Feeds:
Posts
Comments

Archive for the ‘Immunology’ Category


Will COVID become a disease of the young?

Reporter: Danielle Smolyar, Research Assistant 3 – Text Analysis for 2.0 LPBI Group’s TNS #1 – 2020/2021 Academic Internship in Medical Text Analysis (MTA)

An increase of infections among youth who are unvaccinated in countries with high vaccination rates is getting noticed in the role of young people in the pandemic.

On June 21 is Ross Ministry of health recommended that all individuals between the ages of 12 and 15 should be vaccinated. This makes the nation one of the few that have been approved vaccinations for younger kids. This decision came about in response too many other countries with high rates of vaccination are experiencing an increase in numbers of infections that are found to be in younger age groups.

Israel’s vaccination campaign which has reached to more than 85% of the adult population to be vaccinated noticed that case numbers are dropping around a dozen daily in the month of June. At the end of June, they have realized that the cases began to rise to more than 100 cases a day. These cases were found in kids under the age of 16 which is why the government decided to allow vaccinations.

Ran Balicer, and epidemiologists at Israel’s largest healthcare provider in Tel Aviv said that the younger profile is not surprising.

image source: https://www.nature.com/articles/d41586-021-01862-7

This trend that Israel started to notice is not just happening in Israel. The United States and the United Kingdom COVID-19, “become a disease of the unvaccinated, who are predominantly young”, says Joshua Goldstein, a demographer at the University of California, Berkeley. Stated in the article. 

This trend has been occurring in the countries where the older population were being vaccinated first. Follow the drop in age because they were vaccinating older people who are the most at risk for the disease.

This shift has shut attention to the studies of transmission in the younger age groups. Karin Magnusson immunologist said that it has come very important to understand the burden of the disease among the younger children. 

Magnusson on the impact of COVID-19 in children in Norway. On June 5 pre-print she reported that children see their doctor regularly up to six months after contracting Covid-19.

Balicer, is studying the virus spread in multi-generational households in Israel. Going beyond whether vaccinating children or not the patterns of COVID-19 infection have caused discussions about mask wearing to adolescence and kids in Israel. 

As stated in the article, “As the burden of cases shifts towards younger people, arguments for vaccinating adolescents will become slightly more compelling,” agrees Nick Bundle, an epidemiologist at the European Centre for Disease Prevention and Control in Stockholm.” However, the risk of disease in children still is low and in other countries the total number of cases have declined.

Countries also need to consider the global contacts. As stated in the article, “Are we really better off giving the vaccine to kids in rich countries than to older people [in less wealthy countries] where it might have a much bigger impact on people’s lives?” says Jennie Lavine, who studies infectious-disease dynamics at Emory University in Atlanta, Georgia. “It seems hard for me to imagine a really good argument for that.”

Oh there is a downward shift and the average age of infected with COVID-19 in countries with high COVID-19 vaccination rates it may be short-lived. There could be a few scenarios where the shift could bounce back says Henrik Salje, who is an infectious disease epidemiologist at the University of Cambridge, UK. Many of the countries could start vaccinating the adolescence just like Israel and the United States are already doing so. 

Bundle says that COVID- 19 can still be present in younger kids. “But how big a problem that is, is not a simple thing to respond to.”

SOURCE: Mallapaty, S. (2021, July 8). Will COVID become a disease of the young? Nature News. https://www.nature.com/articles/d41586-021-01862-7

Other related articles published on this Open Access Online Scientific Journal include the following:

Reporter: Jason S Zielonka, MD

Why Do Some COVID-19 Patients Infect Many Others, Whereas Most Don’t Spread the Virus At All?

Reporter: Stephen J. Williams, Ph.D

Recent Grim COVID-19 Statistics in U.S. and Explanation from Dr. John Campbell: Why We Need to be More Proactive

Reporter: Irina Robu

The race for a COVID-19 vaccine: What’s ahead ?

Reporter: Aviva Lev-Ari, PhD, RN

COVID vaccines by Pfizer, AstraZeneca are probed in Europe after reports of heart inflammation, rare nerve disorder

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

The NIH-funded adjuvant improves the efficacy of India’s COVID-19 vaccine.

Read Full Post »


COVID and the brain: researchers zero in on how damage occurs

Reporter: Danielle Smolyar

Research Assistant 3 – Text Analysis for 2.0 LPBI Group’s TNS #1 – 2020/2021 Academic Internship in Medical Text Analysis (MTA)

Recent evidence has indicated that coronavirus can cause brain fog and also lead to different neurological symptoms. 

Since the beginning of the pandemic, researchers have been trying to understand how the coronavirus SARS-CoV-2 affects the brain

Image Credit: Stanislav Krasilnikov/TASS/Getty

image source:https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

New evidence has shown how coronavirus has caused much damage to the brain. There is a new evidence that shows that COVID-19 assault on the brain I has the power to be multipronged. What this means is that it can attack on certain Brain cells such as reduce the amount of blood flow that the brain needs to the brain tissue.

Along with brain damage COVID-19 has also caused strokes and memory loss. A neurologist at yell University Serena Spudich says, “Can we intervene early to address these abnormalities so that people don’t have long-term problems?”

We’re on 80% of the people who have been hospitalized due to COVID-19 have showed brain symptoms which seem to be correlated to coronavirus.

At the start of the pandemic a group of researchers speculated that coronavirus they can damage the brain by infecting the neurons in the cells which are important in the process of transmitting information. After further studies they found out that coronavirus has a harder time getting past the brains defense system and the brain barrier and that it does not affect the neurons in anyway.

An expert in this study indicated that a way in which SARS-CoV-2 may be able to get to the brain is by going through the olfactory mucosa which is the lining of the nasal cavity. It is found that this virus can be found in the nasal cavity which is why we swab the nose one getting tested for COVID-19.

Spudich quotes, “there’s not a tonne of virus in the brain”.

Recent studies indicate that SARS-CoV-2 have ability to infect astrocytes which is a type of cell found in the brain. Astrocytes do quite a lot that supports normal brain function,” including providing nutrients to neurons to keep them working, says Arnold Kriegstein, a neurologist at the University of California, San Francisco.

Astrocytes are star-shaped cells in the central nervous system that perform many functions, including providing nutrients to neurons.

Image Credit: David Robertson, ICR/SPL

image source: https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

Kriegstein and his fellow colleagues have found that SARS-CoV-2 I mostly infects the astrocytes over any of the other brain cells present. In this research they expose brain organoids which is a miniature brain that are grown from stem cells into the virus.

As quoted in the article” a group including Daniel Martins-de-Souza, head of proteomics at the University of Campinas in Brazil, reported6 in a February preprint that it had analysed brain samples from 26 people who died with COVID-19. In the five whose brain cells showed evidence of SARS-CoV-2 infection, 66% of the affected cells were astrocytes.”

The infected astrocytes could indicate the reasoning behind some of the neurological symptoms that come with COVID-19. Specifically, depression, brain fog and fatigue. Kreigstein quotes, “Those kinds of symptoms may not be reflective of neuronal damage but could be reflective of dysfunctions of some sort. That could be consistent with astrocyte vulnerability.”

A study that was published on June 21 they compared eight different brands of deceased people who did have COVID-19 along with 14 brains as the control. The results of this research were that they found that there was no trace of coronavirus Brain infected but they found that the gene expression was affected in some of the astrocytes.

As a result of doing all this research and the findings the researchers want to know more about this topic and how many brain cells need to be infected for there to be neurological symptoms says Ricardo Costa.

Further evidence has also been done on how SARS-CoV-2 can affect the brain by reducing its blood flow which impairs the neurons’ function which ends up killing them.

Pericytes can be found on the small blood vessels which are called capillaries and are found all throughout the body and in the brain. In a February pre-print there was a report about how SARS-CoV-2 can infect the pericyte in the brain organoids. 

David Atwell, a neuroscientist at the University College London, along with his other colleagues had published a pre-print which has evidence to show that SARS-CoV-2 odes In fact pericytes behavior. I researchers saw that in the different part of the hamsters brain SARS-CoV-2 blocks the function of receptors on the pericytes which ultimately causes the capillaries found inside the tissues to constrict.

As stated in the article, It’s a “really cool” study, says Spudich. “It could be something that is determining some of the permanent injury we see — some of these small- vessel strokes.”

Attwell brought to the attention that the drugs that are used to treat high blood pressure may in fact be used in some cases of COVID-19. Currently there are two clinical trials that are being done to further investigate this idea.

There is further evidence showing that the neurological symptoms and damage could in fact be happening because of the bodies on immune system reacting or misfiring after having COVID-19.

Over the past 15 years it has become evident that people’s immune system’s make auto antibodies which attack their own tissues says Harald Prüss in the article who has a Neuroimmunologist at the German Center for neurogenerative Diseases in Berlin. This may cause neuromyelitis optica which is when you can experience loss of vision or weakness in limbs. Harald Prüss summarized that the autoantibodies can pass through the blood brain barrier and ultimately impact neurological disorders such as psychosis.

Prüss and his colleagues published a study last year that focused on them isolating antibodies against SARS-CoV-2 from people. They found that one was able to protect hamsters from lung damage and other infections. The purpose of this was to come up with and create new treatments. During this research they found that some of the antibodies from people. They found that one was able to protect hamsters from lung damage and other infections. The purpose of this was to come up with and create new treatments. During this research they found that some of the antibodies can bind to the brain tissue which can ultimately damage it. Prüss states, “We’re currently trying to prove that clinically and experimentally,” says Prüss.

Was published online in December including Prüss sorry the blood and cerebrospinal fluid of 11 people who were extremely sick with COVID-19. These 11 people had neurological symptoms as well. All these people were able to produce auto antibodies which combined to neurons. There is evidence that when the patients were given intravenous immunoglobin which is a type of antibody it was successful.

Astrocytes, pericytes and autoantibodies we’re not the only  pathways. However it is likely that people with COVID-19 experience article symptoms for many reasons. As stated, In the article, Prüss says a key question is what proportion of cases is caused by each of the pathways. “That will determine treatment,” he says.

SOURCE: https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

Original article: 

Marshall, M. (2021, July 7). COVID and the brain: researchers zero in on how damage occurs. Nature News. https://www.nature.com/articles/d41586-021-01693-6

Other related articles published on this Open Access Online Scientific Journal include the following:

Covid-19 and its implications on pregnancy

Reporter and Curator: Mr. Srinjoy Chakraborty (Junior Research Felllow) and Dr. Sudipta Saha, Ph.D.

Nir Hacohen and Marcia Goldberg, Researchers at MGH and the Broad Institute identify protein “signature” of severe COVID-19

Reporter and Curator:2012pharmaceutical

Identification of Novel genes in human that fight COVID-19 infection

Reporter and Curator: Amandeep Kaur

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter and Curator: 2012pharmaceutical

Early Details of Brain Damage in COVID-19 Patients

Reporter and Curator: Irina Robu, PhD

Read Full Post »


Yet another Success Story: Machine Learning to predict immunotherapy response

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Immune-checkpoint blockers (ICBs) immunotherapy appears promising for various cancer types, offering a durable therapeutic advantage. Only a number of cases with cancer respond to this therapy. Biomarkers are required to adequately predict the responses of patients. This article evaluates this issue utilizing a system method to characterize the immune response of the anti-tumor based on the entire tumor environment. Researchers build mechanical biomarkers and cancer-specific response models using interpretable machine learning that predict the response of patients to ICB.

The lymphatic and immunological systems help the body defend itself by combating. The immune system functions as the body’s own personal police force, hunting down and eliminating pathogenic baddies.

According to Federica Eduati, Department of Biomedical Engineering at TU/e, “The immune system of the body is quite adept at detecting abnormally behaving cells. Cells that potentially grow into tumors or cancer in the future are included in this category. Once identified, the immune system attacks and destroys the cells.”

Immunotherapy and machine learning are combining to assist the immune system solve one of its most vexing problems: detecting hidden tumorous cells in the human body.

It is the fundamental responsibility of our immune system to identify and remove alien invaders like bacteria or viruses, but also to identify risks within the body, such as cancer. However, cancer cells have sophisticated ways of escaping death by shutting off immune cells. Immunotherapy can reverse the process, but not for all patients and types of cancer. To unravel the mystery, Eindhoven University of Technology researchers used machine learning. They developed a model to predict whether immunotherapy will be effective for a patient using a simple trick. Even better, the model outperforms conventional clinical approaches.

The outcomes of this research are published on 30th June, 2021 in the journal Patterns in an article entitled “Interpretable systems biomarkers predict response to immune-checkpoint inhibitors”.

The Study

  • Characterization of the tumor microenvironment from RNAseq and prior knowledge
  • Multi-task machine-learning models for predicting antitumor immune responses
  • Identification of cancer-type-specific, interpretable biomarkers of immune responses
  • EaSIeR is a tool to predict biomarker-based immunotherapy response from RNA-seq

“Tumor also contains multiple types of immune and fibroblast cells which can play a role in favor of or anti-tumor, and communicates among themselves,” said Oscar Lapuente-Santana, a researcher doctoral student in the computational biology group. “We had to learn how complicated regulatory mechanisms in the micro-environment of the tumor affect the ICB response. We have used RNA sequencing datasets to depict numerous components of the Tumor Microenvironment (TME) in a high-level illustration.”

Using computational algorithms and datasets from previous clinical patient care, the researchers investigated the TME.

Eduati explained

While RNA-sequencing databases are publically available, information on which patients responded to ICB therapy is only available for a limited group of patients and cancer types. So, to tackle the data problem, we used a trick.

All 100 models learned in the randomized cross-validation were included in the EaSIeR tool. For each validation dataset, we used the corresponding cancer-type-specific model: SKCM for the melanoma Gide, Auslander, Riaz, and Liu cohorts; STAD for the gastric cancer Kim cohort; BLCA for the bladder cancer Mariathasan cohort; and GBM for the glioblastoma Cloughesy cohort. To make predictions for each job, the average of the 100 cancer-type-specific models was employed. The predictions of each dataset’s cancer-type-specific models were also compared to models generated for the remaining 17 cancer types.

From the same datasets, the researchers selected several surrogate immunological responses to be used as a measure of ICB effectiveness.

Lapuente-Santana stated

One of the most difficult aspects of our job was properly training the machine learning models. We were able to fix this by looking at alternative immune responses during the training process.

Some of the researchers employed the machine learning approach given in the paper to participate in the “Anti-PD1 Response Prediction DREAM Challenge.”

DREAM is an organization that carries out crowd-based tasks with biomedical algorithms. “We were the first to compete in one of the sub-challenges under the name cSysImmunoOnco team,” Eduati remarks.

The researchers noted,

We applied machine learning to seek for connections between the obtained system-based attributes and the immune response, estimated using 14 predictors (proxies) derived from previous publications. We treated these proxies as individual tasks to be predicted by our machine learning models, and we employed multi-task learning algorithms to jointly learn all tasks.

The researchers discovered that their machine learning model surpasses biomarkers that are already utilized in clinical settings to evaluate ICB therapies.

But why are Eduati, Lapuente-Santana, and their colleagues using mathematical models to tackle a medical treatment problem? Is this going to take the place of the doctor?

Eduati explains

Mathematical models can provide an overview of the interconnection between individual molecules and cells and at the same time predicting a particular patient’s tumor behavior. This implies that immunotherapy with ICB can be personalized in a patient’s clinical setting. The models can aid physicians with their decisions about optimum therapy, it is vital to note that they will not replace them.

Furthermore, the model aids in determining which biological mechanisms are relevant for the biological response.

The researchers noted

Another advantage of our concept is that it does not need a dataset with known patient responses to immunotherapy for model training.

Further testing is required before these findings may be implemented in clinical settings.

Main Source:

Lapuente-Santana, Ó., van Genderen, M., Hilbers, P. A., Finotello, F., & Eduati, F. (2021). Interpretable systems biomarkers predict response to immune-checkpoint inhibitorsPatterns, 100293. https://www.cell.com/patterns/pdfExtended/S2666-3899(21)00126-4

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/02/20/inhibitory-cd161-receptor-identified-in-glioma-infiltrating-t-cells-by-single-cell-analysis-2/

Immunotherapy may help in glioblastoma survival

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/

Deep Learning for In-silico Drug Discovery and Drug Repurposing: Artificial Intelligence to search for molecules boosting response rates in Cancer Immunotherapy: Insilico Medicine @John Hopkins University

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/17/deep-learning-for-in-silico-drug-discovery-and-drug-repurposing-artificial-intelligence-to-search-for-molecules-boosting-response-rates-in-cancer-immunotherapy-insilico-medicine-john-hopkins-univer/

Machine Learning (ML) in cancer prognosis prediction helps the researcher to identify multiple known as well as candidate cancer diver genes

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/05/04/machine-learning-ml-in-cancer-prognosis-prediction-helps-the-researcher-to-identify-multiple-known-as-well-as-candidate-cancer-diver-genes/

AI System Used to Detect Lung Cancer

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2019/06/28/ai-system-used-to-detect-lung-cancer/

Cancer detection and therapeutics

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/02/cancer-detection-and-therapeutics/

Read Full Post »


The NIH-funded adjuvant improves the efficacy of India’s COVID-19 vaccine.

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

Anthony S. Fauci, Director of the National Institute of Allergy and Infectious Diseases (NIAID), Part of National Institute of Health (NIH) said,

Ending a global pandemic demands a global response. I am thrilled that a novel vaccine adjuvant developed in the United States with NIAID support is now included in an effective COVID-19 vaccine that is available to individuals in India.”

Adjuvants are components that are created as part of a vaccine to improve immune responses and increase the efficiency of the vaccine. COVAXIN was developed and is manufactured in India, which is currently experiencing a terrible health catastrophe as a result of COVID-19. An adjuvant designed with NIH funding has contributed to the success of the extremely effective COVAXIN-COVID-19 vaccine, which has been administered to about 25 million individuals in India and internationally.

Alhydroxiquim-II is the adjuvant utilized in COVAXIN, was discovered and validated in the laboratory by the biotech company ViroVax LLC of Lawrence, Kansas, with funding provided solely by the NIAID Adjuvant Development Program. The adjuvant is formed of a small molecule that is uniquely bonded to Alhydrogel, often known as alum and the most regularly used adjuvant in human vaccines. Alhydroxiquim-II enters lymph nodes, where it detaches from alum and triggers two cellular receptors. TLR7 and TLR8 receptors are essential in the immunological response to viruses. Alhydroxiquim-II is the first adjuvant to activate TLR7 and TLR8 in an approved vaccine against an infectious disease. Additionally, the alum in Alhydroxiquim-II activates the immune system to look for an infiltrating pathogen.

Although molecules that activate TLR receptors strongly stimulate the immune system, the adverse effects of Alhydroxiquim-II are modest. This is due to the fact that after COVAXIN is injected, the adjuvant travels directly to adjacent lymph nodes, which contain white blood cells that are crucial in recognizing pathogens and combating infections. As a result, just a minimal amount of Alhydroxiquim-II is required in each vaccination dosage, and the adjuvant does not circulate throughout the body, avoiding more widespread inflammation and unwanted side effects.

This scanning electron microscope image shows SARS-CoV-2 (round gold particles) emerging from the surface of a cell cultured in the lab. SARS-CoV-2, also known as 2019-nCoV, is the virus that causes COVID-19. Image Source: NIAID

COVAXIN is made up of a crippled version of SARS-CoV-2 that cannot replicate but yet encourages the immune system to produce antibodies against the virus. The NIH stated that COVAXIN is “safe and well tolerated,” citing the results of a phase 2 clinical investigation. COVAXIN safety results from a Phase 3 trial with 25,800 participants in India will be released later this year. Meanwhile, unpublished interim data from the Phase 3 trial show that the vaccine is 78% effective against symptomatic sickness, 100% effective against severe COVID-19, including hospitalization, and 70% effective against asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19. Two tests of blood serum from persons who had received COVAXIN suggest that the vaccine creates antibodies that efficiently neutralize the SARS-CoV-2 B.1.1.7 (Alpha) and B.1.617 (Delta) variants (1) and (2), which were originally identified in the United Kingdom and India, respectively.

Since 2009, the NIAID Adjuvant Program has supported the research of ViroVax’s founder and CEO, Sunil David, M.D., Ph.D. His research has focused on the emergence of new compounds that activate innate immune receptors and their application as vaccination adjuvants.

Dr. David’s engagement with Bharat Biotech International Ltd. of Hyderabad, which manufactures COVAXIN, began during a 2019 meeting in India organized by the NIAID Office of Global Research under the auspices of the NIAID’s Indo-US Vaccine Action Program. Five NIAID-funded adjuvant investigators, including Dr. David, two representatives of the NIAID Division of Allergy, Immunology, and Transplantation, and the NIAID India representative, visited 4 top biotechnology companies to learn about their work and discuss future collaborations. The delegation also attended a consultation in New Delhi, which was co-organized by the NIAID and India’s Department of Biotechnology and hosted by the National Institute of Immunology.

Among the scientific collaborations spawned by these endeavors was a licensing deal between Bharat Biotech and Dr. David to use Alhydroxiquim-II in their candidate vaccines. During the COVID-19 outbreak, this license was expanded to cover COVAXIN, which has Emergency Use Authorization in India and more than a dozen additional countries. COVAXIN was developed by Bharat Biotech in partnership with the Indian Council of Medical Research’s National Institute of Virology. The company conducted thorough safety research on Alhydroxiquim-II and undertook the arduous process of scaling up production of the adjuvant in accordance with Good Manufacturing Practice standards. Bharat Biotech aims to generate 700 million doses of COVAXIN by the end of 2021.

NIAID conducts and supports research at the National Institutes of Health, across the United States, and across the world to better understand the causes of infectious and immune-mediated diseases and to develop better methods of preventing, detecting, and treating these illnesses. The NIAID website contains news releases, info sheets, and other NIAID-related materials.

Main Source:

https://www.miragenews.com/adjuvant-developed-with-nih-funding-enhances-587090/

References

  1. https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab411/6271524?redirectedFrom=fulltext
  2. https://academic.oup.com/jtm/article/28/4/taab051/6193609

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/08/comparing-covid-19-vaccine-schedule-combinations-or-com-cov-first-of-its-kind-study-will-explore-the-impact-of-using-eight-different-combinations-of-doses-and-dosing-intervals-for-diffe/

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter:Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/04/thriving-vaccines-and-research-weizmann-coronavirus-research-development/

National Public Radio interview with Dr. Anthony Fauci on his optimism on a COVID-19 vaccine by early 2021

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/07/19/national-public-radio-interview-with-dr-anthony-fauci-on-his-optimism-on-a-covid-19-vaccine-by-early-2021/

Cryo-EM disclosed how the D614G mutation changes SARS-CoV-2 spike protein structure

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/04/10/cryo-em-disclosed-how-the-d614g-mutation-changes-sars-cov-2-spike-protein-structure/

Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/06/16/updates-on-the-oxford-astrazeneca-covid-19-vaccine/

Read Full Post »


Despite heated discussion over whether it works, the FDA has approved Aduhelm, bringing a new ray of hope to the Alzheimer’s patients.

Curator and Reporter: Dr. Premalata Pati, Ph.D., Postdoc

On Monday, 7th June 2021, a controversial new Alzheimer’s Disease treatment was licensed in the United States for the first time in nearly 20 years, sparking calls for it to be made available worldwide despite conflicting evidence about its usefulness. The drug was designed for people with mild cognitive impairment, not severe dementia, and it was designed to delay the progression of Alzheimer’s disease rather than only alleviate symptoms.

Vhttps://youtu.be/atAhUI6OMnsII

The Controversies

The route to FDA clearance for Aducanumab has been bumpy – and contentious.

Though doctors, patients, and the organizations that assist them are in desperate need of therapies that can delay mental decline, scientists question the efficacy of the new medicine, Aducanumab or Aduhelm. In March 2019, two trials were halted because the medications looked to be ineffective. “The futility analysis revealed that the studies were most likely to fail,” said Isaacson of Weill Cornell Medicine and NewYork-Presbyterian. Biogen, the drug’s manufacturer revealed several months later that a fresh analysis with more participants found that individuals who got high doses of Aducanumab exhibited a reduction in clinical decline in one experiment. Patients treated with high-dose Aducanumab had 22% reduced clinical impairment in their cognitive health at 18 months, indicating that the advancement of their early Alzheimer’s disease was halted, according to FDA briefing documents from last year.

When the FDA’s members were split on the merits of the application in November, it was rejected. Three of its advisers went public, claiming that there was insufficient evidence that it worked in a scientific journal. They were concerned that if the medicine was approved, it might reduce the threshold for future approvals, owing to the scarcity of Alzheimer’s treatments.

Dr. Caleb Alexander, a drug safety and effectiveness expert at the Johns Hopkins Bloomberg School of Public Health, was one of the FDA advisers who was concerned that the data presented to the agency was a reanalysis after the experiment was stopped. It was “like the Texas sharpshooter fallacy,” he told the New York Times, “where the sharpshooter blows up a barn and then goes and paints a bullseye around the cluster of holes he loves.”

Some organizations, such as the non-profit Public Citizen’s Health Research Group, claimed that the FDA should not approve Aducanumab for the treatment of Alzheimer’s disease because there is insufficient proof of its efficacy.

The drug is a monoclonal antibody that inhibits the formation of amyloid protein plaques in the brain, which are thought to be the cause of Alzheimer’s disease. The majority of Alzheimer’s medications have attempted to erase these plaques.

Aducanumab appears to do this in some patients, but only when the disease is in its early stages. This means that people must be checked to see if they have the disease. Many persons with memory loss are hesitant to undergo testing because there is now no treatment available.

The few Alzheimer’s medications available appear to have limited effectiveness. When Aricept, also known as Donepezil, was approved more than 20 years ago, there was a major battle to get it. It was heralded as a breakthrough at the time – partly due to the lack of anything else. It has become obvious that it slows mental decline for a few months but makes little effect in the long run.

The findings of another trial for some patients backed up those conclusions.

Biogen submitted a Biologics License Application to the FDA in July 2020, requesting approval of the medicine.

The FDA’s decision has been awaited by Alzheimer’s disease researchers, clinicians, and patients since then.

Support for approval of the drug

Other groups, such as the Alzheimer’s Association, have supported the drug’s approval.

The Alzheimer’s Association‘s website stated on Friday, “This is a critical time, regardless of the FDA’s final judgment. We’ve never been this close to approving an Alzheimer’s drug that could affect the disease’s development rather than just the symptoms. We can keep working together to achieve our goal of a world free of Alzheimer’s disease and other dementias.”

The drug has gotten so much attention that the Knight Alzheimer Disease Research Center at Washington University in St. Louis issued a statement on Friday stating that even if it is approved, “it will still likely take several months for the medication to pass other regulatory steps and become available to patients.”

Biogen officials told KGO-TV on Monday that the medicine will be ready to ship in about two weeks and that they have identified more than 900 facilities across the United States that they feel will be medically and commercially suitable.

Officials stated the corporation will also provide financial support to qualifying patients so that their out-of-pocket payments are as low as possible. Biogen has also pledged not to raise the price for at least the next four years.

Most Medicare customers with supplemental plans, according to the firm, will have a limited or capped co-pay.

Case studies connected to the Drug Approval

Case 1

Ann Lange, one of several Chicago-area clinical trial volunteers who received the breakthrough Alzheimer’s treatment, said,

It really offers us so much hope for a long, healthy life.

Lange, 60, has Alzheimer’s disease, which she was diagnosed with five years ago. Her memory has improved as a result of the monthly infusions, she claims.

She said,

I’d forget what I’d done in the shower, so I’d scribble ‘shampoo, conditioner, face, body’ on the door. Otherwise, I’d lose track of what I’m doing “Lange remarked. “I’m not required to do that any longer.

Case 2

Jenny Knap, 69, has been receiving infusions of the Aducanumab medication for about a year as part of two six-month research trials. She told CNN that she had been receiving treatment for roughly six months before the trial was halted in 2019, and that she had recently resumed treatment.

Knap said,

I can’t say I noticed it on a daily basis, but I do think I’m doing a lot better in terms of checking for where my glasses are and stuff like that.

When Knap was diagnosed with mild cognitive impairment, a clinical precursor to Alzheimer’s disease, in 2015, the symptoms were slight but there.

Her glasses were frequently misplaced, and she would repeat herself, forgetting previous talks, according to her husband, Joe Knap.

Joe added,

We were aware that things were starting to fall between the cracks as these instances got more often

Jenny went to the Lou Ruvo Center for Brain Health at the Cleveland Clinic in Ohio for testing and obtained her diagnosis. Jenny found she was qualified to join in clinical trials for the Biogen medicine Aducanumab at the Cleveland Clinic a few years later, in early 2017. She volunteered and has been a part of the trial ever since.

It turns out that Jenny was in the placebo category for the first year and a half, Joe explained, meaning she didn’t get the treatment.

They didn’t realize she was in the placebo group until lately because the trial was blind. Joe stated she was given the medicine around August 2018 and continued until February 2019 as the trial progressed. The trial was halted by Biogen in March 2019, but it was restarted last October, when Jenny resumed getting infusions.

Jenny now receives Aducanumab infusions every four weeks at the Cleveland Clinic, which is roughly a half-hour drive from their house, with Joe by her side. Jenny added that, despite the fact that she has only recently begun therapy, she believes it is benefiting her, combined with a balanced diet and regular exercise (she runs four miles).

The hope of Aducanumab is to halt the progression of the disease rather than to improve cognition. We didn’t appreciate any significant reduction in her condition, Jenny’s doctor, Dr. Babak Tousi, who headed Aducanumab clinical studies at the Cleveland Clinic, wrote to CNN in an email.

This treatment is unlike anything we’ve ever received before. There has never been a drug that has slowed the growth of Alzheimer’s disease, he stated, Right now, existing medications like donepezil and memantine aid with symptoms but do not slow the disease’s progression.

Jenny claims that the medicine has had no significant negative effects on her.

There was signs of some very minor bleeding in the brain at one point, which was quite some time ago. It was at very low levels, in fact, Joe expressed concern about Jenny, but added that the physicians were unconcerned.

According to Tousi, with repeated therapy, “blood vessels may become leaky, allowing fluid and red blood cells to flow out to the surrounding area,” and “micro hemorrhages have been documented in 19.1% of trial participants who got” the maximal dose of therapy”.

Jenny and Joe’s attitude on the future has improved as a result of the infusions and keeping a healthy lifestyle, according to Joe. They were also delighted to take part in the trial, which they saw as an opportunity to make a positive influence in other people’s lives.

There was this apprehension of what was ahead before we went into the clinical trial, Joe recalled. “The medical aspect of the infusion gives us reason to be optimistic. However, doing the activity on a daily basis provides us with immediate benefits.”

The drug’s final commercialization announcement

Aducanumab, which will be marketed as Aduhelm, is a monthly intravenous infusion that is designed to halt cognitive decline in patients with mild memory and thinking issues. It is the first FDA-approved medication for Alzheimer’s disease that targets the disease process rather than just the symptoms.

The manufacturer, Biogen, stated Monday afternoon that the annual list price will be $56,000. In addition, diagnostic tests and brain imaging will very certainly cost tens of thousands of dollars.

The FDA approved approval for the medicine to be used but ordered Biogen to conduct a new clinical trial, recognizing that prior trials of the medicine had offered insufficient evidence to indicate effectiveness.

Biogen Inc said on Tuesday that it expects to start shipping Aduhelm, a newly licensed Alzheimer’s medicine, in approximately two weeks and that it has prepared over 900 healthcare facilities for the intravenous infusion treatment.

Other Relevant Articles

Gene Therapy could be a Boon to Alzheimer’s disease (AD): A first-in-human clinical trial proposed

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

https://pharmaceuticalintelligence.com/2021/03/22/gene-therapy-could-be-a-boon-to-alzheimers-disease-ad-a-first-in-human-clinical-trial-proposed/

Alzheimer’s Disease – tau art thou, or amyloid

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/02/15/alzheimers-disease-tau-art-thou-or-amyloid/

Connecting the Immune Response to Amyloid-β Aggregation in Alzheimer’s Disease via IFITM3

Reporter : Irina Robu, PhD

https://pharmaceuticalintelligence.com/2020/10/13/connecting-the-immune-response-to-amyloid-%ce%b2-aggregation-in-alzheimers-disease-via-ifitm3/

Ustekinumab New Drug Therapy for Cognitive Decline resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/02/27/ustekinumab-new-drug-therapy-for-cognitive-decline-resulting-from-neuroinflammatory-cytokine-signaling-and-alzheimers-disease/

Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/08/13/alnylam-announces-first-ever-fda-approval-of-an-rnai-therapeutic-onpattro-patisiran-for-the-treatment-of-the-polyneuropathy-of-hereditary-transthyretin-mediated-amyloidosis-in-adults/

Recent progress in neurodegenerative diseases and gliomas

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/05/28/recent-progress-in-neurodegenerative-diseases-and-gliomas/

Read Full Post »


Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

 

Brain tumors, especially the diffused Gliomas are of the most devastating forms of cancer and have so-far been resistant to immunotherapy. It is comprehended that T cells can penetrate the glioma cells, but it still remains unknown why infiltrating cells miscarry to mount a resistant reaction or stop the tumor development.

Gliomas are brain tumors that begin from neuroglial begetter cells. The conventional therapeutic methods including, surgery, chemotherapy, and radiotherapy, have accomplished restricted changes inside glioma patients. Immunotherapy, a compliance in cancer treatment, has introduced a promising strategy with the capacity to penetrate the blood-brain barrier. This has been recognized since the spearheading revelation of lymphatics within the central nervous system. Glioma is not generally carcinogenic. As observed in a number of cases, the tumor cells viably reproduce and assault the adjoining tissues, by and large, gliomas are malignant in nature and tend to metastasize. There are four grades in glioma, and each grade has distinctive cell features and different treatment strategies. Glioblastoma is a grade IV glioma, which is the crucial aggravated form. This infers that all glioblastomas are gliomas, however, not all gliomas are glioblastomas.

Decades of investigations on infiltrating gliomas still take off vital questions with respect to the etiology, cellular lineage, and function of various cell types inside glial malignancies. In spite of the available treatment options such as surgical resection, radiotherapy, and chemotherapy, the average survival rate for high-grade glioma patients remains 1–3 years (1).

A recent in vitro study performed by the researchers of Dana-Farber Cancer Institute, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard, USA, has recognized that CD161 is identified as a potential new target for immunotherapy of malignant brain tumors. The scientific team depicted their work in the Cell Journal, in a paper entitled, “Inhibitory CD161 receptor recognized in glioma-infiltrating T cells by single-cell analysis.” on 15th February 2021.

To further expand their research and findings, Dr. Kai Wucherpfennig, MD, PhD, Chief of the Center for Cancer Immunotherapy, at Dana-Farber stated that their research is additionally important in a number of other major human cancer types such as 

  • melanoma,
  • lung,
  • colon, and
  • liver cancer.

Dr. Wucherpfennig has praised the other authors of the report Mario Suva, MD, PhD, of Massachusetts Common Clinic; Aviv Regev, PhD, of the Klarman Cell Observatory at Broad Institute of MIT and Harvard, and David Reardon, MD, clinical executive of the Center for Neuro-Oncology at Dana-Farber.

Hence, this new study elaborates the effectiveness of the potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes.

The Study-

IMAGE SOURCE: Experimental Strategy (Mathewson et al., 2021)

 

The group utilized single-cell RNA sequencing (RNA-seq) to mull over gene expression and the clonal picture of tumor-infiltrating T cells. It involved the participation of 31 patients suffering from diffused gliomas and glioblastoma. Their work illustrated that the ligand molecule CLEC2D activates CD161, which is an immune cell surface receptor that restrains the development of cancer combating activity of immune T cells and tumor cells in the brain. The study reveals that the activation of CD161 weakens the T cell response against tumor cells.

Based on the study, the facts suggest that the analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 that codes for CD161 as a candidate inhibitory receptor. This was followed by the use of 

  • CRISPR/Cas9 gene-editing technology to inactivate the KLRB1 gene in T cells and showed that CD161 inhibits the tumor cell-killing function of T cells. Accordingly,
  • genetic inactivation of KLRB1 or
  • antibody-mediated CD161 blockade

enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other forms of human cancers. The work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immune checkpoint targets.

Further, it has been identified that many cancer patients are being treated with immunotherapy drugs that disable their “immune checkpoints” and their molecular brakes are exploited by the cancer cells to suppress the body’s defensive response induced by T cells against tumors. Disabling these checkpoints lead the immune system to attack the cancer cells. One of the most frequently targeted checkpoints is PD-1. However, recent trials of drugs that target PD-1 in glioblastomas have failed to benefit the patients.

In the current study, the researchers found that fewer T cells from gliomas contained PD-1 than CD161. As a result, they said, “CD161 may represent an attractive target, as it is a cell surface molecule expressed by both CD8 and CD4 T cell subsets [the two types of T cells engaged in response against tumor cells] and a larger fraction of T cells express CD161 than the PD-1 protein.”

However, potential side effects of antibody-mediated blockade of the CLEC2D-CD161 pathway remain unknown and will need to be examined in a non-human primate model. The group hopes to use this finding in their future work by

utilizing their outline by expression of KLRB1 gene in tumor-infiltrating T cells in diffuse gliomas to make a remarkable contribution in therapeutics related to immunosuppression in brain tumors along with four other common human cancers ( Viz. melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma, and colorectal cancer) and how this may be manipulated for prevalent survival of the patients.

References

(1) Anders I. Persson, QiWen Fan, Joanna J. Phillips, William A. Weiss, 39 – Glioma, Editor(s): Sid Gilman, Neurobiology of Disease, Academic Press, 2007, Pages 433-444, ISBN 9780120885923, https://doi.org/10.1016/B978-012088592-3/50041-4.

Main Source

Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell.https://www.cell.com/cell/fulltext/S0092-8674(21)00065-9?elqTrackId=c3dd8ff1d51f4aea87edd0153b4f2dc7

Related Articles

VIDEOS on Cancer Biology, Cancer Genetics, Cancer Immunotherapy

19th Annual Koch Institute Summer Symposium on Cancer Immunotherapy, June 12, 2020 at MIT’s Kresge Auditorium

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Single Cell Sequencing:

Part 4.1 in Genomics Volume 2

Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology 

On Amazon.com since 12/28/2019

https://www.amazon.com/dp/B08385KF87

 

4.1.3   Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/09/03/single-cell-genomics-directions-in-computational-and-systems-biology-contributions-of-ms-aviv-regev-phd-broad-institute-of-mit-and-harvard-cochair-the-human-cell-atlas-organizing-committee-wit/

 

4.1.4   Cellular Genetics

https://www.sanger.ac.uk/science/programmes/cellular-genetics

 

4.1.5   Cellular Genomics

https://www.garvan.org.au/research/cellular-genomics

 

4.1.6   SINGLE CELL GENOMICS 2019 – sometimes the sum of the parts is greater than the whole, September 24-26, 2019, Djurönäset, Stockholm, Sweden http://www.weizmann.ac.il/conferences/SCG2019/single-cell-genomics-2019

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/05/29/single-cell-genomics-2019-september-24-26-2019-djuronaset-stockholm-sweden/

 

4.1.7   Norwich Single-Cell Symposium 2019, Earlham Institute, single-cell genomics technologies and their application in microbial, plant, animal and human health and disease, October 16-17, 2019, 10AM-5PM

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/04/norwich-single-cell-symposium-2019-earlham-institute-single-cell-genomics-technologies-and-their-application-in-microbial-plant-animal-and-human-health-and-disease-october-16-17-2019-10am-5pm/

 

4.1.8   Newly Found Functions of B Cell

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/05/23/newly-found-functions-of-b-cell/

 

4.1.9 RESEARCH HIGHLIGHTS: HUMAN CELL ATLAS

https://www.broadinstitute.org/research-highlights-human-cell-atlas

 

CRISPR – 200 articles in the Journal

 

Chapter 21 in Genomics Volume 1

Genomics Orientations for Personalized Medicine. On Amazon.com since 11/23/2015

http://www.amazon.com/dp/B018DHBUO6

 

Glioblastoma – 150 articles in the Journal

Most recent

 

Immunotherapy may help in glioblastoma survival

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/

 

New Treatment in Development for Glioblastoma: Hopes for Sen. John McCain

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/25/new-treatment-in-development-for-glioblastoma-hopes-for-sen-john-mccain/

 

Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/funding-oncoruss-immunotherapy-platform-next-generation-oncolytic-herpes-simplex-virus-ohsv-for-brain-cancer-glioblastoma-multiforme-gbm/

 

Glioma, Glioblastoma and Neurooncology

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/

 

Positron Emission Tomography (PET) and Near-Infrared Fluorescence Imaging:  Noninvasive Imaging of Cancer Stem Cells (CSCs)  monitoring of AC133+ glioblastoma in subcutaneous and intracerebral xenograft tumors

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/29/positron-emission-tomography-pet-and-near-infrared-fluorescence-imaging-noninvasive-imaging-of-cancer-stem-cells-cscs-monitoring-of-ac133-glioblastoma-in-subcutaneous-and-intracerebral-xenogra/

 

Gamma Linolenic Acid (GLA) as a Therapeutic tool in the Management of Glioblastoma

Eric Fine* (1), Mike Briggs* (1,2), Raphael Nir# (1,2,3)

https://pharmaceuticalintelligence.com/2013/07/15/gamma-linolenic-acid-gla-as-a-therapeutic-tool-in-the-management-of-glioblastoma/

 

 

Read Full Post »


Connecting the Immune Response to Amyloid-β Aggregation in Alzheimer’s Disease via IFITM3

Reporter : Irina Robu, PhD

Alzheimer’s disease is a complex condition and it begins with slow aggregation of amyloid-β deposits over the course of years. This produces a mild cognitive impairment and a state of chronic inflammation enough to trigger harmful aggregation of the altered tau protein. Clearing amyloid-β from the brain hasn’t produced telling benefits to patients suggesting that it is not the key process in the development of the condition.

Recent research indicates that beta-amyloid has antiviral and antimicrobial properties, indicating a possible link between the immune response against infections and development of Alzheimer’s disease. Scientists have discovered evidence that protein interferon-induced transmembrane protein 3 (IFITM3) is involved in immune response to pathogens and play a key role in the accumulation of beta amyloid in plaques. IFITM3 is able to alter the activity of gamma-secretase enzyme, which breaks down the precursor proteins into fragments of beta-amyloid that make up plaques. 

Yet it was determined that the production of IFITM3 starts in reply to activation of the immune system by invading viruses and bacteria. Indeed, researchers found that the level of IFITM3 in human brain samples correlated with levels of certain viral infections as well as with gamma-secretase activity and beta-amyloid production. Age is the number one risk factor for Alzheimer’s and the levels of both inflammatory markers and IFITM3 increased with advancing age in mice.

Innate immunity is also correlated with Alzheimer’s disease1, but the influence of immune activation on the production of amyloid beta is unknown. They were able to identify IFITM3 as γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-β.

According to the current research, inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-β. The expression of IFITM3 is increased with ageing and in mouse models that express Alzheimer’s disease genes. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer’s disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer’s disease. These conclusions disclose a mechanism in which γ-secretase is controlled by neuroinflammation via IFITM3 and the risk of Alzheimer’s disease is thus amplified

SOURCE

https://www.nature.com/articles/s41586-020-2681-2

Read Full Post »


Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD

 

Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020

FDA STATEMENT

Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies

 

As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020

 

Recommendations for Investigational COVID-19 Convalescent Plasma

 

  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.

Background

The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.

FACT SHEET FOR PATIENTS AND PARENTS/CAREGIVERS EMERGENCY USE AUTHORIZATION (EUA) OF COVID-19 CONVALESCENT PLASMA FOR TREATMENT OF COVID-19 IN HOSPITALIZED PATIENTS

  • FDA issues fact sheet for patients on donating plasma

August 23, 2020

 

FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic

 

Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.

 

August 24, 2020

Donate COVID-19 Plasma

 

  • FDA posts video and blog about how to donate plasms if you had been infected with COVID

 

https://youtu.be/PlX15rWdBbY

 

 

Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA

 

 

August 25, 2020

 

CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download

 

And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment

 

From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html

PUBLISHED TUE, AUG 25 202010:45 AM EDTUPDATED TUE, AUG 25 20204:12 PM EDT

Berkeley Lovelace Jr.@BERKELEYJR

Will Feuer@WILLFOIA

KEY POINTS

  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter

https://twitter.com/SteveFDA/status/1298071603675373569?s=20

https://twitter.com/SteveFDA/status/1298071619236245504?s=20

August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:

https://www.bloomberg.com/news/articles/2020-08-25/fda-s-hahn-vows-to-stick-to-the-science-amid-vaccine-pressure?sref=yLCixKPR

Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency

 

For more articles on COVID19 please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Novel SARS-CoV-2 sybodies

Reporter: Irina Robu, PhD

Absolute Antibody Ltd., a leader of the market in recombinant antibody products announced a partnership with University of Zurich to offer synthetic nanobodies against the receptor binding domain (RBD) of SARS-CoV-2. Under the partnership, the original nanobodies and recently engineered formats are now accessible to the global research community for use as serological controls and in COVID-19 therapeutic development. The synthetic nanobodies hold a particular potential for the development of inhalable drugs, which could suggest a convenient treatment option for the COVID-19 pandemic.

The laboratory of Markus Seeger at University of Zurich designs a rapid in vitro selection platform to generate synthetic nanobodies, sybodies, against the receptor binding domain (RBD) of SARS-CoV-2. Within a two-week timeframe, the lab had recognized more than 60 unique anti-RBD sybodies from combinatorial display libraries. The sybodies are “designed to mimic the natural shape diversity of camelid nanobodies, consequently allowing for an optimal surface complementarity to the limited hydrophilic epitopes on membrane proteins. Due to their high thermal stabilities and low production costs, sybodies demonstrate a promise for diagnostic and therapeutic applications.

Sybodies are perfectly suited to trap intrinsically flexible membrane proteins and thereby facilitate structure determination by X-ray crystallography and cryo-EM. Additional research indicate that six of the sybodies bound SARS-CoV-2 spike protein with very high affinity, while five of those also inhibited ACE2, the host cell receptor to which SARS-CoV-2 binds to initiate the COVID-19 infection. Furthermore, two of the sybodies can at the same time bind the RBD, which could permit the construction of a polyvalent antiviral drug. The SARS-CoV-2 sybodies are therefore valuable tools for coronavirus research, diagnostics and therapeutic development.

Moreover, Absolute Antibody has used antibody engineering to fuse the nanobodies to Fc domains in different species, isotypes and subtypes. Absolute Antibody also offers supporting coronavirus research such as the production of gram quantities of human antibodies sequenced from recovering COVID-19 patients.

SOURCE

https://www.biocompare.com/Life-Science-News/562900-SARS-CoV-2-COVID-19-Research-News-Latest-Updates

 

Read Full Post »


RNA from the SARS-CoV-2 virus taking over the cells it infects: Virulence – Pathogen’s ability to infect a Resistant Host: The Imbalance between Controlling Virus Replication versus Activation of the Adaptive Immune Response

Curator: Aviva Lev-Ari, PhD, RN – I added colors and bold face

 

UPDATED on 9/8/2020

What bats can teach us about developing immunity to Covid-19 | Free to read

Clive Cookson, Anna Gross and Ian Bott, London

https://www.ft.com/content/743ce7a0-60eb-482d-b1f4-d4de11182fa9?utm_source=Nature+Briefing&utm_campaign=af64422080-briefing-dy-20200908&utm_medium=email&utm_term=0_c9dfd39373-af64422080-43323101

 

UPDATED on 6/29/2020

Another duality and paradox in the Treatment of COVID-19 Patients in ICUs was expressed by Mike Yoffe, MD, PhD, David H. Koch Professor of Biology and Biological Engineering, Massachusetts Institute of Technology. Dr. Yaffe has a joint appointment in Acute Care Surgery, Trauma, and Surgical Critical Care, and in Surgical Oncology @BIDMC

on 6/29 at SOLUTIONS with/in/sight at Koch Institute @MIT

How Are Cancer Researchers Fighting COVID-19? (Part II)” Jun 29, 2020 11:30 AM EST

Mike Yoffe, MD, PhD 

In COVID-19 patients: two life threatening conditions are seen in ICUs:

  • Blood Clotting – Hypercoagulability or Thrombophilia
  • Cytokine Storm – immuno-inflammatory response
  • The coexistence of 1 and 2 – HINDERS the ability to use effectively tPA as an anti-clotting agent while the cytokine storm is present.

Mike Yoffe’s related domain of expertise:

Signaling pathways and networks that control cytokine responses and inflammation

Misregulation of cytokine feedback loops, along with inappropriate activation of the blood clotting cascade causes dysregulation of cell signaling pathways in innate immune cells (neutrophils and macrophages), resulting in tissue damage and multiple organ failure following trauma or sepsis. Our research is focused on understanding the role of the p38-MK2 pathway in cytokine control and innate immune function, and on cross-talk between cytokines, clotting factors, and neutrophil NADPH oxidase-derived ROS in tissue damage, coagulopathy, and inflammation, using biochemistry, cell biology, and mouse knock-out/knock-in models.  We recently discovered a particularly important link between abnormal blood clotting and the complement pathway cytokine C5a which causes excessive production of extracellular ROS and organ damage by neutrophils after traumatic injury.

SOURCE

https://www.bidmc.org/research/research-by-department/surgery/acute-care-surgery-trauma-and-surgical-critical-care/michael-b-yaffe

 

See

The Genome Structure of CORONAVIRUS, SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/05/04/the-genome-structure-of-coronavirus-sars-cov-2-i-awaited-for-this-article-for-60-days/

 

Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

Open Access Published:May 15, 2020DOI:https://doi.org/10.1016/j.cell.2020.04.026

Highlights

  • SARS-CoV-2 infection induces low IFN-I and -III levels with a moderate ISG response
  • Strong chemokine expression is consistent across in vitroex vivo, and in vivo models
  • Low innate antiviral defenses and high pro-inflammatory cues contribute to COVID-19

Summary

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

Graphical Abstract

Keywords

Results

Defining the Transcriptional Response to SARS-CoV-2 Relative to Other Respiratory Viruses

To compare the transcriptional response of SARS-CoV-2 with other respiratory viruses, including MERS-CoV, SARS-CoV-1, human parainfluenza virus 3 (HPIV3), respiratory syncytial virus (RSV), and IAV, we first chose to focus on infection in a variety of respiratory cell lines (Figure 1). To this end, we collected poly(A) RNA from infected cells and performed RNA sequencing (RNA-seq) to estimate viral load. These data show that virus infection levels ranged from 0.1% to more than 50% of total RNA reads (Figure 1A).

Discussion

In the present study, we focus on defining the host response to SARS-CoV-2 and other human respiratory viruses in cell lines, primary cell cultures, ferrets, and COVID-19 patients. In general, our data show that the overall transcriptional footprint of SARS-CoV-2 infection was distinct in comparison with other highly pathogenic coronaviruses and common respiratory viruses such as IAV, HPIV3, and RSV. It is noteworthy that, despite a reduced IFN-I and -III response to SARS-CoV-2, we observed a consistent chemokine signature. One exception to this observation is the response to high-MOI infection in A549-ACE2 and Calu-3 cells, where replication was robust and an IFN-I and -III signature could be observed. In both of these examples, cells were infected at a rate to theoretically deliver two functional virions per cell in addition to any defective interfering particles within the virus stock that were not accounted for by plaque assays. Under these conditions, the threshold for PAMP may be achieved prior to the ability of the virus to evade detection through production of a viral antagonist. Alternatively, addition of multiple genomes to a single cell may disrupt the stoichiometry of viral components, which, in turn, may itself generate PAMPs that would not form otherwise. These ideas are supported by the fact that, at a low-MOI infection in A549-ACE2 cells, high levels of replication could also be achieved, but in the absence of IFN-I and -III induction. Taken together, these data suggest that, at low MOIs, the virus is not a strong inducer of the IFN-I and -III system, as opposed to conditions where the MOI is high.
Taken together, the data presented here suggest that the response to SARS-CoV-2 is imbalanced with regard to controlling virus replication versus activation of the adaptive immune response. Given this dynamic, treatments for COVID-19 have less to do with the IFN response and more to do with controlling inflammation. Because our data suggest that numerous chemokines and ILs are elevated in COVID-19 patients, future efforts should focus on U.S. Food and Drug Administration (FDA)-approved drugs that can be rapidly deployed and have immunomodulating properties.

SOURCE

https://www.cell.com/cell/fulltext/S0092-8674(20)30489-X

SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant

Yoriyuki KonnoIzumi KimuraKeiya UriuMasaya FukushiTakashi IrieYoshio KoyanagiSo NakagawaKei Sato

Abstract

One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays revealed that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of more than 15,000 SARS-CoV-2 sequences identified a natural variant, in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients, but also describe a possibility of the emergence of natural SARS-CoV-2 quasi-species with extended ORF3b that may exacerbate COVID-19 symptoms.

Highlights

  • ORF3b of SARS-CoV-2 and related bat and pangolin viruses is a potent IFN antagonist

  • SARS-CoV-2 ORF3b suppresses IFN induction more efficiently than SARS-CoV ortholog

  • The anti-IFN activity of ORF3b depends on the length of its C-terminus

  • An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases

Competing Interest Statement

The authors have declared no competing interest.

Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv

 

SOURCE

https://www.biorxiv.org/content/10.1101/2020.05.11.088179v1

 

 

A deep dive into how the new coronavirus infects cells has found that it orchestrates a hostile takeover of their genes unlike any other known viruses do, producing what one leading scientist calls “unique” and “aberrant” changes.Recent studies show that in seizing control of genes in the human cells it invades, the virus changes how segments of DNA are read, doing so in a way that might explain why the elderly are more likely to die of Covid-19 and why antiviral drugs might not only save sick patients’ lives but also prevent severe disease if taken before infection.“It’s something I have never seen in my 20 years of” studying viruses, said virologist Benjamin tenOever of the Icahn School of Medicine at Mount Sinai, referring to how SARS-CoV-2, the virus that causes Covid-19, hijacks cells’ genomes.The “something” he and his colleagues saw is how SARS-CoV-2 blocks one virus-fighting set of genes but allows another set to launch, a pattern never seen with other viruses. Influenza and the original SARS virus (in the early 2000s), for instance, interfere with both arms of the body’s immune response — what tenOever dubs “call to arms” genes and “call for reinforcement” genes.The first group of genes produces interferons. These proteins, which infected cells release, are biological semaphores, signaling to neighboring cells to activate some 500 of their own genes that will slow down the virus’ ability to make millions of copies of itself if it invades them. This lasts seven to 10 days, tenOever said, controlling virus replication and thereby buying time for the second group of genes to act.This second set of genes produce their own secreted proteins, called chemokines, that emit a biochemical “come here!” alarm. When far-flung antibody-making B cells and virus-killing T cells sense the alarm, they race to its source. If all goes well, the first set of genes holds the virus at bay long enough for the lethal professional killers to arrive and start eradicating viruses.

“Most other viruses interfere with some aspect of both the call to arms and the call for reinforcements,” tenOever said. “If they didn’t, no one would ever get a viral illness”: The one-two punch would pummel any incipient infection into submission.

SARS-CoV-2, however, uniquely blocks one cellular defense but activates the other, he and his colleagues reported in a study published last week in Cell. They studied healthy human lung cells growing in lab dishes, ferrets (which the virus infects easily), and lung cells from Covid-19 patients. In all three, they found that within three days of infection, the virus induces cells’ call-for-reinforcement genes to produce cytokines. But it blocks their call-to-arms genes — the interferons that dampen the virus’ replication.

The result is essentially no brakes on the virus’s replication, but a storm of inflammatory molecules in the lungs, which is what tenOever calls an “unique” and “aberrant” consequence of how SARS-CoV-2 manipulates the genome of its target.

In another new study, scientists in Japan last week identified how SARS-CoV-2 accomplishes that genetic manipulation. Its ORF3b gene produces a protein called a transcription factor that has “strong anti-interferon activity,” Kei Sato of the University of Tokyo and colleagues found — stronger than the original SARS virus or influenza viruses. The protein basically blocks the cell from recognizing that a virus is present, in a way that prevents interferon genes from being expressed.

In fact, the Icahn School team found no interferons in the lung cells of Covid-19 patients. Without interferons, tenOever said, “there is nothing to stop the virus from replicating and festering in the lungs forever.”

That causes lung cells to emit even more “call-for-reinforcement” genes, summoning more and more immune cells. Now the lungs have macrophages and neutrophils and other immune cells “everywhere,” tenOever said, causing such runaway inflammation “that you start having inflammation that induces more inflammation.”

At the same time, unchecked viral replication kills lung cells involved in oxygen exchange. “And suddenly you’re in the hospital in severe respiratory distress,” he said.

In elderly people, as well as those with diabetes, heart disease, and other underlying conditions, the call-to-arms part of the immune system is weaker than in younger, healthier people, even before the coronavirus arrives. That reduces even further the cells’ ability to knock down virus replication with interferons, and imbalances the immune system toward the dangerous inflammatory response.

The discovery that SARS-CoV-2 strongly suppresses infected cells’ production of interferons has raised an intriguing possibility: that taking interferons might prevent severe Covid-19 or even prevent it in the first place, said Vineet Menachery of the University of Texas Medical Branch.

In a study of human cells growing in lab dishes, described in a preprint (not peer-reviewed or published in a journal yet), he and his colleagues also found that SARS-CoV-2 “prevents the vast amount” of interferon genes from turning on. But when cells growing in lab dishes received the interferon IFN-1 before exposure to the coronavirus, “the virus has a difficult time replicating.”

After a few days, the amount of virus in infected but interferon-treated cells was 1,000- to 10,000-fold lower than in infected cells not pre-treated with interferon. (The original SARS virus, in contrast, is insensitive to interferon.)

Ending the pandemic and preventing its return is assumed to require an effective vaccine to prevent infectionand antiviral drugs such as remdesivir to treat the very sick, but the genetic studies suggest a third strategy: preventive drugs.

It’s possible that treatment with so-called type-1 interferon “could stop the virus before it could get established,” Menachery said.

Giving drugs to healthy people is always a dicey proposition, since all drugs have side effects — something considered less acceptable than when a drug is used to treat an illness. “Interferon treatment is rife with complications,” Menachery warned. The various interferons, which are prescribed for hepatitis, cancers, and many other diseases, can cause flu-like symptoms.

But the risk-benefit equation might shift, both for individuals and for society, if interferons or antivirals or other medications are shown to reduce the risk of developing serious Covid-19 or even make any infection nearly asymptomatic.

Interferon “would be warning the cells the virus is coming,” Menachery said, so such pretreatment might “allow treated cells to fend off the virus better and limit its spread.” Determining that will of course require clinical trials, which are underway.

Read Full Post »

Older Posts »