Advertisements
Feeds:
Posts
Comments

Archive for the ‘Immunology’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists at the Stanford University School of Medicine have completed the first-ever characterization of the meticulously timed immune system changes in women that occur during pregnancy. The findings were published in Science Immunology revealed that there is an immune clock of pregnancy and suggest it may help doctors predict preterm birth.

 

The timing of immune system changes follows a precise and predictable pattern in normal pregnancy. Although physicians have long known that the expectant mother’s immune system adjusts to prevent her body from rejecting the fetus, no one had investigated the full scope of these changes, nor asked if their timing was tightly controlled.

 

Nearly 10 percent of U.S. infants are born prematurely, arriving three or more weeks early, but physicians lack a reliable way to predict premature deliveries. Previous research at Stanford and other places suggested that inflammatory immune responses may help in triggering early labor. It suggested that if scientists identify an immune signature of impending preterm birth, they should be able to design a blood test to detect it.

 

The researchers used mass cytometry, a technique developed at Stanford, to simultaneously measure up to 50 properties of each immune cell in the blood samples. They counted the types of immune cells, assessed what signaling pathways were most active in each cell, and determined how the cells reacted to being stimulated with compounds that mimic infection with viruses and bacteria.

 

The researchers developed an algorithm that captures the immunological timeline during pregnancy that both validates previous findings and sheds new light on immune cell interaction during gestation. By defining this immunological chronology during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

 

With an advanced statistical modeling technique, introduced for the first time in this study, the scientists then described in detail how the immune system changes throughout pregnancy. Instead of grouping the women’s blood samples by trimester for analysis, the model treated gestational age as a continuous variable, allowing the researchers to account for the exact time during pregnancy at which each sample was taken. The mathematical model also incorporated knowledge from the existing scientific literature of how immune cells behave in nonpregnant individuals to help determine which findings were most likely to be important.

 

The study confirmed immune features of pregnancy that were already known. Such as the scientists saw that natural killer cells and neutrophils have enhanced action during pregnancy. The researchers also uncovered several previously unappreciated features of how the immune system changes, such as the finding that activity of the STAT5 signaling pathway in CD4+T cells progressively increases throughout pregnancy on a precise schedule, ultimately reaching levels much higher than in nonpregnant individuals. The STAT5 pathway is involved in helping another group of immune cells, regulatory T cells, to differentiate. Interestingly, prior research in animals has indicated that regulatory T cells are important for maintaining pregnancy.

 

The next step will be to conduct similar research using blood samples from women who deliver their babies prematurely to see where their trajectories of immune function differ from normal.

 

This study revealed a precisely timed chronology of immune adaptations in peripheral blood over the course of a term pregnancy. This finding was enabled by high-content, single-cell mass cytometry coupled with a csEN algorithm accounting for the modular structure of the immune system and previous knowledge. The study provided the conceptual backbone and the analytical framework to examine whether disruption of this chronology is a diagnostically useful characteristic of preterm birth and other pregnancy-related pathologies.

 

References:

 

http://immunology.sciencemag.org/content/2/15/eaan2946.full

 

http://med.stanford.edu/news/all-news/2017/09/immune-system-changes-during-pregnancy-are-precisely-timed.html

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078586/

 

http://www.nature.com/nm/journal/v19/n5/full/nm.3160.html?foxtrotcallback=true

 

https://www.ncbi.nlm.nih.gov/pubmed/14758358

Advertisements

Read Full Post »


Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

Top, from left: James Allison and Lieping Chen. Bottom, from left: Gordon Freeman, Tasuku Honjo, Arlene Sharpe.

The 2017 Warren Alpert Foundation Prize has been awarded to five scientists for transformative discoveries in the field of cancer immunology.

Collectively, their work has elucidated foundational mechanisms in cancer’s ability to evade immune recognition and, in doing so, has profoundly altered the understanding of disease development and treatment. Their discoveries have led to the development of effective immune therapies for several types of cancer.

The 2017 award recipients are:

  • James Allison, professor of immunology and chair of the Department of Immunology, The University of Texas MD Anderson Cancer Center
  • Lieping Chen, United Technologies Corporation Professor in Cancer Research and professor of immunobiology, of dermatology and of medicine, Yale University
  • Gordon Freeman, professor of medicine, Dana-Farber Cancer Institute, Harvard Medical School
  • Tasuku Honjo, professor of immunology and genomic medicine, Kyoto University
  • Arlene Sharpe, the George Fabyan Professor of Comparative Pathology, Harvard Medical School; senior scientist, department of pathology, Brigham and Women’s Hospital

The honorees will share a $500,000 prize and will be recognized at a day-long symposium on Oct. 5 at Harvard Medical School.

The Warren Alpert Foundation, in association with Harvard Medical School, honors trailblazing scientists whose work has led to the understanding, prevention, treatment or cure of human disease. The award recognizes seminal discoveries that hold the promise to change our understanding of disease or our ability to treat it.

“The discoveries honored by the Warren Alpert Foundation over the years are remarkable in their scope and potential,” said George Q. Daley, dean of Harvard Medical School. “The work of this year’s recipients is nothing short of breathtaking in its profound impact on medicine. These discoveries have reshaped our understanding of the body’s response to cancer and propelled our ability to treat several forms of this recalcitrant disease.”

The Warren Alpert Foundation Prize is given internationally. To date, the foundation has awarded nearly $4 million to 59 scientists. Since the award’s inception, eight honorees have also received a Nobel Prize.

“We commend these five scientists. Allison, Chen, Freeman, Honjoand Sharpe are indisputable standouts in the field of cancer immunology,” said Bevin Kaplan, director of the Warren Alpert Foundation. “Collectively, they are helping to turn the tide in the global fight against cancer. We couldn’t honor more worthy recipients for the Warren Alpert Foundation Prize.”

The 2017 award: Unraveling the mysterious interplay between cancer and immunity

Understanding how tumor cells sabotage the body’s immune defenses stems from the collective work of many scientists over many years and across multiple institutions.

Each of the five honorees identified key pieces of the puzzle.

The notion that cancer and immunity are closely connected and that a person’s immune defenses can be turned against cancer is at least a century old. However, the definitive proof and demonstration of the steps in this process were outlined through findings made by the five 2017 Warren Alpert prize recipients.

Under normal conditions, so-called checkpoint inhibitor molecules rein in the immune system to ensure that it does not attack the body’s own cells, tissues and organs. Building on each other’s work, the five award recipients demonstrated how this normal self-defense mechanism can be hijacked by tumors as a way to evade immune surveillance and dodge an attack. Subverting this mechanism allows cancer cells to survive and thrive.

A foundational discovery made in the 1980s elucidated the role of a molecule on the surface of T cells, the body’s elite assassins trained to seek, spot and destroy invaders.

A protein called CTLA-4 emerged as a key regulator of T cell behavior—one that signals to T cells the need to retreat from an attack. Experiments in mice lacking CTLA-4 and use of CTLA-4 antibodies demonstrated that absence of CTLA-4 or blocking its activity could lead to T cell activation and tumor destruction.

Subsequent work identified a different protein on the surface of T cells—PD-1—as another key regulator of T cell response. Mice lacking this protein developed an autoimmune disease as a result of aberrant T cell activity and over-inflammation.

Later on, scientists identified a molecule, B7-H1, subsequently renamed PD-L1, which binds to PD-1, clicking like a key in a lock. This was followed by the discovery of a second partner for PD-1—the molecule PD-L2—which also appeared to tame T-cell activity by binding to PD-1.

The identification of these molecules led to a set of studies showing that their presence on human and mouse tumors rendered the tumors resistant to immune eradication.

A series of experiments further elucidated just how tumors exploit the interaction between PD-1 and PD-L1 to survive. Specifically, some tumor cells appeared to express PD-L1, essentially “wrapping” themselves in it to avoid immune recognition and destruction.

Additional work demonstrated that using antibodies to block this interaction disarmed the tumors, rendering them vulnerable to immune destruction.

Collectively, the five scientists’ findings laid the foundation for antibody-based therapies that modulate the function of these molecules as a way to unleash the immune system against cancer cells.

Antibody therapy that targets CTLA-4 is currently approved by the FDA for the treatment of melanoma. PD-1/PD-L1 inhibitors have already shown efficacy in a broad range of cancers and have been approved by the FDA for the treatment of melanoma; kidney; lung; head and neck cancer; bladder cancer; some forms of colorectal cancer; Hodgkin lymphoma and Merkel cell carcinoma.

In their own words

“I am humbled to be included among the illustrious scientists who have been honored by the Warren Alpert Foundation for their contributions to the treatment and cure of human disease in its 30+ year history.  It is also recognition of the many investigators who have labored for decades to realize the promise of the immune system in treating cancer.”
        -James Allison


“The award is a great honor and a wonderful recognition of our work.”
         Lieping Chen



I am thrilled to have made a difference in the lives of cancer patients and to be recognized by fellow scientists for my part in the discovery of the PD-1/PD-L1 and PD-L2 pathway and its role in tumor immune evasion.  I am deeply honored to be a recipient of the Alpert Award and to be recognized for my part in the work that has led to effective cancer immunotherapy. The success of immunotherapy has unleashed the energies of a multitude of scientists to further advance this novel strategy.”
                                        -Gordon Freeman


I am extremely honored to receive the Warren Alpert Foundation Prize. I am very happy that our discovery of PD-1 in 1992 and subsequent 10-year basic research on PD-1 led to its clinical application as a novel cancer immunotherapy. I hope this development will encourage many scientists working in the basic biomedical field.”
-Tasuku Honjo


“I am truly honored to be a recipient of the Alpert Award. It is especially meaningful to be recognized by my colleagues for discoveries that helped define the biology of the CTLA-4 and PD-1 pathways. The clinical translation of our fundamental understanding of these pathways illustrates the value of basic science research, and I hope this inspires other scientists.”
-Arlene Sharpe

Previous winners

Last year’s award went to five scientists who were instrumental in the discovery and development of the CRISPR bacterial defense mechanism as a tool for gene editing. They were RodolpheBarrangou of North Carolina State University, Philippe Horvath of DuPont in Dangé-Saint-Romain, France, Jennifer Doudna of the University of California, Berkeley, Emmanuelle Charpentier of the Max Planck Institute for Infection Biology in Berlin and Umeå University in Sweden, and Virginijus Siksnys of the Institute of Biotechnology at Vilnius University in Lithuania.

Other past recipients include:

  • Tu Youyou of the China Academy of Chinese Medical Science, who went on to receive the 2015 Nobel Prize in Physiology or Medicine with two others, and Ruth and Victor Nussenzweig, of NYU Langone Medical Center, for their pioneering discoveries in chemistry and parasitology of malaria and the translation of their work into the development of drug therapies and an anti-malarial vaccine.
  • Oleh Hornykiewicz of the Medical University of Vienna and the University of Toronto; Roger Nicoll of the University of California, San Francisco; and Solomon Snyder of the Johns Hopkins University School of Medicine for research into neurotransmission and neurodegeneration.
  • David Botstein of Princeton University and Ronald Davis and David Hogness of Stanford University School of Medicine for contributions to the concepts and methods of creating a human genetic map.
  • Alain Carpentier of Hôpital Européen Georges-Pompidou in Paris and Robert Langer of MIT for innovations in bioengineering.
  • Harald zur Hausen and Lutz Gissmann of the German Cancer Research Center in Heidelberg for work on the human papillomavirus (HPV) and cancer of the cervix. Zur Hausenand others were honored with the Nobel Prize in Physiology or Medicine in 2008.

The Warren Alpert Foundation

Each year the Warren Alpert Foundation receives between 30 and 50 nominations from scientific leaders worldwide. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School.

Warren Alpert (1920-2007), a native of Chelsea, Mass., established the prize in 1987 after reading about the development of a vaccine for hepatitis B. Alpert decided on the spot that he would like to reward such breakthroughs, so he picked up the phone and told the vaccine’s creator, Kenneth Murray of the University of Edinburgh, that he had won a prize. Alpert then set about creating the foundation.

To award subsequent prizes, Alpert asked Daniel Tosteson (1925-2009), then dean of Harvard Medical School, to convene a panel of experts to identify scientists from around the world whose research has had a direct impact on the treatment of disease.

SOURCE

https://hms.harvard.edu/news/warren-alpert-foundation-honors-pioneers-cancer-immunology

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.

References:

https://blogs.scientificamerican.com/guest-blog/shortchanging-a-babys-microbiome/

https://www.ncbi.nlm.nih.gov/pubmed/23926244

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/25290507

https://www.ncbi.nlm.nih.gov/pubmed/25974306

https://www.ncbi.nlm.nih.gov/pubmed/24637604

https://www.ncbi.nlm.nih.gov/pubmed/22911969

https://www.ncbi.nlm.nih.gov/pubmed/25650398

https://www.ncbi.nlm.nih.gov/pubmed/27362264

https://www.ncbi.nlm.nih.gov/pubmed/27306663

http://www.mdpi.com/1099-4300/14/11/2036

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665/

https://www.ncbi.nlm.nih.gov/pubmed/24848255

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/28112736

http://ndnr.com/gastrointestinal/the-infant-microbiome-how-environmental-maternal-factors-influence-its-development/

Read Full Post »


The Strategy of Precision Editing the Cancer Cell Glycocalyx using an “antibody–enzyme conjugate” for Cancer Immunotherapy: Research Beyond “augment the activator or remove inhibitor, or both”

Reporter: Aviva Lev-Ari, PhD, RN

Significance

Successful tumors are able to evade the immune system, which is otherwise capable of killing transformed cells. Therapies that prevent this evasion have become revolutionary treatments for incurable cancers. One mechanism of evasion is the presentation of sugars, called sialic acids, within the cell surface’s sugar coating, or glycocalyx. Here, we designed biotherapeutic molecules, termed “antibody–enzyme conjugates,” that selectively remove sialic acids from tumor cells. The antibody directs the enzyme to the cancer cells, the enzyme cleaves the sugars, and then the antibody directs immune cells to kill the desialylated cancer cells. The conjugate increased tumor cell killing compared with the antibody alone. Editing the cancer cell glycocalyx with an antibody–enzyme conjugate represents a promising approach to cancer immune therapy.

SOURCE 

 

AUGUST 22, 2016

Stanford chemists develop a new method of cancer immunotherapy

A team of Stanford ChEM-H scientists has discovered a novel form of cancer immunotherapy, which works by removing certain sugars from the surface of cancer cells and making those cells visible to the immune system.

“All of the world of immune therapy is now thinking about the immune system as calculating pluses and minuses. If you want to tilt the scale toward immune activation, you can either augment the activator or remove inhibitor, or both,” said Bertozzi, who is also an investigator with the Howard Hughes Medical Institute.

Current immunotherapies on the market work by blocking one of the inhibitory signals that are recognized by the adaptive immune system. Block those and the balance tilts in such a way that the immune system will attack the now recognizable cancer.

Bertozzi’s approach provides a second way of tiling the balance in favor of attack, this time for the innate immune system. She said this study shows just one example of how it could work, but her sugar-removing lawnmower could be used on a wide variety of cell types, not just those expressing HER2, and on different types of sugars.

“It’s almost always the case that you need a component of both the adaptive and innate immunity to get a robust reaction against infectious pathogens, such as during vaccination,” said Bertozzi. “The smart money suggests that the same will be true with tumors.”

Bertozzi said the approach also highlights the importance of paying attention to the much ignored glycocalyx.

SOURCE

Stanford chemists develop a new method of cancer immunotherapy

http://news.stanford.edu/2016/08/22/new-method-cancer-immunotherapy/

 

immobilization-ok

A symbolic representation of a glycocalyx chain attached to a cytoskeleton.

IMAGE SOURCE: google images

 

glycocalyx-145E1F0C801699F8CFE

image glycocalyx

IMAGE SOURCE: google images

Glycocalyx

Glycocalyx – www.futura-sciences.us576 × 284Search by image

The carbohydrates, glycoproteins and proteoglycans making up the glycocalyx

IMAGE SOURCE: google images

PNAS – Original Article

Precision glycocalyx editing as a strategy for cancer immunotherapy

  1. Han Xiaoa,b,1,
  2. Elliot C. Woodsa,b,1,
  3. Petar Vukojicica,b, and
  4. Carolyn R. Bertozzia,b,2
  1. Edited by Laura L. Kiessling, University of Wisconsin-Madison, Madison, WI, and approved July 11, 2016 (received for review May 24, 2016)

Abstract

Cell surface sialosides constitute a central axis of immune modulation that is exploited by tumors to evade both innate and adaptive immune destruction. Therapeutic strategies that target tumor-associated sialosides may therefore potentiate antitumor immunity. Here, we report the development of antibody–sialidase conjugates that enhance tumor cell susceptibility to antibody-dependent cell-mediated cytotoxicity (ADCC) by selective desialylation of the tumor cell glycocalyx. We chemically fused a recombinant sialidase to the human epidermal growth factor receptor 2 (HER2)-specific antibody trastuzumab through a C-terminal aldehyde tag. The antibody–sialidase conjugate desialylated tumor cells in a HER2-dependent manner, reduced binding by natural killer (NK) cell inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, and enhanced binding to the NK-activating receptor natural killer group 2D (NKG2D). Sialidase conjugation to trastuzumab enhanced ADCC against tumor cells expressing moderate levels of HER2, suggesting a therapeutic strategy for cancer patients with lower HER2 levels or inherent trastuzumab resistance. Precision glycocalyx editing with antibody–enzyme conjugates is therefore a promising avenue for cancer immune therapy.

SOURCE 

Read Full Post »


Inotuzumab Ozogamicin: Success in relapsed/refractory Acute Lymphoblastic Leukemia (ALL)

Reporter: Aviva Lev-Ari, PhD, RN

 

About Inotuzumab Ozogamicin

Inotuzumab ozogamicin is an investigational antibody-drug conjugate (ADC) comprised of a monoclonal antibody (mAb) targeting CD22,9 a cell surface antigen expressed on approximately 90 percent of B-cell malignancies,10 linked to a cytotoxic agent. When inotuzumab ozogamicin binds to the CD22 antigen on malignant B-cells, it is internalized into the cell, where the cytotoxic agent calicheamicin is released to destroy the cell.11

Inotuzumab ozogamicin originates from a collaboration between Pfizer and Celltech, now UCB. Pfizer has sole responsibility for all manufacturing, clinical development and commercialization activities for this molecule.

Acute lymphoblastic leukemia (ALL)

is an aggressive type of leukemia with high unmet need and a poor prognosis in adults.4The current standard treatment is intensive, long-term chemotherapy.5 In 2015, it is estimated that 6,250 cases of ALL will be diagnosed in the United States6, with about 1 in 3 cases in adults. Only approximately 20 to 40 percent of newly diagnosed adults with ALL are cured with current treatment regimens.7 For patients with relapsed or refractory adult ALL, the five-year overall survival rate is less than 10 percent.8

REFERENCES

1 Fielding A. et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2006; 944-950.

2 U.S. Food and Drug Administration Safety and Innovation Act. Available at: http://www.gpo.gov/fdsys/pkg/PLAW-112publ144/pdf/PLAW-112publ144.pdf(link is external).Accessed July 11, 2015.

3 U.S. Food and Drug Administration Frequently Asked Questions: Breakthrough Therapies. Available at:http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDASIA/ucm341027.htm(link is external). Accessed July 11, 2015.

4 National Cancer Institute: Adult Acute Lymphoblastic Leukemia Treatment (PDQ®) – General Information About Adult Acute Lymphoblastic Leukemia (ALL). Available at:http://www.cancer.gov/cancertopics/pdq/treatment/adultALL/HealthProfessional/page1(link is external). Accessed July 11, 2015.

5 American Cancer Society: Typical treatment of acute lymphocytic leukemia. Available at:http://www.cancer.org/cancer/leukemia-acutelymphocyticallinadults/detailedguide/leukemia-acute-lymphocytic-treating-typical-treatment(link is external). Accessed July 11, 2015.

6 American Cancer Society: What are the key statistics about acute lymphocytic leukemia? Available at:http://www.cancer.org/cancer/leukemia-acutelymphocyticallinadults/detailedguide/leukemia-acute-lymphocytic-key-statistics(link is external). Accessed February 18, 2015.

7 Manal Basyouni A. et al. Prognostic significance of survivin and tumor necrosis factor-alpha in adult acute lymphoblastic leukemia. doi:10.1016/j.clinbiochem.2011.08.1147.

8 Fielding A. et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2006; 944-950.

9 Clinicaltrials.gov. A Study of Inotuzumab Ozogamicin versus Investigator’s Choice of Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01564784?term=inotuzumab&rank=7(link is external). Accessed July 11, 2015.

10 Leonard J et al. Epratuzumab, a Humanized Anti-CD22 Antibody, in Aggressive Non-Hodgkin’s Lymphoma: a Phase I/II Clinical Trial Results. Clinical Cancer Research. 2004; 10: 5327-5334.

11 DiJoseph JF. Antitumor Efficacy of a Combination of CMC-544 (Inotuzumab Ozogamicin), a CD22-Targeted Cytotoxic Immunoconjugate of Calicheamicin, and Rituximab against Non-Hodgkin’s B-Cell Lymphoma. Clin Cancer Res. 2006; 12: 242-250.

SOURCE

http://www.pfizer.com/news/press-release/press-release-detail/pfizer_s_inotuzumab_ozogamicin_receives_fda_breakthrough_therapy_designation_for_acute_lymphoblastic_leukemia_all

Other related article Published on this Open Access Online Scientific Journal include the following:

STORY OF A LEUKEMIA FIGHTER

Nicole L. Gularte, MBA

https://pharmaceuticalintelligence.com/2016/08/21/cancer-the-future-immunotherapy/

https://pharmaceuticalintelligence.com/?s=Acute+Lymphoblastic+Leukemia+%28ALL%29+

Read Full Post »


Pathophysiology in Hypertension: Opposing Roles of Human Adaptive Immunity

Reporter: Aviva Lev-Ari, PhD, RN

T regulatory lymphocytes counteract hypertensive effects by suppressing innate and adaptive immune responses and T effector lymphocytes promote differentiation towards pro-inflammatory T helper cells

 

Dual opposing roles of adaptive immunity in hypertension

, , ,

DOI: http://dx.doi.org/10.1093/eurheartj/ehu119 1238-1244 First published online: 30 March 2014

Abstract

Hypertension involves remodelling and inflammation of the arterial wall. Interactions between vascular and inflammatory cells play a critical role in disease initiation and progression. T effector and regulatory lymphocytes, members of the adaptive immune system, play contrasting roles in hypertension. Signals from the central nervous system and the innate immune system antigen-presenting cells activate T effector lymphocytes and promote their differentiation towards pro-inflammatory T helper (Th) 1 and Th17 phenotypes. Th1 and Th17 effector cells, via production of pro-inflammatory mediators, participate in the low-grade inflammation that leads to blood pressure elevation and end-organ damage. T regulatory lymphocytes, on the other hand, counteract hypertensive effects by suppressing innate and adaptive immune responses. The present review summarizes and discusses the adaptive immune mechanisms that participate in the pathophysiology in hypertension.

  • Blood pressure
  • Adaptive immunity
  • Inflammation
  • T effector lymphocytes
  • T regulatory lymphocytes
  • Cytokines

Conclusion

Experimental and clinical evidence discussed in this review strongly suggests that adaptive immunity, represented by T effector and regulatory lymphocyte subsets, plays a dual role in hypertension (Figure 2). Increased sympathetic outflow as a consequence of stimulation of the CNS by hypertensive stimuli may result in mild blood pressure elevation, causing tissue injury and formation of neoantigens2 and/or damage-associated molecular patterns (DAMPs).80 Activation of innate APCs by DAMPs, or by pathogen-associated molecular patterns (PAMPs) generated in response to low-grade infection,80,81 and direct stimulation by CNS, may be the cause of activation of CD4+, and perhaps CD8+, T effector lymphocytes, and differentiation of CD4+ T cells towards pro-inflammatory Th1/Th17 phenotypes.41 Th1/Th17 effector lymphocytes contribute to the progression of hypertension by producing pro-inflammatory mediators, including ROS, IFN-γ, TNF-α, and IL-17, to promote low-grade inflammation.24,41,42,51,52 T regulatory lymphocytes, on the other hand, counteract hypertensive abnormalities by suppressing innate and adaptive immune responses, perhaps by secreting IL-10.6571 As such, circulating levels of Tregs or their immune-suppressive activity may be affected in hypertension.

 SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

Idris-Khodja et al. (2014) Dual opposing roles of adaptive immunity in hypertension. European Heart Journal (doi: 10.1093/eurheartj/ehu119)

 

Adaptive Immunity

Figure 1

Differentiation of naïve T lymphocytes into various subsets in a normal immune response. Antigen-presenting cells (dendritic cells and monocyte/macrophages) present antigens on major histocompatibility complex (MHC)-II to naïve T cells (Th0) in secondary lymphoid tissues, leading to T-cell clonal expansion and differentiation into effector T cells, such as T helper (Th)1, Th2, and Th17 or T regulatory (Treg) cells according to combined stimulation by different cytokines. Th effector lymphocytes and Tregs migrate into tissues such as the vasculature, particularly at the level of the adventitia and perivascular fat. The effector lymphocytes (Th1 and Th17) cells activate other immune cells and participate in inflammation by producing pro-inflammatory cytokines such as interferon-γ, interleukin (IL)-6, and IL-17. T regulatory lymphocytes suppress innate and adaptive responses via production of anti-inflammatory cytokines IL-10 and transforming growth factor-β. CD, cluster of differentiation; DC, dendritic cell; MΦ, macrophage; NK cell, natural killer cell; Tc, cytotoxic T cell; TCR, T-cell receptor.

IMAGE SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

 

Hypertention

 

IMAGE SOURCE

http://eurheartj.oxfordjournals.org/content/35/19/1238

Figure 2

Proposed role of T effector and regulatory lymphocytes in hypertension. Slight elevation in blood pressure (BP) in response to hypertensive stimuli (angiotensin II, aldosterone, endothelin-1, salt and genetic susceptibility) occurs due to increased central signalling, perhaps causing mild tissue injury and formation of damage-associated molecular patterns (DAMPs) and neoantigens. This may lead to activation of innate antigen-presenting cells (APCs) and, subsequently, activation and polarization of naïve CD4+ T effector lymphocytes (Th0) towards pro-inflammatory T helper (Th)1/Th17 phenotypes. Th1/Th17 may contribute to vascular and kidney damage via production of reactive oxygen species (ROS), interferon (IFN)-γ and interleukin (IL)-17 and lead to maintenance of hypertension and progression of end-organ damage. T regulatory lymphocytes counteract hypertension and associated injury by producing IL-10 or by other mechanisms, and suppression of innate and adaptive immune responses. CD, cluster of differentiation; CNS, central nervous system; MHC-II, major histocompatibility complex-II; PAMPs, pathogen-associated molecular patterns; TCR, T-cell receptor.

Read Full Post »


CHI’s NK Cell-Based Cancer Immunotherapy Symposium, September 19 in Boston

Reporter: Aviva Lev-Ari, PhD, RN

 

Announcement from LPBI Group: key code LPBI16 for Exclusive Discount to attend Boston’s Discovery on Target (September 2016)

https://pharmaceuticalintelligence.com/2016/05/13/announcement-from-lpbi-group-key-code-lpbi16-for-exclusive-discount-to-attend-bostons-discovery-on-target-september-2016/

DOT-150x150

DOT-NCT-700x150

FEATURED SESSION:

Natural killer (NK) cells have been known to have advantages over T cells, yet their therapeutic potential in the clinic has been largely unexplored.

Cambridge Healthtech Institute’s NK Cell-Based Cancer Immunotherapy Symposium, September 19 in Boston, is dedicated to the exploration of utilizing NK cells for new adoptive cell therapies, including updates from ongoing clinical studies.

NK CELL IMMUNO-ONCOLOGY AND CLINICAL STUDIES

Harnessing Adaptive NK Cells in Cancer Therapy

Karl-Johan Malmberg, M.D., Ph.D., Professor, Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital

  • We have recently completed a Phase I/II clinical trial with transfer of haploidentical NK cells to patients with high-risk myelodysplastic syndrome. Six of the 16 treated patients achieved morphological complete remission and five of these underwent allogeneic stem cell transplantation resulting in long-term survival in four patients. The quality and number of infused NK cells as well as their transient engraftment in the recipient correlated with decrease in mutational burden and clinical outcomes. These results suggest that adoptive transfer of allogeneic NK cells may hold utility as a bridge to transplant in patients who are refractory to induction therapy. Current efforts to selectively expand metabolically optimized adaptive NK cells for the next generation NK cell cancer immunotherapy will be discussed.

Update on Systemic and Locoregional Cancer Immunotherapy with IL-21-Expanded NK Cells

Dean Anthony Lee, M.D., Ph.D., Professor, Pediatrics; Director, Cellular Therapy and Cancer Immunotherapy Program, Nationwide Children’s Hospital; James Comprehensive Cancer Center/Solove Research Institute, The Ohio State University

  • The ability to generate clinical-grade NK cell products of sufficient purity, number, and function has enabled broader application of adoptive NK cell therapy in clinical trials. We translated our IL-21-based NK cell expansion platform to clinical grade and scale and initiated 7 clinical trials that administer NK cell immunotherapy with high cell doses or repeated dosing in transplant, adjuvant, or stand-alone settings. These trials have collectively delivered approximately 150 infusions to over 60 patients at doses of up to 10e8/kg. We will discuss the importance of STAT3 signaling in this setting, describe early outcome and correlative data from these studies, and present preclinical data supporting future clinical trials that build on this platform.

REGISTER

BY AUGUST 12 TO

SAVE UP TO $200

VISIT

WEBSITE

DOWNLOAD PDF AGENDA

Suggested Event Package

SYMPOSIUM

NK Cell-Based Cancer Immunotherapy

SEPT. 19

CONFERENCE

Antibodies Against Membrane Protein Targets (Part One)

SEPT. 20-21

CONFERENCE

Antibodies Against Membrane Protein Targets (Part Two)

SEPT. 21-22

The exhibit hall was sold out in 2015, so please contact us early to reserve your place. To customize your sponsorship or exhibit package for 2016, contact:

Jon Stroup

Sr. Business Development Manager

P: 781-972-5483

E: jstroup@healthtech.com

Sponsorship/Exhibitor Information >>

 

DiscoveryOnTarget.com | Register by August 12 to SAVE up to $200 | Download PDF Agenda

Cambridge Healthtech Institute | 250 First Avenue, Suite 300, Needham, MA 02494 | www.healthtech.com | 781-972-5400

SOURCE

From: NK Cell Symposium <heidio@healthtech.com>

Date: Tuesday, August 9, 2016 at 1:40 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: NK Cells for Adoptive Therapies: The Future of Cancer Immunotherapy?

Read Full Post »

Older Posts »