Advertisements
Feeds:
Posts
Comments

Archive for the ‘Infectious Disease & New Antibiotic Targets’ Category


NEW Book #InfectiousDiseases #Immunology #StressSignaling #Therapeutics check https://www.amazon.com/dp/B075CXHY1B

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

 

Includes FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, Viral Infection, Fungal Infection, Allergy-related Infections and Other, 1995 – 2016

VOLUME 2: covers the frontier of research on Infectious Diseases and the Human Immune System. The Immune Response, Disease Specific Immune Response, Immunodiagnostics and Immunotherapy, Immunotherapy and Autoimmunity,
Bacterial Infections, Bacteria Types, Antibactirial Therapeutics, FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, 1995 – 2016. Viral Infection: Virus Types, Antiviral Therapeutics, and FDA Approved Drugs for Infections and Infectious Diseases: Viral Infection, Fungal Infections, Allergy-related Infections, Other Infections,1995 – 2016,

VOLUME 3: covers the state of Science on the Historical Perspective of Immunology, Development of the Immune System, Signaling and Immunology, Cellular Immunity, Immunology and Inflammatory Response. Antibody-based Immunity, Vaccines and Microbiome, Immuno-Pharmaceutics, Cancer Immunotherapy, Immunomodulation and Neuro-Immunology.

Volume 2: Summary
The material that has been covered is a considerable material on the basic types of infections – bacterial, viral, and fungal, and diseases related to immune mechanisms. There has been a substantial coverage of the drugs and the manufacturers. This material brings to the discussion an international problem of drug resistance that applies much to bacteria, and a considerable amount of material on advances in drug development that takes into consideration protein structure and protein-protein interactions. The coverage of virus diseases brings to the forefront vaccines. However, in such cases as the influenza virus, a rapid genetic change of the virus makes the use of vaccines an issue for continuing revision.

Volume 3: Summary
The second volume is only concerned with the pathobiology of the inflammatory response, including sepsis, and it does not leave out hematopoiesis, and it lays out the difference between the B-clles and the T-cells that are related to the Toll receptor. Here we have looked closely at two immune disorders, Inflammatory Bowel Disease (Crohn’s Disease) and Rheumatoid Arthritis. Here we have discussed immunomodulation and signaling of the pathways involved, and the programmed cell death response. We have also covered the relationship of the immune response to autoimmune disorders and to cancer. The treatment of cancer now heavily leans toward the blocking of destructive processes in the immunomodulatory pathways.

Epilogue – Volume 2
Volume 2 has covered the most common bacterial and viral diseases that we find widely, or sporadically. It detailed the development of sepsis, and the immune response factor. The immune response involves local cellular invasion of lymphocytes related to initiation of T-cells and macrophages, and also the proteomic generated B-cell antibodies. These reactions are both local and systemic, as bacterial invasion is local and usually related to the tissue of residence (large intestine, oral, lung, genital). In the case of virus, the site of entry is often respiratory or by food intake, but these agents may rapidly become systemic. The other matter of the immune response is autoimmune, a reaction against the self. It is not entirely clear how this is initiated, but it has been related to failure to develop immunity in the prenatal or postnatal period. The only other possibility that might be considered would be by the mechanism of cell remodeling by an apoptotic related mechanism. The other chapters deal with therapeutics.

Epilogue – Volume 3
These two volumes have traversed a large knowledge-base. The first was directed largely at the well known bacterial, virus, fungal diseases, as well as autoimmunity. It specified recent FDA approved recommendations of pharmaceutics for these conditions. It also gives some attention to the immune response in inflammatory and autoimmune diseases, but not cancer. The second volume gives a concise history of development of Leukemias, Lymphomas pathology.

Advertisements

Read Full Post »


Announcing our 10th e-Book on Amazon.com – 1st day, 9/4/2017

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

On our Book Shelf on Amazon.com

WE ARE ON AMAZON.COM

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

http://www.amazon.com/dp/B00DINFFYC

http://www.amazon.com/dp/B018Q5MCN8

http://www.amazon.com/dp/B018PNHJ84

http://www.amazon.com/dp/B018DHBUO6

http://www.amazon.com/dp/B013RVYR2K

http://www.amazon.com/dp/B012BB0ZF0

http://www.amazon.com/dp/B019UM909A

http://www.amazon.com/dp/B019VH97LU

http://www.amazon.com/dp/B071VQ6YYK

https://www.amazon.com/dp/B075CXHY1B

 

The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since 9/4/2017

by Larry H. Bernstein (Author), Aviva Lev-Ari (Author), Stephen J. Williams (Author), Demet Sag (Author), Irina Robu (Author), Tilda Barliya (Author), David Orchard-Webb (Author), Alan F. Kaul (Author), Danut Dragoi (Author), Sudipta Saha (Editor)

https://www.amazon.com/dp/B075CXHY1B

 

Product details

  • File Size:21832 KB
  • Print Length:3747 pages
  • Publisher:Leaders in Pharmaceutical Business Intelligence (LPBI) Group; 1 edition (September 4, 2017)
  • Publication Date:September 4, 2017
  • Sold by:Amazon Digital Services LLC
  • Language:English
  • ASIN:B075CXHY1B
  • Text-to-Speech: Enabled 
  • X-Ray: Not Enabled 
  • Word Wise:Not Enabled
  • Lending:Enabled
  • Enhanced Typesetting:Not Enabled 

Read Full Post »


Curator: Aviva Lev-Ari, PhD, RN

 

Transcriptomic Biomarkers to Discriminate Bacterial from Nonbacterial Infection in Adults Hospitalized with Respiratory Illness

Published online: 26 July 2017

URMC Researchers Developing New Tool to Fight Antibiotic Resistance

Goal is to Distinguish Between Viral and Bacterial Infections, Reduce Unnecessary Use of Antibiotics

Friday, July 28, 2017

“It’s extremely difficult to interpret what’s causing a respiratory tract infection, especially in very ill patients who come to the hospital with a high fever, cough, shortness of breath and other concerning symptoms,” said Ann R. Falsey, M.D., lead study author, professor and interim chief of the Infectious Diseases Division at UR Medicine’s Strong Memorial Hospital.

“My goal is to develop a tool that physicians can use to rule out a bacterial infection with enough certainty that they are comfortable, and their patients are comfortable, foregoing an antibiotic.”

Lead researcher Ann Falsey, M.D.

Ann R. Falsey, M.D.

Falsey’s project caught the attention of the federal government; she’s one of 10 semifinalists in the Antimicrobial Resistance Diagnostic Challenge, a competition sponsored by NIH and the Biomedical Advanced Research and Development Authority to help combat the development and spread of drug resistant bacteria. Selected from among 74 submissions, Falsey received $50,000 to continue her research and develop a prototype diagnostic test, such as a blood test, using the genetic markers her team identified.

SOURCE

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

Lower respiratory tract infection (LRTI)

We enrolled 94 subjects who were microbiologically classified; 53 as “non-bacterial” and 41 as “bacterial”. RNAseq and qPCR confirmed significant differences in mean expression for 10 genes previously identified as discriminatory for bacterial LRTI. A novel dimension reduction strategy selected three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation) including eleven genes as optimal markers for discriminating bacterial infection (naïve AUC = 0.94; nested CV-AUC = 0.86). Using these genes, we constructed a classifier for bacterial LRTI with 90% (79% CV) sensitivity and 83% (76% CV) specificity. This novel, pathway-based gene set displays promise as a method to distinguish bacterial from nonbacterial LRTI.

https://www.nature.com/articles/s41598-017-06738-3#Sec8

IMAGE SOURCE

https://www.nature.com/articles/s41598-017-06738-3#Sec8

 

SOURCES

http://sciencemission.com/site/index.php?page=news&type=view&id=microbiology-virology%2Fnew-tool-to-distinguish&filter=8%2C9%2C10%2C11%2C12%2C13%2C14%2C16%2C17%2C18%2C19%2C20%2C27&redirected=1&redirected=1

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

https://www.nature.com/articles/s41598-017-06738-3

Bacterial or Viral Infection? A New Study May Help Physicians …

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Series D, VOLUME 2:

Infectious Diseases and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP and CuratorSudipta Saha, PhD

 

Series D, VOLUME 3:

The Immune System and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/biomed-e-books/series-d-e-books-on-biomedicine/human-immune-system-in-health-and-in-disease/

Read Full Post »


The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally  

Author: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

 

The newly formed Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences (RBHS) of Rutgers University, New Brunswick, New Jersey (http://rbhs.rutgers.edu/), represents a new way of thinking by providing positive health outcomes to potential patients around the world affected by disease and/or by a negative environmental impact. The goal of the Institute is three-fold:

  • to improve the health and wellness of individuals and populations around the world,
  • to create a healthier world through innovation, engineering, and technology, and
  • to educate involved citizens and effective leaders in global health.

Richard G. Marlink, M.D., a former Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute.

The Rutgers Global Health Institute was formed last year after research by the University into the most significant health issues affecting under-served and under-developed populations. While conducting research for its five-year strategic plan, the RBHS looked for bold and ambitious ways that they could take advantage of the changing health care environment and band together to tackle the world’s leading health and environmental causes, contributing to the betterment of society. One of the results was the formation of the Rutgers Global Health Institute, supporting cross-functionally Rutgers faculty, scientists, and clinicians who represent the best in their respective fields of health innovation, research and patient care related to global health.

More broadly, the RBHS, created in 2013, is one of the nation’s leading – and largest — academic health centers that provides health care education, research and clinical service and care. It is an umbrella organization that encompasses eight schools – Ernest Mario School of Pharmacy, Graduate School of Biomedical Sciences, New Jersey Medical School, Robert Wood Johnson Medical School, Rutgers School of Dental Medicine, School of Health Professions, School of Nursing and School of Public Health.

In addition, the RBHS encompasses six centers and institutes that provide cancer treatment and research, neuroscience, advanced biotechnology and medicine, environmental and occupational health and health care policy and aging research. Those centers and institutes are the Brain Health Institute, Center for Advanced Biotechnology and Medicine, Environmental and Occupational Health Sciences Institute, Institute for Health, Health Care Policy and Aging Research, Rutgers Cancer Institute of New Jersey, and Rutgers Institute for Translational Medicine and Research. And lastly, the RBHS includes the University Behavioral Health Care.

 

Rutgers Institute For Health Building

Image SOURCE: Photograph courtesy of the Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey.   

 

Below is my interview with the Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute Richard G. Marlink, M.D., which occurred in April, 2017.

You were recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of the new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). What are the goals of the new Institute?

Dr. Marlink: The overarching goal of the Rutgers Global Health Institute is to improve the health and wellness of individuals and populations in need both here and around the world, to create a healthier world through innovation, engineering, and technology, and to educate involved citizens and effective leaders in global health. We will do that by building on the aspiration of our originating organization — RBHS, which is to be recognized as one of the best academic health centers in the U.S., known for its education, research, clinical care, and commitment to improving access to health care and reducing health care disparities.

As the newly formed Rutgers Global Health Institute, we are embarking on an ambitious agenda to take advantage of the changing health care environment. Working across schools and disciplines at Rutgers University, we plan to have a significant impact within at least four signature programs identified by RBHS, which are cancer, environmental and occupational health, infection and inflammation, and public health. We also will include all other parts of Rutgers, as desired, beyond RBHS.

My background as a global health researcher, physician, and leader of grassroots health care delivery will help develop programs to undertake global health initiatives that assist populations locally and around the world. I believe that involved citizens, including students, can greatly impact major societal issues.

A key role in the strategic growth of Rutgers Biomedical and Health Sciences – an umbrella organization for eight schools, four centers and institutes and a behavioral health network — is to broaden the Rutgers University’s presence in the public health community globally to improve health and wellness. How will the new Rutgers Global Health Institute be part of this growth?

Dr. Marlink: Our RBHS Chancellor Brian Strom [M.D., M.P.H.] believes that we are positioned to become one of the finest research universities in the country, working cross-functionally with our three campuses in Newark, Camden and New Brunswick. In developing the strategic plan, Dr. Strom notes that we become much stronger and more capable and productive by leveraging our strengths to collaborate and working together across disciplines to best serve the needs of our community locally and globally.

Specifically, we are formulating plans to focus on these areas: old and new infectious disease epidemics; the expanding burden of noncommunicable diseases in poor populations; the social and environmental threats to health, poverty and humanitarian crises; and inadequate local and developing country health systems. We will support the development of global health research programs university-wide, the recruitment of faculty with interests in global health, and the creation of a web-based global health resource center for faculty and students with interests in these areas.

We are still a very young part of RBHS, and of Rutgers overall, so our plans are a work in progress. As tangible examples of our commitment to improving health and wellness globally, we plan to enhance global public health by establishing links between global public health and environmental and occupational health faculty in studies related to air pollution, climate change, and pesticide health.

Another example the Institute has in the works is expanding links with the School of Engineering. In fact, we are creating a senior-level joint faculty position with the School of Engineering and Rutgers-New Brunswick. Still other plans involve forging collaborative relationships between the Rutgers Cancer Program, under the auspices of Rutgers Cancer Institute of New Jersey, which is New Jersey’s only National Cancer Institute (NCI)-designated comprehensive cancer center, and other organizations and partners around the world, especially in poor and less-developed countries.

How is the Rutgers Global Health Institute strategically prepared for changing the health care paradigm?

Dr. Marlink: We intend to be an international global health leader in the health sciences, in public health, and in other related, but non-biomedical professions. This means that we will incorporate our learnings from laboratory sciences and the clinical, behavioral, and public health sciences, as well as from engineering, business, economics, law, and social sciences. This broad approach is critical in this health care environment as accountability for patient care is shifting to large groups of providers. Health care will be more value-driven and our health care teams must work collaboratively to be innovative. Our focus on health care is now also population-based, rather than only individual-based, and we are moving from large regional centers toward community centers, even in small and remote areas of the world. We are encouraged by rapid changes in technology that will provide new opportunities for shared knowledge, patient care and research.

Additionally, we are exploring ways to identify and recruit key faculty who will increase our breadth and depth of key disease areas as well as provide guidance on how to pursue science grants from the National Institute of Health (NIH)-funded program project grants and specialized research programs.

Currently, Rutgers University receives NIH funding for research in public health, population health, health promotion, wellness, health behavior, preventive medicine, and global health.

As a researcher, scholar and leader of grassroots health care delivery, how have your past positions prepared you for this new challenge? Your last position was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard University’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

Dr. Marlink: I have been a global health practitioner, researcher, and executive leader for almost three decades. I am trained in medical oncology and HIV medicine and have conducted clinical, epidemiological and implementation research in Africa since 1985. I was first introduced to global health when finishing my Hematology/Oncology fellowship at what is now the Beth Israel Deaconess Medical Center in the mid-1980’s in Boston.

During my Hematology/Oncology fellowship and after the co-organizing the first, hospital-based AIDS care clinic in the New England region, I was trying to learn the ropes in virology and molecular biology in the laboratory group of Max Essex at Harvard University. During that time in the mid-1980s, our laboratory group along with Senegalese and French collaborators discovered the first evidence for the existence of a new human retrovirus, HIV-2, a distinct second type of human AIDS virus, with its apparent origins in West Africa.

As a clinician, I was able to assist in Senegal, helping set up clinical care and create a research cohort in Dakar for hundreds of women sex workers infected with this new human retrovirus and care for them and their families. I discovered that a little can go a long way in poor settings, such as in Senegal. I became hooked on helping create solutions to help people in poor settings in Africa and elsewhere. Long-term partnerships and friendships have subsequently been made in many developing countries. Throughout my career, I have built successful partnerships with many governments, companies, and non-profit organizations, and those relationships have been the foundation to build successful public health partnerships in poor regions of the world.

In the 1990s, I helped create the Botswana-Harvard Partnership for HIV Research and Education (BHP). Through this partnership, the Government of Botswana and BHP have worked together to combat the AIDS epidemic in Botswana. Under my direction, and in partnership with the Botswana Ministry of Health, BHP launched the KITSO AIDS Training Program in 1999. Kitso is the Setswana word for ‘knowledge.”

KITSO is the national training program for physicians, nurses, and pharmacists, which has trained more than 14,000 health professionals in HIV/AIDS care and antiretroviral treatment. KITSO training modules address issues, such as antiretroviral therapy, HIV/AIDS-related disease management, gender-specific HIV issues, task-sharing, supportive and palliative care, and various psychosocial and counseling themes.

In addition, I was the Botswana County Director for Harvard Chan School’s 3-country President’s Emergency Plan AIDS Relief (PEPFAR) grant, The Botswana PEPFAR effort includes a Clinical and Laboratory Master Training Program and the creation of the Botswana Ministry of Health’s Monitoring and Evaluation Unit. Concurrently, I was the Principal Investigator of Project HEART in five African countries with the Elizabeth Glaser Pediatric AIDS Foundation.

Also in Botswana, in 2000, I was a co-founder of a distinct partnership involving a large commitment to the Government of Botswana from the Bill and Melinda Gates and Merck Foundations.  This commitment continues as an independent non-governmental organization (NGO) to provide support for various AIDS prevention and care efforts in Botswana and the region.

All these global health experiences, it seems, have led me to my new role at the Rutgers Global Health Institute.

What is your advice for ways that the business community or university students can positively impact major societal issues?

Dr. Marlink: My advice is to be optimistic and follow that desire to want to make a difference. Margaret Mead, the American cultural anthropologist, said years ago, “Never doubt that a small group of thoughtful, committed citizens can change the world; indeed, it’s the only thing that ever has.” I believe that to be our guiding principle as we embark on this new initiative.

I also believe that students should become specialized in specific areas prior to going fully into “global health,” as they develop in their careers, since they will then add more value later. For example, students should be grounded in the theory of global health in their undergraduate studies and then develop a specialization, such as becoming a statistician, economist, or medical doctor, to make a longer and greater impact in improving global health. As for the business community, we are looking for committed individuals who are specialized in specific areas to bring their knowledge to our organization, as partners in the fight against disease, improving the environment, or helping with humanitarian issues. We are committed to improving health and wellness, increasing access to the best health care, and reducing health disparities.

What is it about your current role that you enjoy the most?

Dr. Marlink: I enjoy building research, learning, and clinical programs, as I have in the HIV arena since the early 1980s. At that time, there were limited resources and funding, but a willingness among universities, non-governmental organizations, hospitals and the pharmaceutical industry to make a difference. Today in my new role, I’d like all of us to have an impact on health and wellness for those in need – to build programs from the ground up while partnering with organizations with the same goal in mind. I know it can be done.

Over my career, when I have a patient here or in a developed country who has been diagnosed with cancer, but is cured or in remission, that puts a huge smile on my face and in my heart. It also impacts you for the rest of your life. Or when I see an infant born without HIV because of the local country programs that are put in place, that also makes me feel so fulfilled, so happy.

I have worked with many talented individuals who have become great friends and partners over my career who have helped create a positive life for under-served populations around the world. We need to remember that progress happens with one person at a time or one program at a time. That’s how you truly improve health around the world.

 

Headshot - 2016

Image SOURCE: Photograph of Inaugural Henry Rutgers Professor of Global Health and Director of the Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences, courtesy of Rutgers University, New Brunswick, New Jersey.

Richard G. Marlink, M.D.
Inaugural Henry Rutgers Professor of Global Health

Director of the Rutgers Global Health Institute

Rutgers Biomedical and Health Sciences

Richard G. Marlink, M.D., a Harvard University professor recognized internationally for research and leadership in the fight against AIDS, was recently appointed as the inaugural Henry Rutgers Professor of Global Health and Director of a new Rutgers Global Health Institute at Rutgers Biomedical and Health Sciences (RBHS). His role is to develop the strategic growth of RBHS by broadening the Rutgers University’s presence in the public health community to improve health and wellness.

Previously, Dr. Marlink was the Bruce A. Beal, Robert L. Beal, and Alexander S. Beal Professor of the Practice of Public Health at Harvard’s T.H. Chan School of Public Health and Executive Director of the Harvard AIDS Initiative.

At the start of the AIDS epidemic, Dr. Marlink was instrumental in setting up the first, hospital-based HIV/AIDS clinic in Boston, Massachusetts, and studied the impact of the HIV virus in west and central Africa. After helping to start the Botswana-Harvard Partnership in 1996, he founded the Kitso AIDS Training Program, which would become Botswana’s national AIDS training program. Kitso means knowledge in the local Setswana language.

Dr. Marlink was the principal investigator for the Tshepo Study, the first large-scale antiretroviral treatment study in Botswana, in addition to conducting other clinical and epidemiological studies in the region. Also in Botswana, he was the country director for Harvard’s contribution to the joint Botswana and United States governments’ HIV/AIDS and TB training, monitoring and evaluation PEPFAR effort.

In the mid-1980s in Senegal, Dr. Marlink was part of the team of Senegalese, French and American researchers who discovered and then studied the second type of human AIDS virus, HIV-2. Since then, he has been involved in multiple HIV/AIDS care, treatment and prevention programs in many African countries, including in Botswana, Côte d’Ivoire (Ivory Coast), Democratic Republic of the Congo, Kenya, Lesotho, Malawi, Mozambique, Rwanda, Senegal, South Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. He has also organized initiatives to enhance HIV/AIDS care in Brazil, Puerto Rico and Thailand.

Dr. Marlink has served as the scientific director, the vice president for implementation and the senior adviser for medical and scientific affairs at the Elizabeth Glaser Pediatric AIDS Foundation, where he was principal investigator of Project HEART, a five-country CDC/PEPFAR effort in Africa. That project began in 2004 and by 2011 had placed more than 1 million people living with HIV into care clinics. More than 565,000 of these people were placed on life-saving antiretroviral treatment.

Since 2000, Dr. Marlink has been the founding member of the board of directors of the African Comprehensive HIV/AIDS Partnerships, a public-partnership among the government of Botswana and the Bill and Melinda Gates and Merck Foundations to provide ongoing support for numerous HIV/AIDS prevention, care and treatment efforts in that country.

He has authored or co-authored more than 130 scientific articles; written a textbook, Global AIDS Crisis: A Reference Handbook; and co-edited the book, AIDS in Africa, 2nd Edition. Additionally, he served as chief editor for two special supplements to the journal AIDS and as executive editor of the seminal 320-author, three-volume textbook, From the Ground Up: A Guide to Building Comprehensive HIV/AIDS Care Programs in Resource Limited Settings.

A trained fellow in hematology/oncology at the Beth Israel Deaconess Medical Center at Harvard Medical School, Dr. Marlink received his medical degree from the University of New Mexico and his bachelor’s degree from Brown University.

 

Editor’s note:

We would like to thank Marilyn DiGiaccobe, head of Partnerships and Strategic Initiatives, at the Rutgers Global Health Institute, for the help and support she provided during this interview.

 

REFERENCE/SOURCE

Rutgers Biomedical and Health Sciences (http://rbhs.rutgers.edu/)

Other related articles

Retrieved from https://aids.harvard.edu/ 

Retrieved from http://b.3cdn.net/glaser/515eaa8068b5e71d44_mlbrof7xw.pdf 

Other related articles were published in this Open Access Online Scientific Journal include the following: 

2016

CRISPR/Cas9 and HIV1 

https://pharmaceuticalintelligence.com/2016/04/16/crisprcas9-and-hiv1/

Concerns About Viruses

https://pharmaceuticalintelligence.com/2016/01/29/concerns-about-viruses/

CD-4 Therapy for Solid Tumors

https://pharmaceuticalintelligence.com/2016/05/02/cd-4-therapy-for-solid-tumors/

Novel Discoveries in Molecular Biology and Biomedical Science

https://pharmaceuticalintelligence.com/2016/05/30/novel-discoveries-in-molecular-biology-and-biomedical-science/

Scientists eliminate HIV1 DNA from the genome and prevent reinfection

https://pharmaceuticalintelligence.com/2016/03/23/scientists-eliminate-hiv1-dna-from-the-genome-and-prevent-reinfection/

Double Downside of HIV CRISPR therapy

https://pharmaceuticalintelligence.com/2016/04/09/double-downside-of-hiv-crispr-therapy/

2015

Where Infection meets with Cancer: Kaposi’s sarcoma (KS) is the most common cancer in HIV-1-infected persons and is caused by one of only 7 human cancer viruses, i.e., human herpesvirus 8 (HHV-8)

https://pharmaceuticalintelligence.com/2015/10/20/where-infection-meets-with-cancer-kaposis-sarcoma-ks-is-the-most-common-cancer-in-hiv-1-infected-persons-and-is-caused-by-one-of-only-7-human-cancer-viruses-i-e-human-herpesvirus-8-hhv/

Antibody shows promise as treatment for HIV

https://pharmaceuticalintelligence.com/2015/04/09/antibody-shows-promise-as-treatment-for-hiv/

2014

AIDS: Origin of HIV pandemic ‘was 1920s Kinshasa’

https://pharmaceuticalintelligence.com/2014/10/10/aids-origin-of-hiv-pandemic-was-1920s-kinshasa/

2013

Scientists discover how AIDS virus enters key immune cells

https://pharmaceuticalintelligence.com/2013/12/31/scientists-discover-how-aids-virus-enters-key-immune-cells/

Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

https://pharmaceuticalintelligence.com/2013/04/17/heroes-in-medical-research-dr-robert-ting-ph-d-and-retrovirus-in-aids-and-cancer/

2012

Nanotechnology and HIV/AIDS treatment

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

HIV vaccine: Caltech puts us One step further

https://pharmaceuticalintelligence.com/2012/08/31/hiv-vaccine-caltech-puts-us-one-step-further/

Bone Marrow Transplant Eliminates Signs of HIV Infection

https://pharmaceuticalintelligence.com/2012/07/29/bone-marrow-transplant-eliminates-signs-of-hiv-infection/

Getting Better: Documentary Videos on Medical Progress — in Surgery, Leukemia, and HIV/AIDS

https://pharmaceuticalintelligence.com/2012/08/23/getting-better-documentary-videos-on-medical-progress-in-surgery-leukemia-and-hivaids/

Read Full Post »


FDA cleared Clever Culture Systems’ artificial intelligence tech for automated imaging, analysis and interpretation of microbiology culture plates speeding up Diagnostics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

FDA clears automated imaging AI that speeds up infectious disease Dx

Read Full Post »


Keystone Symposia on Molecular and Cellular Biology – 2016-2017 Forthcoming Conferences in Life Sciences

Reporter: Aviva Lev-Ari, PhD, RN

2016-2017 Forthcoming Conferences in Life Sciences by topic:

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

Immunology

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Infectious Diseases

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Metabolic Diseases

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neurobiology

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Plant Biology

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

Structural Biology

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Technologies

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

October 2016

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

November 2016

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

December 2016

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

January 2017

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Omics Strategies to Study the Proteome (A8)
January 29 – February 2, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Alan Saghatelian, Chuan He and Ileana M. Cristea

Epigenetics and Human Disease: Progress from Mechanisms to Therapeutics (A9)
January 29 – February 2, 2017 | Seattle, Washington, USA
Scientific Organizers: Johnathan R. Whetstine, Jessica K. Tyler and Rab K. Prinjha

Hematopoiesis (B1)
January 31 – February 4, 2017 | Banff, Alberta, Canada
Scientific Organizers: Catriona H.M. Jamieson, Andreas Trumpp and Paul S. Frenette

February 2017

Noncoding RNAs: From Disease to Targeted Therapeutics (J5)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Kevin V. Morris, Archa Fox and Paloma Hoban Giangrande

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

March 2017

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Kinases: Next-Generation Insights and Approaches (C4)
March 5 – 9, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Reid M. Huber, John Kuriyan and Ruth H. Palmer

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Tumor Metabolism: Mechanisms and Targets (X3)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Brendan D. Manning, Kathryn E. Wellen and Reuben J. Shaw

Adaptations to Hypoxia in Physiology and Disease (X4)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: M. Celeste Simon, Amato J. Giaccia and Randall S. Johnson

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

Molecular Mechanisms of Heart Development (X7)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Benoit G. Bruneau, Brian L. Black and Margaret E. Buckingham

RNA-Based Approaches in Cardiovascular Disease (X8)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Thomas Thum and Roger J. Hajjar

April 2017

Genomic Instability and DNA Repair (Z1)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Julia Promisel Cooper, Marco F. Foiani and Geneviève Almouzni

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

May 2017

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Angiogenesis and Vascular Disease (Z3)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: M. Luisa Iruela-Arispe, Timothy T. Hla and Courtney Griffin

Mitochondria, Metabolism and Heart (Z4)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Junichi Sadoshima, Toren Finkel and Åsa B. Gustafsson

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Aging and Mechanisms of Aging-Related Disease (E2)
May 15 – 19, 2017 | Yokohama, Japan
Scientific Organizers: Kazuo Tsubota, Shin-ichiro Imai, Matt Kaeberlein and Joan Mannick

Single Cell Omics (E3)
May 26 – 30, 2017 | Stockholm, Sweden
Scientific Organizers: Sarah Teichmann, Evan W. Newell and William J. Greenleaf

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Cell Death and Inflammation (K2)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Seamus J. Martin and John Silke

June 2017

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

SOURCE

Read Full Post »


Signaling through the T Cell Receptor (TCR) Complex and the Co-stimulatory Receptor CD28

Curator: Larry H. Bernstein, MD, FCAP

 

 

New connections: T cell actin dynamics

Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.

RELATED CONTENT

 

Triple-Color FRET Analysis Reveals Conformational Changes in the WIP-WASp Actin-Regulating Complex

 

RELATED CONTENT

T cell activation by antigens involves the formation of a complex, highly dynamic, yet organized signaling complex at the site of the T cell receptors (TCRs). Srikanth et al. found that the lymphocyte-specific large guanosine triphosphatase of the Rab family CRACR2A-a associated with vesicles near the Golgi in unstimulated mouse and human CD4+ T cells. Upon TCR activation, these vesicles moved to the immunological synapse (the contact region between a T cell and an antigen-presenting cell). The guanine nucleotide exchange factor Vav1 at the TCR complex recruited CRACR2A-a to the complex. Without CRACR2A-a, T cell activation was compromised because of defective calcium and kinase signaling.

More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed that CRACR2A (Ca2+ release–activated Ca2+ channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca2+ and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.

 

Read Full Post »

Older Posts »