Feeds:
Posts
Comments

Archive for the ‘Gene Regulation’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.

 

But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.

 

Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.

 

The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.

 

They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.

 

Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.

 

As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.

 

The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.

 

References:

 

https://www.technologyreview.com/s/603676/the-search-for-a-perfect-male-birth-control-pill/

 

https://futurism.com/videos/the-perfect-male-birth-control-pill-is-coming-soon/?utm_source=Digest&utm_campaign=c42fc7b9b6-EMAIL_CAMPAIGN_2017_03_20&utm_medium=email&utm_term=0_03cd0a26cd-c42fc7b9b6-246845533

 

http://www.telegraph.co.uk/women/sex/the-male-pill-is-coming—and-its-going-to-change-everything/

 

http://www.mensfitness.com/women/sex-tips/male-birth-control-pill-making

 

http://health.howstuffworks.com/sexual-health/contraception/male-bc-pill.htm

 

http://europe.newsweek.com/male-contraception-side-effects-study-pill-injection-518237?rm=eu

 

http://edition.cnn.com/2016/01/07/health/male-birth-control-pill/index.html

 

http://www.nhs.uk/Conditions/contraception-guide/Pages/male-pill.aspx

Advertisements

Read Full Post »


Translation of whole human genome sequencing to clinical practice: The Joint Initiative for Metrology in Biology (JIMB) is a collaboration between the National Institute of Standards & Technology (NIST) and Stanford University.

Reporter: Aviva Lev-Ari, PhD, RN

 

JIMB’s mission is to advance the science of measuring biology (biometrology). JIMB is pursuing fundamental research, standards development, and the translation of products that support confidence in biological measurements and reliable reuse of materials and results. JIMB is particularly focused on measurements and technologies that impact, are related to, or enabled by ongoing advances in and associated with the reading and writing of DNA.

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

Genome in a Bottle
Authoritative Characterization of
Benchmark Human Genomes


The Genome in a Bottle Consortium is a public-private-academic consortium hosted by NIST to develop the technical infrastructure (reference standards, reference methods, and reference data) to enable translation of whole human genome sequencing to clinical practice. The priority of GIAB is authoritative characterization of human genomes for use in analytical validation and technology development, optimization, and demonstration. In 2015, NIST released the pilot genome Reference Material 8398, which is genomic DNA (NA12878) derived from a large batch of the Coriell cell line GM12878, characterized for high-confidence SNPs, indel, and homozygous reference regions (Zook, et al., Nature Biotechnology 2014).

There are four new GIAB reference materials available.  With the addition of these new reference materials (RMs) to a growing collection of “measuring sticks” for gene sequencing, we can now provide laboratories with even more capability to accurately “map” DNA for genetic testing, medical diagnoses and future customized drug therapies. The new tools feature sequenced genes from individuals in two genetically diverse groups, Asians and Ashkenazic Jews; a father-mother-child trio set from Ashkenazic Jews; and four microbes commonly used in research. For more information click here.  To purchase them, visit:

Data and analyses are publicly available (GIAB GitHub). A description of data generated by GIAB is published here. To standardize best practices for using GIAB genomes for benchmarking, we are working with the Global Alliance for Genomics and Health Benchmarking Team (benchmarking tools).

High-confidence small variant and homozygous reference calls are available for NA12878, the Ashkenazim trio, and the Chinese son with respect to GRCh37.  Preliminary high-confidence calls with respect to GRCh38 are also available for NA12878.   The latest version of these calls is under the latest directory for each genome on the GIAB FTP.

The consortium was initiated in a set of meetings in 2011 and 2012, and the consortium holds open, public workshops in January at Stanford University in Palo Alto, CA and in August/September at NIST in Gaithersburg, MD. Slides from workshops and conferences are available online. The consortium is open and welcomes new participants.

SOURCE

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

JIMB World Metrology Day Symposium

JIMB’s mission is to motivate standards-based measurement innovation to facilitate translation of basic science and technology development breakthroughs in genomics and synthetic biology.

By advancing biometrology, JIMB will push the boundaries of discovery science, accelerate technology development and dissemination, and generate reusable resources.

 SOURCE

VIEW VIDEO

https://player.vimeo.com/video/184956195?wmode=opaque&api=1″,”url”:”https://vimeo.com/184956195″,”width”:640,”height”:360,”providerName”:”Vimeo”,”thumbnailUrl”:”https://i.vimeocdn.com/video/594555038_640.jpg”,”resolvedBy”:”vimeo”}” data-block-type=”32″>

Other related articles published in this Open Access Online Scientific Journal include the following:

“Genome in a Bottle”: NIST’s new metrics for Clinical Human Genome Sequencing

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/09/06/genome-in-a-bottle-nists-new-metrics-for-clinical-human-genome-sequencing/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Mitochondrial disease

 

Mitochondria are present in almost all human cells, and vary in number from a few tens to many thousands. They generate the majority of a cell’s energy supply which powers every part of our body. Mitochondria have their own separate DNA, which carries just a few genes. All of these genes are involved in energy production but determine no other characteristics. And so, any faults in these genes lead only to problems in energy production. Around 1 in 6500 children is thought to be born with a serious mitochondrial disorder due to faults in mitochondrial DNA.

 

Unlike nuclear genes, mitochondrial DNA is inherited only from our mothers. Mothers can carry abnormal mitochondria and be at risk of passing on serious disease to their children, even if they themselves show only mild or no symptoms. It is for such women who by chance have a high proportion of faulty mitochondrial DNA in their eggs for which the methods of mitochondrial replacement or “donation” have been developed. This technique is also referred as the three parent technique and it involves a couple and a donor.

 

Mitochondrial Donation

 

The most developed techniques, maternal spindle transfer (MST) and pro-nuclear transfer (PNT), are based on an IVF cycle but have additional steps. Other techniques are being developed.

 

In both MST and PNT, nuclear DNA is moved from a patient’s egg or embryo containing unhealthy mitochondria to a donor’s egg or embryo containing healthy mitochondria, from which the donor’s nuclear DNA has been removed.

 

mst

Maternal spindle transfer Bredenoord, A and P. Braude (2010) “Ethics of mitochondrial gene replacement: from bench to bedside” BMJ 341.

 

pnt

Pronuclear transfer Bredenoord, A and P. Braude (2010) “Ethics of mitochondrial gene replacement: from bench to bedside” BMJ 341.

 

Research Carried Out and Safety Issues

 

There have been many experiments conducted using MST and PNT in animals. PNT has been carried out since the mid-1980s in mice. MST has been carried out in a wide range of animals. More recently mice, monkeys and human embryos have been created with the specific aim of developing MST and PNT for avoiding mitochondrial disease.

 

  • There is no evidence to show that mitochondrial donation is unsafe
  • Research is progressing well and the recommended further experiments are expected to confirm this view.

 

The main area of research needed is to observe cells derived from embryos created by MST and PNT, to see how mitochondria behave.

 

Concerns about Mitochondrial Donation

 

The scientific evidence raises some potential concerns about mitochondrial donation. Just as we all have different blood groups, we also have different types of mitochondria, called haplotypes. Some scientists have suggested that if the patient and the mitochondria donor have different mitochondrial haplotypes, there is a theoretical risk that the donor’s mitochondria won’t be able to ‘talk’ properly to the patient’s nuclear DNA, which could cause problems in the embryo and resulting child. So, mitochondria haplotype matching in the process of selecting donors may be done to avoid problems.

 

Another potential concern is that a small amount of unhealthy mitochondrial DNA may be transferred into the donor’s egg along with the mother’s nuclear DNA. Studies carried out on MST and PNT show that some so-called mitochondrial ‘carry-over’ occurs. However, the carry-over is lower than 2% of the mitochondria in the resulting embryo, an amount which is very unlikely to be problematic for the children born.

 

References:

 

http://mitochondria.hfea.gov.uk/mitochondria/what-is-mitochondrial-disease/

 

http://mitochondria.hfea.gov.uk/mitochondria/what-is-mitochondrial-disease/new-techniques-to-prevent-mitochondrial-disease/

 

https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/

 

https://www.newscientist.com/article/2108549-exclusive-3-parent-baby-method-already-used-for-infertility/

 

http://www.frontlinegenomics.com/news/7889/ethical-concerns-raised-first-three-parent-ivf-baby/

 

http://www.hfea.gov.uk/docs/2011-04-18_Mitochondria_review_-_final_report.PDF

 

http://www.hfea.gov.uk/docs/Mito-Annex_VIII-science_review_update.pdf

 

http://www.hfea.gov.uk/docs/Third_Mitochondrial_replacement_scientific_review.pdf

 

https://pharmaceuticalintelligence.com/2014/02/26/three-parent-baby-making-practice-of-modifying-oocytes-for-use-in-in-vitro-fertilization-fda-hearing/

 

 

Read Full Post »


genomicsinpersonalizedmedicinecovervolumeone

Content Consultant: Larry H Bernstein, MD, FCAP

Genomics Orientations for Personalized Medicine

Volume One

http://www.amazon.com/dp/B018DHBUO6

electronic Table of Contents

Chapter 1

1.1 Advances in the Understanding of the Human Genome The Initiation and Growth of Molecular Biology and Genomics – Part I

1.2 CRACKING THE CODE OF HUMAN LIFE: Milestones along the Way – Part IIA

1.3 DNA – The Next-Generation Storage Media for Digital Information

1.4 CRACKING THE CODE OF HUMAN LIFE: Recent Advances in Genomic Analysis and Disease – Part IIC

1.5 Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets

1.6 Genomic Analysis: FLUIDIGM Technology in the Life Science and Agricultural Biotechnology

Chapter 2

2.1 2013 Genomics: The Era Beyond the Sequencing of the Human Genome: Francis Collins, Craig Venter, Eric Lander, et al.

2.2 DNA structure and Oligonucleotides

2.3 Genome-Wide Detection of Single-Nucleotide and Copy-Number Variation of a Single Human Cell 

2.4 Genomics and Evolution

2.5 Protein-folding Simulation: Stanford’s Framework for Testing and Predicting Evolutionary Outcomes in Living Organisms – Work by Marcus Feldman

2.6 The Binding of Oligonucleotides in DNA and 3-D Lattice Structures

2.7 Finding the Genetic Links in Common Disease: Caveats of Whole Genome Sequencing Studies

Chapter 3

3.1 Big Data in Genomic Medicine

3.2 CRACKING THE CODE OF HUMAN LIFE: The Birth of Bioinformatics & Computational Genomics – Part IIB 

3.3 Expanding the Genetic Alphabet and linking the Genome to the Metabolome

3.4 Metabolite Identification Combining Genetic and Metabolic Information: Genetic Association Links Unknown Metabolites to Functionally Related Genes

3.5 MIT Scientists on Proteomics: All the Proteins in the Mitochondrial Matrix identified

3.6 Identification of Biomarkers that are Related to the Actin Cytoskeleton

3.7 Genetic basis of Complex Human Diseases: Dan Koboldt’s Advice to Next-Generation Sequencing Neophytes

3.8 MIT Team Researches Regulatory Motifs and Gene Expression of Erythroleukemia (K562) and Liver Carcinoma (HepG2) Cell Lines

Chapter 4

4.1 ENCODE Findings as Consortium

4.2 ENCODE: The Key to Unlocking the Secrets of Complex Genetic Diseases

4.3 Reveals from ENCODE Project will Invite High Synergistic Collaborations to Discover Specific Targets  

4.4 Human Variome Project: encyclopedic catalog of sequence variants indexed to the human genome sequence

4.5 Human Genome Project – 10th Anniversary: Interview with Kevin Davies, PhD – The $1000 Genome

4.6 Quantum Biology And Computational Medicine

4.7 The Underappreciated EpiGenome

4.8 Unraveling Retrograde Signaling Pathways

4.9  “The SILENCE of the Lambs” Introducing The Power of Uncoded RNA

4.10  DNA: One man’s trash is another man’s treasure, but there is no JUNK after all

Chapter 5

5.1 Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine – Part 1 

5.2 Computational Genomics Center: New Unification of Computational Technologies at Stanford

5.3 Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research: Part 3

5.4 Cancer Genomics – Leading the Way by Cancer Genomics Program at UC Santa Cruz

5.5 Genome and Genetics: Resources @Stanford, @MIT, @NIH’s NCBCS

5.6 NGS Market: Trends and Development for Genotype-Phenotype Associations Research

5.7 Speeding Up Genome Analysis: MIT Algorithms for Direct Computation on Compressed Genomic Datasets

5.8  Modeling Targeted Therapy

5.9 Transphosphorylation of E-coli Proteins and Kinase Specificity

5.10 Genomics of Bacterial and Archaeal Viruses

Chapter 6

6.1  Directions for Genomics in Personalized Medicine

6.2 Ubiquinin-Proteosome pathway, Autophagy, the Mitochondrion, Proteolysis and Cell Apoptosis: Part III

6.3 Mitochondrial Damage and Repair under Oxidative Stress

6.4 Mitochondria: More than just the “Powerhouse of the Cell”

6.5 Mechanism of Variegation in Immutans

6.6 Impact of Evolutionary Selection on Functional Regions: The imprint of Evolutionary Selection on ENCODE Regulatory Elements is Manifested between Species and within Human Populations

6.7 Cardiac Ca2+ Signaling: Transcriptional Control

6.8 Unraveling Retrograde Signaling Pathways

6.9 Reprogramming Cell Fate

6.10 How Genes Function

6.11 TALENs and ZFNs

6.12 Zebrafish—Susceptible to Cancer

6.13 RNA Virus Genome as Bacterial Chromosome

6.14 Cloning the Vaccinia Virus Genome as a Bacterial Artificial Chromosome 

6.15 Telling NO to Cardiac Risk- DDAH Says NO to ADMA(1); The DDAH/ADMA/NOS Pathway(2)

6.16  Transphosphorylation of E-coli proteins and kinase specificity

6.17 Genomics of Bacterial and Archaeal Viruses

6.18  Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

Chapter 7

7.1 Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @ http://pharmaceuticalintelligence.com

7.2 Consumer Market for Personal DNA Sequencing: Part 4

7.3 GSK for Personalized Medicine using Cancer Drugs Needs Alacris Systems Biology Model to Determine the In Silico Effect of the Inhibitor in its “Virtual Clinical Trial”

7.4 Drugging the Epigenome

7.5 Nation’s Biobanks: Academic institutions, Research institutes and Hospitals – vary by Collections Size, Types of Specimens and Applications: Regulations are Needed

7.6 Personalized Medicine: Clinical Aspiration of Microarrays

Chapter 8

8.1 Personalized Medicine as Key Area for Future Pharmaceutical Growth

8.2 Inaugural Genomics in Medicine – The Conference Program, 2/11-12/2013, San Francisco, CA

8.3 The Way With Personalized Medicine: Reporters’ Voice at the 8th Annual Personalized Medicine Conference, 11/28-29, 2012, Harvard Medical School, Boston, MA

8.4 Nanotechnology, Personalized Medicine and DNA Sequencing

8.5 Targeted Nucleases

8.6 Transcript Dynamics of Proinflammatory Genes

8.7 Helping Physicians identify Gene-Drug Interactions for Treatment Decisions: New ‘CLIPMERGE’ program – Personalized Medicine @ The Mount Sinai Medical Center

8.8 Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing[1]

8.9 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

Chapter 9

9.1 Personal Tale of JL’s Whole Genome Sequencing

9.2 Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics

9.3 Inform Genomics Developing SNP Test to Predict Side Effects, Help MDs Choose among Chemo Regimens

9.4 SNAP: Predict Effect of Non-synonymous Polymorphisms: How Well Genome Interpretation Tools could Translate to the Clinic

9.5  LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2

9.6 The Initiation and Growth of Molecular Biology and Genomics – Part I

9.7 Personalized Medicine-based Cure for Cancer Might Not Be Far Away

9.8 Personalized Medicine: Cancer Cell Biology and Minimally Invasive Surgery (MIS)

 Chapter 10

10.1 Pfizer’s Kidney Cancer Drug Sutent Effectively caused REMISSION to Adult Acute Lymphoblastic Leukemia (ALL)

10.2 Imatinib (Gleevec) May Help Treat Aggressive Lymphoma: Chronic Lymphocytic Leukemia (CLL)

10.3 Winning Over Cancer Progression: New Oncology Drugs to Suppress Passengers Mutations vs. Driver Mutations

10.4 Treatment for Metastatic HER2 Breast Cancer

10.5 Personalized Medicine in NSCLC

10.6 Gene Sequencing – to the Bedside

10.7 DNA Sequencing Technology

10.8 Nobel Laureate Jack Szostak Previews his Plenary Keynote for Drug Discovery Chemistry

Chapter 11

11.1 mRNA Interference with Cancer Expression

11.2 Angiogenic Disease Research Utilizing microRNA Technology: UCSD and Regulus Therapeutics

11.3 Sunitinib brings Adult acute lymphoblastic leukemia (ALL) to Remission – RNA Sequencing – FLT3 Receptor Blockade

11.4 A microRNA Prognostic Marker Identified in Acute Leukemia 

11.5 MIT Team: Microfluidic-based approach – A Vectorless delivery of Functional siRNAs into Cells.

11.6 Targeted Tumor-Penetrating siRNA Nanocomplexes for Credentialing the Ovarian Cancer Oncogene ID4

11.7 When Clinical Application of miRNAs?

11.8 How mobile elements in “Junk” DNA promote cancer. Part 1: Transposon-mediated tumorigenesis,

11.9 Potential Drug Target: Glycolysis Regulation – Oxidative Stress-responsive microRNA-320

11.10  MicroRNA Molecule May Serve as Biomarker

11.11 What about Circular RNAs?

Chapter 12

12.1 The “Cancer Establishments” Examined by James Watson, Co-discoverer of DNA w/Crick, 4/1953

12.2 Otto Warburg, A Giant of Modern Cellular Biology

12.3 Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?

12.4 Hypothesis – Following on James Watson

12.5 AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo

12.6 AKT signaling variable effects

12.7 Rewriting the Mathematics of Tumor Growth; Teams Use Math Models to Sort Drivers from Passengers

12.8 Phosphatidyl-5-Inositol signaling by Pin1

Chapter 13

13.1 Nanotech Therapy for Breast Cancer

13.2 BRCA1 a tumour suppressor in breast and ovarian cancer – functions in transcription, ubiquitination and DNA repair

13.3 Exome sequencing of serous endometrial tumors shows recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes

13.4 Recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes in serous endometrial tumors

13.5 Prostate Cancer: Androgen-driven “Pathomechanism” in Early onset Forms of the Disease

13.6 In focus: Melanoma Genetics

13.7 Head and Neck Cancer Studies Suggest Alternative Markers More Prognostically Useful than HPV DNA Testing

13.8 Breast Cancer and Mitochondrial Mutations

13.9  Long noncoding RNA network regulates PTEN transcription

Chapter 14

14.1 HBV and HCV-associated Liver Cancer: Important Insights from the Genome

14.2 Nanotechnology and HIV/AIDS treatment

14.3 IRF-1 Deficiency Skews the Differentiation of Dendritic Cells

14.4 Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control

14.5  Five Malaria Genomes Sequenced

14.6 Rheumatoid Arthritis Risk

14.7 Approach to Controlling Pathogenic Inflammation in Arthritis

14.8 RNA Virus Genome as Bacterial Chromosome

14.9 Cloning the Vaccinia Virus Genome as a Bacterial Artificial Chromosome

Chapter 15

15.1 Personalized Cardiovascular Genetic Medicine at Partners HealthCare and Harvard Medical School

15.2 Congestive Heart Failure & Personalized Medicine: Two-gene Test predicts response to Beta Blocker Bucindolol

15.3 DDAH Says NO to ADMA(1); The DDAH/ADMA/NOS Pathway(2)

15.4 Peroxisome Proliferator-Activated Receptor (PPAR-gamma) Receptors Activation: PPARγ Transrepression for Angiogenesis in Cardiovascular Disease and PPARγ Transactivation for Treatment of Diabetes

15.5 BARI 2D Trial Outcomes

15.6 Gene Therapy Into Healthy Heart Muscle: Reprogramming Scar Tissue In Damaged Hearts

15.7 Obstructive coronary artery disease diagnosed by RNA levels of 23 genes – CardioDx, a Pioneer in the Field of Cardiovascular Genomic  Diagnostics

15.8 Ca2+ signaling: transcriptional control

15.9 Lp(a) Gene Variant Association

15.9.1 Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

15.9.2. Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

15.9.3 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

15.9.4 The Implications of a Newly Discovered CYP2J2 Gene Polymorphism Associated with Coronary Vascular Disease in the Uygur Chinese Population

15.9.5  Gene, Meis1, Regulates the Heart’s Ability to Regenerate after Injuries.

15.10 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

15.11 How Might Sleep Apnea Lead to Serious Health Concerns like Cardiac and Cancers?

Chapter 16

16.1 Can Resolvins Suppress Acute Lung Injury?

16.2 Lipoxin A4 Regulates Natural Killer Cell in Asthma

16.3 Biological Therapeutics for Asthma

16.4 Genomics of Bronchial Epithelial Dysplasia

16.5 Progression in Bronchial Dysplasia

Chapter 17

17.1 Breakthrough Digestive Disorders Research: Conditions Affecting the Gastrointestinal Tract.

17.2 Liver Endoplasmic Reticulum Stress and Hepatosteatosis

17.3 Biomarkers-identified-for-recurrence-in-hbv-related-hcc-patients-post-surgery

17.4  Usp9x: Promising Therapeutic Target for Pancreatic Cancer

17.5 Battle of Steve Jobs and Ralph Steinman with Pancreatic cancer: How We Lost

Chapter 18

18.1 Ubiquitin Pathway Involved in Neurodegenerative Disease

18.2 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

18.3 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic Drugs and Cholinesterase Inhibitors

18.4 Ustekinumab New Drug Therapy for Cognitive Decline Resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

18.5 Cell Transplantation in Brain Repair

18.6 Alzheimer’s Disease Conundrum – Are We Near the End of the Puzzle?

Chapter 19

19.1 Genetics and Male Endocrinology

19.2 Genomic Endocrinology and its Future

19.3 Commentary on Dr. Baker’s post “Junk DNA Codes for Valuable miRNAs: Non-coding DNA Controls Diabetes”

19.4 Therapeutic Targets for Diabetes and Related Metabolic Disorders

19.5 Secondary Hypertension caused by Aldosterone-producing Adenomas caused by Somatic Mutations in ATP1A1 and ATP2B3 (adrenal cortical; medullary or Organ of Zuckerkandl is pheochromocytoma)

19.6 Personal Recombination Map from Individual’s Sperm Cell and its Importance

19.7 Gene Trap Mutagenesis in Reproductive Research

19.8 Pregnancy with a Leptin-Receptor Mutation

19.9 Whole-genome Sequencing in Probing the Meiotic Recombination and Aneuploidy of Single Sperm Cells

19.10 Reproductive Genetic Testing

Chapter 20

20.1 Genomics & Ethics: DNA Fragments are Products of Nature or Patentable Genes?

20.2 Understanding the Role of Personalized Medicine

20.3 Attitudes of Patients about Personalized Medicine

20.4  Genome Sequencing of the Healthy

20.5   Genomics in Medicine – Tomorrow’s Promise

20.6  The Promise of Personalized Medicine

20.7 Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

 20.8 Genomic Liberty of Ownership, Genome Medicine and Patenting the Human Genome

Chapter 21

Recent Advances in Gene Editing Technology Adds New Therapeutic Potential for the Genomic Era:  Medical Interpretation of the Genomics Frontier – CRISPR – Cas9

Introduction

21.1 Introducing CRISPR/Cas9 Gene Editing Technology – Works by Jennifer A. Doudna

21.1.1 Ribozymes and RNA Machines – Work of Jennifer A. Doudna

21.1.2 Evaluate your Cas9 gene editing vectors: CRISPR/Cas Mediated Genome Engineering – Is your CRISPR gRNA optimized for your cell lines?

21.1.3 2:15 – 2:45, 6/13/2014, Jennifer Doudna “The biology of CRISPRs: from genome defense to genetic engineering”

21.1.4  Prediction of the Winner RNA Technology, the FRONTIER of SCIENCE on RNA Biology, Cancer and Therapeutics  & The Start Up Landscape in BostonGene Editing – New Technology The Missing link for Gene Therapy?

21.2 CRISPR in Other Labs

21.2.1 CRISPR @MIT – Genome Surgery

21.2.2 The CRISPR-Cas9 System: A Powerful Tool for Genome Engineering and Regulation

Yongmin Yan and Department of Gastroenterology, Hepatology & Nutrition, University of Texas M.D. Anderson Cancer, Houston, USADaoyan Wei*

21.2.3 New Frontiers in Gene Editing: Transitioning From the Lab to the Clinic, February 19-20, 2015 | The InterContinental San Francisco | San Francisco, CA

21.2.4 Gene Therapy and the Genetic Study of Disease: @Berkeley and @UCSF – New DNA-editing technology spawns bold UC initiative as Crispr Goes Global

21.2.5 CRISPR & MAGE @ George Church’s Lab @ Harvard

21.3 Patents Awarded and Pending for CRISPR

21.3.1 Litigation on the Way: Broad Institute Gets Patent on Revolutionary Gene-Editing Method

21.3.2 The Patents for CRISPR, the DNA editing technology as the Biggest Biotech Discovery of the Century

2.4 CRISPR/Cas9 Applications

21.4.1  Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells using a bacterial CRISPR/Cas 

21.4.2 CRISPR: Applications for Autoimmune Diseases @UCSF

21.4.3 In vivo validated mRNAs

21.4.6 Level of Comfort with Making Changes to the DNA of an Organism

21.4.7 Who will be the the First to IPO: Novartis bought in to Intellia (UC, Berkeley) as well as Caribou (UC, Berkeley) vs Editas (MIT)??

21.4.8 CRISPR/Cas9 Finds Its Way As an Important Tool For Drug Discovery & Development

Summary

Read Full Post »


Crowdsourcing Genetic Data Yields Discovery of DNA loci associated with Major Depressive Disorder (MDD) in European Descendants

 

Reporter: Kelly Perlman, Life Sciences Student and Research Assistant, McGill University

 

Researchers from Pfizer Global Research and Development, 23andMe, and the Massachusetts General Hospital have published a study in Nature Genetics, pinpointing 15 genetic loci associated with the risk of developing major depressive disorder (MDD) in individuals of European ancestry. Evidence from previous research suggests that MDD is heritable, but the details of the specific gene correlates are unclear. The identification of loci where single nucleotide polymorphisms (SNPs) related to MDD exist could provide better insight into the neurobiology of depression, and therefore better treatment options.

23andMe, a private biotechnology company situated in California, offers a DNA sequencing service in which consumers send in a saliva swab for testing, and later receive a report listing the findings of the analysis related to ancestry, physical and behavioral traits, along with risk of inheriting certain diseases. The participants of this study had agreed to provide the results of their genetic testing for scientific research.

The results of 75,607 participants with self-reported diagnoses of depression were compared to the results of 231,747 participants reporting having never experienced depression. This data was combined with the results of previously published MDD genome-wide association studies (GWAS). To test the whether these results could be replicated, another set of results from 23andMe was analyzed, in which there were 45,773 MDD subjects, and 106,354 controls.

After the joint analysis, 17 SNPs were identified at 15 different loci. Tissue and gene enrichment assays showed that the genes that were over-expressed in the CNS were related to functions including neurodevelopment, histone methylation, neurogenesis and synaptic modification.

The team then created a weighted genetic risk score (GRS) in which they compared the 17 SNPs with factors including medication use, comorbid diseases and behavioral phenotypes, all of which were correlated with the GRS. Of note, the GRS was very highly correlated with age of onset of MDD.

The crowdsourcing of genetic data proves to be an efficient and powerful tool for large-scale MDD studies. Pooling large subject databases together is essential in order to account for the heterogeneous nature of the disease. Despite not being able to precisely assess each subject’s disease phenotype, scientists can make more rapid headway by collaborating with biotechnology companies in the quest to better understand the biological mechanisms of depression. Ron Perlis, M.D., M.Sc., of the Massachusetts General Hospital and co-author of this paper explained that “finding genes associated with depression should help make clear that this is a brain disease, which we hope will decrease the stigma still associated with these kinds of illnesses”.

 

Details on specific significant genes:

http://www.genecards.org/cgi-bin/carddisp.pl?gene=OLFM4

http://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM161B

http://www.genecards.org/cgi-bin/carddisp.pl?gene=MEF2C

http://www.genecards.org/cgi-bin/carddisp.pl?gene=MEIS2

http://www.genecards.org/cgi-bin/carddisp.pl?gene=TMCO5A

http://www.genecards.org/cgi-bin/carddisp.pl?gene=NEGR1

 

SOURCES

Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., . . . Winslow, A. R. (2016). Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature Genetics Nat Genet. doi:10.1038/ng.3623

Major Depressive Disorder Loci Discovered in Large GWAS Enabled by 23andMe Participants’ Data. (2016, August 01). Retrieved August 09, 2016, from https://www.genomeweb.com/microarrays-multiplexing/major-depressive-disorder-loci-discovered-large-gwas-enabled-23andme

 

Read Full Post »


Advances in Gene Editing and Gene Silencing | September 20-21, 2016 | Boston, MA

Kinase Inhibitor Discovery September 21-22, 2016 Boston

KEYNOTE SESSION: GENOME EDITING FOR IN VIVO APPLICATIONS

Part 1 (of a two-part conference) will cover the use of CRISPR/Cas9 and RNAi for identifying new drug targets and therapies. It will bring together experts from all aspects of basic science and clinical research to talk about how and where gene editing and RNAi can be best applied. What are the different tools that can be used and what are their strengths and limitations? How does the CRISPR/Cas system compare to RNAi and other gene editing tools, such as Transcription Activator-like Effector Nucleases (TALENs) and zinc finger nucleases (ZFNs), and do they have any complementary uses? Scientists and clinicians from pharma/biotech as well as from academic and government labs will share their experiences leveraging the utility of gene editing for target discovery, disease modeling, and for creating cell and viral therapies. Learn more atDiscoveryOnTarget.com/RNAi-screens-functional-genomics

Advance Registration Discount Available!
Register by August 12 Week to Save up to $200

Keynote Session: Genome Editing for In Vivo Applications

AAV for Gene Therapy and Genome Editing
James Wilson, M.D., Ph.D., Professor, Department of Pathology and Laboratory Medicine, Perelman School of Medicine; Director, Orphan Disease Center and Director, Gene Therapy Program, University of Pennsylvania
In vivo delivery of nucleic acid therapeutics remains the primary barrier to success. My lab has focused on the use of vectors based on adeno-associated virus (AAV) for achieving success in pre-clinical and clinical applications of gene replacement therapy. Most of the current academic and commercial applications of in vivo gene replacement therapy are based on endogenous AAVs we discovered as latent viral genomes in primates. These vectors are reasonably safe and efficient for application of gene replacement therapy. The emergence of genome editing methods has suggested more precise and effective methods to treat inherited diseases in which genes are silenced or mutations are corrected. AAV vectors have been the most efficient platform for achieving genome editing in vivo. We will review our attempts to achieve therapeutic genome editing in animal models of liver disease using AAV.

Using CRISPR/Cas to Target and Destroy Viral DNA Genomes
Bryan R. Cullen, Ph.D., James B. Duke Professor of Molecular Genetics and Microbiology and Director, Center for Virology, Duke University
A number of pathogenic human DNA viruses, including HBV, HIV-1 and HSV1, cause chronic diseases in humans that remain refractory to cure, though these diseases can be controlled by antivirals. In addition the DNA virus HPV causes tumors that depend on the continued expression of viral genes. Here, I will present data demonstrating that several of these viruses can be efficiently cleaved and destroyed using viral vectors that express Cas9 and virus-specific guide RNAs, thus providing a potential novel approach to treatment.

Targeted Endonucleases as Antiviral Agents: Promises and Pitfalls
Keith R. Jerome, M.D., Ph.D., Member, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Professor and Head, Virology Division, Department of Laboratory Medicine, University of Washington
Genome editing offers the prospect of cure for infections such as HIV, hepatitis B virus, herpes simplex, and human papillomavirus, by disruption of essential viral nucleic acids or the human genes encoding receptors needed for viral entry. This talk will highlight the most recent laboratory data and the challenges still ahead in bringing this technology to the clinic.

Nucleic Acid Delivery Systems for RNA Therapy and Gene Editing
Daniel Anderson, Ph.D., Professor, Department of Chemical Engineering, Institute for Medical Engineering & Science, Harvard-MIT Division of Health Sciences & Technology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
High throughput, combinatorial approaches have revolutionized small molecule drug discovery. Here we describe our high throughput methods for developing and characterizing RNA delivery and gene editing systems. Libraries of degradable polymers and lipid-like materials have been synthesized, formulated and screened for their ability to deliver RNA, both in vitro and in vivo. A number of delivery formulations have been developed with in vivo efficacy, and show potential applications for the treatment of genetic diseases, viral infections and cancers.

PANEL DISCUSSION: CRISPR/Cas: A Realistic and Practical Look at What the Future Could Hold
Moderator: Bryan R. Cullen, Ph.D., James B. Duke Professor of Molecular Genetics and Microbiology and Director, Center for Virology, Duke University
Participants: Session Speakers
Each speaker will spend a few minutes sharing their viewpoints and experiences on where things stand with using the CRISPR/Cas system for in vivo applications. Attendees will have an opportunity to ask questions and share their opinions.

About the Conference

Cambridge Healthtech Institute’s 13th annual two-part conference on Advances in Gene Editing and Gene Silencing will cover the latest in the use of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-based gene editing and RNA interference (RNAi) for use in drug discovery and for developing novel drug therapies.


For sponsorship and exhibit sales information including podium presentation opportunities, contact:
Jon Stroup | T: +1 781-972-5483 | E: jstroup@healthtech.com


Recommended All Access Package:
Includes access to 1 Symposium and 2 Conferences

September 19 Symposium: 
Understanding CRISPR: Mechanisms and Applications

September 20-21 Conference:
Advances in Gene Editing and Gene Silencing – Part 1

September 21-22 Conference: 
Advances in Gene Editing and Gene Silencing – Part 2


Cambridge Healthtech Institute, 250 First Avenue, Suite 300, Needham, MA, USA

Tel: 781-972-5400 | Fax: 781-972-5425 | www.healthtech.com
This email is being sent to sjwilliamspa@comcast.net for marketing purposes. If it is not of interest to you, please disregard and we apologize for any inconvenience this may have caused.

Read Full Post »

Older Posts »