Advertisements
Feeds:
Posts
Comments

Archive for the ‘Infectious Disease & New Antibiotic Targets’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Once herpes simplex infects a person, the virus goes into hiding inside nerve cells, hibernating there for life, periodically waking up from its sleep to reignite infection, causing cold sores or genital lesions to recur. Research from Harvard Medical School showed that the virus uses a host protein called CTCF, or cellular CCCTC-binding factor, to display this type of behavior. Researchers revealed with experiments on mice that CTCF helps herpes simplex regulate its own sleep-wake cycle, enabling the virus to establish latent infections in the body’s sensory neurons where it remains dormant until reactivated. Preventing that latency-regulating protein from binding to the virus’s DNA, weakened the virus’s ability to come out of hiding.

 

Herpes simplex virus’s ability to go in and out of hiding is a key survival strategy that ensures its propagation from one host to the next. Such symptom-free latency allows the virus to remain out of the reach of the immune system most of the time, while its periodic reactivation ensures that it can continue to spread from one person to the next. On one hand, so-called latency-associated transcript genes, or LAT genes, turn off the transcription of viral RNA, inducing the virus to go into hibernation, or latency. On the other hand, a protein made by a gene called ICP0 promotes the activity of genes that stimulate viral replication and causes active infection.

 

Based on these earlier findings, the new study revealed that this balancing act is enabled by the CTCF protein when it binds to the viral DNA. Present during latent or dormant infections, CTCF is lost during active, symptomatic infections. The researchers created an altered version of the virus that lacked two of the CTCF binding sites. The absence of the binding sites made no difference in early-stage or acute infections. Similar results were found in infected cultured human nerve cells (trigeminal ganglia) and infected mice model. The researchers concluded that the mutant virus was found to have significantly weakened reactivation capacity.

 

Taken together, the experiments showed that deleting the CTCF binding sites weakened the virus’s ability to wake up from its dormant state thereby establishing the evidence that the CTCF protein is a key regulator of sleep-wake cycle in herpes simplex infections.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/29437926

 

https://hms.harvard.edu/news/viral-hideout?utm_source=Silverpop

 

https://www.ncbi.nlm.nih.gov/pubmed/30110885

 

https://www.ncbi.nlm.nih.gov/pubmed/30014861

 

https://www.ncbi.nlm.nih.gov/pubmed/18264117

 

Advertisements

Read Full Post »


Antibiotic Management of Necrotizing Fasciitis

Reporter: Aviva Lev-Ari, PhD, RN

 

Personal Nursing Notes:

  • In Nursing School at Northeastern University, 9/2005 – 12/2007, wrote a paper on Causes of Necrotiszing Tissue
  • In Medical-Surgical Rotation at BWH, Boston, 2006, shadowed post-surgical case of Necrotizing Fasciitis and treatment with vacuum-assisted wound closing device (VAC). Postoperative management of the surgical wound benefited from exudate removal and exact monitoring of exudate accumulation in VAC canister recorded by the Nursing staff.
  • In Vulnerable Populations rotation at Barbara McGinnis House in Jamaica Plain, 2006, delivered wound care to a patient with type 3 fasciitis on a lower extremity
  • In LTACH, Kindred Waltham Hospital, as Hospital Supervisor, 2009, supervised administration of triple IV antibiotic treatment for a patient with Type 3 Fasciitis of the lower extremity
  • In personal communication with Dr. T.H., OCB, Boston, 2003, he reported the cardinal importance of triple IV antibiotic treatment in curing Fasciitis in lower extremity following Hip replacement surgery.

 

Report Based on

Front Surg. 2014; 1: 36.
Published online 2014 Sep 29. Prepublished online 2014 May 31. doi:  10.3389/fsurg.2014.00036
PMCID: PMC4286984

Current Concepts in the Management of Necrotizing Fasciitis

Table 1

Classification of responsible pathogens according to type of infection.

Antibiotic treatment

Since ischemia and hypoxia compromise the adequate delivery of antibiotics to the infection site, conservative treatment with antibiotics alone has little value in the management of NF (58). However, they play a significant role in surgical management of the infection. Patients should be immediately treated with broad-spectrum antibiotics, when NF is suspected. The empirical usage of antibiotics is based on the microbiological classification of NF. Antibiotic treatment of a polymicrobial infection should be based on history, Gram stain, and culture. Initial treatment includes ampicillin or ampicillin–sulbactam combined with metronidazole or clindamycin (59). Anaerobic coverage is quite important for type 1 infection; metronidazole, clindamycin, or carbapenems (imipenem) are effective antimicrobials. Broad gram-negative coverage is necessary as an initial empirical therapy for patients who have recently been treated with antibiotics, or been hospitalized. In such cases, antibiotics such as ampicillin–sulbactam, piperacillin–tazobactam, ticarcillin–clavulanate acid, third or fourth generation cephalosporins, or carbapenems are used, and at a higher dosage.

Type 2 disease is treated with antibiotics against S. pyogenes and S. aureus, which usually coexist with the former. Hence, first or second generation of cephalosporins are used for the coverage of methicillin-sensitive Staphylococcus aureus (MSSA). MRSA tends to be covered by vancomycin, or daptomycin and linezolid in cases where S. aureus is resistant to vancomycin. Some studies suggest that clindamycin is superior to penicillin in managing streptococcal infections (60), but this has yet to be satisfactorily proven. Another study has proposed that clinicians should consider adding clindamycin to the beta-lactam antibiotic regimen when NF or myositis is present (61).

Type 3 NF should be managed with clindamycin and penicillin, which cover the Clostridium species. If Vibrio infection is suspected, the early use of tetracyclines (including doxycycline and minocycline) and third-generation cephalosporins is crucial for the survival of the patient, since these antibiotics have been shown to reduce the mortality rate drastically (59).

Finally, type 4 NF can be treated with amphotericin B or fluoroconazoles, but the results of this treatment are generally disappointing.

As in every empirical antibiotic therapy, the dosage should be tapered, based on the results of the initial blood, wound, and tissue cultures, but continued until the infection is under control and for at least 48 h after clinical and hemodynamic stabilization of the patient has been achieved. Antibiotics should be administered for up to 5 days after local signs and symptoms have resolved (62). The mean duration of antibiotic therapy for NF is 4–6 weeks.

Intravenous immunoglobulin (IVIG) has recently been described as a reasonable and desirable option for neutralizing streptococcal toxins (63). There is evidence that a high dose of IVIG may prove beneficial in severe streptococcal infections (64), but this has yet to be demonstrated with randomized studies.

Nursing comments:

Nutrition

Nutritional support is required from the first day of the patient’s admission to hospital (preferably the ICU), to replace lost proteins and fluid from large wounds and/or the resultant toxic shock. Metabolic demands are similar to those of other major trauma or burns, which means that the patient needs twice the basic caloric requirements.

Wound dressing and debridement

Postoperative management of abdominal wall wounds involves serial dressing changes over the following days, until the wound is free of recurrent or ongoing infection. The use of a vacuum-assisted wound closing device (VAC) can also be helpful. After surgical debridement, the use of the VAC system helps wound healing by absorbing excess exudates; reducing localized edema, and finally drawing wound edges together

Conclusion

Necrotizing fasciitis is a rare but life-threatening condition, with a high mortality rate (median mortality 32.2%) that approaches 100% without treatment. Numerous conditions are associated with this pathology, such as diabetes mellitus, immunosuppression, chronic alcohol disease, chronic renal failure, and liver cirrhosis, which can be conductive to the rapid spread of necrosis, and increase in the mortality rate. The diagnosis of NF is difficult and the differential diagnosis between NF and other necrotizing soft tissue infections more so. However, the clinician should do their utmost to secure the diagnosis of NF, as a delay in diagnosis can be fatal, and septic shock is inevitable if the disease remains untreated. The characteristic of NF is the clinical status change over time. The early clinical picture includes erythema, swelling, tenderness to palpation, and local warmth; once the infection develops, the infection site presents skin ischemia with blisters and bullae. The diagnosis of NF can be secured faster with the use of laboratory-based scoring systems, such as the LRINEC score or the FGSI score, especially in cases of Fournier’s gangrene. However, the diagnosis is definitely established by performing explorative surgery at the infected site.

Management of the infection begins with antibiotic treatment. In the majority of cases with NF (70–90%) the reasonable pathogens are two or more, suggesting the use of broad-spectrum antibiotics. The value of antibiotic treatment in NF is relatively low, and early and aggressive drainage and debridement is required. In NF of the extremities, the clinician should consider amputating the infected limb, although this will not reduce the risk of mortality. Finally, postoperative management of the surgical wound is important, along with proper nutrition of the patient. The use of VAC therapy in wound management has greatly improved the results of postoperative management.

SOURCE includes the References mentioned, above

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286984/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Hepatitis B virus can cause serious, long-term health problems, such as liver disease and cancer, and can spread from mother-to-child during delivery. According to the latest estimates from the World Health Organization (WHO), approximately 257 million people in 2015 were living with the virus. Countries in Asia have a high burden of hepatitis B. There is no cure, and antiviral drugs used to treat the infection usually need to be taken for life.

 

To prevent infection, WHO recommends that all newborns receive their first dose of hepatitis B vaccine within 24 hours of delivery. Infants born to hepatitis B-infected mothers are also given protective antibodies called hepatitis B immune globulin (HBIG). However, mother-to-child transmission can still occur in women with high levels of virus in their blood, as well as those with mutated versions of the virus.

 

Tenofovir disoproxil fumarate (TDF), an antiviral drug commonly prescribed to treat hepatitis B infection, does not significantly reduce mother-to-child transmission of hepatitis B virus when taken during pregnancy and after delivery, according to a phase III clinical trial in Thailand funded by the National Institutes of Health. The study tested TDF therapy in addition to the standard preventative regimen — administration of hepatitis B vaccine and protective antibodies at birth — to explore the drug’s potential effects on mother-to-child transmission rates. The results appear in the New England Journal of Medicine.

 

The present study was conducted at 17 hospitals of the Ministry of Public Health in Thailand. It screened more than 2,500 women for eligibility and enrolled 331 pregnant women with hepatitis B. The women received placebo (163) or TDF (168) at intervals from 28 weeks of pregnancy to two months after delivery. All infants received standard hepatitis B preventatives given in Thailand, which include HBIG at birth and five doses of the hepatitis B vaccine by age 6 months (which differs from the three doses given in the United States). A total of 294 infants (147 in each group) were followed through age 6 months.

 

Three infants in the placebo group had hepatitis B infection at age 6 months, compared to zero infants in the TDF treatment group. Given the unexpectedly low transmission rate in the placebo group, the researchers concluded that the addition of TDF to current recommendations did not significantly reduce mother-to-child transmission of the virus.

 

According to the study, the clinical trial had enough participants to detect statistical differences if the transmission rate in the placebo group reached at least 12 percent, a rate observed in previous studies. Though the reasons are unknown, the researchers speculate that the lower transmission rate seen in the study may relate to the number of doses of hepatitis B vaccine given to infants in Thailand, lower rates of amniocentesis and Cesarean section deliveries in this study, or the lower prevalence of mutated viruses that result in higher vaccine efficacy in Thailand compared to other countries.

 

References:

 

https://www.nih.gov/news-events/news-releases/antiviral-drug-not-beneficial-reducing-mother-child-transmission-hepatitis-b-when-added-existing-preventatives

 

https://www.ncbi.nlm.nih.gov/pubmed/29514030

 

https://www.ncbi.nlm.nih.gov/pubmed/29514035

 

https://www.ncbi.nlm.nih.gov/pubmed/25240752

 

https://www.ncbi.nlm.nih.gov/pubmed/28188612

 

Read Full Post »


NEW Book #InfectiousDiseases #Immunology #StressSignaling #Therapeutics check https://www.amazon.com/dp/B075CXHY1B

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

 

Includes FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, Viral Infection, Fungal Infection, Allergy-related Infections and Other, 1995 – 2016

VOLUME 2: covers the frontier of research on Infectious Diseases and the Human Immune System. The Immune Response, Disease Specific Immune Response, Immunodiagnostics and Immunotherapy, Immunotherapy and Autoimmunity,
Bacterial Infections, Bacteria Types, Antibactirial Therapeutics, FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, 1995 – 2016. Viral Infection: Virus Types, Antiviral Therapeutics, and FDA Approved Drugs for Infections and Infectious Diseases: Viral Infection, Fungal Infections, Allergy-related Infections, Other Infections,1995 – 2016,

VOLUME 3: covers the state of Science on the Historical Perspective of Immunology, Development of the Immune System, Signaling and Immunology, Cellular Immunity, Immunology and Inflammatory Response. Antibody-based Immunity, Vaccines and Microbiome, Immuno-Pharmaceutics, Cancer Immunotherapy, Immunomodulation and Neuro-Immunology.

Volume 2: Summary
The material that has been covered is a considerable material on the basic types of infections – bacterial, viral, and fungal, and diseases related to immune mechanisms. There has been a substantial coverage of the drugs and the manufacturers. This material brings to the discussion an international problem of drug resistance that applies much to bacteria, and a considerable amount of material on advances in drug development that takes into consideration protein structure and protein-protein interactions. The coverage of virus diseases brings to the forefront vaccines. However, in such cases as the influenza virus, a rapid genetic change of the virus makes the use of vaccines an issue for continuing revision.

Volume 3: Summary
The second volume is only concerned with the pathobiology of the inflammatory response, including sepsis, and it does not leave out hematopoiesis, and it lays out the difference between the B-clles and the T-cells that are related to the Toll receptor. Here we have looked closely at two immune disorders, Inflammatory Bowel Disease (Crohn’s Disease) and Rheumatoid Arthritis. Here we have discussed immunomodulation and signaling of the pathways involved, and the programmed cell death response. We have also covered the relationship of the immune response to autoimmune disorders and to cancer. The treatment of cancer now heavily leans toward the blocking of destructive processes in the immunomodulatory pathways.

Epilogue – Volume 2
Volume 2 has covered the most common bacterial and viral diseases that we find widely, or sporadically. It detailed the development of sepsis, and the immune response factor. The immune response involves local cellular invasion of lymphocytes related to initiation of T-cells and macrophages, and also the proteomic generated B-cell antibodies. These reactions are both local and systemic, as bacterial invasion is local and usually related to the tissue of residence (large intestine, oral, lung, genital). In the case of virus, the site of entry is often respiratory or by food intake, but these agents may rapidly become systemic. The other matter of the immune response is autoimmune, a reaction against the self. It is not entirely clear how this is initiated, but it has been related to failure to develop immunity in the prenatal or postnatal period. The only other possibility that might be considered would be by the mechanism of cell remodeling by an apoptotic related mechanism. The other chapters deal with therapeutics.

Epilogue – Volume 3
These two volumes have traversed a large knowledge-base. The first was directed largely at the well known bacterial, virus, fungal diseases, as well as autoimmunity. It specified recent FDA approved recommendations of pharmaceutics for these conditions. It also gives some attention to the immune response in inflammatory and autoimmune diseases, but not cancer. The second volume gives a concise history of development of Leukemias, Lymphomas pathology.

Read Full Post »


Announcing our 10th e-Book on Amazon.com – 1st day, 9/4/2017

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

On our Book Shelf on Amazon.com

WE ARE ON AMAZON.COM

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

http://www.amazon.com/dp/B00DINFFYC

http://www.amazon.com/dp/B018Q5MCN8

http://www.amazon.com/dp/B018PNHJ84

http://www.amazon.com/dp/B018DHBUO6

http://www.amazon.com/dp/B013RVYR2K

http://www.amazon.com/dp/B012BB0ZF0

http://www.amazon.com/dp/B019UM909A

http://www.amazon.com/dp/B019VH97LU

http://www.amazon.com/dp/B071VQ6YYK

https://www.amazon.com/dp/B075CXHY1B

 

The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since 9/4/2017

by Larry H. Bernstein (Author), Aviva Lev-Ari (Author), Stephen J. Williams (Author), Demet Sag (Author), Irina Robu (Author), Tilda Barliya (Author), David Orchard-Webb (Author), Alan F. Kaul (Author), Danut Dragoi (Author), Sudipta Saha (Editor)

https://www.amazon.com/dp/B075CXHY1B

 

Product details

  • File Size:21832 KB
  • Print Length:3747 pages
  • Publisher:Leaders in Pharmaceutical Business Intelligence (LPBI) Group; 1 edition (September 4, 2017)
  • Publication Date:September 4, 2017
  • Sold by:Amazon Digital Services LLC
  • Language:English
  • ASIN:B075CXHY1B
  • Text-to-Speech: Enabled 
  • X-Ray: Not Enabled 
  • Word Wise:Not Enabled
  • Lending:Enabled
  • Enhanced Typesetting:Not Enabled 

Read Full Post »


Curator: Aviva Lev-Ari, PhD, RN

 

Transcriptomic Biomarkers to Discriminate Bacterial from Nonbacterial Infection in Adults Hospitalized with Respiratory Illness

Published online: 26 July 2017

URMC Researchers Developing New Tool to Fight Antibiotic Resistance

Goal is to Distinguish Between Viral and Bacterial Infections, Reduce Unnecessary Use of Antibiotics

Friday, July 28, 2017

“It’s extremely difficult to interpret what’s causing a respiratory tract infection, especially in very ill patients who come to the hospital with a high fever, cough, shortness of breath and other concerning symptoms,” said Ann R. Falsey, M.D., lead study author, professor and interim chief of the Infectious Diseases Division at UR Medicine’s Strong Memorial Hospital.

“My goal is to develop a tool that physicians can use to rule out a bacterial infection with enough certainty that they are comfortable, and their patients are comfortable, foregoing an antibiotic.”

Lead researcher Ann Falsey, M.D.

Ann R. Falsey, M.D.

Falsey’s project caught the attention of the federal government; she’s one of 10 semifinalists in the Antimicrobial Resistance Diagnostic Challenge, a competition sponsored by NIH and the Biomedical Advanced Research and Development Authority to help combat the development and spread of drug resistant bacteria. Selected from among 74 submissions, Falsey received $50,000 to continue her research and develop a prototype diagnostic test, such as a blood test, using the genetic markers her team identified.

SOURCE

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

Lower respiratory tract infection (LRTI)

We enrolled 94 subjects who were microbiologically classified; 53 as “non-bacterial” and 41 as “bacterial”. RNAseq and qPCR confirmed significant differences in mean expression for 10 genes previously identified as discriminatory for bacterial LRTI. A novel dimension reduction strategy selected three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation) including eleven genes as optimal markers for discriminating bacterial infection (naïve AUC = 0.94; nested CV-AUC = 0.86). Using these genes, we constructed a classifier for bacterial LRTI with 90% (79% CV) sensitivity and 83% (76% CV) specificity. This novel, pathway-based gene set displays promise as a method to distinguish bacterial from nonbacterial LRTI.

https://www.nature.com/articles/s41598-017-06738-3#Sec8

IMAGE SOURCE

https://www.nature.com/articles/s41598-017-06738-3#Sec8

 

SOURCES

http://sciencemission.com/site/index.php?page=news&type=view&id=microbiology-virology%2Fnew-tool-to-distinguish&filter=8%2C9%2C10%2C11%2C12%2C13%2C14%2C16%2C17%2C18%2C19%2C20%2C27&redirected=1&redirected=1

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

https://www.nature.com/articles/s41598-017-06738-3

Bacterial or Viral Infection? A New Study May Help Physicians …

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Series D, VOLUME 2:

Infectious Diseases and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP and CuratorSudipta Saha, PhD

 

Series D, VOLUME 3:

The Immune System and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/biomed-e-books/series-d-e-books-on-biomedicine/human-immune-system-in-health-and-in-disease/

Read Full Post »


The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally  

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

The newly formed Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences (RBHS) of Rutgers University, New Brunswick, New Jersey (http://rbhs.rutgers.edu/), represents a new way of thinking by providing positive health outcomes to potential patients around the world affected by disease and/or by a negative environmental impact. The goal of the Institute is three-fold:

  • to improve the health and wellness of individuals and populations around the world,
  • to create a healthier world through innovation, engineering, and technology, and
  • to educate involved citizens and effective leaders in global health.

Richard G. Marlink, M.D., a former Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute.

The Rutgers Global Health Institute was formed last year after research by the University into the most significant health issues affecting under-served and under-developed populations. While conducting research for its five-year strategic plan, the RBHS looked for bold and ambitious ways that they could take advantage of the changing health care environment and band together to tackle the world’s leading health and environmental causes, contributing to the betterment of society. One of the results was the formation of the Rutgers Global Health Institute, supporting cross-functionally Rutgers faculty, scientists, and clinicians who represent the best in their respective fields of health innovation, research and patient care related to global health.

More broadly, the RBHS, created in 2013, is one of the nation’s leading – and largest — academic health centers that provides health care education, research and clinical service and care. It is an umbrella organization that encompasses eight schools – Ernest Mario School of Pharmacy, Graduate School of Biomedical Sciences, New Jersey Medical School, Robert Wood Johnson Medical School, Rutgers School of Dental Medicine, School of Health Professions, School of Nursing and School of Public Health.

In addition, the RBHS encompasses six centers and institutes that provide cancer treatment and research, neuroscience, advanced biotechnology and medicine, environmental and occupational health and health care policy and aging research. Those centers and institutes are the Brain Health Institute, Center for Advanced Biotechnology and Medicine, Environmental and Occupational Health Sciences Institute, Institute for Health, Health Care Policy and Aging Research, Rutgers Cancer Institute of New Jersey, and Rutgers Institute for Translational Medicine and Research. And lastly, the RBHS includes the University Behavioral Health Care.

 

Rutgers Institute For Health Building

Image SOURCE: Photograph courtesy of the Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey.   

 

Below is my interview with the Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute Richard G. Marlink, M.D., which occurred in April, 2017.

You were recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). What are the goals of the new Institute?

Dr. Marlink: The overarching goal of the Rutgers Global Health Institute is to improve the health and wellness of individuals and populations in need both here and around the world, to create a healthier world through innovation, engineering, and technology, and to educate involved citizens and effective leaders in global health. We will do that by building on the aspiration of our originating organization — RBHS, which is to be recognized as one of the best academic health centers in the U.S., known for its education, research, clinical care, and commitment to improving access to health care and reducing health care disparities.

As the newly formed Rutgers Global Health Institute, we are embarking on an ambitious agenda to take advantage of the changing health care environment. Working across schools and disciplines at Rutgers University, we plan to have a significant impact within at least four signature programs identified by RBHS, which are cancer, environmental and occupational health, infection and inflammation, and public health. We also will include all other parts of Rutgers, as desired, beyond RBHS.

My background as a global health researcher, physician, and leader of grassroots health care delivery will help develop programs to undertake global health initiatives that assist populations locally and around the world. I believe that involved citizens, including students, can greatly impact major societal issues.

A key role in the strategic growth of Rutgers Biomedical and Health Sciences – an umbrella organization for eight schools, four centers and institutes and a behavioral health network — is to broaden the Rutgers University’s presence in the public health community globally to improve health and wellness. How will the new Rutgers Global Health Institute be part of this growth?

Dr. Marlink: Our RBHS Chancellor Brian Strom [M.D., M.P.H.] believes that we are positioned to become one of the finest research universities in the country, working cross-functionally with our three campuses in Newark, Camden and New Brunswick. In developing the strategic plan, Dr. Strom notes that we become much stronger and more capable and productive by leveraging our strengths to collaborate and working together across disciplines to best serve the needs of our community locally and globally.

Specifically, we are formulating plans to focus on these areas: old and new infectious disease epidemics; the expanding burden of noncommunicable diseases in poor populations; the social and environmental threats to health, poverty and humanitarian crises; and inadequate local and developing country health systems. We will support the development of global health research programs university-wide, the recruitment of faculty with interests in global health, and the creation of a web-based global health resource center for faculty and students with interests in these areas.

We are still a very young part of RBHS, and of Rutgers overall, so our plans are a work in progress. As tangible examples of our commitment to improving health and wellness globally, we plan to enhance global public health by establishing links between global public health and environmental and occupational health faculty in studies related to air pollution, climate change, and pesticide health.

Another example the Institute has in the works is expanding links with the School of Engineering. In fact, we are creating a senior-level joint faculty position with the School of Engineering and Rutgers-New Brunswick. Still other plans involve forging collaborative relationships between the Rutgers Cancer Program, under the auspices of Rutgers Cancer Institute of New Jersey, which is New Jersey’s only National Cancer Institute (NCI)-designated comprehensive cancer center, and other organizations and partners around the world, especially in poor and less-developed countries.

How is the Rutgers Global Health Institute strategically prepared for changing the health care paradigm?

Dr. Marlink: We intend to be an international global health leader in the health sciences, in public health, and in other related, but non-biomedical professions. This means that we will incorporate our learnings from laboratory sciences and the clinical, behavioral, and public health sciences, as well as from engineering, business, economics, law, and social sciences. This broad approach is critical in this health care environment as accountability for patient care is shifting to large groups of providers. Health care will be more value-driven and our health care teams must work collaboratively to be innovative. Our focus on health care is now also population-based, rather than only individual-based, and we are moving from large regional centers toward community centers, even in small and remote areas of the world. We are encouraged by rapid changes in technology that will provide new opportunities for shared knowledge, patient care and research.

Additionally, we are exploring ways to identify and recruit key faculty who will increase our breadth and depth of key disease areas as well as provide guidance on how to pursue science grants from the National Institute of Health (NIH)-funded program project grants and specialized research programs.

Currently, Rutgers University receives NIH funding for research in public health, population health, health promotion, wellness, health behavior, preventive medicine, and global health.

As a researcher, scholar and leader of grassroots health care delivery, how have your past positions prepared you for this new challenge? Your last position was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard University’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

Dr. Marlink: I have been a global health practitioner, researcher, and executive leader for almost three decades. I am trained in medical oncology and HIV medicine and have conducted clinical, epidemiological and implementation research in Africa since 1985. I was first introduced to global health when finishing my Hematology/Oncology fellowship at what is now the Beth Israel Deaconess Medical Center in the mid-1980’s in Boston.

During my Hematology/Oncology fellowship and after the co-organizing the first, hospital-based AIDS care clinic in the New England region, I was trying to learn the ropes in virology and molecular biology in the laboratory group of Max Essex at Harvard University. During that time in the mid-1980s, our laboratory group along with Senegalese and French collaborators discovered the first evidence for the existence of a new human retrovirus, HIV-2, a distinct second type of human AIDS virus, with its apparent origins in West Africa.

As a clinician, I was able to assist in Senegal, helping set up clinical care and create a research cohort in Dakar for hundreds of women sex workers infected with this new human retrovirus and care for them and their families. I discovered that a little can go a long way in poor settings, such as in Senegal. I became hooked on helping create solutions to help people in poor settings in Africa and elsewhere. Long-term partnerships and friendships have subsequently been made in many developing countries. Throughout my career, I have built successful partnerships with many governments, companies, and non-profit organizations, and those relationships have been the foundation to build successful public health partnerships in poor regions of the world.

In the 1990s, I helped create the Botswana-Harvard Partnership for HIV Research and Education (BHP). Through this partnership, the Government of Botswana and BHP have worked together to combat the AIDS epidemic in Botswana. Under my direction, and in partnership with the Botswana Ministry of Health, BHP launched the KITSO AIDS Training Program in 1999. Kitso is the Setswana word for ‘knowledge.”

KITSO is the national training program for physicians, nurses, and pharmacists, which has trained more than 14,000 health professionals in HIV/AIDS care and antiretroviral treatment. KITSO training modules address issues, such as antiretroviral therapy, HIV/AIDS-related disease management, gender-specific HIV issues, task-sharing, supportive and palliative care, and various psychosocial and counseling themes.

In addition, I was the Botswana County Director for Harvard Chan School’s 3-country President’s Emergency Plan AIDS Relief (PEPFAR) grant, The Botswana PEPFAR effort includes a Clinical and Laboratory Master Training Program and the creation of the Botswana Ministry of Health’s Monitoring and Evaluation Unit. Concurrently, I was the Principal Investigator of Project HEART in five African countries with the Elizabeth Glaser Pediatric AIDS Foundation.

Also in Botswana, in 2000, I was a co-founder of a distinct partnership involving a large commitment to the Government of Botswana from the Bill and Melinda Gates and Merck Foundations.  This commitment continues as an independent non-governmental organization (NGO) to provide support for various AIDS prevention and care efforts in Botswana and the region.

All these global health experiences, it seems, have led me to my new role at the Rutgers Global Health Institute.

What is your advice for ways that the business community or university students can positively impact major societal issues?

Dr. Marlink: My advice is to be optimistic and follow that desire to want to make a difference. Margaret Mead, the American cultural anthropologist, said years ago, “Never doubt that a small group of thoughtful, committed citizens can change the world; indeed, it’s the only thing that ever has.” I believe that to be our guiding principle as we embark on this new initiative.

I also believe that students should become specialized in specific areas prior to going fully into “global health,” as they develop in their careers, since they will then add more value later. For example, students should be grounded in the theory of global health in their undergraduate studies and then develop a specialization, such as becoming a statistician, economist, or medical doctor, to make a longer and greater impact in improving global health. As for the business community, we are looking for committed individuals who are specialized in specific areas to bring their knowledge to our organization, as partners in the fight against disease, improving the environment, or helping with humanitarian issues. We are committed to improving health and wellness, increasing access to the best health care, and reducing health disparities.

What is it about your current role that you enjoy the most?

Dr. Marlink: I enjoy building research, learning, and clinical programs, as I have in the HIV arena since the early 1980s. At that time, there were limited resources and funding, but a willingness among universities, non-governmental organizations, hospitals and the pharmaceutical industry to make a difference. Today in my new role, I’d like all of us to have an impact on health and wellness for those in need – to build programs from the ground up while partnering with organizations with the same goal in mind. I know it can be done.

Over my career, when I have a patient here or in a developed country who has been diagnosed with cancer, but is cured or in remission, that puts a huge smile on my face and in my heart. It also impacts you for the rest of your life. Or when I see an infant born without HIV because of the local country programs that are put in place, that also makes me feel so fulfilled, so happy.

I have worked with many talented individuals who have become great friends and partners over my career who have helped create a positive life for under-served populations around the world. We need to remember that progress happens with one person at a time or one program at a time. That’s how you truly improve health around the world.

 

Headshot - 2016

Image SOURCE: Photograph of Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences, courtesy of Rutgers University, New Brunswick, New Jersey.

Richard G. Marlink, M.D.
Inaugural Henry Rutgers Professor of Global Health

Director of the Rutgers Global Health Institute

Rutgers Biomedical and Health Sciences

Richard G. Marlink, M.D., a Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of a new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). His role is to develop the strategic growth of RBHS by broadening the Rutgers University’s presence in the public health community to improve health and wellness.

Previously, Dr. Marlink was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

At the start of the AIDS epidemic, Dr. Marlink was instrumental in setting up the first, hospital-based HIV/AIDS clinic in Boston, Massachusetts, and studied the impact of the HIV virus in west and central Africa. After helping to start the Botswana-Harvard Partnership in 1996, he founded the Kitso AIDS Training Program, which would become Botswana’s national AIDS training program. Kitso means knowledge in the local Setswana language.

Dr. Marlink was the principal investigator for the Tshepo Study, the first large-scale antiretroviral treatment study in Botswana, in addition to conducting other clinical and epidemiological studies in the region. Also in Botswana, he was the country director for Harvard’s contribution to the joint Botswana and United States governments’ HIV/AIDS and TB training, monitoring and evaluation PEPFAR effort.

In the mid-1980s in Senegal, Dr. Marlink was part of the team of Senegalese, French and American researchers who discovered and then studied the second type of human AIDS virus, HIV-2. Since then, he has been involved in multiple HIV/AIDS care, treatment and prevention programs in many African countries, including in Botswana, Côte d’Ivoire (Ivory Coast), Democratic Republic of the Congo, Kenya, Lesotho, Malawi, Mozambique, Rwanda, Senegal, South Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. He has also organized initiatives to enhance HIV/AIDS care in Brazil, Puerto Rico and Thailand.

Dr. Marlink has served as the scientific director, the vice president for implementation and the senior adviser for medical and scientific affairs at the Elizabeth Glaser Pediatric AIDS Foundation, where he was principal investigator of Project HEART, a five-country CDC/PEPFAR effort in Africa. That project began in 2004 and by 2011 had placed more than 1 million people living with HIV into care clinics. More than 565,000 of these people were placed on life-saving antiretroviral treatment.

Since 2000, Dr. Marlink has been the founding member of the board of directors of the African Comprehensive HIV/AIDS Partnerships, a public-partnership among the government of Botswana and the Bill and Melinda Gates and Merck Foundations to provide ongoing support for numerous HIV/AIDS prevention, care and treatment efforts in that country.

He has authored or co-authored more than 130 scientific articles; written a textbook, Global AIDS Crisis: A Reference Handbook; and co-edited the book, AIDS in Africa, 2nd Edition. Additionally, he served as chief editor for two special supplements to the journal AIDS and as executive editor of the seminal 320-author, three-volume textbook, From the Ground Up: A Guide to Building Comprehensive HIV/AIDS Care Programs in Resource Limited Settings.

A trained fellow in hematology/oncology at the Beth Israel Deaconess Medical Center at Harvard Medical School, Dr. Marlink received his medical degree from the University of New Mexico and his bachelor’s degree from Brown University.

 

Editor’s note:

We would like to thank Marilyn DiGiaccobe, head of Partnerships and Strategic Initiatives, at the Rutgers Global Health Institute, for the help and support she provided during this interview.

 

REFERENCE/SOURCE

Rutgers Biomedical and Health Sciences (http://rbhs.rutgers.edu/)

Other related articles

Retrieved from https://aids.harvard.edu/ 

Retrieved from http://b.3cdn.net/glaser/515eaa8068b5e71d44_mlbrof7xw.pdf 

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

CRISPR/Cas9 and HIV1 

https://pharmaceuticalintelligence.com/2016/04/16/crisprcas9-and-hiv1/

Concerns About Viruses

https://pharmaceuticalintelligence.com/2016/01/29/concerns-about-viruses/

CD-4 Therapy for Solid Tumors

https://pharmaceuticalintelligence.com/2016/05/02/cd-4-therapy-for-solid-tumors/

Novel Discoveries in Molecular Biology and Biomedical Science

https://pharmaceuticalintelligence.com/2016/05/30/novel-discoveries-in-molecular-biology-and-biomedical-science/

Scientists eliminate HIV1 DNA from the genome and prevent reinfection

https://pharmaceuticalintelligence.com/2016/03/23/scientists-eliminate-hiv1-dna-from-the-genome-and-prevent-reinfection/

Double Downside of HIV CRISPR therapy

https://pharmaceuticalintelligence.com/2016/04/09/double-downside-of-hiv-crispr-therapy/

2015

Where Infection meets with Cancer: Kaposi’s sarcoma (KS) is the most common cancer in HIV-1-infected persons and is caused by one of only 7 human cancer viruses, i.e., human herpesvirus 8 (HHV-8)

https://pharmaceuticalintelligence.com/2015/10/20/where-infection-meets-with-cancer-kaposis-sarcoma-ks-is-the-most-common-cancer-in-hiv-1-infected-persons-and-is-caused-by-one-of-only-7-human-cancer-viruses-i-e-human-herpesvirus-8-hhv/

Antibody shows promise as treatment for HIV

https://pharmaceuticalintelligence.com/2015/04/09/antibody-shows-promise-as-treatment-for-hiv/

2014

AIDS: Origin of HIV pandemic ‘was 1920s Kinshasa’

https://pharmaceuticalintelligence.com/2014/10/10/aids-origin-of-hiv-pandemic-was-1920s-kinshasa/

2013

Scientists discover how AIDS virus enters key immune cells

https://pharmaceuticalintelligence.com/2013/12/31/scientists-discover-how-aids-virus-enters-key-immune-cells/

Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

https://pharmaceuticalintelligence.com/2013/04/17/heroes-in-medical-research-dr-robert-ting-ph-d-and-retrovirus-in-aids-and-cancer/

2012

Nanotechnology and HIV/AIDS treatment

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

HIV vaccine: Caltech puts us One step further

https://pharmaceuticalintelligence.com/2012/08/31/hiv-vaccine-caltech-puts-us-one-step-further/

Bone Marrow Transplant Eliminates Signs of HIV Infection

https://pharmaceuticalintelligence.com/2012/07/29/bone-marrow-transplant-eliminates-signs-of-hiv-infection/

Getting Better: Documentary Videos on Medical Progress — in Surgery, Leukemia, and HIV/AIDS

https://pharmaceuticalintelligence.com/2012/08/23/getting-better-documentary-videos-on-medical-progress-in-surgery-leukemia-and-hivaids/

Read Full Post »

Older Posts »