36–44   http://dx.doi.org:/10.1038/nrn.2015.2

Genome-editing tools, and in particular those based on CRISPR–Cas (clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR–Cas systems has the potential to advance both basic and translational neuroscience research.
Cellular neuroscience
, DNA recombination, Genetic engineering, Molecular neuroscience

Figure 3: In vitro applications of Cas9 in human iPSCs.close


a | Evaluation of disease candidate genes from large-population genome-wide association studies (GWASs). Human primary cells, such as neurons, are not easily available and are difficult to expand in culture. By contrast, induced pluripo…

  1. Genome-editing Technologies for Gene and Cell Therapy

Molecular Therapy 12 Jan 2016

  1. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing

Scientific Reports 31 Mar 2016

  1. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection

Scientific Reports 12 Nov 2015


Alzheimer’s Disease: Medicine’s Greatest Challenge in the 21st Century


The development of the CRISPR/Cas9 system has made gene editing a relatively simple task.  While CRISPR and other gene editing technologies stand to revolutionize biomedical research and offers many promising therapeutic avenues (such as in the treatment of HIV), a great deal of debate exists over whether CRISPR should be used to modify human embryos. As I discussed in my previous Insight article, we lack enough fundamental biological knowledge to enhance many traits like height or intelligence, so we are not near a future with genetically-enhanced super babies. However, scientists have identified a few rare genetic variants that protect against disease.  One such protective variant is a mutation in the APP gene that protects against Alzheimer’s disease and cognitive decline in old age. If we can perfect gene editing technologies, is this mutation one that we should be regularly introducing into embryos? In this article, I explore the potential for using gene editing as a way to prevent Alzheimer’s disease in future generations. Alzheimer’s Disease: Medicine’s Greatest Challenge in the 21st Century Can gene editing be the missing piece in the battle against Alzheimer’s? (Source: bostonbiotech.org) I chose to assess the benefit of germline gene editing in the context of Alzheimer’s disease because this disease is one of the biggest challenges medicine faces in the 21st century. Alzheimer’s disease is a chronic neurodegenerative disease responsible for the majority of the cases of dementia in the elderly. The disease symptoms begins with short term memory loss and causes more severe symptoms – problems with language, disorientation, mood swings, behavioral issues – as it progresses, eventually leading to the loss of bodily functions and death. Because of the dementia the disease causes, Alzheimer’s patients require a great deal of care, and the world spends ~1% of its total GDP on caring for those with Alzheimer’s and related disorders. Because the prevalence of the disease increases with age, the situation will worsen as life expectancies around the globe increase: worldwide cases of Alzheimer’s are expected to grow from 35 million today to over 115 million by 2050.

Despite much research, the exact causes of Alzheimer’s disease remains poorly understood. The disease seems to be related to the accumulation of plaques made of amyloid-β peptides that form on the outside of neurons, as well as the formation of tangles of the protein tau inside of neurons. Although many efforts have been made to target amyloid-β or the enzymes involved in its formation, we have so far been unsuccessful at finding any treatment that stops the disease or reverses its progress. Some researchers believe that most attempts at treating Alzheimer’s have failed because, by the time a patient shows symptoms, the disease has already progressed past the point of no return.

While research towards a cure continues, researchers have sought effective ways to prevent Alzheimer’s disease. Although some studies show that mental and physical exercise may lower ones risk of Alzheimer’s disease, approximately 60-80% of the risk for Alzheimer’s disease appears to be genetic. Thus, if we’re serious about prevention, we may have to act at the genetic level. And because the brain is difficult to access surgically for gene therapy in adults, this means using gene editing on embryos.

Reference https://www.physicsforums.com/insights/can-gene-editing-eliminate-alzheimers-disease/


Utilising CRISPR to Generate Predictive Disease Models: a Case Study in Neurodegenerative Disorders

Dr. Bhuvaneish.T. Selvaraj  – Scottish Centre for Regenerative Medicine


  • Introducing the latest developments in predictive model generation
  • Discover how CRISPR is being used to develop disease models to study and treat neurodegenerative disorders
  • In depth Q&A session to answer your most pressing questions


Turning On Genes, Systematically, with CRISPR/Cas9



Scientists based at MIT assert that they can reliably turn on any gene of their choosing in living cells. [Feng Zhang and Steve Dixon]  http://www.genengnews.com/media/images/GENHighlight/Dec12_2014_CRISPRCas9GeneActivationSystem7838101231.jpg

With the latest CRISPR/Cas9 advance, the exhortation “turn on, tune in, drop out” comes to mind. The CRISPR/Cas9 gene-editing system was already a well-known means of “tuning in” (inserting new genes) and “dropping out” (knocking out genes). But when it came to “turning on” genes, CRISPR/Cas9 had little potency. That is, it had demonstrated only limited success as a way to activate specific genes.

A new CRISPR/Cas9 approach, however, appears capable of activating genes more effectively than older approaches. The new approach may allow scientists to more easily determine the function of individual genes, according to Feng Zhang, Ph.D., a researcher at MIT and the Broad Institute. Dr. Zhang and colleagues report that the new approach permits multiplexed gene activation and rapid, large-scale studies of gene function.

The new technique was introduced in the December 10 online edition of Nature, in an article entitled, “Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.” The article describes how Dr. Zhang, along with the University of Tokyo’s Osamu Nureki, Ph.D., and Hiroshi Nishimasu, Ph.D., overhauled the CRISPR/Cas9 system. The research team based their work on their analysis (published earlier this year) of the structure formed when Cas9 binds to the guide RNA and its target DNA. Specifically, the team used the structure’s 3D shape to rationally improve the system.

In previous efforts to revamp CRISPR/Cas9 for gene activation purposes, scientists had tried to attach the activation domains to either end of the Cas9 protein, with limited success. From their structural studies, the MIT team realized that two small loops of the RNA guide poke out from the Cas9 complex and could be better points of attachment because they allow the activation domains to have more flexibility in recruiting transcription machinery.

Using their revamped system, the researchers activated about a dozen genes that had proven difficult or impossible to turn on using the previous generation of Cas9 activators. Each gene showed at least a twofold boost in transcription, and for many genes, the researchers found multiple orders of magnitude increase in activation.

After investigating single-guide RNA targeting rules for effective transcriptional activation, demonstrating multiplexed activation of 10 genes simultaneously, and upregulating long intergenic noncoding RNA transcripts, the research team decided to undertake a large-scale screen. This screen was designed to identify genes that confer resistance to a melanoma drug called PLX-4720.

“We … synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor,” wrote the authors of the Nature paper. “The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual [single-guide RNA] and complementary DNA overexpression.”

A gene signature based on the top screening hits, the authors added, correlated with a gene expression signature of BRAF inhibitor resistance in cell lines and patient-derived samples. It was also suggested that large-scale screens such as the one demonstrated in the current study could help researchers discover new cancer drugs that prevent tumors from becoming resistant.

More at –  http://www.genengnews.com/gen-news-highlights/turning-on-genes-systematically-with-crispr-cas9/81250697/


Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease
Miguel L. Soares1,2, Teresa Coelho3,6, Alda Sousa4,5, …, Maria Joa˜o Saraiva2,5 and Joel N. Buxbaum1
Human Molec Gen 2005; 14(4): 543–553   http://dx.doi.org:/10.1093/hmg/ddi051

Familial amyloid polyneuropathy type I is an autosomal dominant disorder caused by mutations in the transthyretin (TTR ) gene; however, carriers of the same mutation exhibit variability in penetrance and clinical expression. We analyzed alleles of candidate genes encoding non-fibrillar components of TTR amyloid deposits and a molecule metabolically interacting with TTR [retinol-binding protein (RBP)], for possible associations with age of disease onset and/or susceptibility in a Portuguese population sample with the TTR V30M mutation and unrelated controls. We show that the V30M carriers represent a distinct subset of the Portuguese population. Estimates of genetic distance indicated that the controls and the classical onset group were furthest apart, whereas the late-onset group appeared to differ from both. Importantly, the data also indicate that genetic interactions among the multiple loci evaluated, rather than single-locus effects, are more likely to determine differences in the age of disease onset. Multifactor dimensionality reduction indicated that the best genetic model for classical onset group versus controls involved the APCS gene, whereas for late-onset cases, one APCS variant (APCSv1) and two RBP variants (RBPv1 and RBPv2) are involved. Thus, although the TTR V30M mutation is required for the disease in Portuguese patients, different genetic factors may govern the age of onset, as well as the occurrence of anticipation.

Autosomal dominant disorders may vary in expression even within a given kindred. The basis of this variability is uncertain and can be attributed to epigenetic factors, environment or epistasis. We have studied familial amyloid polyneuropathy (FAP), an autosomal dominant disorder characterized by peripheral sensorimotor and autonomic neuropathy. It exhibits variation in cardiac, renal, gastrointestinal and ocular involvement, as well as age of onset. Over 80 missense mutations in the transthyretin gene (TTR ) result in autosomal dominant disease http://www.ibmc.up.pt/~mjsaraiv/ttrmut.html). The presence of deposits consisting entirely of wild-type TTR molecules in the hearts of 10– 25% of individuals over age 80 reveals its inherent in vivo amyloidogenic potential (1).

FAP was initially described in Portuguese (2) where, until recently, the TTR V30M has been the only pathogenic mutation associated with the disease (3,4). Later reports identified the same mutation in Swedish and Japanese families (5,6). The disorder has since been recognized in other European countries and in North American kindreds in association with V30M, as well as other mutations (7).

TTR V30M produces disease in only 5–10% of Swedish carriers of the allele (8), a much lower degree of penetrance than that seen in Portuguese (80%) (9) or in Japanese with the same mutation. The actual penetrance in Japanese carriers has not been formally established, but appears to resemble that seen in Portuguese. Portuguese and Japanese carriers show considerable variation in the age of clinical onset (10,11). In both populations, the first symptoms had originally been described as typically occurring before age 40 (so-called ‘classical’ or early-onset); however, in recent years, more individuals developing symptoms late in life have been identified (11,12). Hence, present data indicate that the distribution of the age of onset in Portuguese is continuous, but asymmetric with a mean around age 35 and a long tail into the older age group (Fig. 1) (9,13). Further, DNA testing in Portugal has identified asymptomatic carriers over age 70 belonging to a subset of very late-onset kindreds in whose descendants genetic anticipation is frequent. The molecular basis of anticipation in FAP, which is not mediated by trinucleotide repeat expansions in the TTR or any other gene (14), remains elusive.

Variation in penetrance, age of onset and clinical features are hallmarks of many autosomal dominant disorders including the human TTR amyloidoses (7). Some of these clearly reflect specific biological effects of a particular mutation or a class of mutants. However, when such phenotypic variability is seen with a single mutation in the gene encoding the same protein, it suggests an effect of modifying genetic loci and/or environmental factors contributing differentially to the course of disease. We have chosen to examine age of onset as an example of a discrete phenotypic variation in the presence of the particular autosomal dominant disease-associated mutation TTR V30M. Although the role of environmental factors cannot be excluded, the existence of modifier genes involved in TTR amyloidogenesis is an attractive hypothesis to explain the phenotypic variability in FAP. ….

ATTR (TTR amyloid), like all amyloid deposits, contains several molecular components, in addition to the quantitatively dominant fibril-forming amyloid protein, including heparan sulfate proteoglycan 2 (HSPG2 or perlecan), SAP, a plasma glycoprotein of the pentraxin family (encoded by the APCS gene) that undergoes specific calcium-dependent binding to all types of amyloid fibrils, and apolipoprotein E (ApoE), also found in all amyloid deposits (15). The ApoE4 isoform is associated with an increased frequency and earlier onset of Alzheimer’s disease (Ab), the most common form of brain amyloid, whereas the ApoE2 isoform appears to be protective (16). ApoE variants could exert a similar modulatory effect in the onset of FAP, although early studies on a limited number of patients suggested this was not the case (17).

In at least one instance of senile systemic amyloidosis, small amounts of AA-related material were found in TTR deposits (18). These could reflect either a passive co-aggregation or a contributory involvement of protein AA, encoded by the serum amyloid A (SAA ) genes and the main component of secondary (reactive) amyloid fibrils, in the formation of ATTR.

Retinol-binding protein (RBP), the serum carrier of vitamin A, circulates in plasma bound to TTR. Vitamin A-loaded RBP and L-thyroxine, the two natural ligands of TTR, can act alone or synergistically to inhibit the rate and extent of TTR fibrillogenesis in vitro, suggesting that RBP may influence the course of FAP pathology in vivo (19). We have analyzed coding and non-coding sequence polymorphisms in the RBP4 (serum RBP, 10q24), HSPG2 (1p36.1), APCS (1q22), APOE (19q13.2), SAA1 and SAA2 (11p15.1) genes with the goal of identifying chromosomes carrying common and functionally significant variants. At the time these studies were performed, the full human genome sequence was not completed and systematic singlenucleotide polymorphism (SNP) analyses were not available for any of the suspected candidate genes. We identified new SNPs in APCS and RBP4 and utilized polymorphisms in SAA, HSPG2 and APOE that had already been characterized and shown to have potential pathophysiologic significance in other disorders (16,20–22). The genotyping data were analyzed for association with the presence of the V30M amyloidogenic allele (FAP patients versus controls) and with the age of onset (classical- versus late-onset patients). Multilocus analyses were also performed to examine the effects of simultaneous contributions of the six loci for determining the onset of the first symptoms.  …..

The potential for different underlying models for classical and late onset is supported by the MDR analysis, which produces two distinct models when comparing each class with the controls. One could view the two onset classes as unique diseases. If this is the case, then the failure to detect a single predictive genetic model is consistent with two related, but different, diseases. This is exactly what would be expected in such a case of genetic heterogeneity (28). Using this approach, a major gene effect can be viewed as a necessary, but not sufficient, condition to explain the course of the disease. Analyzing the cases but omitting from the analysis of phenotype the necessary allele, in this case TTR V30M, can then reveal a variety of important modifiers that are distinct between the phenotypes.

The significant comparisons obtained in our study cohort indicate that the combined effects mainly result from two and three-locus interactions involving all loci except SAA1 and SAA2 for susceptibility to disease. A considerable number of four-site combinations modulate the age of onset with SAA1 appearing in a majority of significant combinations in late-onset disease, perhaps indicating a greater role of the SAA variants in the age of onset of FAP.

The correlation between genotype and phenotype in socalled simple Mendelian disorders is often incomplete, as only a subset of all mutations can reliably predict specific phenotypes (34). This is because non-allelic genetic variations and/or environmental influences underlie these disorders whose phenotypes behave as complex traits. A few examples include the identification of the role of homozygozity for the SAA1.1 allele in conferring the genetic susceptibility to renal amyloidosis in FMF (20) and the association of an insertion/deletion polymorphism in the ACE gene with disease severity in familial hypertrophic cardiomyopathy (35). In these disorders, the phenotypes arise from mutations in MEFV and b-MHC, but are modulated by independently inherited genetic variation. In this report, we show that interactions among multiple genes, whose products are confirmed or putative constituents of ATTR deposits, or metabolically interact with TTR, modulate the onset of the first symptoms and predispose individuals to disease in the presence of the V30M mutation in TTR. The exact nature of the effects identified here requires further study with potential application in the development of genetic screening with prognostic value pertaining to the onset of disease in the TTR V30M carriers.

If the effects of additional single or interacting genes dictate the heterogeneity of phenotype, as reflected in variability of onset and clinical expression (with the same TTR mutation), the products encoded by alleles at such loci could contribute to the process of wild-type TTR deposition in elderly individuals without a mutation (senile systemic amyloidosis), a phenomenon not readily recognized as having a genetic basis because of the insensitivity of family history in the elderly.


Safety and Efficacy of RNAi Therapy for Transthyretin Amyloidosis

Coelho T, Adams D, Silva A, et al.
N Engl J Med 2013;369:819-29.    http://dx.doi.org:/10.1056/NEJMoa1208760

Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart. A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin.

Methods We identified a potent antitransthyretin small interfering RNA, which was encapsulated in two distinct first- and second-generation formulations of lipid nanoparticles, generating ALN-TTR01 and ALN-TTR02, respectively. Each formulation was studied in a single-dose, placebo-controlled phase 1 trial to assess safety and effect on transthyretin levels. We first evaluated ALN-TTR01 (at doses of 0.01 to 1.0 mg per kilogram of body weight) in 32 patients with transthyretin amyloidosis and then evaluated ALN-TTR02 (at doses of 0.01 to 0.5 mg per kilogram) in 17 healthy volunteers.

Results Rapid, dose-dependent, and durable lowering of transthyretin levels was observed in the two trials. At a dose of 1.0 mg per kilogram, ALN-TTR01 suppressed transthyretin, with a mean reduction at day 7 of 38%, as compared with placebo (P=0.01); levels of mutant and nonmutant forms of transthyretin were lowered to a similar extent. For ALN-TTR02, the mean reductions in transthyretin levels at doses of 0.15 to 0.3 mg per kilogram ranged from 82.3 to 86.8%, with reductions of 56.6 to 67.1% at 28 days (P<0.001 for all comparisons). These reductions were shown to be RNAi mediated. Mild-to-moderate infusion-related reactions occurred in 20.8% and 7.7% of participants receiving ALN-TTR01 and ALN-TTR02, respectively.

ALN-TTR01 and ALN-TTR02 suppressed the production of both mutant and nonmutant forms of transthyretin, establishing proof of concept for RNAi therapy targeting messenger RNA transcribed from a disease-causing gene.


Alnylam May Seek Approval for TTR Amyloidosis Rx in 2017 as Other Programs Advance


Officials from Alnylam Pharmaceuticals last week provided updates on the two drug candidates from the company’s flagship transthyretin-mediated amyloidosis program, stating that the intravenously delivered agent patisiran is proceeding toward a possible market approval in three years, while a subcutaneously administered version called ALN-TTRsc is poised to enter Phase III testing before the end of the year.

Meanwhile, Alnylam is set to advance a handful of preclinical therapies into human studies in short order, including ones for complement-mediated diseases, hypercholesterolemia, and porphyria.

The officials made their comments during a conference call held to discuss Alnylam’s second-quarter financial results.

ATTR is caused by a mutation in the TTR gene, which normally produces a protein that acts as a carrier for retinol binding protein and is characterized by the accumulation of amyloid deposits in various tissues. Alnylam’s drugs are designed to silence both the mutant and wild-type forms of TTR.

Patisiran, which is delivered using lipid nanoparticles developed by Tekmira Pharmaceuticals, is currently in a Phase III study in patients with a form of ATTR called familial amyloid polyneuropathy (FAP) affecting the peripheral nervous system. Running at over 20 sites in nine countries, that study is set to enroll up to 200 patients and compare treatment to placebo based on improvements in neuropathy symptoms.

According to Alnylam Chief Medical Officer Akshay Vaishnaw, Alnylam expects to have final data from the study in two to three years, which would put patisiran on track for a new drug application filing in 2017.

Meanwhile, ALN-TTRsc, which is under development for a version of ATTR that affects cardiac tissue called familial amyloidotic cardiomyopathy (FAC) and uses Alnylam’s proprietary GalNAc conjugate delivery technology, is set to enter Phase III by year-end as Alnylam holds “active discussions” with US and European regulators on the design of that study, CEO John Maraganore noted during the call.

In the interim, Alnylam continues to enroll patients in a pilot Phase II study of ALN-TTRsc, which is designed to test the drug’s efficacy for FAC or senile systemic amyloidosis (SSA), a condition caused by the idiopathic accumulation of wild-type TTR protein in the heart.

Based on “encouraging” data thus far, Vaishnaw said that Alnylam has upped the expected enrollment in this study to 25 patients from 15. Available data from the trial is slated for release in November, he noted, stressing that “any clinical endpoint result needs to be considered exploratory given the small sample size and the very limited duration of treatment of only six weeks” in the trial.

Vaishnaw added that an open-label extension (OLE) study for patients in the ALN-TTRsc study will kick off in the coming weeks, allowing the company to gather long-term dosing tolerability and clinical activity data on the drug.

Enrollment in an OLE study of patisiran has been completed with 27 patients, he said, and, “as of today, with up to nine months of therapy … there have been no study drug discontinuations.” Clinical endpoint data from approximately 20 patients in this study will be presented at the American Neurological Association meeting in October.

As part of its ATTR efforts, Alnylam has also been conducting natural history of disease studies in both FAP and FAC patients. Data from the 283-patient FAP study was presented earlier this year and showed a rapid progression in neuropathy impairment scores and a high correlation of this measurement with disease severity.

During last week’s conference call, Vaishnaw said that clinical endpoint and biomarker data on about 400 patients with either FAC or SSA have already been collected in a nature history study on cardiac ATTR. Maraganore said that these findings would likely be released sometime next year.

Alnylam Presents New Phase II, Preclinical Data from TTR Amyloidosis Programs


Amyloid disease drug approved

Nature Biotechnology 2012; (3http://dx.doi.org:/10.1038/nbt0212-121b

The first medication for a rare and often fatal protein misfolding disorder has been approved in Europe. On November 16, the E gave a green light to Pfizer’s Vyndaqel (tafamidis) for treating transthyretin amyloidosis in adult patients with stage 1 polyneuropathy symptoms. [Jeffery Kelly, La Jolla]


Safety and Efficacy of RNAi Therapy for Transthyretin …


The New England Journal of Medicine

Aug 29, 2013 – Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart.


Alnylam’s RNAi therapy targets amyloid disease

Ken Garber
Nature Biotechnology 2015; 33(577)    http://dx.doi.org:/10.1038/nbt0615-577a

RNA interference’s silencing of target genes could result in potent therapeutics.


The most clinically advanced RNA interference (RNAi) therapeutic achieved a milestone in April when Alnylam Pharmaceuticals in Cambridge, Massachusetts, reported positive results for patisiran, a small interfering RNA (siRNA) oligonucleotide targeting transthyretin for treating familial amyloidotic polyneuropathy (FAP).  …

  1. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases

Nature Biotechnology 11 April 2016

  1. CRISPR-Cas systems for editing, regulating and targeting genomes

Nature Biotechnology 02 March 2014

  1. Near-optimal probabilistic RNA-seq quantification

Nature Biotechnology 04 April 2016


Translational Neuroscience: Toward New Therapies


Karoly Nikolich, ‎Steven E. Hyman – 2015 – ‎Medical

Tafamidis for Transthyretin Familial Amyloid Polyneuropathy: A Randomized, Controlled Trial. … Multiplex Genome Engineering Using CRISPR/Cas Systems.


Is CRISPR a Solution to Familial Amyloid Polyneuropathy?

Author and Curator: Larry H. Bernstein, MD, FCAP

Originally published as




FAP is characterized by the systemic deposition of amyloidogenic variants of the transthyretin protein, especially in the peripheral nervous system, causing a progressive sensory and motor polyneuropathy.

FAP is caused by a mutation of the TTR gene, located on human chromosome 18q12.1-11.2.[5] A replacement of valine by methionine at position 30 (TTR V30M) is the mutation most commonly found in FAP.[1] The variant TTR is mostly produced by the liver.[citation needed] The transthyretin protein is a tetramer.    ….



Read Full Post »

Oncolytic Virus Immuno-Therapy: New Approach for a New Class of Immunotherapy Drugs

Curator: Larry H. Bernstein, MD, FCAP


Oncolytic viruses represent a promising novel immunotherapy strategy, which may be optimally combined with existing therapeutic modalities

Oncolytic viruses: a novel form of immunotherapy

Oncolytic viruses are novel anticancer agents, currently under investigation in Phase I–III clinical trials. Until recently, most studies have focused on the direct antitumor properties of these viruses, although there is now an increasing body of evidence that the host immune response may be critical to the efficacy of oncolytic virotherapy. This may be mediated via innate immune effectors, adaptive antiviral immune responses eliminating infected cells or adaptive antitumor immune responses. This report summarizes preclinical and clinical evidence for the importance of immune interactions, which may be finely balanced between viral and tumor elimination. On this basis, oncolytic viruses represent a promising novel immunotherapy strategy, which may be optimally combined with existing therapeutic modalities.
The anticancer activity of viruses has been reported throughout the 20th century. Developments in virology, genetic manipulation and molecular biology have led to a surge of research investigating viruses with oncolytic or antitumor properties over the last 15 years. Several oncolytic viruses are currently in Phase I–III clinical trials [1]. Until recently, despite the multitude of studies investigating direct viral effects upon cancer cells, relatively little attention had been paid to the interaction between oncolytic viruses and the immune system. We discuss the evidence supporting the view that the host immune response is critical to the efficacy of oncolytic virotherapy. The potential of oncolytic viruses to break immunological tumor tolerance, generating antitumor immunity, represents a novel avenue of immunotherapy.
Oncolytic viruses are self-replicating, tumor selective and directly lyze cancer cells [2]. They may be tumor selective in wild-type or attenuated forms or may be engineered to provide tumor selectivity. Naturally occurring oncolytic viruses include the double-stranded RNA reovirus and single-stranded RNA Newcastle disease virus (NDV) and vesicular stomatitis virus (VSV). By contrast, human DNA viruses, including adenoviruses, vaccinia and herpes simplex viruses (HSV) have been genetically modified in a variety of ways to provide tumor selectivity. A diverse range of mechanisms provide tumor specificity, including inactivation of antiviral defences, such as type I IFN responses in many cancer cells, viral deletions permitting replication only in tumor cells that can substitute for viral defects, tumor-selective uptake via upregulated or mutated receptors, and targeting to tumor promoters.

In the majority of clinical trials performed so far, oncolytic viruses have been administered via intratumoral injection. A smaller number of studies have examined regional or intravenous delivery. Clinical experience has demonstrated a favorable toxicity and safety profile and a number of tumor responses, although overall antitumor efficacy has been limited [1]. For example, ONYX-015, a modified adenovirus, has been used in clinical trials with response rates of 0–14% following intratumoral administration [3]. In view of the short history of oncolytic virotherapy, along with recent scientific advances in methods of viral delivery and enhancing antitumor potency, these low levels of single-agent clinical responses provide encouragement for the future.

An increasingly powerful body of evidence supports the ability of the immune system to modify the immunogenicity and behavior of tumors [4]. A host of tumor-associated antigens (TAA) have been characterized [5] and in a single tumor, tumor-infiltrating lymphocytes directed towards multiple TAAs can be identified [6]. Despite these antigenic differences, the antitumor immune response is commonly ineffectual. Tumors can subvert antitumor immunity, generating an immunosuppressive tumor microenvironment by a multitude of mechanisms. These include the induction of Treg cells, secretion of soluble immunosuppressive mediators including nitric oxide, IL-10 and TGF-β and recruitment of myeloid suppressor cells [4]. Matzinger’s ‘danger’ hypothesis proposes that the prime role of the immune system is to respond to cellular or tissue distress as opposed to nonself per se [7]. Several danger signals have been identified, including RNA, DNA, IFN-α, heat-shock proteins, uric acid and hyaluron, providing a mechanistic basis for this hypothesis [8]. On this basis, tumor-associated danger signals are critical to the generation of effective antitumor immunity. In addition to their ability to disrupt immune responses, tumors commonly lack such signals and successful tumor immunotherapy will probably to depend upon their provision. Oncolytic virotherapy represents a potent approach to cancer immunotherapy, combining the enhanced release of TAA via tumor cell death, in the context of danger signals (FIGURE 1).

An external file that holds a picture, illustration, etc. Object name is nihms75104f1.jpg

Figure 1   Concept of how oncolytic viral infection of tumor cells may lead to the generation of antitumor immune responses

The role of the innate immune response to cancer is double-edged. Chronic inflammatory changes can promote tumor progression via proliferative and proangiogenic signals [9], while by contrast, the infiltration of activated innate inflammatory cells can mediate tumor regression in vivo [10]. Manipulation of the immune environment within a tumor is a potentially critical strategy towards successful tumor immunotherapy [11].

Oncolytic viruses represent prime candidates to enhance the immunogenicity of the tumor microenvironment. As detailed below, oncolytic virotherapy may be immunomodulatory via tumor cell death, production of endogenous danger signals, the release of tumor-derived cytokines and direct effects upon cells of the innate immune system. Evidence from preclinical models suggests that an early influx of immune cells, including macrophages and natural killer (NK) cells, occurs in response to tumor viral therapy [1214]. These changes within the tumor hold the potential to alter the pre-existing immunosuppressive microenvironment, in favor of the generation of therapeutic immune responses. Dendritic cells (DC), the prime antigen-presenting cells and a component of the innate immune response are critical for the subsequent generation of antigen-specific or adaptive immune responses. However, as discussed later, the outcome of the innate response is finely balanced between promotion of tumor clearance and viral clearance limiting efficacy.

Virally induced cell death would be expected to enhance the availability of TAA for uptake by DC. Indeed, viral infection of tumors has been reported to enhance the phagocytosis of tumor-derived material [15,16]. The relationship between the mode of cell death and tumor immunogenicity has, however, been controversial; the immunogenicity of tumors has been reported not to be affected by whether tumor cells are alive, apoptotic or necrotic [17]. Even if the mode of cell death is not an immunogenic determinant, the release of intrinsic cell factors, including heat-shock protein [18], uric acid [19] and bradykinin [20], can be identified as danger signals by DC. Oncolytic viral infection may mediate production of these factors. For example, tumor cell infection by a modified oncolytic adenovirus increases intracellular uric acid levels, activating DC [19].

An array of cytokines provides costimulation for T-cell responses, while by contrast, tumor-derived cytokines, including TGF-β and IL-10, have immunosuppressive properties. In addition, the tumor-derived proinflammatory cytokines VEGF, TNF-α and several chemokines have been linked to promotion of tumor growth [21]. Oncolytic viral infection is likely to alter the balance of cytokines produced and the nature of the subsequent immune response. We have investigated the release of cytokines following infection of melanoma cells with reovirus, a naturally occurring double-stranded RNA virus currently in clinical trials [22]. Reovirus was found to induce secretion of IL-8, RANTES and MIP-1α/β, which play a role in the recruitment of DC, neutrophils and monocytes [23], and of IL-6, which can inhibit the immunosuppressive function of Treg cells [24]. Reovirus additionally reduced tumor secretion of the immunosuppressive cytokine IL-10. The immunogenic property of tumor-conditioned media from reovirus-infected tumor cells (filtered to remove viral particles) was confirmed by their ability to activate DC.

DC & the response to viral infection

The immune system is adept at pathogen recognition and a host of receptors specific for pathogen-associated molecular patterns, including the toll-like receptors (TLR), have been identified [25]. Innate viral recognition can center around viral nucleic acids or viral proteins [25]. DC play a critical role in the early innate immune responses, reciprocally interacting with other innate immune cells, including NK cells [26]. In this context, oncolytic viruses can influence the nature of the innate tumor response. Reovirus-infected DC, for example, enhance NK cytotoxicity towards tumor cells [27].

The effect of viruses upon DC is virus specific: measles and a vaccinia virus strain impair DC phenotype and function [28,29], an oncolytic adenovirus has a neutral effect [30], while reovirus is directly stimulatory to DC [27]. Although the immunomodulatory effects of oncolytic viruses have been investigated to a limited degree, it follows that the immune consequences of therapy with different viruses will vary widely. In addition, the genetic modification of viruses to confer oncolytic specificity may involve interference with virulence genes whose function is to modify the antiviral immune response, including type I interferon response genes [2,31]; alteration of such immunomodulatory genes will alter the consequences of the immune interactions of these modified viruses.

Oncolytic viruses & adaptive antitumor immunity

The innate immune response is thought to provide an important link to the generation of adaptive immune responses. DC are key to this link, taking up TAA, integrating danger signals and presenting antigen in an appropriate costimulatory context to the adaptive arm of the immune system. An adaptive antitumor immune response requires activation of cytotoxic CD8 T cells by DC presenting tumor antigen on MHC class I molecules. The presentation of exogenous antigen in a MHC class I context is termed ‘cross-presentation’. Critically, virally infected cells have been shown to be superior at delivering nonviral antigen for cross-presentation and cross-priming adaptive immune responses in vivo [32]. Intriguingly, recent work has defined a role for TLR-4 receptor ligands (bacterially derived lipopolysaccharide) in enhancing cross-presentation [33]; a similar effect of viral as opposed to bacterial TLR ligands has yet to be explored. Inflammatory stimuli have additionally been shown to enhance antigen processing and the generation of MHC class II complexes, required for CD4+ T-cell help in adaptive immune responses [34,35]; such inflammatory stimuli could be provided by viral tumor infection. Oncolytic virotherapy may therefore enhance immune priming via multiple effects upon DC. There is an emerging body of data from murine and human preclinical research supporting the concept that the efficacy of oncolytic virotherapy is at least partially immune mediated and that antitumor immunity can be generated.

Overall, the antiviral humoral and cellular immune responses may have contrasting consequences. Methods of enhancing viral delivery to tumors or immunomodulation provide an opportunity to alter this balance in favor of therapeutic benefit.

Clinical trials & the immune response

Although preclinical studies have provided support for the concept that the efficacy of oncolytic virotherapy may be dependent upon the host immune response, there are limited data on the immune response following virotherapy from early clinical trials.

Studies of intratumoral administration have provided direct evidence of a cellular immunological response. In a Phase I trial of a second-generation oncolytic HSV expressing GM–CSF injected into subcutaneous metastases from a variety of tumor types, post-treatment biopsies revealed an extensive immune cell infiltrate [54]. Additionally, suggestive of an immune-mediated antitumor effect, was the observation of inflammation in uninjected tumor deposits in four of 30 treated patients. Similarly, in a study of intratumoral administration of a recombinant vaccinia–GM–CSF virus in patients with melanoma deposits, treated lesions were shown to have a dense immune cell infiltrate. The generation of antitumor immunity was implied by the regression of noninjected regional dermal metastases in association with an immune infiltrate in four of seven treated patients [55]. A Phase I study of injection of JX-594, a targeted poxvirus armed with GM–CSF, into primary and metastatic liver tumors has recently been reported with encouraging evidence of activity, with a partial response in three and stable disease in six of ten evaluable patients by Response Evaluation Criteria in Solid Tumors (RECIST) [56]. Consistent with a possible antitumor immune response was the durability of tumor responses. Notably, there was evidence of functional response in noninjected tumors in three of seven evaluable patients by Choi criteria for reduction in Hounsfield units (n = 2) and by reduced 18F-fluorodeoxyglucose (18FDG)-PET signal (n = 1). There was evidence of viral dissemination to noninjected tumor tissue. The responses in injected and noninjected tumor tissue could therefore have been mediated by direct viral oncolysis, antiviral immune responses towards virally infected cells or antitumor immune responses established in the injected lesions.

Oncolytic viruses have been combined with tumor vaccines in an attempt to exploit viral danger signals. Vaccinia virus–melanoma cell lysate vaccines were used in an adjuvant Phase III study of 700 patients following melanoma resection, with no improvement in recurrence or overall survival [57]. A series of clinical studies has been performed by Schirrmacher et al. using a live autologous tumor vaccine infected by NDV irradiated to render tumor cells nonviable [58]. A significant proportion of patients developed antitumor immune responses as assessed by a delayed-type hypersensitivity response to skin prick tests. Phase II studies have been performed in glioblastoma multiforme, melanoma, breast and colorectal cancer with improvements in overall survival by 20–36% at 2–5-year follow-up compared with historical controls. These studies suggest that oncolytic viruses can break immunological tumor tolerance, although Phase III studies are needed to confirm these findings.

Combination therapy may be the optimal context in which to exploit the immunotherapeutic potential of oncolytic viruses. A rationale exists for combination with existing immunotherapy strategies, along with conventional therapy.

Adoptive cellular therapy & viral delivery

The use of cell carriers to chaperone viral particles to the tumor is a promising innovation [51]. Cells of the immune system have proven particularly adept, including cytokine-activated killer cells [52] and T lymphocytes [36]. Adoptive cellular therapy has met with some clinical success, but has been limited by the trafficking to and survival of T cells in the tumor microenvironment [62]. In a mouse model, the combination of oncolytic virus delivery with antigen-specific adoptive T-cell therapy has been shown to improve upon either treatment modality alone [63]. Although yet to be tested in clinical trials, these findings are of significant translational potential.

Immunotherapy combinations

Immunotherapy approaches may be logically combined with virotherapy to enhance antitumor responses.

The host immune response will probably be critical to the efficacy of oncolytic virotherapy, although it is a fine balance between rapid viral elimination and innate and adaptive responses, which may mediate tumor regression. The rational design of combination therapy, modulating the immunological outcome, may hold the key to fulfilling the potential of these novel agents. Clinical trials should be designed to include specific assessment of immune responses to both tumor and viral antigens, and recognize the immunotherapeutic potential of virotherapy in terms of clinical end points and patient selection.

Oncolytic Viruses and Their Application to Cancer Immunotherapy

E. Antonio Chiocca1 and Samuel D. Rabkin2
Cancer Immunol Res April 2014 2; 295

Oncolytic viruses (OV) selectively replicate and kill cancer cells and spread within the tumor, while not harming normal tissue. In addition to this direct oncolytic activity, OVs are also very effective at inducing immune responses to themselves and to the infected tumor cells. OVs encompass a broad diversity of DNA and RNA viruses that are naturally cancer selective or can be genetically engineered. OVs provide a diverse platform for immunotherapy; they act as in situ vaccines and can be armed with immunomodulatory transgenes or combined with other immunotherapies. However, the interactions of OVs with the immune system may affect therapeutic outcomes in opposing fashions: negatively by limiting virus replication and/or spread, or positively by inducing antitumor immune responses. Many aspects of the OV–tumor/host interaction are important in delineating the effectiveness of therapy: (i) innate immune responses and the degree of inflammation induced; (ii) types of virus-induced cell death; (iii) inherent tumor physiology, such as infiltrating and resident immune cells, vascularity/hypoxia, lymphatics, and stromal architecture; and (iv) tumor cell phenotype, including alterations in IFN signaling, oncogenic pathways, cell surface immune markers [MHC, costimulatory, and natural killer (NK) receptors], and the expression of immunosuppressive factors. Recent clinical trials with a variety of OVs, especially those expressing granulocyte macrophage colony-stimulating factor (GM-CSF), have demonstrated efficacy and induction of antitumor immune responses in the absence of significant toxicity. Manipulating the balance between antivirus and antitumor responses, often involving overlapping immune pathways, will be critical to the clinical success of OVs. Cancer Immunol Res; 2(4); 295–300. ©2014 AACR.

Oncolytic virus (OV) therapy is based on selective replication of viruses in cancer cells and their subsequent spread within a tumor without causing damage to normal tissue (1, 2). It represents a unique class of cancer therapeutics with distinct mechanisms of action. The activity of OVs is very much a reflection of the underlying biology of the viruses from which they are derived and the host–virus interactions that have evolved in the battle between pathogenesis and immunity. This provides a diverse set of activities that can be harnessed and manipulated. Typically, OVs fall into two classes: (i) viruses that naturally replicate preferentially in cancer cells and are nonpathogenic in humans often due to elevated sensitivity to innate antiviral signaling or dependence on oncogenic signaling pathways. These include autonomous parvoviruses, myxoma virus (MYXV; poxvirus), Newcastle disease virus (NDV; paramyxovirus), reovirus, and Seneca valley virus (SVV; picornavirus); and (ii) viruses that are genetically manipulated for use as vaccine vectors, including measles virus (MV; paramyxovirus), poliovirus (PV; picornavirus), and vaccinia virus (VV; poxvirus), and/or those genetically engineered with mutations/deletions in genes required for replication in normal but not in cancer cells including adenovirus (Ad), herpes simplex virus (HSV), VV, and vesicular stomatitis virus (VSV; rhabdovirus; refs. 1,3). Genetic engineering has facilitated the rapid expansion of OVs in the past two decades, enabling a broad range of potentially pathogenic viruses to be manipulated for safety and targeting (3). Many of the hallmarks of cancer described by Hanahan and Weinberg (4) provide a permissive environment for OVs; they include sustained proliferation, resisting cell death, evading growth suppressors, genome instability, DNA damage stress, and avoiding immune destruction. In addition, insertion of foreign sequences can endow further selectivity for cancer cells and safety, as well as altering virus tropism through targeting of translation with internal ribosome entry sites (IRES) or microRNAs (PV and VSV), transcription with cell-specific promoter/enhancers (Ad, HSV), or transduction with altered virus receptors (HSV, Ad, MV, and VSV; refs.1, 3). These strategies are also being used to target replication-deficient viral vectors for gene therapy applications in cancer immunotherapy.

OVs have many features that make them advantageous and distinct from current therapeutic modalities: (i) there is a low probability for the generation of resistance (not seen so far), as OVs often target multiple oncogenic pathways and use multiple means for cytotoxicity; (ii) they replicate in a tumor-selective fashion and are relatively nonpathogenic and, in fact, only minimal systemic toxicity has been detected; (iii) virus dose in the tumor increases with time due to in situ virus amplification, as opposed to classical drug pharmacokinetics that decrease with time; and (iv) safety features can be built in, such as drug and immune sensitivity. These features should result in a very high therapeutic index. An important issue for OV therapy is delivery. Although systemic intravenous administration is simpler than intratumoral injection and can target multiple tumors, it has drawbacks, including nonimmune human serum, anti-OV antibodies that preexist for human viruses or can be induced by multiple administrations, lack of extravasation into tumors, and sequestration in the liver (1). Cell carriers [i.e., mesenchymal stromal cells, myeloid-derived suppressor cells (MDSC), neural stem cells, T cells, cytokine-induced killer cells, or irradiated tumor cells] can shield virus from neutralization and facilitate virus delivery to the tumor (5). The effectiveness will vary depending upon the cell phenotype, permissiveness to virus infection, tumor-homing ability, and transfer of infectious virus to tumor cells. To block virus neutralization and extend vascular circulation, viruses can also be coated in nanoparticles (i.e., PEGylation; ref. 1).

OV Immunotherapy

Virus infection and pathogenicity have been major drivers in the evolution of the human immune system, and vaccination against viruses is the quintessential exploitation of adaptive immunity. A major goal of OV-mediated immunotherapy is to activate and redirect functional innate and adaptive immune responses toward the tumor. Interactions between innate and adaptive immune cells and signaling factors (i.e., cytokines and chemokines), often involved in virus infections, play a large role in antitumor immunity or lack thereof, as well as successful immunotherapies (Fig. 1). Virus infection induces an inflammatory response leading to adaptive antivirus immunity. Thus, the immune system was seen initially as a negative factor in OV therapy for limiting virus infection/delivery because of preexisting or therapy-induced immunity, virus replication because of innate antiviral responses, and virus spread because of the infiltration of innate immune cells (6). In addition, most early studies were performed in human xenograft tumor models in immunodeficient mice lacking adaptive immune responses because some viruses were species selective or replicated better in human cells, and because there was availability of a broad diversity of human cancer cell lines. With the use of syngeneic tumor models in immunocompetent mice, it became clear that the consequences of the immune system were complex, but that the induction of antitumor immunity was feasible and efficacious (6). In particular, many OVs act asin situ vaccines, inducing robust, long lasting, and specific adaptive antitumor responses, often CD8+ T cell–mediated (7, 8). Interestingly, adaptive antiviral immunity can enhance antitumor immunity for HSV, but not for VSV (8, 9).

Figure 1.

Figure 1.

Cartoon of OV-mediated effects in tumor. First phase, OV delivered intratumorally or systemically, infects tumor cells (can be blocked by humoral defense systems; antibodies). After infection, OV replicates (can be blocked by innate responses; i.e., IFN-α/β), kills cells often by ICD, and spreads throughout the tumor (can be blocked by innate immune cells, i.e., NK cells and macrophages), eliciting an inflammatory response. When an armed OV is used, the immunomodulatory transgene is expressed (transgene product). Second phase, ICD and inflammation recruit DCs to the tumor, where they take up TAAs and induce an adaptive immune response (T and B cells), which targets the tumor (can be blocked by Tregs and MDSCs). Innate cells such as NK cells also have antitumor activities. Antitumor immune responses can be further enhanced by transgene products. CPA, cyclophosphamide.



The inflammatory cascade and immunogenic cell death (ICD) induced by OV infection of tumors makes OVs particularly powerful inducers of antitumor immunity (8, 10). Among the many different types of cell death, some are immunogenic and characterized by the release of danger-associated molecular patterns (DAMP), such as calreticulin, high-mobility group protein B1 (HMGB1), and ATP, along with tumor-associated antigens (TAA; ref. 10). Multiple forms of ICD have been observed after OV (Ad, VV, HSV, MV, and coxsackievirus) infection of cancer cells, and there is a suggestion that ICD occurs in patients after treatment with oncolytic Ad and temozolomide (11). However, much remains to be learned about the mechanisms of OV-mediated cell death and how it can be exploited to enhance immunogenicity. Inflammation, typically chronic, can also promote tumorigenesis and inhibit T-cell antitumor activity (12). Restraining antiviral immune responses and minimizing pathology, while promoting antitumor immune responses, is a complex and poorly understood balancing act that will dictate OV therapy outcomes. In some cases, where minimal OV replication occurs in mouse tumors (i.e., HSV) or no replication is required (i.e., reovirus; ref. 13), antitumor efficacy is principally due to OV-induced immune responses. Understanding, harnessing, modulating, and/or enhancing OV-mediated immune responses for effective antitumor immunity are major areas in current research that intersect with other immunotherapeutic strategies.

Many viruses express immune evasion genes that enable them to establish infections and spread within their host (14). Mutations in these genes (i.e., HSV Us11, VV E3L, MYXV M156R, Ad VAI, and reovirus σ2/σ3, inhibitors of PKR; HSV ICP0, VV N2, NDV V, and MV V, inhibitors of IRF3; HSV ICP0, MYXV M13L, MV V, PV 3C, and VSV M, inhibitors of NF-κB; VV B8R and MYXV MT-7, inhibitors of IFN-γ; HSV ICP47 and AdE3-19K, inhibitors of MHC class I presentation; MV gp, inhibitor of T cells; and MYXV M128L and MV H, inhibitors of CD46) are likely to enhance the induction of immunity and possibly cross-presentation of TAAs. Such mutations should improve the safety of OVs by making them more visible to the immune system, as well as increasing antitumor immune responses. Conversely, they may diminish virus replication and spread. An additional problem not as easily addressed is OV infection of immune cells, especially dendritic cells (DC), that interferes with their function (15, 16).

Innate Immunity

Although adaptive immunity seems to provide and, in fact, represent even the major mode of anticancer action for OVs, it is also evident that an initial host response against an administered OV could destroy it along with the infected cells before the OV has a chance to replicate and induce cytotoxicity of a magnitude that is sufficient to set up an effective vaccination response (17). Location and site of OV administration is an important determinant of the characteristics of these initial host responses against the OV. For instance, intravenous or intra-arterial administration of OVs, such as recombinant HSV1, leads to its rapid recognition and elimination by the circulating complement and antibodies of the humoral defense system (18, 19). This has also been shown for VV (20), NDV (21), MV (22), and Ad (23, 24). Intratumoral administration can also lead to complement- and antibody-mediated destruction of the OV. In addition, intracellular and microenvironmental antiviral defense responses in infected tumor cells can also greatly limit the magnitude of OV replication (25–31). Finally, innate immune cells can rapidly respond to an administered OV, further limiting its survival and that of OV-infected tumor cells (32–35). In all these models, circumvention of such responses using pharmacologic agents, such as histone deacetylase (HDAC) inhibitors or immunomodulating drugs, or genes that block antiviral defense mechanisms, has led to improved OV replication and tumor cytotoxicity (reviewed in ref. 36). When pharmacologic agents are used, the interference of antiviral responses can be applied in a transient fashion usually right before or at the time of OV administration. This should lead to an initial burst of OV replication leading to tumor cell lysis. As the pharmacologic effects against host innate immunity wane, a large debris field of OVs and tumor antigens could be more promptly recognized by the antiviral host response, leading to a secondary long-term vaccination effect responsible for effective tumor immunity (Fig. 1). However, quantification of responses to OV therapy is a sorely needed area of investigation. For instance, the number of OV-replicative rounds, the tumor cell-OV burst size, the number of OV-replicative tumor foci, and the temporal kinetics of innate response suppression that are needed for an efficient lytic and vaccination effect are still undetermined. In fact, current applications of innate immunity modulation with OV administration remain to be determined in an empirical manner.


Enhancing OV Immunotherapy

Many OVs can accommodate gene insertions and thus can be “armed” with therapeutic transgenes, combining local gene delivery with oncolytic activity (42). Local expression in the tumor obviates toxicity arising from systemic administration of potent immune modulators. GM-CSF, based on its effects in cytokine-transduced cancer cell vaccines (i.e., clinically approved Sipuleucel-T), has been incorporated into a number of OVs [HSV T-Vec, VV JX-594, Ad Ad5/3-D24-GMCSF (43), and CG0070 (44)] that have entered clinical trials (8). GM-CSF–expressing OVs demonstrated only moderate activity in preclinical studies (45, 46), while JX-594 was not compared with a VV lacking GM-CSF (47). Other therapeutic transgenes include interleukin (IL)-2 (NDV, HSV, and parvovirus), IL-12 (Ad and HSV), IL-15 (VSV), IL-18 (HSV), IFN-α/β (Ad, VSV, and VV), soluble CD80 (Ad and HSV), 4-1BB (VV), CD40L (Ad, and no effect with VSV), Flt3L (Ad and HSV), CCL3 (Ad), CCL5 (Ad and VV), and combinations thereof (2). In addition to transgenes that enhance adaptive immune responses, cytokines/chemokines directed at the tumor microenvironment can alter the immune cell balance toward productive therapeutic immunity (Fig. 1). IL-12, a potent antitumor cytokine with antiangiogenic activities, when expressed from oncolytic HSV, reduced neovasculature and tumor regulatory T cells (Treg) and induced T cell–mediated immunity in an immunocompetent cancer stem cell model (48). Expression of a CXCR4 antagonist from oncolytic VV reduced tumor vasculature and accumulation of bone marrow–derived epithelial and myeloid cells and induced antitumor humoral responses (49).

Like many cancer vaccine strategies, OVs expressing TAAs can be used to induce tumor-selective adaptive immune responses. The combination of TAA expression in the tumor and OV-mediated cell killing induces enhanced T-cell migration and activation compared with OV-infected tumor cells expressing the TAA (50). This can be coupled to a prime (replication-deficient Ad or oncolytic Semliki Forest virus expressing a TAA)–boost (oncolytic VSV or VV expressing the same TAA) vaccine strategy, in which the boosted secondary response to the tumor dominates the primary anti-OV response (6, 8). To expand the antigenic repertoire, cDNA libraries from normal tissue (e.g., prostate for prostate tumors) or recurrent tumors have been inserted into VSV, and induced therapeutic immunity (51). Further enhancement was obtained by expressing xenogeneic TAAs (51, 52). The ability of oncolytic VSV expressing TAAs to induce IL-17 in the context of tumor immunity has been exploited to screen tumor cDNA libraries for individual TAAs and optimal TAA combinations, limiting potentially inappropriate responses of whole-cell or cDNA vaccines (53). Developing a similar strategy in a human setting would be a major advance.

A number of immunomodulatory agents have been examined to restrain antiviral immune responses and promote OV replication and spread. Cyclophosphamide can increase OV replication and inhibit tumor growth by suppressing innate immune cell (34) and antibody responses (54), depleting Tregs, and enhancing the antitumor activity of CTLs (Fig. 1; ref.8). A challenge is to identify immunosuppressive strategies that can blunt acute innate cells from blocking virus replication and spread, while permitting sufficient inflammation and cross-priming for robust antitumor immunity. Conversely, it will be of interest to combine OV with chemotherapies that induce ICD (e.g., cyclophosphamide, oxaloplatin, or anthracyclines such as doxorubicin and mitoxantrone), increase tumor cell antigenicity (e.g., gemcitabine, cisplatin, or etoposide) or susceptibility to immune cells (e.g., HDAC inhibitors, paclitaxel, or doxorubicin), or suppress MDSCs (e.g., gemcitabine and paclitaxel) and Tregs (e.g., cyclophosphamide or sunitinib; ref. 55) in immunocompetent preclinical models.

In conclusion, the field of virotherapy is becoming mature in its knowledge of effective anticancer mechanisms in animal tumor models with OVs that are also safe in human clinical trials. It seems that there may soon be a first-in-humans OV approved for use in the United States, which will further stimulate laboratory and clinical endeavors with this therapeutic strategy.


Oncolytic viruses: a new class of immunotherapy drugs.

Oncolytic viruses represent a new class of therapeutic agents that promote anti-tumour responses through a dual mechanism of action that is dependent on selective tumour cell killing and the induction of systemic anti-tumour immunity. The molecular and cellular mechanisms of action are not fully elucidated but are likely to depend on viral replication within transformed cells, induction of primary cell death, interaction with tumour cell antiviral elements and initiation of innate and adaptive anti-tumour immunity. A variety of native and genetically modified viruses have been developed as oncolytic agents, and the approval of the first oncolytic virus by the US Food and Drug Administration (FDA) is anticipated in the near future. This Review provides a comprehensive overview of the basic biology supporting oncolytic viruses as cancer therapeutic agents, describes oncolytic viruses in advanced clinical trials and discusses the unique challenges in the development of oncolytic viruses as a new class of drugs for the treatment of cancer.

Nat Rev Drug Discov. 2015 Sep;14(9):642-62.    http://dx.doi.org:/10.1038/nrd4663.


Oncolytic Virus-Mediated Immunotherapy: A Combinatorial Approach for Cancer Treatment  

SE Lawler, EA Chiocca    JCO.2015.62.5244    http://dx.doi.org:/10.1200/JCO.2015.62.5244


Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses

MC Speranza, K Kasai, SE Lawler – ILAR Journal, 2016 – ilarjournal.oxfordjournals.org
Abstract After more than two decades of research and development, oncolytic herpes
viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data.
oHSV and other oncolytic viruses function through direct oncolytic cancer cell–killing

[HTML] FDA Approves IMLYGIC™(Talimogene Laherparepvec) As First Oncolytic Viral Therapy In The US

J Carroll, D Garde – fiercebiotech.com
THOUSAND OAKS, Calif., Oct. 27, 2015/PRNewswire/–Amgen (AMGN) today announced
that the US Food and Drug Administration (FDA) has approved the Biologics License
Application for IMLYGIC™(talimogene laherparepvec), a genetically modified oncolytic

Other related articles published in this Open Access Online Scientific Journal include the following:

Oncolytic Viruses in Cancer Therapy @ CHI’s PreClinical Congress, June 14, 2016 Westin Boston Waterfront, Boston

Reporter: Aviva Lev-Ari, PhD, RN


Read Full Post »

Zika and neurone disorder

Larry H. Bernstein, MD, FCAP, Curator


Zika virus impairs growth in human neurospheres and brain organoids

Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased significantly in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. Here, we examine the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we show that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.

Primary microcephaly is a severe brain malformation characterized by the reduction of the head circumference. Patients display a heterogeneous range of brain impairments, compromising motor, visual, hearing and cognitive functions (1).

Microcephaly is associated with decreased neuronal production as a consequence of proliferative defects and death of cortical progenitor cells (2). During pregnancy, the primary etiology of microcephaly varies from genetic mutations to external insults. The so-called TORCHS factors (Toxoplasmosis, Rubella, Cytomegalovirus, Herpes virus, Syphilis) are the main congenital infections that compromise brain development in utero (3).

The increase in the rate of microcephaly in Brazil has been associated with the recent outbreak of Zika virus (ZIKV) (4, 5), a flavivirus that is transmitted by mosquitoes (6) and sexually (79). So far, ZIKV has been described in the placenta and amniotic fluid of microcephalic fetuses (1013), and in the blood of microcephalic newborns (11, 14). ZIKV had also been detected within the brain of a microcephalic fetus (13, 14), and recently, there is direct evidence that ZIKV is able to infect and cause death of neural stem cells (15).

Here, we used human induced pluripotent stem (iPS) cells cultured as neural stem cells (NSC), neurospheres and brain organoids to explore the consequences of ZIKV infection during neurogenesis and growth with 3D culture models. Human iPS-derived NSCs were exposed to ZIKV (MOI 0.25 to 0.0025). After 24 hours, ZIKV was detected in NSCs (Fig. 1, A to D), when viral envelope protein was shown in 10.10% (MOI 0.025) and 21.7% (MOI 0.25) of cells exposed to ZIKV (Fig. 1E). Viral RNA was also detected in the supernatant of infected NSCs (MOI 0.0025) by qRT-PCR (Fig. 1F), supporting productive infection.

Fig. 1ZIKV infects human neural stem cells.

Confocal microscopy images of iPS-derived NSCs double stained for (A) ZIKV in the cytoplasm, and (B) SOX2 in nuclei, one day after virus infection. (C) DAPI staining, (D) merged channels show perinuclear localization of ZIKV. Bar = 100 μm. (E) Percentage of ZIKV infected SOX2 positive cells (MOI 0.25 and 0.025). (F) RT-PCR analysis of ZIKV RNA extracted from supernatants of mock and ZIKV-infected neurospheres (MOI 0.0025) after 3 DIV, showing amplification only in infected cells. RNA was extracted, qPCR performed and virus production normalized to 12h post-infection controls. Data presented as mean ± SEM, n=5, Student’s t test, *p < 0.05, **p < 0.01.

To investigate the effects of ZIKV during neural differentiation, mock- and ZIKV-infected NSCs were cultured as neurospheres. After 3 days in vitro, mock NSCs generated round neurospheres. However, ZIKV-infected NSCs generated neurospheres with morphological abnormalities and cell detachment (Fig. 2B). After 6 days in vitro (DIV), hundreds of neurospheres grew under mock conditions (Fig. 2, C and E). Strikingly, in ZIKV-infected NSCs (MOI 2.5 to 0.025) only a few neurospheres survived (Fig. 2, D and E).

Fig. 2ZIKV alters morphology and halts the growth of human neurospheres.

(A) Control neurosphere displays spherical morphology after 3 DIV. (B) Infected neurosphere showed morphological abnormalities and cell detachment after 3 DIV. (C) Culture well-plate containing hundreds of mock neurospheres after 6 DIV. (D) ZIKV-infected well-plate (MOI 2.5-0.025) containing few neurospheres after 6 DIV. Bar = 250 μm in (A) and (B), and 1 cm in (C) and (D). (E) Quantification of the number of neurospheres in different MOI. Data presented as mean ± SEM, n=3, Student’s t test, ***p < 0.01.

Mock neurospheres presented expected ultrastructural morphology of nucleus and mitochondria (Fig. 3A). ZIKV-infected neurospheres revealed the presence of viral particles, similarly to those observed in murine glial and neuronal cells (16). ZIKV was bound to the membranes and observed in mitochondria and vesicles of cells within infected neurospheres (Fig. 3, B and F, arrows). Apoptotic nuclei, a hallmark of cell death, were observed in all ZIKV-infected neurospheres analyzed (Fig. 3B). Of note, ZIKV-infected cells in neurospheres presented smooth membrane structures (SMS) (Fig. 3, B and F), similarly to those previously described in other cell types infected with dengue virus (17). These results suggest that ZIKV induces cell death in human neural stem cells and thus impairs the formation of neurospheres.

Fig. 3ZIKV induces death in human neurospheres.

Ultrastructure of mock- and ZIKV-infected neurospheres after 6 days in vitro. (A) Mock-infected neurosphere showing cell processes and organelles, (B) ZIKV-infected neurosphere shows pyknotic nucleus, swollen mitochondria, smooth membrane structures and viral envelopes (arrow). Arrows point viral envelopes on cell surface (C), inside mitochondria (D), endoplasmic reticulum (E) and close to smooth membrane structures (F). Bar = 1 μm in (A) and (B) and 0.2 μm in (C) to (F). m = mitochondria; n = nucleus; sms = smooth membrane structures.

To further investigate the impact of ZIKV infection during neurogenesis, human iPS-derived brain organoids (18) were exposed with ZIKV, and followed for 11 days in vitro (Fig. 4). The growth rate of 12 individual organoids (6 per condition) was measured during this period (Fig. 4, A and D). As a result of ZIKV infection, the average growth area of ZIKV-exposed organoids was reduced by 40% when compared to brain organoids under mock conditions (0.624 mm2 ± 0.064 ZIKV-exposed organoids versus 1.051 mm2 ± 0.1084 mock-infected organoids normalized, Fig. 4E).

Fig. 4ZIKV reduces the growth rate of human brain organoids.

35 days old brain organoids were infected with (A) MOCK and (B) ZIKV for 11 days in vitro. ZIKV-infected brain organoids show reduction in growth compared with MOCK. Arrows point to detached cells. Organoid area was measured before and after 11 days exposure with (C) MOCK and (D) ZIKV in vitro. Plotted quantification represent the growth rate. (E) Quantification of the average of mock- and ZIKV-infected organoid area 11 days after infection in vitro. Data presented as mean ± SEM, n=6, Student’s ttest, *p < 0.05.

In addition to MOCK infection, we used dengue virus 2 (DENV2), a flavivirus with genetic similarities to ZIKV (11, 19), as an additional control group. One day after viral exposure, DENV2 infected human NSCs with a similar rate as ZIKV (fig. S1, A and B). However, after 3 days in vitro, there was no increase in caspase 3/7 mediated cell death induced by DENV2 with the same 0.025 MOI adopted for ZIKV infection (fig. S1, C and D). On the other hand, ZIKV induced caspase 3/7 mediated cell death in NSCs, similarly to the results described by Tang and colleagues (15). After 6 days in vitro, there is a significant difference in cell viability between ZIKV-exposed NSCs compared to DENV2-exposed NSCs (fig. S1, E and F). In addition, neurospheres exposed to DENV2 display a round morphology such as uninfected neurospheres after 6 days in vitro (fig. S1G). Finally, there was no reduction of growth in brain organoids exposed to DENV2 for 11 days compared to MOCK (1.023 mm2 ± 0.1308 DENV2-infected organoids versus 1.011 mm2 ± 0.2471 mock-infected organoids normalized, fig. S1, H and I). These results suggest that the deleterious consequences of ZIKV infection in human NSCs, neurospheres and brain organoids are not a general feature of the flavivirus family. Neurospheres and brain organoids are complementary models to study embryonic brain development in vitro (20, 21). While neurospheres present the very early characteristics of neurogenesis, brain organoids recapitulate the orchestrated cellular and molecular early events comparable to the first trimester fetal neocortex, including gene expression and cortical layering (18, 22). Our results demonstrate that ZIKV induces cell death in human iPS-derived neural stem cells, disrupts the formation of neurospheres and reduces the growth of organoids (fig. S2), indicating that ZIKV infection in models that mimics the first trimester of brain development may result in severe damage. Other studies are necessary to further characterize the consequences of ZIKV infection during different stages of fetal development.

Cell death impairing brain enlargement, calcification and microcephaly is well described in congenital infections with TORCHS (3, 23, 24). Our results, together with recent reports showing brain calcification in microcephalic fetuses and newborns infected with ZIKV (10, 14) reinforce the growing body of evidence connecting congenital ZIKV outbreak to the increased number of reports of brain malformations in Brazil.

Supplementary Materials


Materials and Methods

Figs. S1 and S2

References (2527)


  •  , Genetic causes of microcephaly and lessons for neuronal development. WIREs Dev. Biol.2, 461478 (2013). doi:10.1002/wdev.89 pmid:24014418

    E. C. GilmoreC. A. Walsh

  •  , Autosomal recessive primary microcephaly (MCPH): A review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet.76, 717728 (2005). doi:10.1086/429930pmid:15806441

    C. G. WoodsJ. BondW. Enard

  • N. NeuJ. Duchon,P. Zachariah

  • D. MussoC. RocheE. RobinT. NhanA. TeissierV. M. Cao-Lormeau

  • B. D. Foy,K. C. Kobylinski,J. L. Chilson Foy,B. J. Blitvich,A. Travassos da Rosa,A. D. Haddow,R. S. Lanciotti,R. B. Tesh

  • M. Sarno,G. A. Sacramento,R. Khouri,M. S. do Rosário,F. Costa,G. Archanjo,L. A. Santos,N. Nery Jr.,N.Vasilakis,A. I. Ko,A. R. de Almeida



Zika Virus Tied to MS-Like Brain Disorder


Scientists report that the Zika virus may be associated with an autoimmune disorder that attacks the brain’s myelin similar to multiple sclerosis (MS). The investigators will discuss the results of their research at the upcoming American Academy of Neurology’s 68th Annual Meeting in Vancouver, Canada.

“Though our study is small, it may provide evidence that in this case the virus has different effects on the brain than those identified in current studies,” said study author Maria Lucia Brito Ferreira, M.D., with Restoration Hospital in Recife, Brazil. “Much more research will need to be done to explore whether there is a causal link between Zika and these brain problems.”

For the study, researchers followed people who came to the hospital in Recife from December 2014 to June 2015 with symptoms compatible with arboviruses, the family of viruses that includes Zika, dengue, and chikungunya. Six people then developed neurologic symptoms that were consistent with autoimmune disorders and underwent exams and blood tests. The authors saw 151 cases with neurological manifestations during a period of December 2014 to December 2015.

All of the people came to the hospital with fever followed by a rash. Some also had severe itching, muscle and joint pain, and red eyes. The neurologic symptoms started right away for some people and up to 15 days later for others.

Of the six people who had neurologic problems, two of the people developed acute disseminated encephalomyelitis (ADEM), a swelling of the brain and spinal cord that attacks the myelin. In both cases, brain scans showed signs of damage to the brain’s white matter. Unlike MS, ADEM usually consists of a single attack that most people recover from within 6 months. In some cases, the disease can reoccur. Four of the people developed Guillain-Barré syndrome (GBS), a syndrome that involves myelin of the peripheral nervous system and has a previously reported association with the Zika virus.

When they were discharged from the hospital, five of the six people still had problems with motor functioning. One person had vision problems and one had problems with memory and thinking skills. Tests showed that the participants all had Zika virus. Tests for dengue and chikungunya were negative.

“This doesn’t mean that all people infected with Zika will experience these brain problems. Of those who have nervous system problems, most do not have brain symptoms,” said Dr. Ferreira. “However, our study may shed light on possible lingering effects the virus may be associated with in the brain.”

“At present, it does not seem that ADEM cases are occurring at a similarly high incidence as the GBS cases, but these findings from Brazil suggest that clinicians should be vigilant for the possible occurrence of ADEM and other immune-mediated illnesses of the central nervous system,” noted James Sejvar, M.D., with the Centers for Disease Control and Prevention in Atlanta and a member of the American Academy of Neurology. “Of course, the remaining question is ‘why’—why does Zika virus appear to have this strong association with GBS and potentially other immune/inflammatory diseases of the nervous system? Hopefully, ongoing investigations of Zika virus and immune-mediated neurologic disease will shed additional light on this important question.”

Zika Virus Structure Revealed


Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.

The team also identified regions within the Zika virus structure where it differs from other flaviviruses, the family of viruses to which Zika belongs that includes dengue, West Nile, yellow fever, Japanese encephalitis and tick-borne encephalitic viruses.

Any regions within the virus structure unique to Zika have the potential to explain differences in how a virus is transmitted and how it manifests as a disease, said Richard Kuhn, director of the Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D) who led the research team with Michael Rossmann, Purdue’s Hanley Distinguished Professor of Biological Sciences.

“The structure of the virus provides a map that shows potential regions of the virus that could be targeted by a therapeutic treatment, used to create an effective vaccine or to improve our ability to diagnose and distinguish Zika infection from that of other related viruses,” said Kuhn, who also is head of Purdue’s Department of Biological Sciences. “Determining the structure greatly advances our understanding of Zika – a virus about which little is known. It illuminates the most promising areas for further testing and research to combat infection.”

The Zika virus, a mosquito-borne disease, has recently been associated with a birth defect called microcephaly that causes brain damage and an abnormally small head in babies born to mothers infected during pregnancy. It also has been associated with the autoimmune disease Guillain-Barré syndrome, which can lead to temporary paralysis. In the majority of infected individuals symptoms are mild and include fever, skin rashes and flulike illness, according to the World Health Organization.

Zika virus transmission has been reported in 33 countries. Of the countries where Zika virus is circulating 12 have reported an increased incidence of Guillain-Barré syndrome, and Brazil and French Polynesia have reported an increase in microcephaly, according to WHO. In February WHO declared the Zika virus to be “a public health emergency of international concern.”

“This breakthrough illustrates not only the importance of basic research to the betterment of human health, but also its nimbleness in quickly addressing a pressing global concern,” said Purdue President Mitch Daniels. “This talented team of researchers solved a very difficult puzzle in a remarkably short period of time, and have provided those working on developing vaccines and treatments to stop this virus a map to guide their way.”

Rossmann and Kuhn collaborated with Theodore Pierson, chief of the viral pathogenesis section of the Laboratory of Viral Diseases at the National Institutes of Health National Institute of Allergy and Infectious Diseases. Additional research team members include Purdue graduate student Devika Sirohi and postdoctoral research associates Zhenguo Chen, Lei Sun and Thomas Klose.

The team’s paper marks the first published success of the new Purdue Institute for Inflammation, Immunology and Infectious Diseases in Purdue’s Discovery Park.

The university’s recently announced $250 million investment in the life sciences funded the purchase of advanced equipment that allowed the team to do in a couple of months what otherwise would have taken years, Rossmann said.

“We were able to determine through cryo-electron microscopy the virus structure at a resolution that previously would only have been possible through X-ray crystallography,” he said. “Since the 1950s X-ray crystallography has been the standard method for determining the structure of viruses, but it requires a relatively large amount of virus, which isn’t always available; it can be very difficult to do, especially for viruses like Zika that have a lipid membrane and don’t organize accurately in a crystal; and it takes a long time. Now, we can do it through electron microscopy and view the virus in a more native state. This was unthinkable only a few years ago.”

The team studied a strain of Zika virus isolated from a patient infected during the French Polynesia epidemic and determined the structure to 3.8Å. At this near-atomic resolution key features of the virus structure can be seen and groups of atoms that form specific chemical entities, such as those that represent one of 20 naturally occurring amino acids, can be recognized, Rossmann said.

The team found the structure to be very similar to that of other flaviviruses with an RNA genome surrounded by a lipid, or fatty, membrane inside an icosahedral protein shell.

The strong similarity with other flaviviruses was not surprising and is perhaps reassuring in terms of vaccine development already underway, but the subtle structural differences are possibly key, Sirohi said.

“Most viruses don’t invade the nervous system or the developing fetus due to blood-brain and placental barriers, but the association with improper brain development in fetuses suggest Zika does,” Sirohi said. “It is not clear how Zika gains access to these cells and infects them, but these areas of structural difference may be involved. These unique areas may be crucial and warrant further investigation.”

The team found that all of the known flavivirus structures differ in the amino acids that surround a glycosylation site in the virus shell. The shell is made up of 180 copies of two different proteins. These, like all proteins, are long chains of amino acids folded into particular structures to create a protein molecule, Rossmann said.

The glycosylation site where Zika virus differs from other flaviviruses protrudes from the surface of the virus. A carbohydrate molecule consisting of various sugars is attached to the viral protein surface at this site.

In many other viruses it has been shown that as the virus projects a glycosylation site outward, an attachment receptor molecule on the surface of a human cell recognizes the sugars and binds to them, Kuhn said.

The virus is like a menacing stranger luring an unsuspecting victim with the offer of sweet candy. The human cell gladly reaches out for the treat and then is caught by the virus, which, once attached, may initiate infection of that cell.

The glycosylation site and surrounding residues on Zika virus may also be involved in attachment to human cells, and the differences in the amino acids between different flaviviruses could signify differences in the kinds of molecules to which the virus can attach and the different human cells it can infect, Rossmann said.

“If this site functions as it does in dengue and is involved in attachment to human cells, it could be a good spot to target an antiviral compound,” Rossmann said. “If this is the case, perhaps an inhibitor could be designed to block this function and keep the virus from attaching to and infecting human cells.”

The team plans to pursue further testing to evaluate the different regions as targets for treatment and to develop potential therapeutic molecules, Kuhn said.

Kuhn and Rossmann have studied flaviviruses, the family of viruses to which Zika belongs, for more than 14 years. They were the first to map the structure of any flavivirus when they determined the dengue virus structure in 2002. In 2003 they were first to determine the structure of West Nile virus and now they are the first to do so with the Zika virus.

Read Full Post »

Older Posts »