Advertisements
Feeds:
Posts
Comments

Archive for the ‘Gene Regulation and Evolution’ Category


Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

 

Curator: Aviva Lev-Ari, PhD, RN

 

Dana Pe’er, PhD, now chair of computational and systems biology at the Sloan Kettering Institute at the Memorial Sloan Kettering Cancer Center and a member of the Human Cell Atlas Organizing Committee,

what really sets Regev apart is the elegance of her work. Regev, says Pe’er, “has a rare, innate ability of seeing complex biology and simplifying it and formalizing it into beautiful, abstract, describable principles.”

Dr. Aviv Regev, an MIT biology professor who is also chair of the faculty of the Broad and director of its Klarman Cell Observatory and Cell Circuits Program, was reviewing a newly published white paper detailing how the Human Cell Atlas is expected to change the way we diagnose, monitor, and treat disease at a gathering of international scientists at Israel’s Weizmann Institute of Science, 10/2017.

For Regev, the importance of the Human Cell Atlas goes beyond its promise to revolutionize biology and medicine. As she once put it, without an atlas of our cells, “we don’t really know what we’re made of.”

Regev, turned to a technique known as RNA interference (she now uses CRISPR), which allowed her to systematically shut genes down. Then she looked at which genes were expressed to determine how the cells’ response changed in each case. Her team singled out 100 different genes that were involved in regulating the response to the pathogens—some of which weren’t previously known to be involved in immune function. The study, published in Science, generated headlines.

The project, the Human Cell Atlas, aims to create a reference map that categorizes all the approximately 37 trillion cells that make up a human. The Human Cell Atlas is often compared to the Human Genome Project, the monumental scientific collaboration that gave us a complete readout of human DNA, or what might be considered the unabridged cookbook for human life. In a sense, the atlas is a continuation of that project’s work. But while the same DNA cookbook is found in every cell, each cell type reads only some of the recipes—that is, it expresses only certain genes, following their DNA instructions to produce the proteins that carry out a cell’s activities. The promise of the Human Cell Atlas is to reveal which specific genes are expressed in every cell type, and where the cells expressing those genes can be found.

Regev says,

The final product, will amount to nothing less than a “periodic table of our cells,” a tool that is designed not to answer one specific question but to make countless new discoveries possible.

Sequencing the RNA of the cells she’s studying can tell her only so much. To understand how the circuits change under different circumstances, Regev subjects cells to different stimuli, such as hormones or pathogens, to see how the resulting protein signals change.

“the modeling step”—creating algorithms that try to decipher the most likely sequence of molecular events following a stimulus. And just as someone might study a computer by cutting out circuits and seeing how that changes the machine’s operation, Regev tests her model by seeing if it can predict what will happen when she silences specific genes and then exposes the cells to the same stimulus.

By sequencing the RNA of individual cancer cells in recent years—“Every cell is an experiment now,” she says—she has found remarkable differences between the cells of a single tumor, even when they have the same mutations. (Last year that work led to Memorial Sloan Kettering’s Paul Marks Prize for Cancer Research.) She found that while some cancers are thought to develop resistance to therapy, a subset of melanoma cells were resistant from the start. And she discovered that two types of brain cancer, oligodendroglioma and astrocytoma, harbor the same cancer stem cells, which could have important implications for how they’re treated.

As a 2017 overview of the Human Cell Atlas by the project’s organizing committee noted, an atlas “is a map that aims to show the relationships among its elements.” Just as corresponding coastlines seen in an atlas of Earth offer visual evidence of continental drift, compiling all the data about our cells in one place could reveal relationships among cells, tissues, and organs, including some that are entirely unexpected. And just as the periodic table made it possible to predict the existence of elements yet to be observed, the Human Cell Atlas, Regev says, could help us predict the existence of cells that haven’t been found.

This year alone it will fund 85 Human Cell Atlas grants. Early results are already pouring in.

  • In March, Swedish researchers working on cells related to human development announced they had sequenced 250,000 individual cells.
  • In May, a team at the Broad made a data set of more than 500,000 immune cells available on a preview site.

The goal, Regev says, is for researchers everywhere to be able to use the open-source platform of the Human Cell Atlas to perform joint analyses.

Eric Lander, PhDthe founding director and president of the Broad Institute and a member of the Human Cell Atlas Organizing Committee, likens it to genomics.

“People thought at the beginning they might use genomics for this application or that application,” he says. “Nothing has failed to be transformed by genomics, and nothing will fail to be transformed by having a cell atlas.”

“How did we ever imagine we were going to solve a problem without single-cell resolution?”

SOURCE

https://www.technologyreview.com/s/611786/the-cartographer-of-cells/?utm_source=MIT+Technology+Review&utm_campaign=Alumni-Newsletter_Sep-Oct-2018&utm_medium=email

Other related articles published in this Open Access Online Scientific Journal include the following:

 

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/01/13/university-of-california-santa-cruzs-genomics-institute-will-create-a-map-of-human-genetic-variations/

 

Recognitions for Contributions in Genomics by Dan David Prize Awards

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/31/recognitions-for-contributions-in-genomics-by-dan-david-prize-awards/

 

ENCODE (Encyclopedia of DNA Elements) program: ‘Tragic’ Sequestration Impact on NHGRI Programs

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/18/encode-encyclopedia-of-dna-elements-program-tragic-sequestration-impact-on-nhgri-programs/

 

Single-cell Sequencing

Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/04/genomic-diagnostics-three-techniques-to-perform-single-cell-gene-expression-and-genome-sequencing-single-molecule-dna-sequencing/

 

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT – See, Aviv Regev

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/03/13/16th-annual-cancer-research-symposium-koch-institute-friday-june-16-9am-5pm-kresge-auditorium-mit/

 

LIVE 11/3/2015 1:30PM @The 15th Annual EmTech MIT – MIT Media Lab: Top 10 Breakthrough Technologies & 2015 Innovators Under 35 – See, Gilead Evrony

REAL TIME PRESS COVERAGE & Reporter: Aviva Lev-Ari, PhD, RN
https://pharmaceuticalintelligence.com/2015/11/03/live-1132015-130pm-the-15th-annual-emtech-mit-mit-media-lab-top-10-breakthrough-technologies-2015-innovators-under-35/

 

Cellular Guillotine Created for Studying Single-Cell Wound Repair

Reporter: Irina Robu, PhD

https://pharmaceuticalintelligence.com/2017/06/29/cellular-guillotine-created-for-studying-single-cell-wound-repair/

 

New subgroups of ILC immune cells discovered through single-cell RNA sequencing

Reporter: Stephen J Williams, PhD

https://pharmaceuticalintelligence.com/2016/02/17/new-subgroups-of-ilc-immune-cells-discovered-through-single-cell-rna-sequencing-from-karolinska-institute/

 

#JPM16: Illumina’s CEO on new genotyping array called Infinium XT and Bio-Rad Partnership for single-cell sequencing workflow

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/jpm16-illuminas-ceo-on-new-genotyping-array-called-infinium-xt-and-bio-rad-partnership-for-single-cell-sequencing-workflow/

 

Juno Acquires AbVitro for $125M: high-throughput and single-cell sequencing capabilities for Immune-Oncology Drug Discovery

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/12/juno-acquires-abvitro-for-125m-high-throughput-and-single-cell-sequencing-capabilities-for-immune-oncology-drug-discovery/

 

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics,  sample preparation,  transcriptomics and epigenomics, and  genome-wide functional analysis.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/10/27/nih-to-award-up-to-12m-to-fund-dna-rna-sequencing-research-single-cell-genomics-sample-preparation-transcriptomics-and-epigenomics-and-genome-wide-functional-analysis/

 

Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/07/genome-wide-single-cell-analysis-of-recombination-activity-and-de-novo-mutation-rates-in-human-sperm/

REFERENCES to Original studies

In Science, 2018

Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

 See all authors and affiliations

Science  21 Apr 2017:
Vol. 356, Issue 6335, eaah4573
DOI: 10.1126/science.aah4573
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis

See all authors and affiliations

Science  26 Apr 2018:
eaar3131
DOI: 10.1126/science.aar3131

In Nature, 2018 and 2017

How to build a human cell atlas

Aviv Regev is a maven of hard-core biological analyses. Now she is part of an effort to map every cell in the human body.

  1. Research | 

  2. Research | 

  3. Research | 

  4. Research | 

  5. Research | 

  6. Amendments and Corrections | 

  7. Research |  | OPEN

  8. Research | 

  9. Amendments and Corrections | 

  10. Comments and Opinion | 

  11. Research | 
Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Researchers have embraced CRISPR gene-editing as a method for altering genomes, but some have reported that unwanted DNA changes may slip by undetected. The tool can cause large DNA deletions and rearrangements near its target site on the genome. Such alterations can confuse the interpretation of experimental results and could complicate efforts to design therapies based on CRISPR. The finding is in line with previous results from not only CRISPR but also other gene-editing systems.

 

CRISPR -Cas9 gene editing relies on the Cas9 enzyme to cut DNA at a particular target site. The cell then attempts to reseal this break using its DNA repair mechanisms. These mechanisms do not always work perfectly, and sometimes segments of DNA will be deleted or rearranged, or unrelated bits of DNA will become incorporated into the chromosome.

 

Researchers often use CRISPR to generate small deletions in the hope of knocking out a gene’s function. But when examining CRISPR edits, researchers found large deletions (often several thousand nucleotides) and complicated rearrangements of DNA sequences in which previously distant DNA sequences were stitched together. Many researchers use a method for amplifying short snippets of DNA to test whether their edits have been made properly. But this approach might miss larger deletions and rearrangements.

 

These deletions and rearrangements occur only with gene-editing techniques that rely on DNA cutting and not with some other types of CRISPR modifications that avoid cutting DNA. Such as a modified CRISPR system to switch one nucleotide for another without cutting DNA and other systems use inactivated Cas9 fused to other enzymes to turn genes on or off, or to target RNA. Overall, these unwanted edits are a problem that deserves more attention, but this should not stop anyone from using CRISPR. Only when people use it, they need to do a more thorough analysis about the outcome.

 

References:

 

https://www.nature.com/articles/d41586-018-05736-3?utm_source=briefing-dy

 

https://www.ncbi.nlm.nih.gov/pubmed/28561021

 

https://www.ncbi.nlm.nih.gov/pubmed/30010673

 

https://www.ncbi.nlm.nih.gov/pubmed/24651067

 

https://www.ncbi.nlm.nih.gov/pubmed/25398350

 

https://www.ncbi.nlm.nih.gov/pubmed/24838573

 

https://www.ncbi.nlm.nih.gov/pubmed/25200087

 

https://www.ncbi.nlm.nih.gov/pubmed/25757625

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Long interspersed nuclear elements 1 (LINE1) is repeated half a million times in the human genome, making up nearly a fifth of the DNA in every cell. But nobody cared to study it and may be the reason to call it junk DNA. LINE1, like other transposons (or “jumping genes”), has the unusual ability to copy and insert itself in random places in the genome. Many other research groups uncovered possible roles in early mouse embryos and in brain cells. But nobody quite established a proper report about the functions of LINE1.

 

Geneticists gave attention to LINE1 when it was found to cause cancer or genetic disorders like hemophilia. But researchers at University of California at San Francisco suspected there was more characteristics of LINE1. They suspected that if it can be most harmless then it can be worst harmful also.

 

Many reports showed that LINE1 is especially active inside developing embryos, which suggests that the segment actually plays a key role in coordinating the development of cells in an embryo. Researchers at University of California at San Francisco figured out how to turn LINE1 off in mouse embryos by blocking LINE1 RNA. As a result the embryos got stuck in the two-cell stage, right after a fertilized egg has first split. Without LINE1, embryos essentially stopped developing.

 

The researchers thought that LINE1 RNA particles act as molecular “glue,” bringing together a suite of molecules that switch off the two-cell stage and kick it into the next phase of development. In particular, it turns off a gene called Dux, which is active in the two-cell stage.

 

LINE1’s ability to copy itself, however, seems to have nothing to do with its role in embryonic development. When LINE1 was blocked from inserting itself into the genome, the embryonic stem cells remained unaffected. It’s possible that cells in embryos have a way of making LINE1 RNA while also preventing its potentially harmful “jumping” around in the genome. But it’s unlikely that every one of the thousands of copies of LINE1 is actually being used to regulate embryonic development.

 

LINE1 is abundant in the genomes of almost all mammals. Other transposons, also once considered junk DNA, have turned out to have critical roles in development in human cells too. There are differences between mice and humans, so, the next obvious step is to study LINE1 in human cells, where it makes up 17 percent of the genome.

 

References:

 

https://www-theatlantic-com.cdn.ampproject.org/c/s/www.theatlantic.com/amp/article/563354/

 

https://www.ncbi.nlm.nih.gov/pubmed/29937225

 

https://www.nature.com/scitable/topicpage/transposons-the-jumping-genes-518

 

https://www.sciencedaily.com/releases/2018/06/180621141038.htm

 

https://www.ncbi.nlm.nih.gov/pubmed/16015595

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Biologists may have been building a more nuanced view of sex, but society has yet to catch up. True, more than half a century of activism from members of the lesbian, gay, bisexual and transgender community has softened social attitudes to sexual orientation and gender. Many societies are now comfortable with men and women crossing conventional societal boundaries in their choice of appearance, career and sexual partner. But when it comes to sex, there is still intense social pressure to conform to the binary model.

 

This pressure has meant that people born with clear DSDs (difference/disorder of sex development) often undergo surgery to ‘normalize’ their genitals. Such surgery is controversial because it is usually performed on babies, who are too young to consent, and risks assigning a sex at odds with the child’s ultimate gender identity — their sense of their own gender. Intersex advocacy groups have therefore argued that doctors and parents should at least wait until a child is old enough to communicate their gender identity, which typically manifests around the age of three, or old enough to decide whether they want surgery at all.

 

As many as 1 person in 100 has some form of “DSD” with or without external manifestation. Diagnoses of DSDs previously relied on hormone tests, anatomical inspections and imaging, followed by painstaking tests of one gene at a time. Now, advances in genetic techniques mean that teams can analyze multiple genes at once, aiming straight for a genetic diagnosis and making the process less stressful for families. Children with DSDs are treated by multidisciplinary teams that aim to tailor management and support to each individual and their family, but this usually involves raising a child as male or female even if no surgery is done.

 

The simple scenario that all learn is that two X chromosomes make someone female, and an X and a Y chromosome make someone male. These are simplistic ways of thinking about what is scientifically very complex. Anatomy, hormones, cells, and chromosomes (and also personal identity convictions) are actually not usually aligned with this binary classification.

 

More than 25 genes that affect sex development have now been identified, and they have a wide range of variations that affect people in subtle ways. Many differences aren’t even noticed until incidental medical encounters, such as a forty-six-year-old woman pregnant with her third child, found after amniocentesis that half her cells carry male chromosomes. Or a seventy-year-old father of three who learns during a hernia repair that he has a uterus.

 

Furthermore, scientists now understood that everyone’s body is made up of a patchwork of genetically distinct cells, some of which may have a different sex than the rest. This “mosaicism” can have effects ranging from undetectable to extraordinary, such as “identical” twins of different sexes. An extremely common instance of mosaicism comes from cells passing over the placental barrier during pregnancy. Men often carry female cells from their mothers, and women carry male cells from their sons. Research has shown that these cells remain present for decades, but what effects they have on disease and behavior is an essentially unstudied question.

 

References:

 

https://www.theguardian.com/science/2017/mar/02/cambridge-scientists-create-first-self-developing-embryo-from-stem-cells

 

https://www.ncbi.nlm.nih.gov/pubmed/25693544

 

http://onlinelibrary.wiley.com/doi/10.1002/ajmg.a.34123/abstract;jsessionid=A330AD995EE25C7A0AD5EA478694ADD8.f04t01

 

https://www.ncbi.nlm.nih.gov/pubmed/25091731

 

https://www.ncbi.nlm.nih.gov/pubmed/1695712

 

Read Full Post »


Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

 

This article presents Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single molecule DNA sequencing

Read Full Post »


Ido Sagi – PhD Student @HUJI, 2017 Kaye Innovation Award winner for leading research that yielded the first successful isolation and maintenance of haploid embryonic stem cells in humans.

Reporter: Aviva Lev-Ari, PhD, RN

 

Ido Sagi – PhD Student, Silberman Institute of Life Sciences, HUJI, Israel

  • Ido Sagi’s research focuses on studying genetic and epigenetic phenomena in human pluripotent stem cells, and his work has been published in leading scientific journals, including NatureNature Genetics and Cell Stem Cell.
  • Ido Sagi received BSc summa cum laude in Life Sciences from the Hebrew University, and currently pursues a PhD at the laboratory of Prof. Nissim Benvenisty at the university’s Department of Genetics in the Alexander Silberman Institute of Life Sciences.

The Kaye Innovation Awards at the Hebrew University of Jerusalem have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential, which will benefit the university and society.

Publications – Ido Sagi

Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors.
Cell Stem Cell 2014 Nov 6;15(5):634-42. Epub 2014 Nov 6.
The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA; Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. Electronic address:

November 2014

 



Stem cells: Aspiring to naivety.
Nature 2016 12 30;540(7632):211-212. Epub 2016 Nov 30.
The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
November 2016

Download Full Paper

SOURCE

Other related articles on Genetic and Epigenetic phenomena in human pluripotent stem cells published by LPBI Group can be found in the following e-Books on Amazon.com

e-Books in Medicine

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

9 results for Kindle Store : “Aviva Lev-Ari”

  • Product Details

    Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

    Nov 28, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

    May 13, 2017 | Kindle eBook

    by Larry H. Bernstein and Demet Sag
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

    Jun 20, 2013 | Kindle eBook

    by Margaret Baker PhD and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

    Aug 10, 2015 | Kindle eBook

    by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

    Nov 22, 2015 | Kindle eBook

    by Sudipta Saha PhD and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

    Jul 21, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

    Dec 26, 2015 | Kindle eBook

    by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

    Dec 26, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

    Nov 29, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC

 

Read Full Post »


Translation of whole human genome sequencing to clinical practice: The Joint Initiative for Metrology in Biology (JIMB) is a collaboration between the National Institute of Standards & Technology (NIST) and Stanford University.

Reporter: Aviva Lev-Ari, PhD, RN

 

JIMB’s mission is to advance the science of measuring biology (biometrology). JIMB is pursuing fundamental research, standards development, and the translation of products that support confidence in biological measurements and reliable reuse of materials and results. JIMB is particularly focused on measurements and technologies that impact, are related to, or enabled by ongoing advances in and associated with the reading and writing of DNA.

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

Genome in a Bottle
Authoritative Characterization of
Benchmark Human Genomes


The Genome in a Bottle Consortium is a public-private-academic consortium hosted by NIST to develop the technical infrastructure (reference standards, reference methods, and reference data) to enable translation of whole human genome sequencing to clinical practice. The priority of GIAB is authoritative characterization of human genomes for use in analytical validation and technology development, optimization, and demonstration. In 2015, NIST released the pilot genome Reference Material 8398, which is genomic DNA (NA12878) derived from a large batch of the Coriell cell line GM12878, characterized for high-confidence SNPs, indel, and homozygous reference regions (Zook, et al., Nature Biotechnology 2014).

There are four new GIAB reference materials available.  With the addition of these new reference materials (RMs) to a growing collection of “measuring sticks” for gene sequencing, we can now provide laboratories with even more capability to accurately “map” DNA for genetic testing, medical diagnoses and future customized drug therapies. The new tools feature sequenced genes from individuals in two genetically diverse groups, Asians and Ashkenazic Jews; a father-mother-child trio set from Ashkenazic Jews; and four microbes commonly used in research. For more information click here.  To purchase them, visit:

Data and analyses are publicly available (GIAB GitHub). A description of data generated by GIAB is published here. To standardize best practices for using GIAB genomes for benchmarking, we are working with the Global Alliance for Genomics and Health Benchmarking Team (benchmarking tools).

High-confidence small variant and homozygous reference calls are available for NA12878, the Ashkenazim trio, and the Chinese son with respect to GRCh37.  Preliminary high-confidence calls with respect to GRCh38 are also available for NA12878.   The latest version of these calls is under the latest directory for each genome on the GIAB FTP.

The consortium was initiated in a set of meetings in 2011 and 2012, and the consortium holds open, public workshops in January at Stanford University in Palo Alto, CA and in August/September at NIST in Gaithersburg, MD. Slides from workshops and conferences are available online. The consortium is open and welcomes new participants.

SOURCE

Stanford innovators and industry entrepreneurs have joined forces with the measurement experts from NIST to create a new engine powering the bioeconomy. It’s called JIMB — “Jim Bee” — the Joint Initiative for Metrology in Biology. JIMB unites people, platforms, and projects to underpin standards-based research and innovation in biometrology.

JIMB World Metrology Day Symposium

JIMB’s mission is to motivate standards-based measurement innovation to facilitate translation of basic science and technology development breakthroughs in genomics and synthetic biology.

By advancing biometrology, JIMB will push the boundaries of discovery science, accelerate technology development and dissemination, and generate reusable resources.

 SOURCE

VIEW VIDEO

https://player.vimeo.com/video/184956195?wmode=opaque&api=1″,”url”:”https://vimeo.com/184956195″,”width”:640,”height”:360,”providerName”:”Vimeo”,”thumbnailUrl”:”https://i.vimeocdn.com/video/594555038_640.jpg”,”resolvedBy”:”vimeo”}” data-block-type=”32″>

Other related articles published in this Open Access Online Scientific Journal include the following:

“Genome in a Bottle”: NIST’s new metrics for Clinical Human Genome Sequencing

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/09/06/genome-in-a-bottle-nists-new-metrics-for-clinical-human-genome-sequencing/

Read Full Post »

Older Posts »