Feeds:
Posts
Comments

Posts Tagged ‘AACR’

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 3:00 PM-5:30 PM Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

uesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Bioinformatics and Systems Biology

The Clinical Proteomic Tumor Analysis Consortium: Resources and Data Dissemination

This session will provide information regarding methodologic and computational aspects of proteogenomic analysis of tumor samples, particularly in the context of clinical trials. Availability of comprehensive proteomic and matching genomic data for tumor samples characterized by the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) program will be described, including data access procedures and informatic tools under development. Recent advances on mass spectrometry-based targeted assays for inclusion in clinical trials will also be discussed.

Amanda G Paulovich, Shankha Satpathy, Meenakshi Anurag, Bing Zhang, Steven A Carr

Methods and tools for comprehensive proteogenomic characterization of bulk tumor to needle core biopsies

Shankha Satpathy
  • TCGA has 11,000 cancers with >20,000 somatic alterations but only 128 proteins as proteomics was still young field
  • CPTAC is NCI proteomic effort
  • Chemical labeling approach now method of choice for quantitative proteomics
  • Looked at ovarian and breast cancers: to measure PTM like phosphorylated the sample preparation is critical

 

Data access and informatics tools for proteogenomics analysis

Bing Zhang
  • Raw and processed data (raw MS data) with linked clinical data can be extracted in CPTAC
  • Python scripts are available for bioinformatic programming

 

Pathways to clinical translation of mass spectrometry-based assays

Meenakshi Anurag

·         Using kinase inhibitor pulldown (KIP) assay to identify unique kinome profiles

·         Found single strand break repair defects in endometrial luminal cases, especially with immune checkpoint prognostic tumors

·         Paper: JNCI 2019 analyzed 20,000 genes correlated with ET resistant in luminal B cases (selected for a list of 30 genes)

·         Validated in METABRIC dataset

·         KIP assay uses magnetic beads to pull out kinases to determine druggable kinases

·         Looked in xenografts and was able to pull out differential kinomes

·         Matched with PDX data so good clinical correlation

·         Were able to detect ESR1 fusion correlated with ER+ tumors

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Survivorship

Artificial Intelligence and Machine Learning from Research to the Cancer Clinic

The adoption of omic technologies in the cancer clinic is giving rise to an increasing number of large-scale high-dimensional datasets recording multiple aspects of the disease. This creates the need for frameworks for translatable discovery and learning from such data. Like artificial intelligence (AI) and machine learning (ML) for the cancer lab, methods for the clinic need to (i) compare and integrate different data types; (ii) scale with data sizes; (iii) prove interpretable in terms of the known biology and batch effects underlying the data; and (iv) predict previously unknown experimentally verifiable mechanisms. Methods for the clinic, beyond the lab, also need to (v) produce accurate actionable recommendations; (vi) prove relevant to patient populations based upon small cohorts; and (vii) be validated in clinical trials. In this educational session we will present recent studies that demonstrate AI and ML translated to the cancer clinic, from prognosis and diagnosis to therapy.
NOTE: Dr. Fish’s talk is not eligible for CME credit to permit the free flow of information of the commercial interest employee participating.

Ron C. Anafi, Rick L. Stevens, Orly Alter, Guy Fish

Overview of AI approaches in cancer research and patient care

Rick L. Stevens
  • Deep learning is less likely to saturate as data increases
  • Deep learning attempts to learn multiple layers of information
  • The ultimate goal is prediction but this will be the greatest challenge for ML
  • ML models can integrate data validation and cross database validation
  • What limits the performance of cross validation is the internal noise of data (reproducibility)
  • Learning curves: not the more data but more reproducible data is important
  • Neural networks can outperform classical methods
  • Important to measure validation accuracy in training set. Class weighting can assist in development of data set for training set especially for unbalanced data sets

Discovering genome-scale predictors of survival and response to treatment with multi-tensor decompositions

Orly Alter
  • Finding patterns using SVD component analysis. Gene and SVD patterns match 1:1
  • Comparative spectral decompositions can be used for global datasets
  • Validation of CNV data using this strategy
  • Found Ras, Shh and Notch pathways with altered CNV in glioblastoma which correlated with prognosis
  • These predictors was significantly better than independent prognostic indicator like age of diagnosis

 

Identifying targets for cancer chronotherapy with unsupervised machine learning

Ron C. Anafi
  • Many clinicians have noticed that some patients do better when chemo is given at certain times of the day and felt there may be a circadian rhythm or chronotherapeutic effect with respect to side effects or with outcomes
  • ML used to determine if there is indeed this chronotherapy effect or can we use unstructured data to determine molecular rhythms?
  • Found a circadian transcription in human lung
  • Most dataset in cancer from one clinical trial so there might need to be more trials conducted to take into consideration circadian rhythms

Stratifying patients by live-cell biomarkers with random-forest decision trees

Stratifying patients by live-cell biomarkers with random-forest decision trees

Guy Fish CEO Cellanyx Diagnostics

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Molecular and Cellular Biology/Genetics, Bioinformatics and Systems Biology, Prevention Research

The Wound Healing that Never Heals: The Tumor Microenvironment (TME) in Cancer Progression

This educational session focuses on the chronic wound healing, fibrosis, and cancer “triad.” It emphasizes the similarities and differences seen in these conditions and attempts to clarify why sustained fibrosis commonly supports tumorigenesis. Importance will be placed on cancer-associated fibroblasts (CAFs), vascularity, extracellular matrix (ECM), and chronic conditions like aging. Dr. Dvorak will provide an historical insight into the triad field focusing on the importance of vascular permeability. Dr. Stewart will explain how chronic inflammatory conditions, such as the aging tumor microenvironment (TME), drive cancer progression. The session will close with a review by Dr. Cukierman of the roles that CAFs and self-produced ECMs play in enabling the signaling reciprocity observed between fibrosis and cancer in solid epithelial cancers, such as pancreatic ductal adenocarcinoma.

Harold F Dvorak, Sheila A Stewart, Edna Cukierman

 

The importance of vascular permeability in tumor stroma generation and wound healing

Harold F Dvorak

Aging in the driver’s seat: Tumor progression and beyond

Sheila A Stewart

Why won’t CAFs stay normal?

Edna Cukierman

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

 

 

 

 

 

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Mid Day Sessions

Reporter: Stephen J. Williams, PhD

This post will be UPDATED during the next two days with notes from recordings from other talks

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

 

 

 

 

 

 

Register for FREE at https://www.aacr.org/

 

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research

The prestigious Pezcoller Foundation-AACR International Award for Extraordinary Achievement in Cancer Research was established in 1997 to annually recognize a scientist of international renown who has made a major scientific discovery in basic cancer research OR who has made significant contributions to translational cancer research; who continues to be active in cancer research and has a record of recent, noteworthy publications; and whose ongoing work holds promise for continued substantive contributions to progress in the field of cancer. For more information regarding the 2020 award recipient go to aacr.org/awards.

John E. Dick, Enzo Galligioni, David A Tuveson

DETAILS

Awardee: John E. Dick
Princess Anne Margaret Cancer Center, Toronto, Ontario
For determining how stem cells contribute to normal and leukemic hematopoeisis
  • not every cancer cell equal in their Cancer Hallmarks
  • how do we monitor and measure clonal dynamics
  • Barnie Clarkson did pivotal work on this
  • most cancer cells are post mitotic but minor populations of cells were dormant and survive chemotherapy
  •  only one cell is 1 in a million can regenerate and transplantable in mice and experiments with flow cytometry resolved the question of potency and repopulation of only small percentage of cells and undergo long term clonal population
  • so instead of going to cell lines and using thousands of shRNA looked at clinical data and deconvoluted the genetic information (RNASeq data) to determine progenitor and mature populations (how much is stem and how much is mature populations)
  • in leukemic patients they have seen massive expansion of a single stem cell population so only need one cell in AML if the stem cells have the mutational hits early on in their development
  • finding the “seeds of relapse”: finding the small subpopulation of stem cells that will relapse
  • they looked in BALL;;  there are cells resistant to l-aspariginase, dexamethasone, and vincristine
  • a lot of OXPHOS related genes (in DRIs) that may be the genes involved in this resistance
  • it a wonderful note of acknowledgement he dedicated this award to all of his past and present trainees who were the ones, as he said, made this field into what it is and for taking it into directions none of them could forsee

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Drug Development, Cancer Chemistry

Chemistry to the Clinic: Part 1: Lead Optimization Case Studies in Cancer Drug Discovery

How can one continue to deliver innovative medicines to patients when biological targets are becoming ever scarcer and less amenable to therapeutic intervention? Are there sound strategies in place that can clear the path to targets previously considered “undruggable”? Recent advances in lead finding methods and novel technologies such as covalent screening and targeted protein degradation have enriched the toolbox at the disposal of drug discovery scientists to expand the druggable ta

Stefan N Gradl, Elena S Koltun, Scott D Edmondson, Matthew A. Marx, Joachim Rudolph

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Bioinformatics and Systems Biology, Molecular and Cellular Biology/Genetics

Informatics Technologies for Cancer Research

Cancer researchers are faced with a deluge of high-throughput data. Using these data to advance understanding of cancer biology and improve clinical outcomes increasingly requires effective use of computational and informatics tools. This session will introduce informatics resources that support the data management, analysis, visualization, and interpretation. The primary focus will be on high-throughput genomic data and imaging data. Participants will be introduced to fundamental concepts

Rachel Karchin, Daniel Marcus, Andriy Fedorov, Obi Lee Griffith

DETAILS

  • Variant analysis is the big bottleneck, especially interpretation of variants
  • CIVIC resource is a network for curation, interpretation of genetic variants
  • CIVIC curators go through multiple rounds of editors review
  • gene summaries, variant summaries
  • curation follows ACSME guidelines
  • evidences are accumulated, categories by various ontologies and is the heart of the reports
  • as this is a network of curators the knowledgebase expands
  • CIVIC is linked to multiple external informatic, clinical, and genetic databases
  • they have curated 7017 clinical interpretations, 2527 variants, using 2578 papers, and over 1000 curators
  • they are currently integrating with COSMIC ClinVar, and UniProt
  • they are partnering with ClinGen to expand network of curators and their curation effort
  • CIVIC uses a Python interface; available on website

https://civicdb.org/home

The Precision Medicine Revolution

Precision medicine refers to the use of prevention and treatment strategies that are tailored to the unique features of each individual and their disease. In the context of cancer this might involve the identification of specific mutations shown to predict response to a targeted therapy. The biomedical literature describing these associations is large and growing rapidly. Currently these interpretations exist largely in private or encumbered databases resulting in extensive repetition of effort.

CIViC’s Role in Precision Medicine

Realizing precision medicine will require this information to be centralized, debated and interpreted for application in the clinic. CIViC is an open access, open source, community-driven web resource for Clinical Interpretation of Variants in Cancer. Our goal is to enable precision medicine by providing an educational forum for dissemination of knowledge and active discussion of the clinical significance of cancer genome alterations. For more details refer to the 2017 CIViC publication in Nature Genetics.

U24 funding announced: We are excited to announce that the Informatics Technology for Cancer Research (ICTR) program of the National Cancer Institute (NCI) has awarded funding to the CIViC team! Starting this year, a five-year, $3.7 million U24 award (CA237719), will support CIViC to develop Standardized and Genome-Wide Clinical Interpretation of Complex Genotypes for Cancer Precision Medicine.

Informatics tools for high-throughput analysis of cancer mutations

Rachel Karchin
  • CRAVAT is a platform to determine, categorize, and curate cancer mutations and cancer related variants
  • adding new tools used to be hard but having an open architecture allows for modular growth and easy integration of other tools
  • so they are actively making an open network using social media

Towards FAIR data in cancer imaging research

Andriy Fedorov, PhD

Towards the FAIR principles

While LOD has had some uptake across the web, the number of databases using this protocol compared to the other technologies is still modest. But whether or not we use LOD, we do need to ensure that databases are designed specifically for the web and for reuse by humans and machines. To provide guidance for creating such databases independent of the technology used, the FAIR principles were issued through FORCE11: the Future of Research Communications and e-Scholarship. The FAIR principles put forth characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties through the web. Wilkinson et al.,2016. FAIR stands for: Findable, Accessible, Interoperable and Re-usable. The definition of FAIR is provided in Table 1:

Number Principle
F Findable
F1 (meta)data are assigned a globally unique and persistent identifier
F2 data are described with rich metadata
F3 metadata clearly and explicitly include the identifier of the data it describes
F4 (meta)data are registered or indexed in a searchable resource
A Accessible
A1 (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2 metadata are accessible, even when the data are no longer available
I Interoperable
I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2 (meta)data use vocabularies that follow FAIR principles
I3 (meta)data include qualified references to other (meta)data
R Reusable
R1 meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1 (meta)data are released with a clear and accessible data usage license
R1.2 (meta)data are associated with detailed provenance
R1.3 (meta)data meet domain-relevant community standards

A detailed explanation of each of these is included in the Wilkinson et al., 2016 article, and the Dutch Techcenter for Life Sciences has a set of excellent tutorials, so we won’t go into too much detail here.

  • for outside vendors to access their data, vendors would need a signed Material Transfer Agreement but NCI had formulated a framework to facilitate sharing of data using a DIACOM standard for imaging data

Monday, June 22

1:30 PM – 3:01 PM EDT

Virtual Educational Session

Experimental and Molecular Therapeutics, Cancer Chemistry, Drug Development, Immunology

Engineering and Physical Sciences Approaches in Cancer Research, Diagnosis, and Therapy

The engineering and physical science disciplines have been increasingly involved in the development of new approaches to investigate, diagnose, and treat cancer. This session will address many of these efforts, including therapeutic methods such as improvements in drug delivery/targeting, new drugs and devices to effect immunomodulation and to synergize with immunotherapies, and intraoperative probes to improve surgical interventions. Imaging technologies and probes, sensors, and bioma

Claudia Fischbach, Ronit Satchi-Fainaro, Daniel A Heller

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Survivorship

Exceptional Responders and Long-Term Survivors

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Exploiting Metabolic Vulnerabilities in Cancer

The reprogramming of cellular metabolism is a hallmark feature observed across cancers. Contemporary research in this area has led to the discovery of tumor-specific metabolic mechanisms and illustrated ways that these can serve as selective, exploitable vulnerabilities. In this session, four international experts in tumor metabolism will discuss new findings concerning the rewiring of metabolic programs in cancer that support metabolic fitness, biosynthesis, redox balance, and the reg

Costas Andreas Lyssiotis, Gina M DeNicola, Ayelet Erez, Oliver Maddocks

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »

Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 8AM-Noon Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

 

Register for FREE at https://www.aacr.org/

AACR VIRTUAL ANNUAL MEETING II

 

June 22-24: Free Registration for AACR Members, the Cancer Community, and the Public
This virtual meeting will feature more than 120 sessions and 4,000 e-posters, including sessions on cancer health disparities and the impact of COVID-19 on clinical trials

 

This Virtual Meeting is Part II of the AACR Annual Meeting.  Part I was held online in April and was centered only on clinical findings.  This Part II of the virtual meeting will contain all the Sessions and Abstracts pertaining to basic and translational cancer research as well as clinical trial findings.

 

REGISTER NOW

 

Monday, June 22

8:30 AM – 10:10 AM EDT

Virtual Special Session

Opening Ceremony

The Opening Ceremony will include the following presentations:
Welcome from AACR CEO Margaret Foti, PhD, MD (hc)

CHIEF EXECUTIVE OFFICER

MARGARET FOTI, PHD, MD (HC)

​American Association for Cancer Research
Philadelphia, Pennsylvania

  • Dr. Foti mentions that AACR is making progress in including more ethnic and gender equality in cancer research and she feels that the disparities seen in health care, and in cancer care, is related to the disparities seen in the cancer research profession
  • AACR is very focused now on blood cancers and creating innovation summits on this matter
  • In 2019 awarded over 60 grants but feel they will be able to fund more research in 2020
  • Government funding is insufficient at current levels

Remarks from AACR Immediate Past President Elaine R. Mardis, PhD, FAACR

  • involved in planning and success of the first virtual meeting (it was really well done)
  • # of registrants was at unprecedented numbers
  • the scope for this meeting will be wider than the first meeting
  • they have included special sessions including COVID19 and health disparities
  • 70 educational and methodology workshops on over 70 channels

AACR Award for Lifetime Achievement in Cancer Research

  • Dr. Philip Sharp is awardee of Lifetime Achievement Award
  • Dr. Sharp is known for his work in RNA splicing and development of multiple cancer models including a mouse CRSPR model
  • worked under Jim Watson at Cold Spring Harbor
    Presentation of New Fellows of the AACR Academy
  • Dr. Radcliffe for hypoxic factors
  • CART therapies
  • Dr. Semenza for HIF1 discovery
  • Dr Swanton for stratification of patients and tumor heterogeneity
  • these are just some of the new fellows

AACR-Biedler Prizes for Cancer Journalism

  • Writer of Article War of Nerves awarded; reported on nerve intervation of tumors
  • writer Budman on reporting and curation of hedgehog inhibitors in cancers
  • patient advocacy book was awarded for journalism
  • cancer survivor Kasie Newsome produced multiple segments on personalized cancer therapy from a cancer survivor perspective

Remarks from Speaker of the United States House of Representatives Nancy Pelosi

  • helped secure a doubling of funding for NCI and NIH in the 90s
  • securing COVID funding to offset some of the productivity issues related to the shutdown due to COVID
  • advocating for more work to alleviate health disparities

 

Remarks from United States Senator Roy Blunt

  • tireless champion in the Senate for cancer research funding; he was a cancer survivor himself
  • we need to keep focus on advances in science

Margaret Foti

DETAILS

Monday, June 22

10:10 AM – 12:30 PM EDT

Virtual Plenary Session

Bioinformatics and Systems Biology, Epidemiology, Immunology, Molecular and Cellular Biology/Genetics

Opening Plenary Session: Turning Science into Lifesaving Care

Alexander Marson, Antoni Ribas, Ashani T Weeraratna, Olivier Elemento, Howard Y Chang, Daniel D. De Carvalho

DETAILS

Monday, June 22

12:45 PM – 1:30 PM EDT

Awards and Lectures

How should we think about exceptional and super responders to cancer therapy? What biologic insights might ensue from considering these cases? What are ways in which considering super responders may lead to misleading conclusions? What are the pros and cons of the quest to locate exceptional and super responders?

Alice P Chen, Vinay K Prasad, Celeste Leigh Pearce

DETAILS

Monday, June 22

1:30 PM – 3:30 PM EDT

Virtual Educational Session

Tumor Biology, Immunology

Experimental and Molecular Therapeutics, Immunology

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Reporter: Stephen J. Williams, PhD

NCI Activities: COVID-19 and Cancer Research

Dinah S. Singer. NCI-DCB, Bethesda, MD @theNCI

  • at the NCI they are pivoting some of their clinical trials to address COVID related issues like trials on tocilizumab and producing longitudinal cohorts of cancer patients and COVID for further analysis and studies
  • vaccine and antibody efforts at NCI and they are asking all their cancer centers (Cancer COVID Consortium) collecting data
  • Moonshot is collecting metadata but now COVID data from cellular therapy patients
  • they are about to publish new grants related to COVID and adding option to investigators to use current funds to do COVID related options
  • she says if at home take the time to think, write manuscripts, analyze data BE A REVIEWER FOR JOURNALS,
  • SSMMART project from Moonshot is still active
  • so far NCI and NIH grant process is ongoing although the peer review process is slower
  • they have extended deadlines with NO justification required (extend 90 days)
  • also allowing flexibility on use of grant money and allowing more early investigator rules and lax on those rules
  • non competitive renewals (type 5) will allow restructuring of project; contact program administrator
  • she and NCI heard rumors of institutions shutting down cancer research she is stressing to them not to do that
  • non refundable travel costs may be charged to the grant
  • NCI contemplating on extending the early investigator time
  • for more information go to NIH and NCI COVID-19 pages which have more guidances updated regularly

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@theNCI

#AACR20

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Reporter: Stephen J. Williams, PhD

 Minisymposium: Evaluating Cancer Genomics from Normal Tissues through Evolution to Metastatic Disease

Oncologic therapy shapes the fitness landscape of clonal hematopoiesis

April 28, 2020, 4:10 PM – 4:20 PM

Presenter/Authors
Kelly L. Bolton, Ryan N. Ptashkin, Teng Gao, Lior Braunstein, Sean M. Devlin, Minal Patel, Antonin Berthon, Aijazuddin Syed, Mariko Yabe, Catherine Coombs, Nicole M. Caltabellotta, Mike Walsh, Ken Offit, Zsofia Stadler, Choonsik Lee, Paul Pharoah, Konrad H. Stopsack, Barbara Spitzer, Simon Mantha, James Fagin, Laura Boucai, Christopher J. Gibson, Benjamin Ebert, Andrew L. Young, Todd Druley, Koichi Takahashi, Nancy Gillis, Markus Ball, Eric Padron, David Hyman, Jose Baselga, Larry Norton, Stuart Gardos, Virginia Klimek, Howard Scher, Dean Bajorin, Eder Paraiso, Ryma Benayed, Maria Arcilla, Marc Ladanyi, David Solit, Michael Berger, Martin Tallman, Montserrat Garcia-Closas, Nilanjan Chatterjee, Luis Diaz, Ross Levine, Lindsay Morton, Ahmet Zehir, Elli Papaemmanuil. Memorial Sloan Kettering Cancer Center, New York, NY, University of North Carolina at Chapel Hill, Chapel Hill, NC, University of Cambridge, Cambridge, United Kingdom, Dana-Farber Cancer Institute, Boston, MA, Washington University, St Louis, MO, The University of Texas MD Anderson Cancer Center, Houston, TX, Moffitt Cancer Center, Tampa, FL, National Cancer Institute, Bethesda, MD

Abstract
Recent studies among healthy individuals show evidence of somatic mutations in leukemia-associated genes, referred to as clonal hematopoiesis (CH). To determine the relationship between CH and oncologic therapy we collected sequential blood samples from 525 cancer patients (median sampling interval time = 23 months, range: 6-53 months) of whom 61% received cytotoxic therapy or external beam radiation therapy and 39% received either targeted/immunotherapy or were untreated. Samples were sequenced using deep targeted capture-based platforms. To determine whether CH mutational features were associated with tMN risk, we performed Cox proportional hazards regression on 9,549 cancer patients exposed to oncologic therapy of whom 75 cases developed tMN (median time to transformation=26 months). To further compare the genetic and clonal relationships between tMN and the proceeding CH, we analyzed 35 cases for which paired samples were available. We compared the growth rate of the variant allele fraction (VAF) of CH clones across treatment modalities and in untreated patients. A significant increase in the growth rate of CH mutations was seen in DDR genes among those receiving cytotoxic (p=0.03) or radiation therapy (p=0.02) during the follow-up period compared to patients who did not receive therapy. Similar growth rates among treated and untreated patients were seen for non-DDR CH genes such as DNMT3A. Increasing cumulative exposure to cytotoxic therapy (p=0.01) and external beam radiation therapy (2×10-8) resulted in higher growth rates for DDR CH mutations. Among 34 subjects with at least two CH mutations in which one mutation was in a DDR gene and one in a non-DDR gene, we studied competing clonal dynamics for multiple gene mutations within the same patient. The risk of tMN was positively associated with CH in a known myeloid neoplasm driver mutation (HR=6.9, p<10-6), and increased with the total number of mutations and clone size. The strongest associations were observed for mutations in TP53 and for CH with mutations in spliceosome genes (SRSF2, U2AF1 and SF3B1). Lower hemoglobin, lower platelet counts, lower neutrophil counts, higher red cell distribution width and higher mean corpuscular volume were all positively associated with increased tMN risk. Among 35 cases for which paired samples were available, in 19 patients (59%), we found evidence of at least one of these mutations at the time of pre-tMN sequencing and in 13 (41%), we identified two or more in the pre-tMN sample. In all cases the dominant clone at tMN transformation was defined by a mutation seen at CH Our serial sampling data provide clear evidence that oncologic therapy strongly selects for clones with mutations in the DDR genes and that these clones have limited competitive fitness, in the absence of cytotoxic or radiation therapy. We further validate the relevance of CH as a predictor and precursor of tMN in cancer patients. We show that CH mutations detected prior to tMN diagnosis were consistently part of the dominant clone at tMN diagnosis and demonstrate that oncologic therapy directly promotes clones with mutations in genes associated with chemo-resistant disease such as TP53.

  • therapy resulted also in clonal evolution and saw changes in splice variants and spliceosome
  • therapy promotes current DDR mutations
  • clonal hematopoeisis due to selective pressures
  • mutations, variants number all predictive of myeloid disease
  • deferring adjuvant therapy for breast cancer patients with patients in highest MDS risk group based on biomarkers, greatly reduced their risk for MDS

5704 – Pan-cancer genomic characterization of patient-matched primary, extracranial, and brain metastases

Presenter/AuthorsOlivia W. Lee, Akash Mitra, Won-Chul Lee, Kazutaka Fukumura, Hannah Beird, Miles Andrews, Grant Fischer, John N. Weinstein, Michael A. Davies, Jason Huse, P. Andrew Futreal. The University of Texas MD Anderson Cancer Center, TX, The University of Texas MD Anderson Cancer Center, TX, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, AustraliaDisclosures O.W. Lee: None. A. Mitra: None. W. Lee: None. K. Fukumura: None. H. Beird: None. M. Andrews: ; Merck Sharp and Dohme. G. Fischer: None. J.N. Weinstein: None. M.A. Davies: ; Bristol-Myers Squibb. ; Novartis. ; Array BioPharma. ; Roche and Genentech. ; GlaxoSmithKline. ; Sanofi-Aventis. ; AstraZeneca. ; Myriad Genetics. ; Oncothyreon. J. Huse: None. P. Futreal: None.

Abstract: Brain metastases (BM) occur in 10-30% of patients with cancer. Approximately 200,000 new cases of brain metastases are diagnosed in the United States annually, with median survival after diagnosis ranging from 3 to 27 months. Recently, studies have identified significant genetic differences between BM and their corresponding primary tumors. It has been shown that BM harbor clinically actionable mutations that are distinct from those in the primary tumor samples. Additional genomic profiling of BM will provide deeper understanding of the pathogenesis of BM and suggest new therapeutic approaches.
We performed whole-exome sequencing of BM and matched tumors from 41 patients collected from renal cell carcinoma (RCC), breast cancer, lung cancer, and melanoma, which are known to be more likely to develop BM. We profiled total 126 fresh-frozen tumor samples and performed subsequent analyses of BM in comparison to paired primary tumor and extracranial metastases (ECM). We found that lung cancer shared the largest number of mutations between BM and matched tumors (83%), followed by melanoma (74%), RCC (51%), and Breast (26%), indicating that cancer type with high tumor mutational burden share more mutations with BM. Mutational signatures displayed limited differences, suggesting a lack of mutagenic processes specific to BM. However, point-mutation heterogeneity revealed that BM evolve separately into different subclones from their paired tumors regardless of cancer type, and some cancer driver genes were found in BM-specific subclones. These models and findings suggest that these driver genes may drive prometastatic subclones that lead to BM. 32 curated cancer gene mutations were detected and 71% of them were shared between BM and primary tumors or ECM. 29% of mutations were specific to BM, implying that BM often accumulate additional cancer gene mutations that are not present in primary tumors or ECM. Co-mutation analysis revealed a high frequency of TP53 nonsense mutation in BM, mostly in the DNA binding domain, suggesting TP53 nonsense mutation as a possible prerequisite for the development of BM. Copy number alteration analysis showed statistically significant differences between BM and their paired tumor samples in each cancer type (Wilcoxon test, p < 0.0385 for all). Both copy number gains and losses were consistently higher in BM for breast cancer (Wilcoxon test, p =1.307e-5) and lung cancer (Wilcoxon test, p =1.942e-5), implying greater genomic instability during the evolution of BM.
Our findings highlight that there are more unique mutations in BM, with significantly higher copy number alterations and tumor mutational burden. These genomic analyses could provide an opportunity for more reliable diagnostic decision-making, and these findings will be further tested with additional transcriptomic and epigenetic profiling for better characterization of BM-specific tumor microenvironments.

  • are there genomic signatures different in brain mets versus non metastatic or normal?
  • 32 genes from curated databases were different between brain mets and primary tumor
  • frequent nonsense mutations in TP53
  • divergent clonal evolution of drivers in BMets from primary
  • they were able to match BM with other mutational signatures like smokers and lung cancer signatures

5707 – A standard operating procedure for the interpretation of oncogenicity/pathogenicity of somatic mutations

Presenter/AuthorsPeter Horak, Malachi Griffith, Arpad Danos, Beth A. Pitel, Subha Madhavan, Xuelu Liu, Jennifer Lee, Gordana Raca, Shirley Li, Alex H. Wagner, Shashikant Kulkarni, Obi L. Griffith, Debyani Chakravarty, Dmitriy Sonkin. National Center for Tumor Diseases, Heidelberg, Germany, Washington University School of Medicine, St. Louis, MO, Mayo Clinic, Rochester, MN, Georgetown University Medical Center, Washington, DC, Dana-Farber Cancer Institute, Boston, MA, Frederick National Laboratory for Cancer Research, Rockville, MD, University of Southern California, Los Angeles, CA, Sunquest, Boston, MA, Baylor College of Medicine, Houston, TX, Memorial Sloan Kettering Cancer Center, New York, NY, National Cancer Institute, Rockville, MDDisclosures P. Horak: None. M. Griffith: None. A. Danos: None. B.A. Pitel: None. S. Madhavan: ; Perthera Inc. X. Liu: None. J. Lee: None. G. Raca: None. S. Li: ; Sunquest Information Systems, Inc. A.H. Wagner: None. S. Kulkarni: ; Baylor Genetics. O.L. Griffith: None. D. Chakravarty: None. D. Sonkin: None.AbstractSomatic variants in cancer-relevant genes are interpreted from multiple partially overlapping perspectives. When considered in discovery and translational research endeavors, it is important to determine if a particular variant observed in a gene of interest is oncogenic/pathogenic or not, as such knowledge provides the foundation on which targeted cancer treatment research is based. In contrast, clinical applications are dominated by diagnostic, prognostic, or therapeutic interpretations which in part also depends on underlying variant oncogenicity/pathogenicity. The Association for Molecular Pathology, the American Society of Clinical Oncology, and the College of American Pathologists (AMP/ASCO/CAP) have published structured somatic variant clinical interpretation guidelines which specifically address diagnostic, prognostic, and therapeutic implications. These guidelines have been well-received by the oncology community. Many variant knowledgebases, clinical laboratories/centers have adopted or are in the process of adopting these guidelines. The AMP/ASCO/CAP guidelines also describe different data types which are used to determine oncogenicity/pathogenicity of a variant, such as: population frequency, functional data, computational predictions, segregation, and somatic frequency. A second collaborative effort created the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets to provide a harmonized vocabulary that provides an evidence-based ranking system of molecular targets that supports their value as clinical targets. However, neither of these clinical guideline systems provide systematic and comprehensive procedures for aggregating population frequency, functional data, computational predictions, segregation, and somatic frequency to consistently interpret variant oncogenicity/pathogenicity, as has been published in the ACMG/AMP guidelines for interpretation of pathogenicity of germline variants. In order to address this unmet need for somatic variant oncogenicity/pathogenicity interpretation procedures, the Variant Interpretation for Cancer Consortium (VICC, a GA4GH driver project) Knowledge Curation and Interpretation Standards (KCIS) working group (WG) has developed a Standard Operating Procedure (SOP) with contributions from members of ClinGen Somatic Clinical Domain WG, and ClinGen Somatic/Germline variant curation WG using an approach similar to the ACMG/AMP germline pathogenicity guidelines to categorize evidence of oncogenicity/pathogenicity as very strong, strong, moderate or supporting. This SOP enables consistent and comprehensive assessment of oncogenicity/pathogenicity of somatic variants and latest version of an SOP can be found at https://cancervariants.org/wg/kcis/.

  • best to use this SOP for somatic mutations and not rearangements
  • variants based on oncogenicity as strong to weak
  • useful variant knowledge on pathogenicity curated from known databases
  • the recommendations would provide some guideline on curating unknown somatic variants versus known variants of hereditary diseases
  • they have not curated RB1 mutations or variants (or for other RBs like RB2? p130?)

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

#AACR20

 

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Reporter: Stephen J. Williams, PhD

Updated on 07/08/2021  

https://cancerdiscovery.aacrjournals.org/content/early/2021/07/01/2159-8290.CD-20-1741

Session VMS.ET04.01 – Novel Targets and Therapies

Targeting chromatin remodeling-associated genetic vulnerabilities in cancer: PBRM1 defects are synthetic lethal with PARP and ATR inhibitors

Presenter/AuthorsRoman Merial Chabanon, Daphné Morel, Léo Colmet-Daage, Thomas Eychenne, Nicolas Dorvault, Ilirjana Bajrami, Marlène Garrido, Suzanna Hopkins, Cornelia Meisenberg, Andrew Lamb, Theo Roumeliotis, Samuel Jouny, Clémence Astier, Asha Konde, Geneviève Almouzni, Jyoti Choudhary, Jean-Charles Soria, Jessica Downs, Christopher J. Lord, Sophie Postel-Vinay. Gustave Roussy, Villejuif, France, The Francis Crick Institute, London, United Kingdom, Institute of Cancer Research, London, United Kingdom, Sage Bionetworks, Seattle, WA, Institute of Cancer Research, London, United Kingdom, Institute of Cancer Research, London, United Kingdom, Institut Curie, Paris, France, Université Paris-Sud/Université Paris-Saclay, Le Kremlin-Bicêtre, France, Gustave Roussy Cancer Campus and U981 INSERM, ATIP-Avenir group, Villejuif, FranceDisclosures R.M. Chabanon: None. D. Morel: None. L. Colmet-Daage: None. T. Eychenne: None. N. Dorvault: None. I. Bajrami: None. M. Garrido: None. S. Hopkins: ; Fishawack Group of Companies. C. Meisenberg: None. A. Lamb: None. T. Roumeliotis: None. S. Jouny: None. C. Astier: None. A. Konde: None. G. Almouzni: None. J. Choudhary: None. J. Soria: ; Medimmune/AstraZeneca. ; Astex. ; Gritstone. ; Clovis. ; GSK. ; GamaMabs. ; Lilly. ; MSD. ; Mission Therapeutics. ; Merus. ; Pfizer. ; PharmaMar. ; Pierre Fabre. ; Roche/Genentech. ; Sanofi. ; Servier. ; Symphogen. ; Takeda. J. Downs: None. C.J. Lord: ; AstraZeneca. ; Merck KGaA. ; Artios. ; Tango. ; Sun Pharma. ; GLG. ; Vertex. ; Ono Pharma. ; Third Rock Ventures. S. Postel-Vinay: ; Merck KGaA. ; Principal investigator of clinical trials for Gustave Roussy.; Boehringer Ingelheim. ; Principal investigator of clinical trials for Gustave Roussy.; Roche. ; Principal investigator of clinical trials for Gustave Roussy. Benefited from reimbursement for attending symposia.; AstraZeneca. ; Principal investigator of clinical trials for Gustave Roussy.; Clovis. ; Principal investigator of clinical trials for Gustave Roussy.; Bristol-Myers Squibb. ; Principal investigator of clinical trials for Gustave Roussy.; Agios. ; Principal investigator of clinical trials for Gustave Roussy.; GSK.AbstractAim: Polybromo-1 (PBRM1), a specific subunit of the pBAF chromatin remodeling complex, is frequently inactivated in cancer. For example, 40% of clear cell Renal Cell Carcinoma (ccRCC) and 15% of cholangiocarcinoma present deleterious PBRM1 mutations. There is currently no precision medicine-based therapeutic approach that targets PBRM1 defects. To identify novel, targeted therapeutic strategies for PBRM1-defective cancers, we carried out high-throughput functional genomics and drug screenings followed by in vitro and in vivo validation studies.
Methods: High-throughput siRNA-drug sensitization and drug sensitivity screens evaluating > 150 cancer-relevant small molecules in dose-response were performed in Pbrm1 siRNA-transfected mouse embryonic stem cells (mES) and isogenic PBRM1-KO or -WT HAP1 cells, respectively. After identification of PBRM1-selective small molecules, revalidation was carried out in a series of in-house-generated isogenic models of PBRM1 deficiency – including 786-O (ccRCC), A498 (ccRCC), U2OS (osteosarcoma) and H1299 (non-small cell lung cancer) human cancer cell lines – and non-isogenic ccRCC models, using multiple clinical compounds. Mechanistic dissection was performed using immunofluorescence, RT-qPCR, western blotting, DNA fiber assay, transcriptomics, proteomics and DRIP-sequencing to evaluate markers of DNA damage response (DDR), replication stress and cell-autonomous innate immune signaling. Preclinical data were integrated with TCGA tumor data.
Results: Parallel high-throughput drug screens independently identified PARP inhibitors (PARPi) as being synthetic lethal with PBRM1 defects – a cell type-independent effect which was exacerbated by ATR inhibitors (ATRi) and which we revalidated in vitro in isogenic and non-isogenic systems and in vivo in a xenograft model. PBRM1 defects were associated with increased replication fork stress (higher γH2AX and RPA foci levels, decreased replication fork speed and increased ATM checkpoint activation), R-loop accumulation and enhanced genomic instability in vitro; these effects were exacerbated upon PARPi exposure. In patient tumor samples, we also found that PBRM1-mutant cancers possessed a higher mutational load. Finally, we found that ATRi selectively activated the cGAS/STING cytosolic DNA sensing pathway in PBRM1-deficient cells, resulting in increased expression of type I interferon genes.
Conclusion: PBRM1-defective cancer cells present increased replication fork stress, R-loop formation, genome instability and are selectively sensitive to PARPi and ATRi through a synthetic lethal mechanism that is cell type-independent. Our data provide the pre-clinical rationale for assessing PARPi as a monotherapy or in combination with ATRi or immune-modulating agents in molecularly-selected patients with PBRM1-defective cancers.

1057 – Targeting MTHFD2 using first-in-class inhibitors kills haematological and solid cancer through thymineless-induced replication stress

Presenter/AuthorsThomas Helleday. University of Sheffield, Sheffield, United KingdomDisclosures T. Helleday: None.AbstractSummary
Thymidine synthesis pathways are upregulated pathways in cancer. Since the 1940s, targeting nucleotide and folate metabolism to induce thymineless death has remained first-line anti-cancer treatment. Recent discoveries that showing cancer cells have rewired networks and exploit unique enzymes for proliferation, have renewed interest in metabolic pathways. The cancer-specific expression of MTHFD2 has gained wide-spread attention and here we describe an emerging role for MTHFD2 in the DNA damage response (DDR). The folate metabolism enzyme MTHFD2 is one of the most consistently overexpressed metabolic enzymes in cancer and an emerging anticancer target. We show a novel role for MTHFD2 being essential for DNA replication and genomic stability in cancer cells. We describe first-in-class nanomolar MTHFD2 inhibitors (MTHFD2i), with protein co-crystal structures demonstrating binding in the active site of MTHFD2 and engaging with the target in cells and tumours. We show MTHFD2i reduce replication fork speed and induce replication stress, followed by S phase arrest, apoptosis and killing of a range of haematological and solid cancer cells in vitro and in vivo, with a therapeutic window spanning up to four orders of magnitude compared to non-transformed cells. Mechanistically, MTHFD2i prevent thymidine production leading to mis-incorporation of uracil into DNA and replication stress. As MTHFD2 expression is cancer specific there is a potential of MTHFD2i to synergize with other treatments. Here, we show MTHFD2i synergize with dUTPase inhibitors as well as other DDR inhibitors and demonstrate the mechanism of action. These results demonstrate a new link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically.
Keywords
MTHFD2, one-carbon metabolism, folate metabolism, DNA replication, replication stress, synthetic lethal, thymineless death, small-molecule inhibitor, DNA damage response

1060 – Genetic and pharmacologic inhibition of Skp2, an E3 ubiquitin ligase and RB1-target, has antitumor activity in RB1-deficient human and mouse small cell lung cancer (SCLC)

Presenter/Authors
Hongling ZhaoVineeth SukrithanNiloy IqbalCari NicholasYingjiao XueJoseph LockerJuntao ZouLiang ZhuEdward L. Schwartz. Albert Einstein College of Medicine, Bronx, NY, Albert Einstein College of Medicine, Bronx, NY, Albert Einstein College of Medicine, Bronx, NY, University of Pittsburgh Medical Center, Pittsburgh, PA, Albert Einstein College of Medicine, Bronx, NY
Disclosures
 H. Zhao: None. V. Sukrithan: None. N. Iqbal: None. C. Nicholas: None. Y. Xue: None. J. Locker: None. J. Zou: None. L. Zhu: None. E.L. Schwartz: None.
Abstract
The identification of driver mutations and their corresponding targeted drugs has led to significant improvements in the treatment of non-small cell lung cancer (NSCLC) and other solid tumors; however, similar advances have not been made in the treatment of small cell lung cancer (SCLC). Due to their aggressive growth, frequent metastases, and resistance to chemotherapy, the five-year overall survival of SCLC is less than 5%. While SCLC tumors can be sensitive to first-line therapy of cisplatin and etoposide, most patients relapse, often in less than 3 months after initial therapy. Dozens of drugs have been tested clinically in SCLC, including more than 40 agents that have failed in phase III trials.
The near uniform bi-allelic inactivation of the tumor suppressor gene RB1 is a defining feature of SCLC. RB1 is mutated in highly aggressive tumors, including SCLC, where its functional loss, along with that of TP53, is both required and sufficient for tumorigenesis. While it is known that RB1 mutant cells fail to arrest at G1/S in response to checkpoint signals, this information has not led to effective strategies to treat RB1-deficient tumors, and it has been challenging to develop targeted drugs for tumors that are driven by the loss of gene function.
Our group previously identified Skp2, a substrate recruiting subunit of the SCF-Skp2 E3 ubiquitin ligase, as an early repression target of pRb whose knockout blocked tumorigenesis in Rb1-deficient prostate and pituitary tumors. Here we used genetic mouse models to demonstrate that deletion of Skp2 completely blocked the formation of SCLC in Rb1/p53-knockout mice (RP mice). Skp2 KO caused an increased accumulation of the Skp2-degradation target p27, a cyclin-dependent kinase inhibitor, and we confirmed this was the mechanism of protection in the RP-Skp2 KO mice by using the knock-in of a mutant p27 that was unable to bind to Skp2. Building on the observed synthetic lethality between Rb1 and Skp2, we found that small molecules that bind to and/or inhibit Skp2 induced apoptosis and inhibited SCLC cell growth. In a panel of SCLC cell lines, growth inhibition by a Skp2 inhibitor was not correlated with sensitivity/resistance to etoposide. Targeting Skp2 also had in vivo antitumor activity in mouse tumors and human patient-derived xenograft models of SCLC. Using the genetic and pharmacologic approaches, antitumor activity was seen in vivo in established SCLC primary lung tumors, in liver metastases, and in chemotherapy-resistant tumors. The identification and validation of an actionable target downstream of RB1 could have a broad impact on treatment of SCLC and other advanced tumors with mutant RB1, for which there are currently no targeted therapies available.

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Early Detection and ctDNA 1:35 – 3:55 PM

Reporter: Stephen J. Williams, PhD

Introduction
Alberto Bardelli

  • circulating tumor DNA has been around but with NGS now we can have more specificity in analyzing ctDNA
  • interest lately in using liquid biopsy to gain insight on tumor heterogeneity versus single needle biopsy of the solid tumor
  • these talks will however be on ctDNA as a diagnostic and therapeutic monitoring modality

Prediction of cancer and tissue of origin in individuals with suspicion of cancer using a cell-free DNA multi-cancer early detection test
David Thiel 

@MayoClinic

  • test has a specificity over 90% and intended to used along with guideline
  • The Circulating  Cell-free Genome Atlas Study (clinical trial NCT02889978) (CCGA) study divided into three substudies: highest performing assay, refining assay, validation of assays
  • methylation based assays worked better than sequencing (bisulfite sequencing)
  • used a machine learning algorithm to help refine assay
  • prediction was >90%; subgroup for high clinical suspicion of cancer
  • HCS sensitivity was 100% and specificity very high; but sensitivity on training set was 40% and results may have been confounded by including kidney cancer
  • TOO tissue of origin was predicted in greater than 99% in both training and validation sets

A first-of-its-kind prospective study of a multi-cancer blood test to screen and manage 10,000 women with no history of cancer

  • DETECT-A study: prospective interventional study; can multi blood test be used prospectively and can lead to a personalized care; can the screen be used to complement current therapy?
  • 10,000 women aged 65-75;  these women could not have previous cancer and conducted through Geisinger Health Network; multi test detects DNA and protein and standard of care screening
  • the study focused on safety so a committee was consulted on each case, and used a diagnostic PET-CT
  • blood test alone not good but combined with protein and CT scans much higher (5 fold increase) detection for breast cancer

Nickolas Papadopoulos

@HopkinsMedicine

Discussant
David Huntsman

  • there are mutiple opportunities yet at same time there are still challenges to utilize these cell free tests in therapeutic monitoring, diagnostic, and screening however sensitivities for some cancers are still too low to use in large scale screening however can supplement current screening guidelines
  • we have to ask about false positive rate and need to concentrate on prospective studies
  • we must consider how tests will be used, population health studies will need to show improved survival

 

Phylogenetic tracking and minimal residual disease detection using ctDNA in early-stage NSCLC: A lung TRACERx study
Chris Abbosh @ucl

  • TRACERx study in collaboration with Charles Swanton.
  • multiplex PCR to track 200 SNVs: correlate tumor tissue biopsy with ctDNA
  • spike in assay shows very good sensitivity and specificity for SNVs variants tracked, did over 400 TRACERx libraries
  • sensitivity increases when tracking more variants but specificity does go down a bit
  • tracking variants can show evidence of subclonal dynamics and evolution and copy number deletion events;  they also show neoantigen editing or changing of their neoantigens
  • this assay can detect low variants in a reproducible manner

The TRACERx (TRAcking Cancer Evolution through therapy (Rx)) lung study is a multi-million pound research project taking place over nine years, which will transform our understanding of non-small cell lung cancer (NSCLC) and take a practical step towards an era of precision medicine. The study will uncover mechanisms of cancer evolution by analysing the intratumour heterogeneity in lung tumours from approximately 850 patients and tracking its evolutionary trajectory from diagnosis through to relapse. At £14 million, it’s the biggest single investment in lung cancer research by Cancer Research UK, and the start of a strategic UK-wide focus on the disease, aimed at making real progress for patients.

Led by Professor Charles Swanton at UCL, the study will bring together a network of experts from different disciplines to help integrate clinical and genomic data and identify patients who could benefit from trials of new, targeted treatments. In addition, it will use a whole suite of cutting edge analytical techniques on these patients’ tumour samples, giving unprecedented insight into the genomic landscape of primary and metastatic tumours and the impact of treatment upon this landscape.

In future, TRACERx will enable us to define how intratumour heterogeneity impacts upon cancer immunity throughout tumour evolution and therapy. Such studies will help define how the clinical evaluation of intratumour heterogeneity can inform patient stratification and the development of combinatorial therapies incorporating conventional, targeted and immune based therapeutics.

Intratumour heterogeneity is increasingly recognised as a major hurdle to achieve improvements in therapeutic outcome and biomarker validation. Intratumour genetic diversity provides a substrate for tumour adaptation and evolution. However, the evolutionary genomic landscape of non-small cell lung cancer (NSCLC) and how it changes through the disease course has not been studied in detail. TRACERx is a prospective observational study with the following objectives:

Primary Objectives

  • Define the relationship between intratumour heterogeneity and clinical outcome following surgery and adjuvant therapy (including relationships between intratumour heterogeneity and clinical disease stage and histological subtypes of NSCLC).
  • Establish the impact of adjuvant platinum-containing regimens upon intratumour heterogeneity in relapsed disease compared to primary resected tumour.

Key Secondary Objectives

  • Develop and validate an intratumour heterogeneity (ITH) ratio index as a prognostic and predictive biomarker in relation to disease-free survival and overall survival.
  • Infer a complete picture of NSCLC evolutionary dynamics – define drivers of genomic instability, metastatic progression and drug resistance by identifying and tracking the dynamics of somatic mutational heterogeneity, and chromosomal structural and numerical instability present in the primary tumour and at metastatic sites. Individual tumour phylogenetic tree analysis will:
    • Establish the order of somatic events in relation to genomic instability onset and metastatic progression
    • Decipher genetic “bottlenecking” events following metastasis and drug therapy
    • Establish dynamics of tumour evolution during the disease course from early to late stage NSCLC.
  • Initiate a longitudinal biobank of circulating tumour cells (CTCs) and circulating-free tumour DNA (cfDNA) to develop analytical methods for the early detection and monitoring of tumour evolution over time.
  • Develop a longitudinal tissue resource to serve as a platform to assess the relationship between genetic intratumour heterogeneity and the host immune response.
  • Define relationships between intratumour heterogeneity and targeted/cytotoxic therapeutic outcome.
  • Use a lung cancer specific gene panel in a certified Good Clinical Practice (GCP) laboratory environment to define clonally dominant disease drivers to address the role of clonal driver dominance in targeted therapeutic response and to guide stratification of lung cancer treatment and future clinical study inclusion (paired primary-metastatic site comparisons in at least 270 patients with relapsed disease).

 

 

Utility of longitudinal circulating tumor DNA (ctDNA) modeling to predict RECIST-defined progression in first-line patients with epidermal growth factor receptor mutation-positive (EGFRm) advanced non-small cell lung cancer (NSCLC)
Martin Johnson

 

Impact of the EML4-ALK fusion variant on the efficacy of lorlatinib in patients (pts) with ALK-positive advanced non-small cell lung cancer (NSCLC)
Todd Bauer

 

From an interview with Dr. Bauer at https://www.lungcancernews.org/2019/08/14/making-headway-with-lorlatinib/

Lorlatinib, a smallmolecule inhibitor of ALK and ROS1, was granted accelerated U.S. Food and Drug Administration approval in November 2018 for patients with ALK-positive metastatic NSCLC whose disease has progressed on crizotinib and at least one other ALK inhibitor or whose disease has progressed on alectinib or ceritinib as the first ALK inhibitor therapy for metastatic disease. Todd M. Bauer, MD, a medical oncologist and senior investigator at Sarah Cannon Research Institute/Tennessee Oncology, PLLC, in Nashville, has been very involved with the development of lorlatinib since the beginning. In the following interview, Dr. Bauer discusses some of lorlatinib’s unique toxicities, as well as his first-hand experiences with the drug.

For further reading: Solomon B, Besse B, Bauer T, et al. Lorlatinib in Patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet. 2018;19(12):P1654-1667.

Abstract

BACKGROUND: Lorlatinib is a potent, brain-penetrant, third-generation inhibitor of ALK and ROS1 tyrosine kinases with broad coverage of ALK mutations. In a phase 1 study, activity was seen in patients with ALK-positive non-small-cell lung cancer, most of whom had CNS metastases and progression after ALK-directed therapy. We aimed to analyse the overall and intracranial antitumour activity of lorlatinib in patients with ALK-positive, advanced non-small-cell lung cancer.

METHODS: In this phase 2 study, patients with histologically or cytologically ALK-positive or ROS1-positive, advanced, non-small-cell lung cancer, with or without CNS metastases, with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and adequate end-organ function were eligible. Patients were enrolled into six different expansion cohorts (EXP1-6) on the basis of ALK and ROS1 status and previous therapy, and were given lorlatinib 100 mg orally once daily continuously in 21-day cycles. The primary endpoint was overall and intracranial tumour response by independent central review, assessed in pooled subgroups of ALK-positive patients. Analyses of activity and safety were based on the safety analysis set (ie, all patients who received at least one dose of lorlatinib) as assessed by independent central review. Patients with measurable CNS metastases at baseline by independent central review were included in the intracranial activity analyses. In this report, we present lorlatinib activity data for the ALK-positive patients (EXP1-5 only), and safety data for all treated patients (EXP1-6). This study is ongoing and is registered with ClinicalTrials.gov, number NCT01970865.

FINDINGS: Between Sept 15, 2015, and Oct 3, 2016, 276 patients were enrolled: 30 who were ALK positive and treatment naive (EXP1); 59 who were ALK positive and received previous crizotinib without (n=27; EXP2) or with (n=32; EXP3A) previous chemotherapy; 28 who were ALK positive and received one previous non-crizotinib ALK tyrosine kinase inhibitor, with or without chemotherapy (EXP3B); 112 who were ALK positive with two (n=66; EXP4) or three (n=46; EXP5) previous ALK tyrosine kinase inhibitors with or without chemotherapy; and 47 who were ROS1 positive with any previous treatment (EXP6). One patient in EXP4 died before receiving lorlatinib and was excluded from the safety analysis set. In treatment-naive patients (EXP1), an objective response was achieved in 27 (90·0%; 95% CI 73·5-97·9) of 30 patients. Three patients in EXP1 had measurable baseline CNS lesions per independent central review, and objective intracranial responses were observed in two (66·7%; 95% CI 9·4-99·2). In ALK-positive patients with at least one previous ALK tyrosine kinase inhibitor (EXP2-5), objective responses were achieved in 93 (47·0%; 39·9-54·2) of 198 patients and objective intracranial response in those with measurable baseline CNS lesions in 51 (63·0%; 51·5-73·4) of 81 patients. Objective response was achieved in 41 (69·5%; 95% CI 56·1-80·8) of 59 patients who had only received previous crizotinib (EXP2-3A), nine (32·1%; 15·9-52·4) of 28 patients with one previous non-crizotinib ALK tyrosine kinase inhibitor (EXP3B), and 43 (38·7%; 29·6-48·5) of 111 patients with two or more previous ALK tyrosine kinase inhibitors (EXP4-5). Objective intracranial response was achieved in 20 (87·0%; 95% CI 66·4-97·2) of 23 patients with measurable baseline CNS lesions in EXP2-3A, five (55·6%; 21·2-86·3) of nine patients in EXP3B, and 26 (53·1%; 38·3-67·5) of 49 patients in EXP4-5. The most common treatment-related adverse events across all patients were hypercholesterolaemia (224 [81%] of 275 patients overall and 43 [16%] grade 3-4) and hypertriglyceridaemia (166 [60%] overall and 43 [16%] grade 3-4). Serious treatment-related adverse events occurred in 19 (7%) of 275 patients and seven patients (3%) permanently discontinued treatment because of treatment-related adverse events. No treatment-related deaths were reported.

INTERPRETATION: Consistent with its broad ALK mutational coverage and CNS penetration, lorlatinib showed substantial overall and intracranial activity both in treatment-naive patients with ALK-positive non-small-cell lung cancer, and in those who had progressed on crizotinib, second-generation ALK tyrosine kinase inhibitors, or after up to three previous ALK tyrosine kinase inhibitors. Thus, lorlatinib could represent an effective treatment option for patients with ALK-positive non-small-cell lung cancer in first-line or subsequent therapy.

  • loratinib could be used for crizotanib resistant tumors based on EML4-ALK variants present in ctDNA

Reference:
1. Updated efficacy and safety data from the global phase III ALEX study of alectinib (ALC) vs crizotinib (CZ) in untreated advanced ALK+ NSCLCJ Clin Oncol 36, 2018 (suppl; abstr 9043).

Discussion

Corey Langer

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on COVID-19 and Cancer 9:00 AM

Reporter: Stephen J. Williams, PhD

 

COVID-19 and Cancer

Introduction

Antoni Ribas
UCLA Medical Center

  • Almost 60,000 viewed the AACR 2020 Virtual meeting for the April 27 session
  • The following speakers were the first cancer researchers treating patients at the epicenters of the pandemic even though nothing was known about the virus

 

The experience of treating patients with cancer during the COVID-19 pandemic in China
Li Zhang, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

  • reporting a retrospective study from three hospitals from Wuhan
  • 2.2% of Wuhan cancer patients were COVID positive; most were lung cancers and most male; 35% were stage four
  • most have hospital transmission of secondary infection; had severe events when admitted
  • 74% were prescribed antivirals like ganciclovir and others; iv IgG was given to some
  • mortailtiy rate of 26%; by April 4 54% were cured and discharged; median time of infection to severe event was 7 days; clinical presentation SARS sepsis, and shock
  • by day 10 in lung cancer patients, see lung path but after supportive therapy improved
  • cancer patients at stage four who did not receive therapy were at higher risk
  • cancer patients who had received chemo in last 14 days had higher risk of infection
  • they followed up with cancer patients on I/O inhibitors;  it seemed there was only one patient that contracted COVID19 so there may not be as much risk with immune checkpoint inhibitors

 

TERAVOLT (Thoracic cancERs international coVid 19 cOLlaboraTion): First results of a global collaboration to address the impact of COVID-19 in patients with thoracic malignancies

Marina Chiara Garassino

@marinagarassino
Fondazione IRCCS Istituto Nazionale dei Tumori

Dr Marina Chiara Garassino is the Chief of the Thoracic Oncology Unit at Istituto Nazionale dei Tumori, Milan, Italy. She leads the strategy for clinical and translational research in advanced and locally advanced NSCLC, SCLC, mesothelioma and thymic malignancies. Istituto Nazionale dei Tumori in Milan is the most important comprehensive cancer in Italy and one of the most important in Europe. As a medical oncologist, she has done research in precision medicine and in immuno-oncology. Her main research interests have been mainly development of new drugs and therapeutical strategies and biomarkers. She has contributed to over 150 peer-reviewed publications, including publications as first or last author in the New England Journal of Medicine, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology. She has delivered many presentations at international congresses,  including  AACR, ASCO, ECCO, ESMO, WCLC. Her education includes a degree and further specialization in Medical Oncology at Università degli Studi in Milan. She achieved a Master Degree in Oncology management at University of Economics “Luigi Bocconi”. She completed her training with an ESMO Clinical fellowship in 2009 at Christie’s Hospital in Manchester (UK). She was a member of the EMA SAG (Scientific Advisory Group). She is serving as ESMO Council member as the Chair of the National Societies Committee. She was the ESMO National Representative for Italy for 5 years (2011-2017). She is serving on several ESMO Committees (Public Policy extended Committee, Press Committee, Women for Oncology Committee, Lung Cancer faculty, Membership Committee).She used to be an active member of the Young Oncologist Committee. She’s serving on both ESMO, WCLC and ASCO annual congress Lung Cancer Track (2019, and 2020), Chair of ESMO National Societies, from 2019. She is the founder and president of Women for Oncology Italy.

  • 2 million confirmed cases but half of patients are asymptomatic and not tested; pooled prevalance of COVID in cancer patients in Italy was 2%; must take them as high risk patients
  • they were not prepared for pandemic lasting for months instead of days; March 15 in middle of outbreak they started TERAVOLT registry; by March 26 had IRB approval; they are accruing 17 new patients per week; Ontario also joined in and has become worldwide (21 countries involved);  in registry they also included radiologic exams and COVID testing result
  • most patients were males and many smokers; 75% had SCLC; 83% of cases had one comorbility like hypertension and one third had at least one comorbility; 73.9% of patients were on treatment (they see this in their clinic: 30% on chemo or TKI alone; other patients were just on folowup
  • most of symptoms overlap with symptoms of lung cancer like pneumonia and pneumonitits and multi organ failure; most were hospitalized
  • unexpected high mortality among lung cancer patients with COVID19; this mortality seems due to COVID and not to cancer;
  • study had some limitations like short followup and some surgical cases so some bias may be present
  • she stresses don’t go it alone and make your own registry JOIN A REGISTRY

 

Outcome of cancer patients infected with COVID-19, including toxicity of cancer treatments
Fabrice Barlesi @barlesi
Gustave Roussy Cancer Campus

Professor Fabrice Barlesi
 As a specialist in lung cancer, precision medicine and cancer immunology, Prof. Fabrice Barlesi is a major contributor to research in the field of novel oncological therapies. He was apppointed General Director of Gustave Roussy in January 2020.
Fabrice Barlesi is Professor of Medicine at the University of Aix-Marseille. He has been head of the Multidisciplinary Oncology and Innovative Therapies Department of the Nord Hospital in Marseille (Marseille Public Hospitals) and the Marseille Centre for Early Trials in Oncology (CLIP2) which were established by him. He holds a doctorate in Sciences and Management with methods of analysis of health care systems, together with an ESSEC (international business school) master’s degree in general hospital management.
Professor Barlesi was also a co-founder of the Marseille Immunopôle French Immunology network, which aims to coordinate immunological expertise in the Aix-Marseille metropolitan area. In this context, he has organised PIONeeR (Investment in the future RHU 2017), the major international Hospital-University research project whose objective is to improve understanding of resistance to immunotherapy – anti-PD1(L1) – in lung cancer and help to prevent and overcome it. He was also vice-chair of the PACA (Provence, Alps and Côte d’Azur) Region Cancer Research Directorate.
Professor Barlesi is the author and co-author of some 300 articles in international journals and specialist publications. In 2018, the European Society of Medical Oncology (ESMO) and the International Association for the Study of Lung Cancer (IASLC) awarded him the prestigious Heine H. Hansen prize. He appears in the 2019 world list of most influential researchers (Highly cited researchers, Web of Science Group).
  • March 14 started protective measures and at peak had increased commited beds at highest rate
  • 12% of cancer patients tested positive for COVID; (by RTPCR); they curated data across different chemo regimens used
  • they retrospectively collected data; primary endpoint was clinical worsening; median of disease 13 days;
  • they actually had more breast cancer patients and other solid malignancies; 23% of covid cases no symptoms; 83% finally did have the symptoms after followup; diarhea actually in 10% of cases so clinics are seeing this as a symptom
  • CT scan showed 66% cases had pneumonitits like display; 25% patients were managed as outpatient
  • 24% patients worsened during treatment but 75% were able to go home (treated at home or well)
  • I/O did not have negative outcome and you can use these drugs without increasing risk to COVID
  • although many clinical trials have been hindered they are actively recruiting for COVID-cancer studies
  • outcomes with respect to death and symptoms are comparable to worldwide stats

Adapting oncologic practice to COVID19 outbreak: From outpatient triage to risk assessment for specific treatment in Madrid, Spain
Carlos Gomez-Martin
Octubre University Hospital

  • MOST slides were DO NOT POST so as requested data will not be shown; this study will be published soon
  • Summary is that Spain is seeing statistics like other European countries and similar results
  • Tocilizumab, the IL6 antagonists had been suggested as a treatment for cytokine storm and they are involved in a trial with this agent; results will be published

Experience in using oncology drugs in patients with COVID-19

Paolo A. Ascierto
Istituto Nazionale Tumori IRCCS Fondazione Pascale

  • giving surgery only for patients at highest risk of cancer mortality so using neoadjuvant therapy more often
  • telemedicine is a viable strategy for patient consult
  • for metastatic melanoma they are given highest priority for treatment
  • they are conducting a tocilizumab clinical trial and have accrued over 300 patients
  • results are in press so please look for publication soon
  • also can use TNF inhibitor, JAK inhibitor, IL1 inhibitor to treat cytokine storm

COVID-19 and cancer: Flattening the curve but widening disparities
Louis P. Voigt
Memorial Sloan Kettering Cancer Center

  • Sloan has performed about 5000 COVID tests;  78 patients needed hospitilization; 15 died; 40% still in ICU
  • they do see many African American patients
  • mortality rates in US (published) have been around 50-60 % for cancer patients with COVID; Sloan prelim results are lower but still accruing data

Patients with cancer appear more vulnerable to SARS-COV-2: A multi-center study during the COVID-19 outbreak
Hongbing Cai
Zhongnan Hospital of Wuhan University

  • metastatic cancer showed much higher risk than non cancer but non metastatic showed increased risk too
  • main criteria of outcome was ICU admission
  • patients need to be isolated and personalized treatment plans need to be made
  • many comparisons were between non cancer and cancer which was clearest significance; had not looked at cancer types or stage grade or treatment
  • it appears that there are more questions right now than answers so data collection is a priority

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

For other Articles on the Online Open Access Journal on COVID19 and Cancer please see

https://pharmaceuticalintelligence.com/coronavirus-portal/

Opinion Articles from the Lancet: COVID-19 and Cancer Care in China and Africa

Actemra, immunosuppressive which was designed to treat rheumatoid arthritis but also approved in 2017 to treat cytokine storms in cancer patients SAVED the sickest of all COVID-19 patients

The Second in a Series of Virtual Town Halls with Leading Oncologist on Cancer Patient Care during COVID-19 Pandemic: What you need to know

Responses to the COVID-19 outbreak from Oncologists, Cancer Societies and the NCI: Important information for cancer patients

 

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Minisymposium on AACR Project Genie & Bioinformatics 4:00 PM – 6:00 PM

SESSION VMS.MD01.01 – Advancing Cancer Research through an International Cancer Registry: AACR Project GENIE Use Cases
 
Reporter: Stephen J. Williams, PhD

April 27, 2020, 4:00 PM – 6:00 PM
Virtual Meeting: All Session Times Are U.S. EDT

Session Type
Virtual Minisymposium
Track(s)
Bioinformatics and Systems Biology
17 Presentations
4:00 PM – 6:00 PM
– Chairperson Gregory J. Riely. Memorial Sloan Kettering Cancer Center, New York, NY

4:00 PM – 4:01 PM
– Introduction Gregory J. Riely. Memorial Sloan Kettering Cancer Center, New York, NY

Precision medicine requires an end-to-end learning healthcare system, wherein the treatment decisions for patients are informed by the prior experiences of similar patients. Oncology is currently leading the way in precision medicine because the genomic and other molecular characteristics of patients and their tumors are routinely collected at scale. A major challenge to realizing the promise of precision medicine is that no single institution is able to sequence and treat sufficient numbers of patients to improve clinical-decision making independently. To overcome this challenge, the AACR launched Project GENIE (Genomics Evidence Neoplasia Information Exchange).

AACR Project GENIE is a publicly accessible international cancer registry of real-world data assembled through data sharing between 19 of the leading cancer centers in the world. Through the efforts of strategic partners Sage Bionetworks (https://sagebionetworks.org) and cBioPortal (www.cbioportal.org), the registry aggregates, harmonizes, and links clinical-grade, next-generation cancer genomic sequencing data with clinical outcomes obtained during routine medical practice from cancer patients treated at these institutions. The consortium and its activities are driven by openness, transparency, and inclusion, ensuring that the project output remains accessible to the global cancer research community for the benefit of all patients.AACR Project GENIE fulfills an unmet need in oncology by providing the statistical power necessary to improve clinical decision-making, particularly in the case of rare cancers and rare variants in common cancers. Additionally, the registry can power novel clinical and translational research.

Because we collect data from nearly every patient sequenced at participating institutions and have committed to sharing only clinical-grade data, the GENIE registry contains enough high-quality data to power decision making on rare cancers or rare variants in common cancers. We see the GENIE data providing another knowledge turn in the virtuous cycle of research, accelerating the pace of drug discovery, improving the clinical trial design, and ultimately benefiting cancer patients globally.

 

The first set of cancer genomic data aggregated through AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) was available to the global community in January 2017.  The seventh data set, GENIE 7.0-public, was released in January 2020 adding more than 9,000 records to the database. The combined data set now includes nearly 80,000 de-identified genomic records collected from patients who were treated at each of the consortium’s participating institutions, making it among the largest fully public cancer genomic data sets released to date.  These data will be released to the public every six months. The public release of the eighth data set, GENIE 8.0-public, will take place in July 2020.

The combined data set now includes data for over 80 major cancer types, including data from greater than 12,500 patients with lung cancer, nearly 11,000 patients with breast cancer, and nearly 8,000 patients with colorectal cancer.

For more details about the data, analyses, and summaries of the data attributes from this release, GENIE 7.0-public, consult the data guide.

Users can access the data directly via cbioportal, or download the data directly from Sage Bionetworks. Users will need to create an account for either site and agree to the terms of access.

For frequently asked questions, visit our FAQ page.

  • In fall of 2019 AACR announced the Bio Collaborative which collected pan cancer data in conjuction and collaboration and support by a host of big pharma and biotech companies
  • they have a goal to expand to more than 6 cancer types and more than 50,000 records including smoking habits, lifestyle data etc
  • They have started with NSCLC have have done mutational analysis on these
  • included is tumor mutational burden and using cbioportal able to explore genomic data even further
  • treatment data is included as well
  • need to collect highly CURATED data with PRISM backbone to get more than outcome data, like progression data
  • they might look to incorporate digital pathology but they are not there yet; will need good artificial intelligence systems

 

4:01 PM – 4:15 PM
– Invited Speaker Gregory J. Riely. Memorial Sloan Kettering Cancer Center, New York, NY

4:15 PM – 4:20 PM
– Discussion

4:20 PM – 4:30 PM
1092 – A systematic analysis of BRAF mutations and their sensitivity to different BRAF inhibitors: Zohar Barbash, Dikla Haham, Liat Hafzadi, Ron Zipor, Shaul Barth, Arie Aizenman, Lior Zimmerman, Gabi Tarcic. Novellusdx, Jerusalem, Israel

Abstract: The MAPK-ERK signaling cascade is among the most frequently mutated pathways in human cancer, with the BRAF V600 mutation being the most common alteration. FDA-approved BRAF inhibitors as well as combination therapies of BRAF and MEK inhibitors are available and provide survival benefits to patients with a BRAF V600 mutation in several indications. Yet non-V600 BRAF mutations are found in many cancers and are even more prevalent than V600 mutations in certain tumor types. As the use of NGS profiling in precision oncology is becoming more common, novel alterations in BRAF are being uncovered. This has led to the classification of BRAF mutations, which is dependent on its biochemical properties and affects it sensitivity to inhibitors. Therefore, annotation of these novel variants is crucial for assigning correct treatment. Using a high throughput method for functional annotation of MAPK activity, we profiled 151 different BRAF mutations identified in the AACR Project GENIE dataset, and their response to 4 different BRAF inhibitors- vemurafenib and 3 different exploratory 2nd generation inhibitors. The system is based on rapid synthesis of the mutations and expression of the mutated protein together with fluorescently labeled reporters in a cell-based assay. Our results show that from the 151 different BRAF mutations, ~25% were found to activate the MAPK pathway. All of the class 1 and 2 mutations tested were found to be active, providing positive validation for the method. Additionally, many novel activating mutations were identified, some outside of the known domains. When testing the response of the active mutations to different classes of BRAF inhibitors, we show that while vemurafenib efficiently inhibited V600 mutations, other types of mutations and specifically BRAF fusions were not inhibited by this drug. Alternatively, the second-generation experimental inhibitors were effective against both V600 as well as non-V600 mutations. Using this large-scale approach to characterize BRAF mutations, we were able to functionally annotate the largest number of BRAF mutations to date. Our results show that the number of activating variants is large and that they possess differential sensitivity to different types of direct inhibitors. This data can serve as a basis for rational drug design as well as more accurate treatment options for patients.

  • Molecular profiling is becoming imperative for successful  targeted therapies
  • 500 unique mutations in BRAF so need to use bioinformatic pipeline; start with NGS panels then cluster according to different subtypes or class specific patterns
  • certain mutation like V600E mutations have distinct clustering in tumor types
  • 25% of mutations occur with other mutations; mutations may not be functional; they used highthruput system to analyze other V600 braf mutations to determine if functional
  • active yet uncharacterized BRAF mutations seen in a major proportion of human tumors
  • using genomic drug data found that many inhibitors like verafanib are specific to a specific mutation but other inhibitors that are not specific to a cleft can inhibit other BRAF mutants
  • 40% of 135 mutants were functionally active
  • USE of Functional Profiling instead of just genomic profiling
  • Q?: They have already used this platform and analysis for RTKs and other genes as well successfully
  • Q? how do you deal with co reccuring mutations: platform is able to do RTK plus signaling protiens

4:30 PM – 4:35 PM
– Discussion

4:35 PM – 4:45 PM
1093 – Calibration Tool for Genomic Aggregates (CTGA): A deep learning framework for calibrating somatic mutation profiling data from conventional gene panel data. Jordan Anaya, Craig Cummings, Jocelyn Lee, Alexander Baras. Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, MD, Genentech, Inc., CA, AACR, Philadelphia, PA

Abstract: It has been suggested that aggregate genomic measures such as mutational burden can be associated with response to immunotherapy. Arguably, the gold standard for deriving such aggregate genomic measures (AGMs) would be from exome level sequencing. While many clinical trials run exome level sequencing, the vast majority of routine genomic testing performed today, as seen in AACR Project GENIE, is targeted / gene-panel based sequencing.
Despite the smaller size of these gene panels focused on clinically targetable alterations, it has been shown they can estimate, to some degree, exomic mutational burden; usually by normalizing mutation count by the relevant size of the panels. These smaller gene panels exhibit significant variability both in terms of accuracy relative to exomic measures and in comparison to other gene panels. While many genes are common to the panels in AACR Project GENIE, hundreds are not. These differences in extent of coverage and genomic loci examined can result in biases that may negatively impact panel to panel comparability.
To address these issues we developed a deep learning framework to model exomic AGMs, such as mutational burden, from gene panel data as seen in AACR Project GENIE. This framework can leverage any available sample and variant level information, in which variants are featurized to effectively re-weight their importance when estimating a given AGM, such as mutational burden, through the use of multiple instance learning techniques in this form of weakly supervised data.
Using TCGA data in conjunction with AACR Project GENIE gene panel definitions, as a proof of concept, we first applied this framework to learn expected variant features such as codons and genomic position from mutational data (greater than 99.9% accuracy observed). Having established the validity of the approach, we then applied this framework to somatic mutation profiling data in which we show that data from gene panels can be calibrated to exomic TMB and thereby improve panel to panel compatibility. We observed approximately 25% improvements in mean squared error and R-squared metrics when using our framework over conventional approaches to estimate TMB from gene panel data across the 9 tumors types examined (spanning melanoma, lung cancer, colon cancer, and others). This work highlights the application of sophisticated machine learning approaches towards the development of needed calibration techniques across seemingly disparate gene panel assays used clinically today.

 

4:45 PM – 4:50 PM
– Discussion

4:50 PM – 5:00 PM
1094 – Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivoGiorgia Foggetti, Chuan Li, Hongchen Cai, Wen-Yang Lin, Deborah Ayeni, Katherine Hastings, Laura Andrejka, Dylan Maghini, Robert Homer, Dmitri A. Petrov, Monte M. Winslow, Katerina Politi. Yale School of Medicine, New Haven, CT, Stanford University School of Medicine, Stanford, CA, Stanford University School of Medicine, Stanford, CA, Yale School of Medicine, New Haven, CT, Stanford University School of Medicine, Stanford, CA, Yale School of Medicine, New Haven, CT

5:00 PM – 5:05 PM
– Discussion

5:05 PM – 5:15 PM
1095 – Comprehensive pan-cancer analyses of RAS genomic diversityRobert Scharpf, Gregory Riely, Mark Awad, Michele Lenoue-Newton, Biagio Ricciuti, Julia Rudolph, Leon Raskin, Andrew Park, Jocelyn Lee, Christine Lovly, Valsamo Anagnostou. Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, Memorial Sloan Kettering Cancer Center, New York, NY, Dana-Farber Cancer Institute, Boston, MA, Vanderbilt-Ingram Cancer Center, Nashville, TN, Amgen, Inc., Thousand Oaks, CA, AACR, Philadelphia, PA

5:15 PM – 5:20 PM
– Discussion

5:20 PM – 5:30 PM
1096 – Harmonization standards from the Variant Interpretation for Cancer Consortium. Alex H. Wagner, Reece K. Hart, Larry Babb, Robert R. Freimuth, Adam Coffman, Yonghao Liang, Beth Pitel, Angshumoy Roy, Matthew Brush, Jennifer Lee, Anna Lu, Thomas Coard, Shruti Rao, Deborah Ritter, Brian Walsh, Susan Mockus, Peter Horak, Ian King, Dmitriy Sonkin, Subha Madhavan, Gordana Raca, Debyani Chakravarty, Malachi Griffith, Obi L. Griffith. Washington University School of Medicine, Saint Louis, MO, Reece Hart Consulting, CA, Broad Institute, Boston, MA, Mayo Clinic, Rochester, MN, Washington University School of Medicine, Saint Louis, MO, Washington University School of Medicine, Saint Louis, MO, Baylor College of Medicine, Houston, TX, Oregon Health and Science University, Portland, OR, National Cancer Institute, Bethesda, MD, Georgetown University, Washington, DC, The Jackson Laboratory for Genomic Medicine, Farmington, CT, National Center for Tumor Diseases, Heidelberg, Germany, University of Toronto, Toronto, ON, Canada, University of Southern California, Los Angeles, CA, Memorial Sloan Kettering Cancer Center, New York, NY

Abstract: The use of clinical gene sequencing is now commonplace, and genome analysts and molecular pathologists are often tasked with the labor-intensive process of interpreting the clinical significance of large numbers of tumor variants. Numerous independent knowledge bases have been constructed to alleviate this manual burden, however these knowledgebases are non-interoperable. As a result, the analyst is left with a difficult tradeoff: for each knowledgebase used the analyst must understand the nuances particular to that resource and integrate its evidence accordingly when generating the clinical report, but for each knowledgebase omitted there is increased potential for missed findings of clinical significance.The Variant Interpretation for Cancer Consortium (VICC; cancervariants.org) was formed as a driver project of the Global Alliance for Genomics and Health (GA4GH; ga4gh.org) to address this concern. VICC members include representatives from several major somatic interpretation knowledgebases including CIViC, OncoKB, Jax-CKB, the Weill Cornell PMKB, the IRB-Barcelona Cancer Biomarkers Database, and others. Previously, the VICC built and reported on a harmonized meta-knowledgebase of 19,551 biomarker associations of harmonized variants, diseases, drugs, and evidence across the constituent resources.In that study, we analyzed the frequency with which the tumor samples from the AACR Project GENIE cohort would match to harmonized associations. Variant matches increased dramatically from 57% to 86% when broader matching to regions describing categorical variants were allowed. Unlike precise sequence variants with specified alternate alleles, categorical variants describe a collection of potential variants with a common feature, such as “V600” (non-valine alleles at the 600 residue), “Exon 20 mutations” (all non-silent mutations in exon 20), or “Gain-of-function” (hypermorphic alterations that activate or amplify gene activity). However, matching observed sequence variants to categorical variants is challenging, as the latter are typically only described as unstructured text. Here we describe the expressive and computational GA4GH Variation Representation specification (vr-spec.readthedocs.io), which we co-developed as members of the GA4GH Genomic Knowledge Standards work stream. This specification provides a schema for common, precise forms of variation (e.g. SNVs and Indels) and the method for computing identifiers from these objects. We highlight key aspects of the specification and our work to apply it to the characterization of categorical variation, showcasing the variant terminology and classification tools developed by the VICC to support this effort. These standards and tools are free, open-source, and extensible, overcoming barriers to standardized variant knowledge sharing and search.

https://cancervariants.org/

  • store information from different databases by curating them and classifying them then harmonizing them into values
  • harmonize each variant across their knowledgebase; at any level of evidence
  • had 29% of patients variants that matched when compare across many knowledgebase databases versus only 13% when using individual databases
  • they are also trying to curate the database so a variant will have one code instead of various refseq codes or protein codes
  • VIC is an open consortium

 

 

5:30 PM – 5:35 PM
– Discussion

5:35 PM – 5:45 PM
1097 – FGFR2 in-frame indels: A novel targetable alteration in intrahepatic cholangiocarcinoma. Yvonne Y. Li, James M. Cleary, Srivatsan Raghavan, Liam F. Spurr, Qibiao Wu, Lei Shi, Lauren K. Brais, Maureen Loftus, Lipika Goyal, Anuj K. Patel, Atul B. Shinagare, Thomas E. Clancy, Geoffrey Shapiro, Ethan Cerami, William R. Sellers, William C. Hahn, Matthew Meyerson, Nabeel Bardeesy, Andrew D. Cherniack, Brian M. Wolpin. Dana-Farber Cancer Institute, Boston, MA, Dana-Farber Cancer Institute, Boston, MA, Massachusetts General Hospital, Boston, MA, Brigham and Women’s Hospital, Boston, MA, Dana-Farber Cancer Institute, Boston, MA, Dana-Farber Cancer Institute, Boston, MA, Broad Institute of MIT and Harvard, Cambridge, MA, Massachusetts General Hospital, Boston, MA

5:45 PM – 5:50 PM
– Discussion

5:50 PM – 6:00 PM
– Closing RemarksGregory J. Riely. Memorial Sloan Kettering Cancer Center, New York, NY

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

#AACR2020

#curecancernow

#pharmanews

Read Full Post »

Older Posts »

%d bloggers like this: