Feeds:
Posts
Comments

Archive for the ‘Infectious Disease & New Antibiotic Targets’ Category


The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally  

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

The newly formed Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences (RBHS) of Rutgers University, New Brunswick, New Jersey (http://rbhs.rutgers.edu/), represents a new way of thinking by providing positive health outcomes to potential patients around the world affected by disease and/or by a negative environmental impact. The goal of the Institute is three-fold:

  • to improve the health and wellness of individuals and populations around the world,
  • to create a healthier world through innovation, engineering, and technology, and
  • to educate involved citizens and effective leaders in global health.

Richard G. Marlink, M.D., a former Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute.

The Rutgers Global Health Institute was formed last year after research by the University into the most significant health issues affecting under-served and under-developed populations. While conducting research for its five-year strategic plan, the RBHS looked for bold and ambitious ways that they could take advantage of the changing health care environment and band together to tackle the world’s leading health and environmental causes, contributing to the betterment of society. One of the results was the formation of the Rutgers Global Health Institute, supporting cross-functionally Rutgers faculty, scientists, and clinicians who represent the best in their respective fields of health innovation, research and patient care related to global health.

More broadly, the RBHS, created in 2013, is one of the nation’s leading – and largest — academic health centers that provides health care education, research and clinical service and care. It is an umbrella organization that encompasses eight schools – Ernest Mario School of Pharmacy, Graduate School of Biomedical Sciences, New Jersey Medical School, Robert Wood Johnson Medical School, Rutgers School of Dental Medicine, School of Health Professions, School of Nursing and School of Public Health.

In addition, the RBHS encompasses six centers and institutes that provide cancer treatment and research, neuroscience, advanced biotechnology and medicine, environmental and occupational health and health care policy and aging research. Those centers and institutes are the Brain Health Institute, Center for Advanced Biotechnology and Medicine, Environmental and Occupational Health Sciences Institute, Institute for Health, Health Care Policy and Aging Research, Rutgers Cancer Institute of New Jersey, and Rutgers Institute for Translational Medicine and Research. And lastly, the RBHS includes the University Behavioral Health Care.

 

Rutgers Institute For Health Building

Image SOURCE: Photograph courtesy of the Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey.   

 

Below is my interview with the Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute Richard G. Marlink, M.D., which occurred in April, 2017.

You were recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). What are the goals of the new Institute?

Dr. Marlink: The overarching goal of the Rutgers Global Health Institute is to improve the health and wellness of individuals and populations in need both here and around the world, to create a healthier world through innovation, engineering, and technology, and to educate involved citizens and effective leaders in global health. We will do that by building on the aspiration of our originating organization — RBHS, which is to be recognized as one of the best academic health centers in the U.S., known for its education, research, clinical care, and commitment to improving access to health care and reducing health care disparities.

As the newly formed Rutgers Global Health Institute, we are embarking on an ambitious agenda to take advantage of the changing health care environment. Working across schools and disciplines at Rutgers University, we plan to have a significant impact within at least four signature programs identified by RBHS, which are cancer, environmental and occupational health, infection and inflammation, and public health. We also will include all other parts of Rutgers, as desired, beyond RBHS.

My background as a global health researcher, physician, and leader of grassroots health care delivery will help develop programs to undertake global health initiatives that assist populations locally and around the world. I believe that involved citizens, including students, can greatly impact major societal issues.

A key role in the strategic growth of Rutgers Biomedical and Health Sciences – an umbrella organization for eight schools, four centers and institutes and a behavioral health network — is to broaden the Rutgers University’s presence in the public health community globally to improve health and wellness. How will the new Rutgers Global Health Institute be part of this growth?

Dr. Marlink: Our RBHS Chancellor Brian Strom [M.D., M.P.H.] believes that we are positioned to become one of the finest research universities in the country, working cross-functionally with our three campuses in Newark, Camden and New Brunswick. In developing the strategic plan, Dr. Strom notes that we become much stronger and more capable and productive by leveraging our strengths to collaborate and working together across disciplines to best serve the needs of our community locally and globally.

Specifically, we are formulating plans to focus on these areas: old and new infectious disease epidemics; the expanding burden of noncommunicable diseases in poor populations; the social and environmental threats to health, poverty and humanitarian crises; and inadequate local and developing country health systems. We will support the development of global health research programs university-wide, the recruitment of faculty with interests in global health, and the creation of a web-based global health resource center for faculty and students with interests in these areas.

We are still a very young part of RBHS, and of Rutgers overall, so our plans are a work in progress. As tangible examples of our commitment to improving health and wellness globally, we plan to enhance global public health by establishing links between global public health and environmental and occupational health faculty in studies related to air pollution, climate change, and pesticide health.

Another example the Institute has in the works is expanding links with the School of Engineering. In fact, we are creating a senior-level joint faculty position with the School of Engineering and Rutgers-New Brunswick. Still other plans involve forging collaborative relationships between the Rutgers Cancer Program, under the auspices of Rutgers Cancer Institute of New Jersey, which is New Jersey’s only National Cancer Institute (NCI)-designated comprehensive cancer center, and other organizations and partners around the world, especially in poor and less-developed countries.

How is the Rutgers Global Health Institute strategically prepared for changing the health care paradigm?

Dr. Marlink: We intend to be an international global health leader in the health sciences, in public health, and in other related, but non-biomedical professions. This means that we will incorporate our learnings from laboratory sciences and the clinical, behavioral, and public health sciences, as well as from engineering, business, economics, law, and social sciences. This broad approach is critical in this health care environment as accountability for patient care is shifting to large groups of providers. Health care will be more value-driven and our health care teams must work collaboratively to be innovative. Our focus on health care is now also population-based, rather than only individual-based, and we are moving from large regional centers toward community centers, even in small and remote areas of the world. We are encouraged by rapid changes in technology that will provide new opportunities for shared knowledge, patient care and research.

Additionally, we are exploring ways to identify and recruit key faculty who will increase our breadth and depth of key disease areas as well as provide guidance on how to pursue science grants from the National Institute of Health (NIH)-funded program project grants and specialized research programs.

Currently, Rutgers University receives NIH funding for research in public health, population health, health promotion, wellness, health behavior, preventive medicine, and global health.

As a researcher, scholar and leader of grassroots health care delivery, how have your past positions prepared you for this new challenge? Your last position was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard University’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

Dr. Marlink: I have been a global health practitioner, researcher, and executive leader for almost three decades. I am trained in medical oncology and HIV medicine and have conducted clinical, epidemiological and implementation research in Africa since 1985. I was first introduced to global health when finishing my Hematology/Oncology fellowship at what is now the Beth Israel Deaconess Medical Center in the mid-1980’s in Boston.

During my Hematology/Oncology fellowship and after the co-organizing the first, hospital-based AIDS care clinic in the New England region, I was trying to learn the ropes in virology and molecular biology in the laboratory group of Max Essex at Harvard University. During that time in the mid-1980s, our laboratory group along with Senegalese and French collaborators discovered the first evidence for the existence of a new human retrovirus, HIV-2, a distinct second type of human AIDS virus, with its apparent origins in West Africa.

As a clinician, I was able to assist in Senegal, helping set up clinical care and create a research cohort in Dakar for hundreds of women sex workers infected with this new human retrovirus and care for them and their families. I discovered that a little can go a long way in poor settings, such as in Senegal. I became hooked on helping create solutions to help people in poor settings in Africa and elsewhere. Long-term partnerships and friendships have subsequently been made in many developing countries. Throughout my career, I have built successful partnerships with many governments, companies, and non-profit organizations, and those relationships have been the foundation to build successful public health partnerships in poor regions of the world.

In the 1990s, I helped create the Botswana-Harvard Partnership for HIV Research and Education (BHP). Through this partnership, the Government of Botswana and BHP have worked together to combat the AIDS epidemic in Botswana. Under my direction, and in partnership with the Botswana Ministry of Health, BHP launched the KITSO AIDS Training Program in 1999. Kitso is the Setswana word for ‘knowledge.”

KITSO is the national training program for physicians, nurses, and pharmacists, which has trained more than 14,000 health professionals in HIV/AIDS care and antiretroviral treatment. KITSO training modules address issues, such as antiretroviral therapy, HIV/AIDS-related disease management, gender-specific HIV issues, task-sharing, supportive and palliative care, and various psychosocial and counseling themes.

In addition, I was the Botswana County Director for Harvard Chan School’s 3-country President’s Emergency Plan AIDS Relief (PEPFAR) grant, The Botswana PEPFAR effort includes a Clinical and Laboratory Master Training Program and the creation of the Botswana Ministry of Health’s Monitoring and Evaluation Unit. Concurrently, I was the Principal Investigator of Project HEART in five African countries with the Elizabeth Glaser Pediatric AIDS Foundation.

Also in Botswana, in 2000, I was a co-founder of a distinct partnership involving a large commitment to the Government of Botswana from the Bill and Melinda Gates and Merck Foundations.  This commitment continues as an independent non-governmental organization (NGO) to provide support for various AIDS prevention and care efforts in Botswana and the region.

All these global health experiences, it seems, have led me to my new role at the Rutgers Global Health Institute.

What is your advice for ways that the business community or university students can positively impact major societal issues?

Dr. Marlink: My advice is to be optimistic and follow that desire to want to make a difference. Margaret Mead, the American cultural anthropologist, said years ago, “Never doubt that a small group of thoughtful, committed citizens can change the world; indeed, it’s the only thing that ever has.” I believe that to be our guiding principle as we embark on this new initiative.

I also believe that students should become specialized in specific areas prior to going fully into “global health,” as they develop in their careers, since they will then add more value later. For example, students should be grounded in the theory of global health in their undergraduate studies and then develop a specialization, such as becoming a statistician, economist, or medical doctor, to make a longer and greater impact in improving global health. As for the business community, we are looking for committed individuals who are specialized in specific areas to bring their knowledge to our organization, as partners in the fight against disease, improving the environment, or helping with humanitarian issues. We are committed to improving health and wellness, increasing access to the best health care, and reducing health disparities.

What is it about your current role that you enjoy the most?

Dr. Marlink: I enjoy building research, learning, and clinical programs, as I have in the HIV arena since the early 1980s. At that time, there were limited resources and funding, but a willingness among universities, non-governmental organizations, hospitals and the pharmaceutical industry to make a difference. Today in my new role, I’d like all of us to have an impact on health and wellness for those in need – to build programs from the ground up while partnering with organizations with the same goal in mind. I know it can be done.

Over my career, when I have a patient here or in a developed country who has been diagnosed with cancer, but is cured or in remission, that puts a huge smile on my face and in my heart. It also impacts you for the rest of your life. Or when I see an infant born without HIV because of the local country programs that are put in place, that also makes me feel so fulfilled, so happy.

I have worked with many talented individuals who have become great friends and partners over my career who have helped create a positive life for under-served populations around the world. We need to remember that progress happens with one person at a time or one program at a time. That’s how you truly improve health around the world.

 

Headshot - 2016

Image SOURCE: Photograph of Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences, courtesy of Rutgers University, New Brunswick, New Jersey.

Richard G. Marlink, M.D.
Inaugural Henry Rutgers Professor of Global Health

Director of the Rutgers Global Health Institute

Rutgers Biomedical and Health Sciences

Richard G. Marlink, M.D., a Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of a new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). His role is to develop the strategic growth of RBHS by broadening the Rutgers University’s presence in the public health community to improve health and wellness.

Previously, Dr. Marlink was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

At the start of the AIDS epidemic, Dr. Marlink was instrumental in setting up the first, hospital-based HIV/AIDS clinic in Boston, Massachusetts, and studied the impact of the HIV virus in west and central Africa. After helping to start the Botswana-Harvard Partnership in 1996, he founded the Kitso AIDS Training Program, which would become Botswana’s national AIDS training program. Kitso means knowledge in the local Setswana language.

Dr. Marlink was the principal investigator for the Tshepo Study, the first large-scale antiretroviral treatment study in Botswana, in addition to conducting other clinical and epidemiological studies in the region. Also in Botswana, he was the country director for Harvard’s contribution to the joint Botswana and United States governments’ HIV/AIDS and TB training, monitoring and evaluation PEPFAR effort.

In the mid-1980s in Senegal, Dr. Marlink was part of the team of Senegalese, French and American researchers who discovered and then studied the second type of human AIDS virus, HIV-2. Since then, he has been involved in multiple HIV/AIDS care, treatment and prevention programs in many African countries, including in Botswana, Côte d’Ivoire (Ivory Coast), Democratic Republic of the Congo, Kenya, Lesotho, Malawi, Mozambique, Rwanda, Senegal, South Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. He has also organized initiatives to enhance HIV/AIDS care in Brazil, Puerto Rico and Thailand.

Dr. Marlink has served as the scientific director, the vice president for implementation and the senior adviser for medical and scientific affairs at the Elizabeth Glaser Pediatric AIDS Foundation, where he was principal investigator of Project HEART, a five-country CDC/PEPFAR effort in Africa. That project began in 2004 and by 2011 had placed more than 1 million people living with HIV into care clinics. More than 565,000 of these people were placed on life-saving antiretroviral treatment.

Since 2000, Dr. Marlink has been the founding member of the board of directors of the African Comprehensive HIV/AIDS Partnerships, a public-partnership among the government of Botswana and the Bill and Melinda Gates and Merck Foundations to provide ongoing support for numerous HIV/AIDS prevention, care and treatment efforts in that country.

He has authored or co-authored more than 130 scientific articles; written a textbook, Global AIDS Crisis: A Reference Handbook; and co-edited the book, AIDS in Africa, 2nd Edition. Additionally, he served as chief editor for two special supplements to the journal AIDS and as executive editor of the seminal 320-author, three-volume textbook, From the Ground Up: A Guide to Building Comprehensive HIV/AIDS Care Programs in Resource Limited Settings.

A trained fellow in hematology/oncology at the Beth Israel Deaconess Medical Center at Harvard Medical School, Dr. Marlink received his medical degree from the University of New Mexico and his bachelor’s degree from Brown University.

 

Editor’s note:

We would like to thank Marilyn DiGiaccobe, head of Partnerships and Strategic Initiatives, at the Rutgers Global Health Institute, for the help and support she provided during this interview.

 

REFERENCE/SOURCE

Rutgers Biomedical and Health Sciences (http://rbhs.rutgers.edu/)

Other related articles

Retrieved from https://aids.harvard.edu/ 

Retrieved from http://b.3cdn.net/glaser/515eaa8068b5e71d44_mlbrof7xw.pdf 

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

CRISPR/Cas9 and HIV1 

https://pharmaceuticalintelligence.com/2016/04/16/crisprcas9-and-hiv1/

Concerns About Viruses

https://pharmaceuticalintelligence.com/2016/01/29/concerns-about-viruses/

CD-4 Therapy for Solid Tumors

https://pharmaceuticalintelligence.com/2016/05/02/cd-4-therapy-for-solid-tumors/

Novel Discoveries in Molecular Biology and Biomedical Science

https://pharmaceuticalintelligence.com/2016/05/30/novel-discoveries-in-molecular-biology-and-biomedical-science/

Scientists eliminate HIV1 DNA from the genome and prevent reinfection

https://pharmaceuticalintelligence.com/2016/03/23/scientists-eliminate-hiv1-dna-from-the-genome-and-prevent-reinfection/

Double Downside of HIV CRISPR therapy

https://pharmaceuticalintelligence.com/2016/04/09/double-downside-of-hiv-crispr-therapy/

2015

Where Infection meets with Cancer: Kaposi’s sarcoma (KS) is the most common cancer in HIV-1-infected persons and is caused by one of only 7 human cancer viruses, i.e., human herpesvirus 8 (HHV-8)

https://pharmaceuticalintelligence.com/2015/10/20/where-infection-meets-with-cancer-kaposis-sarcoma-ks-is-the-most-common-cancer-in-hiv-1-infected-persons-and-is-caused-by-one-of-only-7-human-cancer-viruses-i-e-human-herpesvirus-8-hhv/

Antibody shows promise as treatment for HIV

https://pharmaceuticalintelligence.com/2015/04/09/antibody-shows-promise-as-treatment-for-hiv/

2014

AIDS: Origin of HIV pandemic ‘was 1920s Kinshasa’

https://pharmaceuticalintelligence.com/2014/10/10/aids-origin-of-hiv-pandemic-was-1920s-kinshasa/

2013

Scientists discover how AIDS virus enters key immune cells

https://pharmaceuticalintelligence.com/2013/12/31/scientists-discover-how-aids-virus-enters-key-immune-cells/

Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

https://pharmaceuticalintelligence.com/2013/04/17/heroes-in-medical-research-dr-robert-ting-ph-d-and-retrovirus-in-aids-and-cancer/

2012

Nanotechnology and HIV/AIDS treatment

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

HIV vaccine: Caltech puts us One step further

https://pharmaceuticalintelligence.com/2012/08/31/hiv-vaccine-caltech-puts-us-one-step-further/

Bone Marrow Transplant Eliminates Signs of HIV Infection

https://pharmaceuticalintelligence.com/2012/07/29/bone-marrow-transplant-eliminates-signs-of-hiv-infection/

Getting Better: Documentary Videos on Medical Progress — in Surgery, Leukemia, and HIV/AIDS

https://pharmaceuticalintelligence.com/2012/08/23/getting-better-documentary-videos-on-medical-progress-in-surgery-leukemia-and-hivaids/

Advertisements

Read Full Post »


FDA cleared Clever Culture Systems’ artificial intelligence tech for automated imaging, analysis and interpretation of microbiology culture plates speeding up Diagnostics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

FDA clears automated imaging AI that speeds up infectious disease Dx

Read Full Post »


Keystone Symposia on Molecular and Cellular Biology – 2016-2017 Forthcoming Conferences in Life Sciences

Reporter: Aviva Lev-Ari, PhD, RN

2016-2017 Forthcoming Conferences in Life Sciences by topic:

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

Immunology

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Infectious Diseases

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Metabolic Diseases

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neurobiology

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Plant Biology

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

Structural Biology

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Technologies

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

October 2016

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

November 2016

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

December 2016

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

January 2017

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Omics Strategies to Study the Proteome (A8)
January 29 – February 2, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Alan Saghatelian, Chuan He and Ileana M. Cristea

Epigenetics and Human Disease: Progress from Mechanisms to Therapeutics (A9)
January 29 – February 2, 2017 | Seattle, Washington, USA
Scientific Organizers: Johnathan R. Whetstine, Jessica K. Tyler and Rab K. Prinjha

Hematopoiesis (B1)
January 31 – February 4, 2017 | Banff, Alberta, Canada
Scientific Organizers: Catriona H.M. Jamieson, Andreas Trumpp and Paul S. Frenette

February 2017

Noncoding RNAs: From Disease to Targeted Therapeutics (J5)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Kevin V. Morris, Archa Fox and Paloma Hoban Giangrande

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

March 2017

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Kinases: Next-Generation Insights and Approaches (C4)
March 5 – 9, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Reid M. Huber, John Kuriyan and Ruth H. Palmer

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Tumor Metabolism: Mechanisms and Targets (X3)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Brendan D. Manning, Kathryn E. Wellen and Reuben J. Shaw

Adaptations to Hypoxia in Physiology and Disease (X4)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: M. Celeste Simon, Amato J. Giaccia and Randall S. Johnson

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

Molecular Mechanisms of Heart Development (X7)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Benoit G. Bruneau, Brian L. Black and Margaret E. Buckingham

RNA-Based Approaches in Cardiovascular Disease (X8)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Thomas Thum and Roger J. Hajjar

April 2017

Genomic Instability and DNA Repair (Z1)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Julia Promisel Cooper, Marco F. Foiani and Geneviève Almouzni

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

May 2017

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Angiogenesis and Vascular Disease (Z3)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: M. Luisa Iruela-Arispe, Timothy T. Hla and Courtney Griffin

Mitochondria, Metabolism and Heart (Z4)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Junichi Sadoshima, Toren Finkel and Åsa B. Gustafsson

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Aging and Mechanisms of Aging-Related Disease (E2)
May 15 – 19, 2017 | Yokohama, Japan
Scientific Organizers: Kazuo Tsubota, Shin-ichiro Imai, Matt Kaeberlein and Joan Mannick

Single Cell Omics (E3)
May 26 – 30, 2017 | Stockholm, Sweden
Scientific Organizers: Sarah Teichmann, Evan W. Newell and William J. Greenleaf

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Cell Death and Inflammation (K2)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Seamus J. Martin and John Silke

June 2017

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

SOURCE

Read Full Post »


Signaling through the T Cell Receptor (TCR) Complex and the Co-stimulatory Receptor CD28

Curator: Larry H. Bernstein, MD, FCAP

 

 

New connections: T cell actin dynamics

Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.

RELATED CONTENT

 

Triple-Color FRET Analysis Reveals Conformational Changes in the WIP-WASp Actin-Regulating Complex

 

RELATED CONTENT

T cell activation by antigens involves the formation of a complex, highly dynamic, yet organized signaling complex at the site of the T cell receptors (TCRs). Srikanth et al. found that the lymphocyte-specific large guanosine triphosphatase of the Rab family CRACR2A-a associated with vesicles near the Golgi in unstimulated mouse and human CD4+ T cells. Upon TCR activation, these vesicles moved to the immunological synapse (the contact region between a T cell and an antigen-presenting cell). The guanine nucleotide exchange factor Vav1 at the TCR complex recruited CRACR2A-a to the complex. Without CRACR2A-a, T cell activation was compromised because of defective calcium and kinase signaling.

More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed that CRACR2A (Ca2+ release–activated Ca2+ channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca2+ and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.

 

Read Full Post »


Phosphorylation-dependent interaction between antigenic peptides and MHC class I

Curator: Larry H. Bernstein, MD, FCAP

 

 

Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self.

Nat Immunol. 2008 Nov;9(11):1236-43.    http://dx.doi.org:/10.1038/ni.1660.  Epub 2008 Oct 5.
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphopeptides on cancer cells provides an immunological signature of ‘transformed self’. Here we demonstrate that phosphorylation can considerably increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide-HLA-A2 complexes. These identified a novel peptide-binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting binding to major histocompatibility complex molecules or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy.
Figure 1
Bioinformatic characterization of the HLA-A2–restricted phosphopeptide repertoire. (a) Distribution of phosphorylated residues among naturally processed (A2 phosphopeptide) and predicted HLA-A2 binding phosphopeptides (Phosphosite, EMBL). The frequency of phosphorylated residues at each position is displayed for naturally processed HLA-A2 associated phosphopeptides, and for peptides in EMBL and Phosphosite datasets that contain phosphorylation sites and are predicted, according to criteria described in Methods, to bind HLA-A2. (b) Representation of positively charged residues (Arg or Lys) at P1 among naturally processed HLA-A2 associated phosphopeptides, phosphopeptides from the EMBL or Phosphosite datasets that are predicted to bind HLA-A2 and contain a p-Ser residue at the P4 position, and datasets of naturally processed non-phosphorylated peptides (B-LCL) and known HLA-A2 binding peptides (Immune Epitope). Selection criteria for the latter two datasets are described in Methods. * = P<0.001, NS= not significant. (c, d) Representation of subdominant residues at the P2 anchor position (c) and the PC (P9) position (d) in naturally processed HLA-A2 associated phosphopeptides and in datasets of naturally processed non-phosphorylated peptides and known HLA-A2 binding peptides.
Changes in protein expression or metabolism due to intracellular infection or cellular transformation modify the repertoire of peptides generated and therefore displayed by class I MHC molecules, resulting in presentation of “altered self” to the immune system. T cell receptor (TCR)-mediated recognition of specific MHC-bound peptides by CD8 T lymphocytes results in cytolytic activity and release of pro-inflammatory cytokines, which are key components of anti-viral and anti-tumor immunity. Evidence suggests that peptides containing post-translational modifications (PTM), including deamidation, cysteinylation, glycosylation, and phosphorylation, contribute to the pool of MHC-bound peptides presented at the cell surface and represent potential targets for T cell recognition2. Indeed, the majority of naturally occurring PTM-bearing peptides defined to date can be discriminated from their unmodified homologs specifically by T cells2-4.  …..
Recent studies have highlighted protein phosphorylation as a process with the capacity to generate unique peptides bound to class I MHC molecules. Significant numbers of different phosphorylated peptides are presented by several HLA-A and HLA-B alleles that are prevalent in humans3,4, demonstrating their widespread potential as antigens. Moreover, CD8+ T lymphocytes recognize these phosphopeptides in a manner that is both peptide sequence-specific and phosphate-dependent3, 4. Thus, phosphopeptides can be immunologically distinguished from their non-phosphorylated counterparts. Consistent with their presentation by class I MHC molecules, most phosphorylated peptides are derived from proteins that function intracellularly, and processing of both model and naturally occurring phosphopeptides is dependent on transport into the endoplasmic reticulum (ER) by transporter associated with antigen processing (TAP)3, 5. Furthermore, rapid degradation by the proteasome, a process that regulates the activity of many transcription factors, cell growth modulators, signal transducers and cell cycle proteins6-8, is frequently dependent on target protein phosphorylation9-11. ….
Phosphopeptide antigens are of significant therapeutic interest because deregulation of protein kinase activity, normally tightly controlled, is one of the hallmarks of malignant transformation and is thought to contribute directly to oncogenic signaling pathways involved in cell growth, differentiation and survival13-15. In addition, mutation-induced deregulation of a limited number of critical kinases can often lead to activation of several signaling cascades and increases in the extent of protein phosphorylation within the cell16-18. These considerations strongly suggest that alterations in protein phosphorylation during malignancy represent a distinctive immunological signature of “transformed self”. Consistent with this notion, the phosphopeptides presented by HLA-A*0201….

Nα-Terminal Acetylation for T Cell Recognition: Molecular Basis of MHC Class I–Restricted Nα-Acetylpeptide Presentation

As one of the most common posttranslational modifications (PTMs) of eukaryotic proteins, Nα-terminal acetylation (Nt-acetylation) generates a class of Nα-acetylpeptides that are known to be presented by MHC class I at the cell surface. Although such PTM plays a pivotal role in adjusting proteolysis, the molecular basis for the presentation and T cell recognition of Nα-acetylpeptides remains largely unknown. In this study, we determined a high-resolution crystallographic structure of HLA (HLA)-B*3901 complexed with an Nα-acetylpeptide derived from natural cellular processing, also in comparison with the unmodified-peptide complex. Unlike the α-amino–free P1 residues of unmodified peptide, of which the α-amino group inserts into pocket A of the Ag-binding groove, the Nα-linked acetyl of the acetylated P1-Ser protrudes out of the groove for T cell recognition. Moreover, the Nt-acetylation not only alters the conformation of the peptide but also switches the residues in the α1-helix of HLA-B*3901, which may impact the T cell engagement. The thermostability measurements of complexes between Nα-acetylpeptides and a series of MHC class I molecules derived from different species reveal reduced stability. Our findings provide the insight into the mode of Nα-acetylpeptide–specific presentation by classical MHC class I molecules and shed light on the potential of acetylepitope-based immune intervene and vaccine development.

Produced by Ag processing and proteasomal degradation of intracellular proteins, polypeptides serve as CTL epitopes presented by MHC class I molecules, which play a critical role in cellular immunity (1). Eukaryotic proteins bearing various posttranslational modifications (PTMs) can generate a group of modified Ags, which contribute to a special repertoire of MHC-associated peptides presented at the cell surface as potential targets for TCR-mediated recognition. A modified peptide may become a new Ag because of the distinguished antigenicity compared with its unmodified homolog. A variety of natural peptide Ags containing modification have been observed that can be immunologically discriminated by T cells from their unmodified homologs as “altered self” (2). Thus, the significance of PTMs on epitopes and the application of modified peptides in vaccine development for immunotherapy against cancer and autoimmune diseases have been increasingly appreciated (3, 4).

The molecular bases of the presentation of peptides with several PTMs by MHC class I molecules have been successfully explicated. For instance, the formyl group on an Nt-formylated peptide binds to the bottom of the peptide-binding groove of H2-M3 (5); both the glycan and the phosphate moieties of the central region of the glycopeptides (6, 7) and the phosphopeptides (8, 9), respectively, are exposed to enable TCR binding, and the deimination (citrullination) of arginine on a peptide presented by two HLA-B27 subtypes induces distinct peptide conformations (10).

Nα-terminal acetylation (Nt-acetylation) is one of the most common PTMs, occurring on the vast majority of eukaryotic proteins. In humans, >80% of the different varieties of intracellular proteins are irreversibly Nt-acetylated by Nα-acetyltransferases, often after the removal of the initiator methionine. Only a subset of the penultimate residues (Ala, Ser, Thr, Cys, and Val) or the retained initiator methionine can be acetylated at the α-amino (NH2) groups (11). A recent study found that acetylated N-terminal residues of eukaryotic proteins act as specific degradation signals (Ac-N-degrons) that are recognized by specific ubiquitin ligases (12). A subsequent systematic analysis demonstrated that Nt-acetylation can also represent an early determining factor in the cellular sorting for prevention of protein targeting to the secretory pathway (13). These findings suggested that Nt-acetylation–mediated inhibition of secretion could contribute to the retention of proteins in the cytosol where they may subsequently be ubiquitinylated through the specific recognition of their Ac-N-degrons and thereby generating Nt-acetylated proteasomal digestion products (14). Hence, these Nt-acetylated polypeptides in the form of MHC-associated neoantigens stand a good chance to be recognized by T cells. This has indeed been illuminated in an Nt-acetylated MHC class II–restricted peptide derived from myelin basic protein, which stimulates murine T cells to elicit experimental autoimmune encephalomyelitis, whereas the nonacetylated form does not (15). A structural study subsequently suggested that the Nt-acetylation of this peptide is essential for MHC class II binding (16).

For MHC class I, the first Nt-acetylated natural ligand was identified more than a decade ago (17). However, the mode of interaction of this acetylated peptide with class I molecules remained largely enigmatic. To understand this, we determined the crystal structures of a naturally occurring Nt-acetylated self-peptide (NAc-SL9) and two nonmodified variants (SL9 and HL8), respectively, in complex with HLA-B*3901. Taken together with the thermostability analyses of Nα-acetylpeptides complexed with a series of class I molecules of human and murine origin, we elucidated that Nt-acetylation exerts a destabilizing effect on peptide–MHC (pMHC) complex, thereby influencing TCR recognition.

……

Our results here provide the structural and thermodynamic insights into the presentation of Nt-acetylated peptides by MHC class I molecules. The structure of the Nα-acetylpeptide in complex with HLA-B*3901 outlines a molecular interpretation of the reduced stability of MHC class I–bound Nt-acetylated peptides and also highlights a potential influence of Nt-acetylation on antigenic identity and T cell recognition. In addition, the structure elucidation of HLA-B*3901, the predominant B39 subtype, also is valuable in studying immune diseases associated with this MHC allele.

In a previous report, the Nt-formyl group on an Nt-formylated peptide binds to the bottom of the peptide-binding groove of the murine MHC class I H2-M3 playing an anchoring role for MHC class I binding (Supplemental Fig. 2A) (5). In our study, the methyl and carbonyl groups of the acetyl are rotated upwards like two arms that push the peptide-binding groove open (Fig. 2G, Supplemental Fig. 2B), thereby altering its immunogenicity at the expense of the pMHC stability. The thermostability we tested from seven human and one murine complexes indicates a general feature of Nα-acetylpeptide in weakening the binding affinity to MHC class I, which could be revealed by the gel-filtration chromatography of pMHC refolding assays as well (Supplemental Fig. 3). Their instability would partially explain why, as yet, such epitopes are rarely found. Within N-terminal residues of eukaryotic proteins, Ser is the most frequently acetylated in vivo (11). The Ala, Thr, Cys, and Val residues can also be Nt-acetylated and have small side chains like Ser. Thus, the rotation of P1 residues observed in the pHLA-B*3901 complex with an acetylated P1-Ser could very well be a general mode in Nα-acetylpeptide binding. In contrast, the long side chain of Met precludes it from being rotated into pocket A, but a certain reorientation is presumed to take place in the acetylated P1-Met based on the thermal instability (Fig. 6H). Besides the accommodation of the acetyl moiety, Nt-acetylation is presumed to decrease the stability of the pHLA-B*3901 complex as a result of the conformational switch of the Arg62. Arg62 in the α1-helix is largely conserved in almost all HLA-B and -C allotypes (Table V). For other HLA class I (Table V, Fig. 8), the long charged side chains of the residues in position 62 (Glu62 of A24 and Gln62 of A11 and so on) also may interact with the acetyl. Hence, the residue in position 62 plays a key role in the interaction between acetyl group and the H chain, which may influence not only the Nα-acetylpeptide binding to HLA molecules but also the TCR docking.

The discoveries that intracellular proteins with Ac-N-degrons are inhibited from being secreted (13) and then are degraded via ubiquitylation (12) raise many questions on the biological significance of acetylation-mediated proteolysis (14). The Nt-acetylated peptides with the size of MHC class I ligands (8–11 aa) as neoepitopes for CD8+ T cells, represent one of the possible roles of the Nt-acetylated digestion products. The vast armory of intracellular proteins that are frequently Nt-acetylated can create a large pool of Nα-acetylpeptides for Ag presentation and T cell surveying. The Nt-acetylation potentially impacts the TCR-MHC interaction in three different aspects: 1) the direct interaction of the solvent-exposed acetyl moiety; 2) the altered conformation of the central region of the peptide main chain; and 3) the conformational switches of the MHC residues. The Nt-acetylation creation of a distinctive pMHC landscape and participation in a potential binding element for TCR engagement described in our results highlights needs for further investigation into the Nα-acetylpeptide–specific TCR repertoires.  ……

see…J Immunol 2014; 192:5509-5519   http://dx.doi.org:/10.4049/jimmunol.1400199   http://www.jimmunol.org/content/192/12/5509

Supplementary http://www.jimmunol.org/content/suppl/2014/05/14/jimmunol.1400199.DCSupplemental.html
References http://www.jimmunol.org/content/192/12/5509.full#ref-list-1

 

The Cellular Redox Environment Alters Antigen Presentation*

Jonathan A. Trujillo,§12Nathan P. Croft,1Nadine L. Dudek,1Rudragouda ChannappanavarAlex TheodossisAndrew I. Webb,…., Jamie Rossjohn,‡‡,§§5Stanley Perlman,§6 and Anthony W. Purcell,7
The Journal of Biological Chemistry 289; 27979-27991.
http://dx.doi.org:/10.1074/jbc.M114.573402

Capsule

Background: Modification of cysteine residues, including glutathionylation, commonly occurs in peptides bound to and presented by MHC molecules.

Results: Glutathionylation of a coronavirus-specific T cell epitope results in diminished CD8 T cell recognition.

Conclusion: Cysteine modification of a T cell epitope negatively impacts the host immune response.

Significance: Cross-talk between virus-induced oxidative stress and the T cell response probably occurs, diminishing host cell recognition of infected cells.

Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.

Antigen Presentation     Antigen Processing     Glutathionylation     Mass Spectrometry (MS)     Oxidation-Reduction (Redox)     Redox Regulation     T-cell     Viral Immunology

Small fragments of proteins (peptides) derived from both intracellular and extracellular sources are displayed on the surface of cells by molecules encoded within the major histocompatibility complex (MHC). These peptides are recognized by T lymphocytes and provide the immune system with a surveillance mechanism for the detection of pathogens and cancer cells. The fidelity with which antigen presentation communicates changes in the intracellular proteome is critical for immune surveillance. Not only do antigens expressed at vastly different abundances need to be represented within the array of peptides selected and presented at the cell surface (collectively termed the immunopeptidome (1, 2)), but changes in their post-translational state also need to be conveyed within this complex mixture of peptides. For example, changes in antigen phosphorylation have been linked to cancer, and the presentation of phosphorylated peptides has been shown to communicate the cancerous state of cells to the immune system (36). Other types of post-translational modification play a central role in the pathogenesis of autoimmune diseases (7), such as arginine citrullination in arthritis (810), deamidation of glutamine residues in wheat proteins in celiac disease (1115), and cysteine oxidation in type 1 diabetes (16, 17). Cysteine is predicted to be present in up to 14% of potential T cell epitopes based on its prevalence in various pathogen and host proteomes (18). However, reports of cysteine-containing epitopes are much less frequent due to technical difficulties associated with synthesis and handling of cysteine-containing peptides and their subsequent avoidance in many epitope mapping studies (19). Cysteine can be modified in numerous ways, including cysteinylation (the disulfide linkage of free cysteine to peptide or protein cysteine residues), oxidation to cysteine sulfenic (oxidation), sulfinic (dioxidation) and sulfonic acids (trioxidation), S-nitrosylation, and S-glutathionylation. Such modifications may occur prior to or during antigen processing; however, the role of cysteine modification in T-cell-mediated immunity has not been systematically addressed.

In addition to constitutive presentation of a subset of oxidatively modified peptides, it is anticipated that changes in the proportion of these ligands will occur upon infection because oxidative stress, triggering of the unfolded protein response, and modulation of host cell synthesis by the virus are hallmarks of this process (2027). For example, host cell stress responses modulate expression, localization, and function of Toll-like receptors, a key event in the initiation of the immune response (28). Oxidative stress would also be predicted to affect protein function through post-translational modification of amino acids, such as cysteine. Indeed, because of the reactive nature of cysteine and the requirements for cells to regulate the redox state of proteins to maintain function, a number of scavenging systems for redox-reactive intermediates exist. The tripeptide glutathione (GSH) is one of the key intracellular antioxidants, acting as a scavenger for reactive oxygen species. Reduced GSH is equilibrated with its oxidized form, GSSG, with normal cytosolic conditions being that of the reduced state in a ratio of ∼50:1 (GSH/GSSG) (29). Modification of proteins and peptides with GSH (termed S-glutathionylation) occurs following reaction of GSSG with the thiol group of cysteine in a reaction catalyzed by the detoxifying enzyme, glutathione S-transferase (GST). A variety of cellular processes and signaling pathways, such as the induction of innate immunity, apoptosis, redox homeostasis, and cytokine production, are modulated by this GST-catalyzed post-translational modification (3032). S-Glutathionylation can eventuate via oxidative stress, whereby the intracellular levels of GSSG increase.

Given that viruses are known to induce oxidative stress (3335), the intracellular environment of viral infection may lead to an increase inS-glutathionylated cellular proteins and viral antigens. For instance, HSV infection induces an early burst of reactive oxygen species, resulting in S-glutathionylation of TRAF family members, which in turn is linked to downstream signaling and interferon production (36). The potential for modification of viral antigens subsequent to reactive oxygen species production is highlighted by S-glutathionylation of several retroviral proteases, leading to host modulation of protease function (37). Indeed large scale changes in protein S-glutathionylation are observed in HIV-infected T cell blasts (38), suggesting that functional modulation of both host and viral proteins occurs via this mechanism. Whether these S-glutathionylated proteins inhibit or enhance immune responses to the unmodified epitope or generate novel T-cell epitopes that are subsequently recognized by the adaptive immune system is unclear.

Here, we investigate the frequency of modification of cysteine-containing MHC-bound peptides by interrogating a large database of naturally processed self-peptides derived from B-lymphoblastoid cells, murine tissues, and cytokine-treated cells. In addition, the functional consequences of Cys modification of T cell epitopes was investigated using an established model of infection that involves an immunodominant cysteine-containing epitope derived from a neurotropic strain of mouse hepatitis virus, strain JHM (JHMV)8(3941). We describe S-glutathionylation of this viral T cell epitope and the functional and structural implications of redox-modulated antigen presentation. Collectively our studies suggest that S-glutathionylation plays a key, previously unappreciated role in adaptive immune recognition.

PDF(Free)        RESULTS      DISCUSSION       REFERENCES

 

Read Full Post »


New antibiotic effective against MRSA

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

A New Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one, from University Of Notre Dame

ANTHONYMELVINCRASTO

A New Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one, from University Of Notre Dame

University Of Notre Dame   Mayland Chang, Shahriar Mobashery, Renee BOULEY  INVENTORS

(E)-3-(3-Carboxyphenyl)-2-(4-ethynylstyryl)quinazolin-4(3H)-one

(E)-3-(2-(4-Cyanostyryl)-4-Oxoquinazolin-3(4h)-Yl)benzoic Acid;

1624273-22-8  CAS    NA SALT 1624273-21-7 CAS

The emergence of resistance to antibiotics over the past few decades has created a state of crisis in the treatment of bacterial infections.Over the years, β-lactams were the antibiotics of choice for treatment of S. aureus infections. However, these agents faced obsolescence with the emergence of methicillin-resistant S. aureus (MRSA). Presently, vancomycin, daptomycin, linezolid, or ceftaroline are used for treatment of MRSA infections, although only linezolid can be dosed orally. Resistance to all four has emerged. Thus, new anti-MRSA antibiotics are sought, especially agents that are orally bioavailable.  a new antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)one, with potent activity against S. aureus, including MRSA. We document that quinazolinones of our design are inhibitors of cell-wall biosynthesis in S. aureusand do so by binding to dd-transpeptidases involved in cross-linking of the cell wall.  quinazolinones possess activity in vivo and are orally bioavailable. This antibiotic holds promise in treating difficult infections by MRSA.

 

 

Discovery of Antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one

Journal of the American Chemical Society (2015), 137(5), 1738-1741.

http://pubs.acs.org/doi/abs/10.1021/jacs.5b00056

Renee Bouley, Malika Kumarasiri, Zhihong Peng, Lisandro H. Otero, Wei Song, Mark A. Suckow§, Valerie A. Schroeder§, William R. Wolter§, Elena Lastochkin, Nuno T. Antunes, Hualiang Pi, Sergei Vakulenko, Juan A. Hermoso, Mayland Chang*, and Shahriar Mobashery*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
Department of Crystallography and Structural Biology, Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid,Spain
§ Freimann Life Sciences Center and Department of Biological Sciences,University of Notre Dame, Notre Dame, Indiana 46556, United States
J. Am. Chem. Soc., 2015, 137 (5), pp 1738–1741     http://dx.doi.org:/10.1021/jacs.5b00056    Publication Date (Web): January 28, 2015

Abstract Image

In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.

PATENT

WO 2014138302

http://www.google.com/patents/WO2014138302A1?cl=en

Staphylococcus aureus is a common bacterium found in moist areas of the body and skin. S. aureus can also grow as a biofilm, representing the leading cause of infection after implantation of medical devices. Approximately 29% (78.9 million) of the US population is colonized in the nose with S. aureus, of which 1.5% (4.1 million) is methicillin-resistant S. aureus (MRSA). In 2005, 478,000 people in the US were hospitalized with a S. aureus infection, of these 278,000 were MRSA infections, resulting in 19,000 deaths. MRSA infections have been increasing from 2% of S. aureus infections in intensive care units in 1974 to 64% in 2004, although more recent data report stabilization. Approximately 14 million outpatient visits occur every year in the US for suspected S. aureus skin and soft tissue infections. About 76% of these infections are caused by S. aureus, of which 78% are due to MRSA, for an overall rate of 59%. Spread of MRSA is not limited to nosocomial (hospital-acquired) infections, as they are also found in community-acquired infections. Over the years, β-lactams were antibiotics of choice in treatment of S. aureus infections. However, these agents faced obsolescence with the emergence of

MRSA. Presently, vancomycin, daptomycin or linezolid are agents for treatment of MRSA infections, although only linezolid can be dosed orally. Resistance to all three has emerged. Thus, new anti-MRSA therapeutic strategies are needed, especially agents that are orally bioavailable.

Clinical resistance to β-lactam antibiotics by MRSA has its basis predominantly in acquisition of the mecA gene, which encodes penicillin-binding protein 2a (PBP2a). PBP2a, a cell-wall DD- transpeptidase, is refractory to inhibition by essentially all commercially available β-lactams (ceftaroline is an exception), antibiotics that irreversibly acylate the active-site serine of typical PBPs. PBPs catalyze biosynthesis of the bacterial cell wall, which is essential for the survival of the bacterium. Accordingly, new ηοη-β-lactam antibiotics that inhibit PBP2a are needed to combat drug-resistant strains of bacteria. SUMMARY

Staphylococcus aureus is responsible for a number of human diseases, including skin and soft tissue infections. Annually, 292,000 hospitalizations in the US are due to S. aureus infections, of which 126,000 are related to methicillin-resistant Staphylococcus aureus (MRSA), resulting in 19,000 deaths. A novel structural class of antibiotics has been discovered and is described herein. A lead compound in this class shows high in vitro potency against Gram-positive bacteria comparable to those of linezolid and superior to vancomycin (both considered gold standards) and shows excellent in vivo activity in mouse models of MRSA infection.

The invention thus provides a novel class of ηοη-β-lactam antibiotics, the quinazolinones, which inhibit PBP2a by an unprecedented mechanism of targeting both its allosteric and active sites. This inhibition leads to the impairment of the formation of cell wall in living bacteria. The quinazolinones described herein are effective as anti-MRSA agents both in vitro and in vivo. Furthermore, they exhibit activity against other Gram-positive bacteria. The quinazolinones have anti-MRSA activity by themselves. However, these compounds synergize with β-lactam antibiotics. The use of a combination of a quinazolinone with a β-lactam antibiotic can revive the clinical use of β-lactam antibacterial therapy in treatment of MRSA infections. The invention provides a new class of quinazolinone antibiotics, optionally in combination with other antibacterial agents, for the therapeutic treatment of methicillin- resistant Staphylococcus aureus and other bacteria.

The quinazolinone compounds described herein can be prepared using standard synthetic techniques known to those of skill in the art. Examples of such techniques are described by Khajavi et al. (J. Chem. Res. (S), 1997, 286-287) and Mosley et al. (J. Med. Chem. 2010, 53, 5476-5490). A general preparatory scheme for preparing the compounds described herein, for example, compounds of Formula

Figure imgf000030_0001

 

 

http://pubs.acs.org/doi/full/10.1021/acs.jmedchem.6b00372

Structure–Activity Relationship for the 4(3H)-Quinazolinone Antibacterials

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
Freimann Life Sciences Center and Department of Biological Sciences,University of Notre Dame, Notre Dame, Indiana 46556, United States
J. Med. Chem., Article ASAP   http://dx.doi.org:/10.1021/acs.jmedchem.6b00372Publication Date (Web): April 18, 2016
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes
Abstract Image
We recently reported on the discovery of a novel antibacterial (2) with a 4(3H)-quinazolinone core. This discovery was made by in silico screening of 1.2 million compounds for binding to a penicillin-binding protein and the subsequent demonstration of antibacterial activity againstStaphylococcus aureus. The first structure–activity relationship for this antibacterial scaffold is explored in this report with evaluation of 77 variants of the structural class. Eleven promising compounds were further evaluated for in vitro toxicity, pharmacokinetics, and efficacy in a mouse peritonitis model of infection, which led to the discovery of compound 27. This new quinazolinone has potent activity against methicillin-resistant (MRSA) strains, low clearance, oral bioavailability and shows efficacy in a mouse neutropenic thigh infection model.

Renee Bouley, a third year graduate student in the Department of Chemistry and Biochemistry, has been selected to receive a prestigious American Chemical Society (ACS) Division of Medicinal Chemistry Predoctoral Fellowship.  Bouley is one of only four recipients chosen for the 2013-2014 cycle.

This award supports doctoral candidates working in the area of medicinal chemistry who have demonstrated superior achievements as graduate students and who show potential for future work as independent investigators. These fellowships have been awarded annually since 1991 and include one year stipend support and an invitation to present the fellow’s research results at a special awards session at the ACS National Meeting.

Bouley’s work, conducted under the advisement of Shahriar Mobashery, Navari Family Professor in Life Sciences, and Mayland Chang, Research Professor and Director of the Chemistry-Biochemistry-Biology Interface (CBBI) Program, centers around the discovery of a new class of antibiotics that are selective against staphylococcal species of bacteria, including hard-to-treat methicillin-resistant Staphylococcus aureus (MRSA).  She has already identified a class of compounds that has in vitro activity against bacteria and demonstrated efficacy in mice. Bouley spent three months in 2012 in the laboratory of Prof. Juan Hermoso at Consejo Superior de Investigaciones Cientificas in Madrid, Spain, where she solved the crystal structure of the lead compound in complex with its target protein. Her studies have shown an unprecedented mechanism of action that opens opportunities for clinical resurrection of β-lactam antibiotics in combination with the new antibiotics. Bouley’s work during her fellowship tenure will explore structural analogs of these compounds with the goal of optimizing their potency in vivo and improving their drug-like properties.

Bouley is already the recipient of a National Institutes of Health Ruth L. Kirschstein National Research Service Award – CBBI (Chemistry-Biochemistry-Biology Interface) Program, a CBBI Research Internship Award, and an American Heart Association Predoctoral Fellowship (declined)………..https://www.linkedin.com/in/renee-bouley-43243215

 

Read Full Post »


CD-4 Therapy for Solid Tumors

Curator: Larry H. Bernstein, MD, FCAP

 

CD4 T-cell Immunotherapy Shows Activity in Solid Tumors

Alexander M. Castellino, PhD

http://www.medscape.com/viewarticle/862095

For the first time, treatment with genetically engineered T-cells has used CD4 T-cells instead of the CD8 T-cells, which are used in the chimeric antigen receptor (CAR) T-cell approach. Early data suggest that this CD4 T-cell approach has activity against solid tumors, whereas the CAR T-cell approach so far has achieved dramatic success in hematologic malignancies.

In the new approach, CD4 T-cells were genetically engineered to target MAGE-A3, a protein found on many tumor cells. The treatment was found to be safe in patients with metastatic cancers, according to data from a phase 1 clinical study presented here at the American Association for Cancer Research (AACR) 2016 Annual Meeting.

“This is the first trial testing an immunotherapy using genetically engineered CD4 T-cells,” senior author Steven A. Rosenberg, MD, PhD, chief of the Surgery Branch at the National Cancer Institute (NCI), told Medscape Medical News.

Most approaches use CD8 T-cells. Although CD8 T-cells are known be cytotoxic and CD4 T-cells are normally considered helper cells, CD4 T-cells can induce tumor regression, he said.

Louis M. Weiner, MD, director of the Lombardi Comprehensive Cancer Center at Georgetown University, in Washington, DC, indicated that in contrast with CAR T-cells, these CD4 T-cells target proteins on solid tumors. “CAR T-cells are not tumor specific and do not target solid tumors,” he said.

Engineering CD4 Cells

Immunotherapy with engineered CD4 T-cells was personalized for each patient whose tumors had not responded to or had recurred following treatment with least one standard therapy. The immunotherapy was specific for patients in whom a specific human leukocyte antigen (HLA) — HLA-DPB1*0401 — was found to be expressed on their cells and whose tumors expressed MAGE-A3.

MAGE-A3 belongs to a class of proteins expressed during fetal development. The expression is lost in normal adult tissue but is reexpressed on tumor cells, explained presenter Yong-Chen William Lu, PhD, a research fellow in the Surgery Branch of the NCI.

Targeting MAGE-A3 is relevant, because it is frequently expressed in a variety of cancers, such as melanoma and urothelial, esophageal, and cervical cancers, he pointed out.

 Researchers purified CD4 T-cells from the peripheral blood of patients. Next, the CD4 T-cells were genetically engineered with a retrovirus carrying the T-cell receptor (TCR) gene that recognizes MAGE-A3. The modified cells were grown ex vivo and were transferred back into the patient.

Clinical Results

Dr Lu presented data for 14 patients enrolled into the study: eight patients received cell doses from 10 million to 30 billion cells, and six patients received up to 100 billion cells.

This was similar to a phase 1 dose-finding study, except the researchers were seeking to determine the maximum number of genetically engineered CD4 T-cells that a patient could safely receive.

One patient with metastatic cervical cancer, another with metastatic esophageal cancer, and a third with metastatic urothelial cancer experienced partial objective responses. At 15 months, the response is ongoing in the patient with cervical cancer; after 7 months of treatment, the response was durable in the patient with urothelial cancer; and a response lasting 4 months was reported for the patient with esophageal cancer.

Dr Lu said that a phase 2 trial has been initiated to study the clinical responses of this T-cell receptor therapy in different types of metastatic cancers.

In his discussion of the paper, Michel Sadelain, MD, of the Memorial Sloan Kettering Cancer Center, New York City, said, “Although therapy with CD4 cells has been evaluated using endogenous receptor, this is the first study using genetically engineered CD4 T-cells.”

Although the study showed that therapy with genetically engineered T-cells is safe and efficacious at least in three patients, the mechanism of cytotoxicity remains unclear, Dr Sadelain indicated.

Comparison With CAR T-cells

CAR T-cells act in much the same way. CARs are chimeric antigen receptors that have an antigen-recognition domain of an antibody (the V region) and a “business end,” which activates T-cells. In this case, CD8 T-cells from the patients are used to genetically engineer T-cells ex vivo. In the majority of cases, dramatic responses have been seen in hematologic malignancies.

CARs, directed against self-proteins, result in on-target, off-tumor effects, Gregory L. Beatty, MD, PhD, assistant professor of medicine at the University of Pennsylvania, in Philadelphia, indicated when he reported the first success story of CAR T-cells in a solid pancreatic cancer tumor.

Side effects of therapy with CD4 T-cells targeting MAGE-A3 were different and similar to side effects of chemotherapy, because patients received a lymphodepleting regimen of cyclophosphamide and fludabarine. Toxicities included high fever, which was experienced by the majority of patients (12/14). The fever lasted 1 to 2 weeks and was easily manageable.

High levels of the cytokine interleukin-6 (IL-6) were detected in the serum of all patients after treatment. However, the elevation in IL-6 levels was not considered to be a cytokine release syndrome, because no side effects occurred that correlated with the syndrome, Dr Liu indicated.

He also indicated that future studies are planned that will employ genetically engineered CD4 T-cells in combination with programmed cell death protein 1–blocking antibodies.

This study was funded by Intramural Research Program of the National Institutes of Health. The NCI’s research and development of T-cell receptor therapy targeting MAGE-A3 are supported in part under a cooperative research and development agreement between the NCI and Kite Pharma, Inc. Kite has an exclusive, worldwide license with the NIH for intellectual property relating to retrovirally transduced HLA-DPB1*0401 and HLA A1 T-cell receptor therapy targeting MAGE-A3 antigen. Dr Lu and Dr Rosenberg have disclosed no relevant financial relationships.

American Association for Cancer Research (AACR) 2016 Annual Meeting: Abstract CT003, presented April 17, 2016.

 

Searches Related to immunotherapy using genetically engineered CD4 T-cells

 

Genetic engineering of T cells for adoptive immunotherapy

To be effective for the treatment of cancer and infectious diseases, T cell adoptive immunotherapy requires large numbers of cells with abundant proliferative reserves and intact effector functions. We are achieving these goals using a gene therapy strategy wherein the desired characteristics are introduced into a starting cell population, primarily by high efficiency lentiviral vector-mediated transduction. Modified cells are then expanded using ex vivo expansion protocols designed to minimally alter the desired cellular phenotype. In this article, we focus on strategies to (1) dissect the signals controlling T cell proliferation; (2) render CD4 T cells resistant to HIV-1 infection; and (3) redirect CD8 T cell antigen specificity.
Adoptive T cell therapy is a form of transfusion therapy involving the infusion of large numbers of T cells with the aim of eliminating, or at least controlling, malignancies or infectious diseases. Successful applications of this technique include the infusion of CMV-or EBVspecific CTLs to protect immunosuppressed patients from these transplantation-associated diseases [1,2]. Furthermore, donor lymphocyte infusions of ex vivo-expanded allogeneic T cells have been used to successfully treat hematological malignancies in patients with relapsed disease following allogeneic hematopoietic stem cell transplant [3]. However, in many other malignancies and chronic viral infections such as HIV-1, adoptive T cell therapy has achieved inconsistent and/or marginal successes. Nevertheless, there are compelling reasons for optimism on this strategy. For example, the existence of HIV-positive elite non-progressors [4], as well as the correlation between the presence of intratumoral T cells and a favorable prognosis in malignancies such as ovarian [5,6] and colon carcinoma [7,8], provides in vivo evidence for the critical role of the immune system in controlling both HIV and cancer.
The key to successful adoptive immunotherapy strategies appears to consist of (1) using the “right” T cell type(s) and (2) obtaining therapeutically effective numbers of these cells without compromising their effector functions or their ability to engraft within the host. This article is focused on strategies employed in our laboratory to generate the “right” cell through genetic engineering approaches, with an emphasis on redirecting the antigen specificity of CD8 T cells, and rendering CD4 T cells resistant to HIV-1 infection. The article by Paulos et al. describes the evolving process of how to best obtain therapeutically effective numbers of the “right” cells by optimizing ex vivo cell expansion strategies.
Our laboratory’s overall strategy and flow plan for development and evaluation of engineered T cells is depicted in Fig. 1. We work almost exclusively with primary human T cells; little or no work is performed with conventional established cell lines. Thus, we benefit substantially from our close association with the UPenn Human Immunology Core. The Core performs leukaphereses on healthy donors 2–3 times a week, and provides purified peripheral blood mononuclear cell subsets, ensuring a constant influx of fresh human T cells into our laboratory. We have extensive experience in developing both bead- and cell-based artificial antigen presenting cells (aAPCs), as described in detail in the article by Paulos et al. The ability to genetically modify T cells at high efficiency is critical for virtually every project within the laboratory. We have adapted the lentiviral vector system described by Dull [15] for most, but not all, of the engineering applications in our laboratory.
CD4 T cells are the primary target of HIV-1, and decreasing CD4 T cell numbers is a hallmark of advancing HIV-1 disease [34]. Thus, strategies that protect CD4 T cells from HIV-1 infection in vivo would conceivably provide sufficient immunological help to control HIV-1 infection. Our early observations that CD3/CD28 costimulation resulted in improved ex vivo expansion of CD4 T cells from both healthy and HIV-infected donors, as well as enhanced resistance to HIV-1 infection [35,36], ultimately led to the first-in-human trial of lentiviral vector-modified CD4 T cells [37]. In this trial, CD4 T cells from HIV-positive subjects who had failed antiretroviral therapy were transduced with a lentiviral vector encoding an antisense RNA that targeted a 937 bp region in the HIV-1 envelope gene. Preclinical studies demonstrated that this antisense region, directed against the HIV-1NL4-3 envelope, provided robust protection from a broad range of both R5-and X4-tropic HIV-1 isolates [38]. One year after administration of a single dose of the gene-modified cells, four of the five enrolled patients had increased peripheral blood CD4 T cell counts, and in one subject, a 1.7 log decrease in viral load was observed. Finally, in two of the five patients, persistence of the gene-modified cells was detected one year post-infusion.
Since its identification as the primary co-receptor involved in HIV transmission, CCR5 has attracted considerable attention as a target for HIV therapy [42,43]. Indeed, “experiments of nature” have shown that individuals with a homozygous CCR5 Δ32 deletion are highly resistant to HIV-1 infection. Thus, we hypothesized that knocking out the CCR5 locus would generate CD4 T cells permanently resistant to infection by R5 isolates of HIV-1. To test this hypothesis we took advantage of zinc-finger nuclease (ZFN) technology [44]. ZFNs introduce sequencespecific double-strand DNA breakage, which is imperfectly repaired by non-homologous endjoining. This results in the permanent disruption of the genomic target, a process termed genome editing (Fig. 3).
Genetic modification of T cells to redirect antigen specificity is an attractive strategy compared to the lengthy process of growing T cell lines or CTL clones for adoptive transfer. Genetically modified, adoptively transferred T cells are capable of long-term persistence in humans [37, 46,47], demonstrating the feasibility of this approach. When compared to the months it can take to generate an infusion dose of antigen-specific CTL lines or clones from a patient, a homogeneous population of redirected antigen-specific cells can be expanded to therapeutically relevant numbers in about two weeks [3]. Several strategies are being explored to bypass the need to expand antigen-specific T cells for adoptive T cell therapy. The approaches currently studied in our laboratory involve the genetic transfer of chimeric antigen receptors and supraphysiologic T cell receptors.
Chimeric antigen receptors (CARs or T-bodies) are artificial T cell receptors that combine the extracellular single-chain variable fragment (scFv) of an antibody with intracellular signaling domains, such as CD3ζ or Fc(ε)RIγ [48–50]. When expressed on T cells, the receptor bypasses the need for antigen presentation on MHC since the scFv binds directly to cell surface antigens. This is an important feature, since many tumors and virus-infected cells downregulate MHCI, rendering them invisible to the adaptive immune system. The high-affinity nature of the scFv domain makes these engineered T cells highly sensitive to low antigen densities. In addition, new chimeric antigen receptors are relatively easy to produce from hybridomas. The key to this approach is the identification of antigens with high surface expression on tumor cells, but reduced or absent expression on normal tissues.  Since one can redirect both CD4 and CD8 T cells, the T-body approach to immunotherapy represents a near universal “off the shelf” method to generate large numbers of antigen-specific helper and cytotoxic T cells.
Many T-bodies targeting diverse tumors have been developed [51], and four have been evaluated clinically [52–55]. Three of the four studies were characterized by poor transgene expression and limited T-body engraftment. However, in a study of metastatic renal cell carcinoma using a T-body directed against carbonic anhydrase IX [55], T-body-expressing cells were detectable in the peripheral blood for nearly 2 months post-administration.
The major goals in the T-body field currently are to optimize their engraftment and maximize their effector functions. Our laboratory is addressing both problems simultaneously through an in-depth study of the requirements for T-body activation. We hypothesize that their limited persistence is due to incomplete cell activation due to the lack of costimulation. While naïve T cells depend on costimulation through CD28 ligation to avoid anergy and undergo full activation in response to antigen, it is recognized that effector cells also require costimulation to properly proliferate and produce cytokines [56]. Previous studies have shown that providing CD28 costimulation is crucial for the antitumoral function of adoptively transferred T cells and T-bodies [57–59]. Unlike conventional T cell activation, which requires two discrete signals, T-bodies can be engineered to provide both costimulation and CD3 signaling through one binding event.
A different approach for redirecting specificity to T cells for adoptive immunotherapy involves the genetic transfer of full-length TCR genes. A T cell’s specificity for its cognate antigen is solely determined by its TCR. Genes encoding the α and β chains of a T cell receptor (TCR) can be isolated from a T cell specific for the antigen of interest and restricted to a defined HLA allele, inserted into a vector, and then introduced into large numbers of T cells of individual patients that share the restricting HLA allele as well as the targeted antigen. In 1999, Clay and colleagues from Rosenberg’s group at the National Cancer Institute were the first to report the transfer of TCR genes via a retroviral vector into human lymphocytes and to show that T cells gained stable reactivity to MART-1 [67]. To date, many others have shown that the same approach can be used to transfer specificity for multiple viral and tumor associated antigens in mice and human systems. These T cells gain effector functions against the transferred TCR’s cognate antigen, as defined by proliferation, cytokine production, lysis of targets presenting the antigen, trafficking to tumor sites in vivo, and clearance of tumors and viral infection.
In 2006, Rosenberg’s group redirected patients’ PBLs with the naturally occurring, MART-1- specific TCR reported in 1999 by Clay. In the first clinical trial to test TCR-transfer immunotherapy, these modified T cells were infused into melanoma patients [68]. While the transduced T cells persisted in vivo, only two of the 17 patients had an objective response to this therapy. One issue revealed by the study was the poor expression of the transgenic TCRs by the transferred T cells. Nonetheless, the results from this trial showed the potential of TCR transfer immunotherapy as a safe form of therapy for cancer and highlighted the need to optimize such therapy to attain maximum potency.
The adoptive immunotherapy field is advancing by a tried-and-true method: learning from disappointments and moving forward. Our ability to fully realize the therapeutic potential of adoptive T cell therapy is tied to a more complete understanding of how human T cells receive signals, kill targets, and modulate effective immune responses. Our goal is to perform labbased experiments that provide insight into how primary T cells function in a manner that will facilitate and enable adoptive T cell therapy clinical trials. Our ability to efficiently modify (and expand) T cells ex vivo provides the opportunity to deliver sufficient immune firepower where it has heretofore been lacking. Sustained transgene expression, coupled with enhanced in vivo engraftment capability, will move adoptive immunotherapy into a realm where longterm therapeutic benefits are the norm rather than the exception.
Genetic Modification of T Lymphocytes for Adoptive Immunotherapy

Claudia Rossig1 and Malcolm K. Brenner2
Molecular Therapy (2004) 10, 5–18;   http://dx.doi.org:/10.1016/j.ymthe.2004.04.014      http://www.nature.com/mt/journal/v10/n1/full/mt20041193a.html

Adoptive transfer of T lymphocytes is a promising therapy for malignancies—particularly of the hemopoietic system—and for otherwise intractable viral diseases. Efforts to broaden the approach have been limited by the physiology of the T cells themselves and by a range of immune evasion mechanisms developed by tumor cells. In this review we show how genetic modification of T cells is being used preclinically and in patients to overcome these limitations, by incorporation of novel receptors, resistance mechanisms, and control genes. We also discuss how the increasing safety and effectiveness of gene transfer technologies will lead to an increase in the use of gene-modified T cells for the treatment of a wider range of disorders.

That gene transfer could be used to improve the effectiveness of T lymphocytes was apparent from the beginning of clinical studies in the field. T cells were the very first targets for genetic modification in human gene transfer experiments. Rosenberg’s group marked tumor-infiltrating lymphocytes ex vivo with a Moloney retroviral vector encoding neomycin phosphotransferase before reinfusing them and attempting to demonstrate selective accumulation at tumor sites. Shortly thereafter, Blaese and Anderson led a group that infused corrected T cells into two children with severe combined immunodeficiency due to ADA deficiency. While neither study was completely successful in terms of outcome, both showed the feasibility of ex vivo gene transfer into human cells and set the stage for many of the studies that followed. More recently, a second wave of interest in adoptive T cell therapies has developed, based on their success in the prevention and treatment of viral infections such as EBV and cytomegalovirus (CMV) and on their apparent ability to eradicate hematologic and perhaps solid malignancies1,2,3,4,5,6. There has been a corresponding increase in studies directed toward enhancing the antineoplastic and antiviral properties of the T cells. In this article we will review how gene transfer may be used to produce the desired improvements focusing on vectors and genes that have had clinical application.

Currently available viral and nonviral vector systems lack a pattern of biodistribution that would favor T cell transduction in vivo—as occurs, for example, with adenovectors and the liver or liposomal vectors and the lung. This lack of favorable biodistribution cannot yet be compensated for by the introduction of specific T-cell-targeting ligands into vectors. Hence, all T cell gene transfer studies conducted to date have used ex vivo transduction followed by adoptive transfer of gene-modified cells. This approach is inherently less attractive for commercial development than directin vivo gene transfer and has probably restricted interest in developing clinical applications using these cells. On the other hand, ex vivo transduction may be more readily controlled, characterized, and standardized than in vivo efforts and may ultimately produce a better defined final product (the transduced cell).

The gene products of suicide and coexpressed resistance genes are highly immunogenic and may induce immune-mediated rejection of the transduced cells. In one study, the persistence of adoptively transferred autologous CD8+ HIV-specific CTL clones modified to express the hygromycin phosphotransferase (Hy) gene and the herpesvirus thymidine kinase gene as a fusion gene was limited by the induction of a potent CD8+ class I MHC-restricted CTL response specific for epitopes derived from the Hy-tk protein126. Less immunogenic suicide and selection marker genes, preferably of human origin, may reduce the immunological inactivation of genetically modified donor lymphocytes. Human-derived prodrug-activating systems include the human folylpolyglutamate synthetase/methotrexate127, the deoxycytidine/cytosine arabinoside128, or the carboxylesterase/irinotecan129 systems. These systems do not activate nontoxic prodrugs but are based on enhancement of already potent chemotherapeutic agents. The administration of methotrexate to treat severe GVHD may not only kill transduced donor lymphocytes but may also have additional inhibitory activity on nontransduced but activated T cells.

Finally, endogenous proapoptotic molecules have been proposed as nonimmunogenic suicide genes. A chimeric protein that contains the FK506-binding protein FKBP12 linked to the intracellular domain of human Fas130 was recently introduced. Addition of the dimerizing prodrug induces Fas crosslinking with subsequent triggering of an apoptotic death signal.

Genetic engineering of T lymphocytes should help deliver on the promise of immunotherapies for cancer, infection, and autoimmune disease. Improvements in transduction, selection, and expansion techniques and the development of new viral vectors incapable of insertional mutagenesis will reduce the risks and further enhance the integration of T cell and gene therapies. Nonetheless, successful application of the proposed modifications to the clinical setting still requires many iterative studies to allow investigators to optimize the individual components of the approach.

Genetically modified T cells in cancer therapy: opportunities and challenges
Michaela Sharpe, Natalie Mount

 

The feasibility of T-cell adoptive transfer was first reported nearly 20 years ago (Walter et al., 1995) and the field of T-cell therapies is now poised for significant clinical advances. Recent clinical trial successes have been achieved through multiple small advances, improved understanding of immunology and emerging technologies. As the key challenges of T-cell avidity, persistence and ability to exert the desired anti-tumour effects as well as the identification of new target antigens are addressed, a broader clinical application of these therapies could be achieved. As the clinical data emerges, the challenge of making these therapies available to patients shifts to implementing robust, scalable and cost-effective manufacture and to the further evolution of the regulatory requirements to ensure an appropriate but proportionate system that is adapted to the characteristics of these innovative new medicines.

 

 

Read Full Post »

Older Posts »