Advertisements
Feeds:
Posts
Comments

Archive for the ‘Exosomes’ Category


Real Time Coverage @BIOConvention #BIO2019: Chat with @FDA Commissioner, & Challenges in Biotech & Gene Therapy June 4 Philadelphia

Reporter: Stephen J. Williams, PhD @StephenJWillia2

 

  • taking patient concerns and voices from anecdotal to data driven system
  • talked about patient accrual hearing patient voice not only in ease of access but reporting toxicities
  • at FDA he wants to remove barriers to trial access and accrual; also talk earlier to co’s on how they should conduct a trial

Digital tech

  • software as medical device
  • regulatory path is mixed like next gen sequencing
  • wearables are concern for FDA (they need to recruit scientists who know this tech

Opioids

  • must address the crisis but in a way that does not harm cancer pain patients
  • smaller pain packs “blister packs” would be good idea

Clinical trial modernization

  • for Alzheimers disease problem is science
  • for diabetes problem is regulatory
  • different diseases calls for different trial design
  • have regulatory problems with rare diseases as can’t form control or placebo group, inhumane. for example ras tumors trials for MEK inhibitors were narrowly focused on certain ras mutants
Realizing the Promise of Gene Therapies for Patients Around the World

103ABC, Level 100

Speakers
Lots of promise, timeline is progressing faster but we need more education on use of the gene therapy
Regulatory issues: Cell and directly delivered gene based therapies have been now approved. Some challenges will be the ultrarare disease trials and how we address manufacturing issues.  Manufacturing is a big issue at CBER and scalability.  If we want to have global impact of these products we need to address the manufacturing issues
 of scalability.
Pfizer – clinical grade and scale is important.
Aventis – he knew manufacturing of biologics however gene therapy manufacturing has its separate issues and is more complicated especially for regulatory purposes for clinical grade as well as scalability.  Strategic decision: focusing on the QC on manufacturing was so important.  Had a major issue in manufacturing had to shut down and redesign the system.
Albert:  Manufacturing is the most important topic even to the investors.  Investors were really conservative especially seeing early problems but when academic centers figured out good efficacy then they investors felt better and market has exploded.  Now you can see investment into preclinical and startups but still want mature companies to focus on manufacturing.  About $10 billion investment in last 4 years.

How Early is Too Early? Valuing and De-Risking Preclinical Opportunities

109AB, Level 100

Speakers
Valuing early-stage opportunities is challenging. Modeling will often provide a false sense of accuracy but relying on comparable transactions is more art than science. With a long lead time to launch, even the most robust estimates can ultimately prove inaccurate. This interactive panel will feature venture capital investors and senior pharma and biotech executives who lead early-stage transactions as they discuss their approaches to valuing opportunities, and offer key learnings from both successful and not-so-successful experiences.
Dr. Schoenbeck, Pfizer:
  • global network of liaisons who are a dedicated team to research potential global startup partners or investments.  Pfizer has a separate team to evaluate academic laboratories.  In Most cases Pfizer does not initiate contact.  It is important to initiate the first discussion with them in order to get noticed.  Could be just a short chat or discussion on what their needs are for their portfolio.

Question: How early is too early?

Luc Marengere, TVM:  His company has early stage focus, on 1st in class molecules.  The sweet spot for their investment is a candidate selected compound, which should be 12-18 months from IND.  They will want to bring to phase II in less than 4 years for $15-17 million.  Their development model is bad for academic labs.  During this process free to talk to other partners.

Dr. Chaudhary, Biogen:  Never too early to initiate a conversation and sometimes that conversation has lasted 3+ years before a decision.  They like build to buy models, will do convertible note deals, candidate compound selection should be entering in GLP/Tox phase (sweet spot)

Merck: have MRL Venture Fund for pre series A funding.  Also reiterated it is never too early to have that initial discussion.  It will not put you in a throw away bin.  They will have suggestions and never like to throw out good ideas.

Michael Hostetler: Set expectations carefully ; data should be validated by a CRO.  If have a platform, they will look at the team first to see if strong then will look at the platform to see how robust it is.

All noted that you should be completely honest at this phase.  Do not overstate your results or data or overhype your compound(s).  Show them everything and don’t have a bias toward compounds you think are the best in your portfolio.  Sometimes the least developed are the ones they are interested in.  Also one firm may reject you however you may fit in others portfolios better so have a broad range of conversations with multiple players.

 

 

Advertisements

Read Full Post »


Reporter and Curator: Irina Robu, PhD

Monitoring cancer patients and evaluating their response to treatment can sometimes involve invasive procedures, including surgery.

The liquid biopsies have become something of a Holy Grail in cancer treatment among physicians, researchers and companies gambling big on the technology. Liquid biopsies, unlike traditional biopsies involving invasive surgery — rely on an ordinary blood draw. Developments in sequencing the human genome, permitting researchers to detect genetic mutations of cancers, have made the tests conceivable. Some 38 companies in the US alone are working on liquid biopsies by trying to analyze blood for fragments of DNA shed by dying tumor cells.

Premature research on the liquid biopsy has concentrated profoundly on patients with later-stage cancers who have suffered treatments, including chemotherapy, radiation, surgery, immunotherapy or drugs that target molecules involved in the growth, progression and spread of cancer. For cancer patients undergoing treatment, liquid biopsies could spare them some of the painful, expensive and risky tissue tumor biopsies and reduce reliance on CT scans. The tests can rapidly evaluate the efficacy of surgery or other treatment, while old-style biopsies and CT scans can still remain inconclusive as a result of scar tissue near the tumor site.

As recently as a few years ago, the liquid biopsies were hardly used except in research. At the moment, thousands of the tests are being used in clinical practices in the United States and abroad, including at the M.D. Anderson Cancer Center in Houston; the University of California, San Diego; the University of California, San Francisco; the Duke Cancer Institute and several other cancer centers.

With patients for whom physicians cannot get a tissue biopsy, the liquid biopsy could prove a safe and effective alternative that could help determine whether treatment is helping eradicate the cancer. A startup, Miroculus developed a cheap, open source device that can test blood for several types of cancer at once. The platform, called Miriam finds cancer by extracting RNA from blood and spreading it across plates that look at specific type of mRNA. The technology is then hooked up at a smartphone which sends the information to an online database and compares the microRNA found in the patient’s blood to known patterns indicating different type of cancers in the early stage and can reduce unnecessary cancer screenings.

Nevertheless, experts warn that more studies are essential to regulate the accuracy of the test, exactly which cancers it can detect, at what stages and whether it improves care or survival rates.

SOURCE

https://www.fastcompany.com/3037117/a-new-device-can-detect-multiple-types-of-cancer-with-a-single-blood-test

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356857/

Other related articles published in this Open Access Online Scientific Publishing Journal include the following:

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

https://pharmaceuticalintelligence.com/2017/01/05/one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-biomarkers-rd-wpi

 

 

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »


SBI’s Exosome Research Technologies

Reporter: Aviva Lev-Ari, PhD, RN

Welcome to the Fascinating World of Exosomes and Microvesicles

Just learning about exosomes?

The team at SBI has put together this brief overview to help get you started in the growing field of exosome research.

 

Why are exosomes important?

Once thought to be little more than a way for cells to offload waste, the past decade has seen a huge shift in the way we think about exosomes. We’ve begun to recognize that exosomes are deliberately released from the cell, functioning as signal carriers and tissue reshapers through their cargo of RNA, proteins, lipids, and DNA. Involved in a wide range of healthy and pathogenic processes such as cancer, inflammation, immunity, CNS function, cardiac cell function, to name a few – exosomes are being studied for their role in these basic biological processes as well as for their use as biomarkers (see Applications) and even as tools for targeted delivery of biomolecules such as therapeutics (see Engineering).

What are exosomes?

Exosomes are 60 – 180 nm membrane vesicles secreted by most cell types in vivo and in vitro. These extracellular vesicles are endocytic in origin, produced by the inward budding of multivesicular bodies (MVBs). They are released from the cell into the microenvironment following fusion of MVBs with the plasma membrane.

What aren’t exosomes?

Exosomes are not the only small, membrane-bound extracellular vesicle that can be found. They are distinct in origin from apoptotic blebs or apoptotic bodies, which are 50 nm to 5 um in size, carry DNA, RNA, and histones, and display surface markers targeting them for clearance by macrophages. And they are also different from microparticles (also known as microvesicles, ectosomes, shedding vesicles, microparticles, plasma membrane-derived vesicles, and exovesicles), which can range from 50-1000 nm in size and are derived directly from the plasma membrane rather than endocytic bodies within the cell.8 These distinctions and labeling conventions are not always used consistently in the literature and between different groups, leading to some ambiguity in the literature. When isolating exosomes, it’s important to remember that these other types of vesicles may also be present and interpret results accordingly.

What else are exosomes called?

Adding to the confusion, exosomes are sometimes referred to by the source of the sample material. For example, dendritic cell exosomes are also called dexosomes, and cancer cell exosomes may be called oncosomes. Researchers are starting to move towards more standardized nomenclature, but those searching through older literature should be aware of other names for exosomes.

Where are exosomes normally found?

Exosomes have been found in blood, urine, amniotic fluid, breast milk, malignant ascites fluids, and seminal fluid. They contain distinct subsets of molecules depending upon the cell type from which they are secreted, making them useful for biomarker discovery.

How do I study exosomes?

SBI is the only vendor to offer reagents and kits that support all apsects of exosome research-covering isolation, detection and measurement, discovery (characterization and analysis), and even exosome engineering. With a comprehensive set of tools and services to accelerate the study of exosomes and exosome RNA biomarkers, SBI puts the power of exosomes into researchers’ hands.

SBI’s Exosome Research Technologies

ISOLATION

DETECTION

DISCOVERY

ENGINEERING

ExoQuick

Exosome FACS

Purified exosomes

Package miRNAs into exosomes

Exosome FACS and IP

Antibodies and ELISAs

RNA-Seq NGS kit

Transfect exosomes

Exosome depleted FBS

EXOCET assay

Mass Spec library kit

Engineer Exosome Protein Cargo

Label exosome cargo

miRNA qPCR kits

 

SOURCE

https://www.systembio.com/exosome-knowledge

https://www.systembio.com/products

https://www.systembio.com/services

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »


Postmarketing Safety or Effectiveness Data Needed: The 2013 paper was funded by the firm Sarepta Therapeutics, sellers of eteplirsen, a surge in its shares seen after the approval. Eteplirsen will cost patients around $300,000 a year.

 

Curator: Aviva Lev-Ari, PhD, RN

 

On September 19, the FDA okayed eteplirsen to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder that results in muscle degeneration and premature death. Several of its top officials disagreed with the drug’s approval, questioning how beneficial it will be for patients, as ForbesMedPage Today and others reported.

http://retractionwatch.com/2016/09/21/amid-controversial-sarepta-approval-decision-fda-head-calls-for-key-study-retraction/

Factors at play for FDA Approval of eteplirsen

  1. the help of the families of young boys with Duchenne muscular dystrophy, emotional scenes from these families who have campaigned for so long
  2. an executive team from Sarepta who wouldn’t give up,

Ed Kaye, Sarepta, CEO – EK: It’s all about resilience. One of the things we’ve had is a group of people of like minds and anytime one of us gets down, somebody else is there to pick you up. One of the things we’ve always done is: Every time we’ve felt sorry for ourselves, we just need to think about those patients and what they go through. Our struggles in comparison very quickly become meaningless. You end up saying to yourself: What am I complaining about? Quit whining; get up and do your job.

and

3. an emerging new philosophy from some within the FDA, eteplirsen, now Exondys 51, was approved in patients with a confirmed mutation of the dystrophin gene amenable to exon 51 skipping.

http://www.fiercebiotech.com/biotech/sarepta-ceo-ed-kaye-fda-courage-nice-and-resilience?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTXpBeU56aGpNREV3T1RZMiIsInQiOiJIM2poTkVOQ0N6YmxaenVHZDM1RlVvbTFmRkdwZGdxQ0pmYXNVOG5PKzRyenFXTkRMV0dcL3l0bVBPNkJ2NFV3Rnc3bWVFVnUwMCs3YVhWeVhvRkkrUU5FMFJ1RndSQTlHWFRnQmFTbUo3ODg9In0%3D

9/19/2016

FDA grants accelerated approval to first drug for Duchenne muscular dystrophy

The accelerated approval of Exondys 51 is based on the surrogate endpoint of dystrophin increase in skeletal muscle observed in some Exondys 51-treated patients. The FDA has concluded that the data submitted by the applicant demonstrated an increase in dystrophin production that is reasonably likely to predict clinical benefit in some patients with DMD who have a confirmed mutation of the dystrophin gene amenable to exon 51 skipping. A clinical benefit of Exondys 51, including improved motor function, has not been established. In making this decision, the FDA considered the potential risks associated with the drug, the life-threatening and debilitating nature of the disease for these children and the lack of available therapy.

The FDA granted Exondys 51 fast track designation, which is a designation to facilitate the development and expedite the review of drugs that are intended to treat serious conditions and that demonstrate the potential to address an unmet medical need. It was also granted priority review and orphan drug designationPriority review status is granted to applications for drugs that, if approved, would be a significant improvement in safety or effectiveness in the treatment of a serious condition. Orphan drug designation provides incentives such as clinical trial tax credits, user fee waiver and eligibility for orphan drug exclusivity to assist and encourage the development of drugs for rare diseases.

SOURCE

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm

The viability of this drug approval depends  on “to be gathered” Postmarketing safety or effectiveness data, aka follow-up confirmatory trials.

Sarepta CEO Ed Kaye on FDA courage, NICE and resilience

BA: When it comes to flexibility, however, the FDA will likely not be flexible if your drug doesn’t prove the desired efficacy in your longer term postmarketing studies. If at the end of this period your drug doesn’t come through, how easy will it be for you to take this off the market? I don’t think anyone, including the FDA, wants a repeat of what happened in 2011 when Roche saw its breast cancer license for Avastin, which had been approved under an accelerated review, pulled after not being safe or effective enough in the follow-up confirmatory trials. But you face this as a possible scenario.

EK: That’s true, but one of the things we’re trying to do to mitigate that is to obviously, with our ongoing studies, prove the efficacy that the FDA wants to see. And you know, if there is a problem with one study then we’d hope to have other data that are supportive. The other thing we’re doing of course is developing that next-generation chemistry in DMD that could prove more effective, so we could certainly consider using that next-gen chemistry to take our work forward and try and make it better.

We have a lot of shots on goal to make sure we can continue to supply a product for these boys, but there is always a risk. If we can’t show efficacy in the way the FDA wants, then yes they have the option to take it off the market.

http://www.fiercebiotech.com/biotech/sarepta-ceo-ed-kaye-fda-courage-nice-and-resilience?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiTXpBeU56aGpNREV3T1RZMiIsInQiOiJIM2poTkVOQ0N6YmxaenVHZDM1RlVvbTFmRkdwZGdxQ0pmYXNVOG5PKzRyenFXTkRMV0dcL3l0bVBPNkJ2NFV3Rnc3bWVFVnUwMCs3YVhWeVhvRkkrUU5FMFJ1RndSQTlHWFRnQmFTbUo3ODg9In0%3D

Need for follow-up confirmatory trials remains outstanding

FDA’s Postmarketing Surveillance Programs

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090385.htm

FDA’s Regulations and Policies and Procedures for Postmarketing Surveillance Programs

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090394.htm

 

Positions on Sarepta’s eteplirsen Scientific Approach

Gene Editing for Exon 51: Why CRISPR Snipping might be better than Exon Skipping for DMD

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/23/gene-editing-for-exon-51-why-crispr-snipping-might-be-better-than-exon-skipping-for-dmd/

 

QUOTE START

Retraction Watch

Tracking retractions as a window into the scientific process

Amid controversial Sarepta approval decision, FDA head calls for key study retraction

with one comment

FDAThe head of the U.S. Food and Drug Administration (FDA) has called for the retraction of a study about a drug that the agency itself approved earlier this week, despite senior staff opposing the approval.

On September 19, the FDA okayed eteplirsen to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder that results in muscle degeneration and premature death. Several of its top officials disagreed with the drug’s approval, questioning how beneficial it will be for patients, as ForbesMedPage Today and others reported.

In a lengthy report Commissioner Robert Califf sent to senior FDA officials on September 16 — that was made public on September 19 — he called for the retraction of a 2013 study published in Annals of Neurologyfunded by the seller of eteplirsen, which showed beneficial effects of the drug in DMD patients. Califf writes inthe report:

The publication, now known to be misleading, should probably be retracted by its authors.

In a footnote in the report, Califf adds:

In view of the scientific deficiencies identified in this analysis, I believe it would be appropriate to initiate a dialogue that would lead to a formal correction or retraction (as appropriate) of the published report.

The study was not the key factor in the agency’s decision to approve the drug, according to Steve Usdin, Washington editor of the publication BioCentury; still, Usdin told Retraction Watch he is “really surprised” at the call for retraction from top FDA staff, the first he has come across in the last two decades.

The 2013 paper was funded by the firm Sarepta Therapeutics, sellers of eteplirsen, which has seen a surge in its shares after the approval. Eteplirsen will cost patients around $300,000 a year.

DMD affects around 1 in 3,600 boys due to a mutation in the gene that codes for the protein dystrophin, which is important for structural stability of muscles. Eteplirsen is the first drug to treat DMD, and was initially given a green light by Janet Woodcock, director of Center for Drug Evaluation and Research, after a split vote from the FDA’s advisory committee. Despite Califf’s issues with the literature supporting the drug’s use in DMD, he did not overturn Woodcock’s decision, and the agency approved the drug this week.

In 2014, an inspection team visited the Nationwide Children’s Hospital in Columbus, Ohio, where the research was conducted, according to the report. In the report, Ellis Unger, director of the Office of Drug Evaluation I in FDA’s Center for Drug Evaluation, notes:

We found the analytical procedures to be typical of an academic research center, seemingly appropriate for what was simply an exploratory phase 1/2 study, but not suitable for an adequate and well controlled study aimed to serve as the basis for a regulatory action. The procedures and controls that one would expect to see in support of a phase 3 registrational trial were not in evidence.

Specifically, Unger describes concerns about blinding during the experiments, and notes:

The immunohistochemistry images were only faintly stained, and had been read by a single technician using an older liquid crystal display (LCD) computer monitor in a windowed room where lighting was not controlled. (The technician had to suspend reading around mid-day, when brighter light began to fill the room and reading became impossible.)

Unger adds:

Having uncovered numerous technical and operational shortcomings in Columbus, our team worked collaboratively with the applicant to develop improved methods for a reassessment of the stored images…This re-analysis, along with the study published in 2013, provides an instructive example of an investigation with extraordinary results that could not be verified.

Luciana Borio, acting chief scientist at the FDA, is cited in the report saying:

I would be remiss if I did not note that the sponsor has exhibited serious irresponsibility by playing a role in publishing and promoting selective data during the development of this product. Not only was there a misleading published article with respect to the results of Study–which has never been retracted—but Sarepta also issued a press release relying on the misleading article and its findings…As determined by the review team, and as acknowledged by Dr. Woodcock, the article’s scientific findings—with respect to the demonstrated effect of eteplirsen on both surrogate and clinical endpoints—do not withstand proper and objective analyses of the data. Sarepta’s misleading communications led to unrealistic expectations and hope for DMD patients and their families.

Here’s how Sarepta describes the study’s findings in the press release Borio refers to:

Published study results showed that once-weekly treatment with eteplirsen resulted in a statistically significant increase from baseline in novel dystrophin, the protein that is lacking in patients with DMD. In addition, eteplirsen-treated patients evaluable on the 6-minute walk test (6MWT) demonstrated stabilization in walking ability compared to a placebo/delayed-treatment cohort. Eteplirsen was well tolerated in the study with no clinically significant treatment-related adverse events. These data will form the basis of a New Drug Application (NDA) to the U.S. Food and Drug Administration (FDA) for eteplirsen planned for the first half of 2014.

However, Usdin noted that the drug’s approval and the study are two independent events, adding that the 2013 study just “got the ball rolling” for eteplirsen, and the FDA conducted many of its own experiments analyses, as detailed in the newly released report.

Jerry Mendell, the corresponding author of the study (which has so far been cited 118 times, according to Thomson Reuters Web of Science) from Ohio State University in Columbus, told us the allegations were “unfounded” and said the data are “valid.” Therefore, he added, he will not be approaching the journal for a retraction, noting that the FDA asked him hundreds of questions about the paper and audited the trials.

Clifford Saper, the editor-in-chief of Annals of Neurology from the Beth Israel Deaconess Medical Center (which is part of Harvard Medical School), said in an email:

It takes more than a call by a politician for retraction of a paper. It takes actual evidence.

He added:

If the FDA commissioner has, or knows of someone who has, evidence for an error in a paper published in Annals of Neurology, I encourage him to send that evidence to me and a copy to the authors of the article, for their reply. At that point we will engage in a scientific review of the evidence and make appropriate responses.

Linda Lowes, sixth author of the present study, is the last author of a 2016 study in Physical Therapy that was retracted months after publication. Its notice reads:

This article has been retracted by the author due to unintentional deviations in the use of the described modified technique to assess plagiocephaly in the study participants, such that the use of the modified technique cannot be defended for the stated purpose in this population at this time.

Califf was a cardiologist at Duke University during the high-profile scandal of researcher Anil Potti at Duke, which led to more than 10 retractions, settled lawsuits, and medical board reprimands. In 2015, he told TheTriangle Business Journal:

I wish I had gotten myself more involved earlier…There were systems that were not adequate, as we stated. … That was a tough one, I think, for the whole institution.

We’ve contacted the FDA for comment, and will update the post with anything else we learn.

END QUOTE

Correction 9/21/16 10:44 p.m. eastern: When originally published, this post incorrectly reported that Califf was part of an inspection team that visited the Nationwide Children’s Hospital in Ohio, and attributed quotes from Ellis Unger to Califf. We have made appropriate corrections, and apologize for the error.

Like Retraction Watch? Consider making a tax-deductible contribution to support our growth. You can also follow us on Twitter, like us on Facebook, add us to your RSS reader, sign up on our homepage for an email every time there’s a new post, or subscribe to our daily digest. Click here to review our Comments Policy. For a sneak peek at what we’re working on, click here.

SOURCE

http://retractionwatch.com/2016/09/21/amid-controversial-sarepta-approval-decision-fda-head-calls-for-key-study-retraction/

Related Resources on FDA’s Policies on Drugs:

Read Full Post »


Exome Aggregation Consortium (ExAC), generated the largest catalogue so far of variation in human protein-coding regions: Sequence data of 60,000 people, NOW is a publicly accessible database

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 8/22/2016

“The ExAC resource gives us incredible insight when evaluating a patient’s genome sequence in the clinic,” said Heidi Rehm, HMS associate professor of pathology at Brigham and Women’s Hospital, medical clinical director of the Broad’s Clinical Research Sequencing Platform and chief laboratory director of the Laboratory for Molecular Medicine at Partners HealthCare Personalized Medicine.

“In our own research, using the ExAC resource has allowed us to apply novel statistical methods to identify several new severe developmental disorders,” said Matthew Hurles, a researcher at the Wellcome Trust Sanger Institute and frequent user of the ExAC database. “Resources such as ExAC exemplify the benefits that can be achieved for families coping with rare genetic diseases, as a result of the mass altruism of many research participants who allow their data to be aggregated and shared.”

SOURCE

http://hms.harvard.edu/news/going-wide-and-deep?utm_source=Silverpop&utm_medium=email&utm_content=s3&utm_campaign=08.22.16.HMS

 

These variant data already guide diagnoses and treatment

E. V. Minikel et al. Sci. Transl. Med. 8, 322ra9; 2016

Quantifying prion disease penetrance using large population control cohorts

Science Translational Medicine  20 Jan 2016:
Vol. 8, Issue 322, pp. 322ra9
DOI: 10.1126/scitranslmed.aad5169

and

R. Walsh et al. Genet. Med. http://dx.doi.org/10.1038/gim.2016.90; 2016).

Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples

Genetics in Medicine
(2016)
doi:10.1038/gim.2016.90
Published online
17 August 2016

The ExAC project plans to grow over the next year to include 120,000 exome and 20,000 whole-genome sequences. It relies on the willingness of large research consortia to cooperate, and highlights the huge value of sharing, aggregation and harmonization of genomic data. This is also true for patient variants — there is a need for databases that provide greater confidence in variant interpretation, such as the US National Center for Biotechnology Information’s ClinVar database.

SOURCE

Nature536,249(18 August 2016)doi:10.1038/536249a

Read Full Post »

Older Posts »