Posts Tagged ‘Cancer screening’

FDA approves blood-based colorectal screen

Larry H. Bernstein, MD, FCAP, Curator



FDA Clears First Blood-Based Colorectal Cancer Screening Test.
Lab Soft News by Bruce Friedman

In the upcoming months, there surely will be an increasing number of blood-based genomic cancer tests approved by the FDA. This specific test market is just too attractive. In a recent note, I discussed some of these testing initiatives from the perspective of companion diagnostics (see: An Expanding Definition for Companion Diagnostics). This form of testing in used in collaboration with cancer therapy to select the right drug or monitor the effectiveness of drug therapy. Obviously and of equal importance are biomarkers intended for cancer screening. A recent article reported that the FDA has cleared the first blood-based screening test for colorectal cancer (see: FDA Clears First Blood-Based Colorectal Cancer Screening Test), Below is an excerpt from it:

The first blood-based colorectal cancer (CRC) screening test, Epi proColon...has been approved by the US Food and Drug Administration (FDA)….The Epi proColon test is a qualitative in vitro diagnostic test for detecting methylated Septin9 DNA, which has been associated with the occurrence of CRC, in plasma obtained from whole-blood specimens. It is indicated for use in average-risk patients who have chosen not to undergo other screening methods, such as colonoscopy or stool-based tests.The test was recommended for FDA approval in 2014 by the Molecular and Clinical Genetics Panel of the FDA’s Medical Devices Advisory Committee, but some of the experts were not convinced….The agency approved the Epi proColon test for CRC screening in average-risk patients (as defined by current screening guidelines) who choose not to be screened by colonoscopy or a stool-based FIT [fecal immunochemical test for occult blood in the stool].The Epi proColon blood test for CRC screening can be performed during routine office visits. It requires no dietary restrictions or alterations in medication use. The blood sample is analyzed by a local or regional diagnostic laboratory….The company will initiate a postapproval study to show the long-term benefit of blood-based CRC screening using Epi proColon, as required by the FDA.

Here’s more information about Septin9 DNA (see: Plasma methylated septin 9: a colorectal cancer screening marker):

The biomarker septin 9 has been found to be hypermethylated in nearly 100% of tissue neoplasia specimens and detected in circulating DNA fractions of CRC patients. A commercially available assay for septin 9 has been developed with moderate sensitivity (∼70%) and specificity (∼90%) and a second generation assay, Epi proColon 2.0 (Epigenomics AG), shows increased sensitivity (∼92%).The performance of the assay proved to be independent of tumor site and reaches a high sensitivity of 77%, even in early cancer stages (I and II). Furthermore, septin 9 was recently used in follow-up studies for detection of early recurrence of CRC. 

There is clearly a need for a blood-based biomarker for colorectal cancer screening. Patients tend to dislike the home stool collection that is required for fecal immunochemical tests for occult blood in the stool (FIT). Moreover, testing for blood in the stool offers a somewhat crude substitute for the identification of reliable cancer biomarkers in the blood. It must be noted, however, that some of the FDA experts in 2014 were not convinced that the septic 9 biomarker offered advantages over FIT.

I am not sure that septin 9 will be the final and most efficient biomarker for CRC but I am sure of two things. The first is that there will eventually be a high-specificity, high-sensitivity blood test for CRC. The second is that probably tens of billions of dollars would be saved by the elimination of screening colonoscopies for CRC by such a test. I found an article dating way back to 2002 about the number of screening endoscopies performed in the U.S. but the numbers are sill impressive  (see: How many endoscopies are performed for colorectal cancer screening?) Here is a quote from it: “Approximately 2.8 million flexible sigmoidoscopes and 14.2 million colonoscopies were estimated to have been performed in 2002.” Needless to say, many gastroenterologists and radiologists may be hoping that such a lab test does not reach the market soon.

Septin-9 is a protein that in humans is encoded by the SEPT9 gene.[1][2][3

SEPT9 has been shown to interact with SEPT2[4] and SEPT7.[4]

Along with AHNAK, eIF4E and S100A11, SEPT9 has been shown to be essential for pseudopod protrusion, tumor cell migration and invasion.[5]

The v2 region of the SEPT9 promoter has been shown to be methylated in colorectal cancer tissue compared with normal colonic mucosa.[6] Using highly sensitive real time PCR assays, methylated SEPT9 was detected in the blood of colorectal cancer patients. This alternate methylation pattern in cancer samples is suggestive of an aberrant activation or repression of the gene compared to normal tissue samples.[7][8]


Read Full Post »

Follow-up on Tomosynthesis

Writer & Curator: Dror Nir, PhD

Tomosynthesis, is a method for performing high-resolution limited-angle (i.e. not full 3600 rotation but more like ~500) tomography. The use of such systems in breast-cancer screening is steadily increasing following the clearance of such system by the FDA on 2011; see my posts – Improving Mammography-based imaging for better treatment planning and State of the art in oncologic imaging of breast.

Many radiologists expects that Tomosynthesis will eventually replace conventional mammography due to the fact that it increases the sensitivity of breast cancer detection. This claim is supported by new peer-reviewed publications. In addition, the patient’s experience during Tomosynthesis is less painful due to a lesser pressure that is applied to the breast and while presented with higher in-plane resolution and less imaging artifacts the mean glandular dose of digital breast Tomosynthesis is comparable to that of full field digital mammography. Because it is relatively new, Tomosynthesis is not available at every hospital. As well, the procedure is recognized for reimbursement by public-health schemes.

A good summary of radiologist opinion on Tomosynthesis can be found in the following video:

Recent studies’ results with digital Tomosynthesis are promising. In addition to increase in sensitivity for detection of small cancer lesions researchers claim that this new breast imaging technique will make breast cancers easier to see in dense breast tissue.  Here is a paper published on-line by the Lancet just a couple of months ago:

Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study

Stefano Ciatto†, Nehmat Houssami, Daniela Bernardi, Francesca Caumo, Marco Pellegrini, Silvia Brunelli, Paola Tuttobene, Paola Bricolo, Carmine Fantò, Marvi Valentini, Stefania Montemezzi, Petra Macaskill , Lancet Oncol. 2013 Jun;14(7):583-9. doi: 10.1016/S1470-2045(13)70134-7. Epub 2013 Apr 25.

Background Digital breast tomosynthesis with 3D images might overcome some of the limitations of conventional 2D mammography for detection of breast cancer. We investigated the effect of integrated 2D and 3D mammography in population breast-cancer screening.

Methods Screening with Tomosynthesis OR standard Mammography (STORM) was a prospective comparative study. We recruited asymptomatic women aged 48 years or older who attended population-based breast-cancer screening through the Trento and Verona screening services (Italy) from August, 2011, to June, 2012. We did screen-reading in two sequential phases—2D only and integrated 2D and 3D mammography—yielding paired data for each screen. Standard double-reading by breast radiologists determined whether to recall the participant based on positive mammography at either screen read. Outcomes were measured from final assessment or excision histology. Primary outcome measures were the number of detected cancers, the number of detected cancers per 1000 screens, the number and proportion of false positive recalls, and incremental cancer detection attributable to integrated 2D and 3D mammography. We compared paired binary data with McNemar’s test.

Findings 7292 women were screened (median age 58 years [IQR 54–63]). We detected 59 breast cancers (including 52 invasive cancers) in 57 women. Both 2D and integrated 2D and 3D screening detected 39 cancers. We detected 20 cancers with integrated 2D and 3D only versus none with 2D screening only (p<0.0001). Cancer detection rates were 5·3 cancers per 1000 screens (95% CI 3.8–7.3) for 2D only, and 8.1 cancers per 1000 screens (6.2–10.4) for integrated 2D and 3D screening. The incremental cancer detection rate attributable to integrated 2D and 3D mammography was 2.7 cancers per 1000 screens (1.7–4.2). 395 screens (5.5%; 95% CI 5.0–6.0) resulted in false positive recalls: 181 at both screen reads, and 141 with 2D only versus 73 with integrated 2D and 3D screening (p<0·0001). We estimated that conditional recall (positive integrated 2D and 3D mammography as a condition to recall) could have reduced false positive recalls by 17.2% (95% CI 13.6–21.3) without missing any of the cancers detected in the study population.

Interpretation Integrated 2D and 3D mammography improves breast-cancer detection and has the potential to reduce false positive recalls. Randomised controlled trials are needed to compare integrated 2D and 3D mammography with 2D mammography for breast cancer screening.

Funding National Breast Cancer Foundation, Australia; National Health and Medical Research Council, Australia; Hologic, USA; Technologic, Italy.


Although controversial, mammography screening is the only population-level early detection strategy that has been shown to reduce breast-cancer mortality in randomised trials.1,2 Irrespective of which side of the mammography screening debate one supports,1–3 efforts should be made to investigate methods that enhance the quality of (and hence potential benefit from) mam­mography screening. A limitation of standard 2D mammography is the superimposition of breast tissue or parenchymal density, which can obscure cancers or make normal structures appear suspicious. This short coming reduces the sensitivity of mammography and increases false-positive screening. Digital breast tomosynthesis with 3D images might help to overcome these limitations. Several reviews4,5 have described the development of breast tomosynthesis technology, in which several low-dose radiographs are used to reconstruct a pseudo-3D image of the breast.4–6

Initial clinical studies of 3D mammography, 6–10 though based on small or selected series, suggest that addition of 3D to 2D mammography could improve cancer detection and reduce the number of false positives. However, previous assessments of breast tomosynthesis might have been constrained by selection biases that distorted the potential effect of 3D mammography; thus, screening trials of integrated 2D and 3D mammography are needed.6

We report the results of a large prospective study (Screening with Tomosynthesis OR standard Mammog­raphy [STORM]) of 3D digital mammography. We investi­gated the effect of screen-reading using both standard 2D and 3D imaging with tomosynthesis compared with screening with standard 2D digital mammography only for population breast-cancer screening.



Study design and participants

STORM is a prospective population-screening study that compares mammography screen-reading in two sequential phases (figure)—2D only versus integrated 2D and 3D mammography with tomosynthesis—yielding paired results for each screening examination. Women aged 48 years or older who attended population-based screening through the Trento and Verona screening services, Italy, from August, 2011, to June, 2012, were invited to be screened with integrated 2D and 3D mammography. Participants in routine screening mammography (once every 2 years) were asymptomatic women at standard (population) risk for breast cancer. The study was granted institutional ethics approval at each centre, and participants gave written informed consent. Women who opted not to participate in the study received standard 2D mammography. Digital mammography has been used in the Trento breast-screening programme since 2005, and in the Verona programme since 2007; each service monitors outcomes and quality indicators as dictated by European standards, and both have published data for screening performance.11,12


study design


All participants had digital mammography using a Selenia Dimensions Unit with integrated 2D and 3D mammography done in the COMBO mode (Hologic, Bedford, MA, USA): this setting takes 2D and 3D images at the same screening examination with a single breast position and compression. Each 2D and 3D image consisted of a bilateral two-view (mediolateral oblique and craniocaudal) mammogram. Screening mammo­grams were interpreted sequentially by radiologists, first on the basis of standard 2D mammography alone, and then by the same radiologist (on the same day) on the basis of integrated 2D and 3D mammography (figure). Thus, integrated 2D and 3D mammography screening refers to non-independent screen reading based on joint interpretation of 2D and 3D images, and does not refer to analytical combinations. Radiologists had to record whether or not to recall the participant at each screen-reading phase before progressing to the next phase of the sequence. For each screen, data were also collected for breast density (at the 2D screen-read), and the side and quadrant for any recalled abnormality (at each screen-read). All eight radiologists were breast radiologists with a mean of 8 years (range 3–13 years) experience in mammography screening, and had received basic training in integrated 2D and 3D mammography. Several of the radiologists had also used 2D and 3D mammography for patients recalled after positive conventional mammography screening as part of previous studies of tomosynthesis.8,13

Mammograms were interpreted in two independent screen-reads done in parallel, as practiced in most population breast-screening programs in Europe. A screen was considered positive and the woman recalled for further investigations if either screen-reader recorded a positive result at either 2D or integrated 2D and 3D screening (figure). When previous screening mammograms were available, these were shown to the radiologist at the time of screen-reading, as is standard practice. For assessment of breast density, we used Breast Imaging Reporting and Data System (BI-RADS)14 classification, with participants allocated to one of two groups (1–2 [low density] or 3–4 [high density]). Disagreement between readers about breast density was resolved by assessment by a third reader.

Our primary outcomes were the number of cancers detected, the number of cancers detected per 1000 screens, the number and percentage of false posi­tive recalls, and the incremental cancer detection rate attributable to integrated 2D and 3D mammography screening. We compared the number of cancers that were detected only at 2D mammography screen-reading and those that were detected only at 2D and 3D mammography screen-reading; we also did this analysis for false positive recalls. To explore the potential effect of integrated 2D and 3D screening on false-positive recalls, we also estimated how many false-positive recalls would have resulted from using a hypothetical conditional false-positive recall approach; – i.e. positive integrated 2D and 3D mammography as a condition of recall (screening recalled at 2D mammography only would not be recalled). Pre-planned secondary analyses were comparison of outcome measures by age group and breast density.

Outcomes were assessed by excision histology for participants who had surgery, or the complete assessment outcome (including investigative imaging with or without histology from core needle biopsy) for all recalled participants. Because our study focuses on the difference in detection by the two screening methods, some cancers might have been missed by both 2D and integrated 2D and 3D mammography; this possibility could be assessed at future follow-up to identify interval cancers. However, this outcome is not assessed in the present study and does not affect estimates of our primary outcomes – i.e. comparative true or false positive detection for 2D-only versus integrated 2D and 3D mammography.


Statistical analysis

The sample size was chosen to provide 80% power to detect a difference of 20% in cancer detection, assuming a detection probability of 80% for integrated 2D and 3D screening mammography and 60% for 2D only screening, with a two-sided significance threshold of 5%. Based on the method of Lachenbruch15 for estimating sample size for studies that use McNemar’s test for paired binary data, a minimum of 40 cancers were needed. Because most screens in the participating centres were incident (repeat) screening (75%–80%), we used an underlying breast-cancer prevalence of 0·5% to estimate that roughly 7500–8000 screens would be needed to identify 40 cancers in the study population.

We calculated the Wilson CI for the false-positive recall ratio for integrated 2D and 3D screening with conditional recall compared with 2D only screening.16 All of the other analyses were done with SAS/STAT (version 9.2), using exact methods to compute 95 CIs and p-values.

Role of the funding source

The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author (NH) had full access to all the data in the study and had final responsibility for the decision to submit for publication.


7292 participants with a median age of 58 years (IQR 54–63, range 48–71) were screened between Aug 12, 2011, and June 29, 2012. Roughly 5% of invited women declined integrated 2D and 3D screening and received standard 2D mammography. We present data for 7294 screens because two participants had bilateral cancer (detected with different screen-reading techniques for one participant). We detected 59 breast cancers in 57 participants (52 invasive cancers and seven ductal carcinoma in-situ). Of the invasive cancers, most were invasive ductal (n=37); others were invasive special types (n=7), invasive lobular (n=4), and mixed invasive types (n=4).

Table 1 shows the characteristics of the cancers. Mean tumour size (for the invasive cancers with known exact size) was 13.7 mm (SD 5.8) for cancers detected with both 2D alone and integrated 2D and 3D screening (n=29), and 13.5 mm (SD 6.7) for cancers detected only with integrated 2D and 3D screening (n=13).


Table 1

Of the 59 cancers, 39 were detected at both 2D and integrated 2D and 3D screening (table 2). 20 cancers were detected with only integrated 2D and 3D screening compared with none detected with only 2D screening (p<0.0001; table 2). 395 screens were false positive (5.5%, 95% CI 5.0–6.0); 181 occurred at both screen-readings, and 141 occurred at 2D screening only compared with 73 at integrated 2D and 3D screening (p<0.0001; table 2). These differences were still significant in sensitivity analyses that excluded the two participants with bilateral cancer (data not shown).

Table 2

5.3 cancers per 1000 screens (95% CI 3.8–7.3; table 3) were detected with 2D mammography only versus 8.1 cancers per 1000 screens (95% CI 6.2–10.4) with integrated 2D and 3D mammography (p<0.0001). The incremental cancer detection rate attributable to inte­grated 2D and 3D screening was 2.7 cancers per 1000 screens (95% CI 1.7–4.2), which is 33.9% (95% CI 22.1–47.4) of the cancers detected in the study popu­lation. In a sensitivity analysis that excluded the two participants with bilateral cancer the estimated incre­mental cancer detection rate attributable to integrated 2D and 3D screening was 2.6 cancers per 1000 screens (95% CI 1.4–3.8). The stratified results show that integrated 2D and 3D mammography was associated with an incrementally increased cancer detection rate in both age-groups and density categories (tables 3–5). A minority (16.7%) of breasts were of high density (category 3–4) reducing the power of statistical comparisons in this subgroup (table 5). The incremental cancer detection rate was much the same in low density versus high density groups (2.8 per 1000 vs 2.5 per 1000; p=0.84; table 3).

Table 3

Table 4-5

Overall recall—any recall resulting in true or false positive screens—was 6.2% (95% CI 5.7–6.8), and the false-positive rate for the 7235 screens of participants who did not have breast cancer was 5.5% (5.0–6.0). Table 6 shows the contribution to false-positive recalls from 2D mammography only, integrated 2D and 3D mammography only, and both, and the estimated number of false positives if positive integrated 2D and 3D mammography was a condition for recall (positive 2D only not recalled). Overall, more of the false-positive rate was driven by 2D mammography only than by integrated 2D and 3D, although almost half of the false-positive rate was a result of false positives recalled at both screen-reading phases (table 6). The findings were much the same when stratified by age and breast density (table 6). Had a conditional recall rule been applied, we estimate that the false-positive rate would have been 3.5% (95% CI 3.1–4.0%; table 6) and could have potentially prevented 68 of the 395 false positives (a reduction of 17.2%; 95% CI 13.6–21.3). The ratio between the number of false positives with integrated 2D and 3D screening with conditional recall (n=254) versus 2D only screening (n=322) was 0.79 (95% CI 0.71–0.87).


Our study showed that integrated 2D and 3D mam­mography screening significantly increases detection of breast cancer compared with conventional mammog­raphy screening. There was consistent evidence of an incremental improvement in detection from integrated 2D and 3D mammography across age-group and breast density strata, although the analysis by breast density was limited by low number of women with breasts of high density.

One should note that we investigated comparative cancer detection, and not absolute screening sensitivity. By integrating 2D and 3D mammography using the study screen-reading protocol, 1% of false-positive recalls resulted from 2D and 3D screen-reading only (table 6). However, significantly more false positives resulted from 2D only mammography compared with integrated 2D and 3D mammography, both overall and in the stratified analyses. Application of a conditional recall rule would have resulted in a false-positive rate of 3.5% instead of the actual false-positive rate of 5.5%. The estimated false positive recall ratio of 0.79 for integrated 2D and 3D screening with conditional recall compared with 2D only screening suggests that integrated 2D and 3D screening could reduce false recalls by roughly a fifth. Had such a condition been adopted, none of the cancers detected in the study would have been missed because no cancers were detected by 2D mammography only, although this result might be because our design allowed an independent read for 2D only mammography whereas the integrated 2D and 3D read was an interpretation of a combination of 2D and 3D imaging. We do not recommend that such a conditional recall rule be used in breast-cancer screening until our findings are replicated in other mammography screening studies—STORM involved double-reading by experienced breast radiologists, and our results might not apply to other screening settings. Using a test set of 130 mammograms, Wallis and colleagues7 report that adding tomosynthesis to 2D mammography increased the accuracy of inexperienced readers (but not of experienced readers), therefore having experienced radiologists in STORM could have underestimated the effect of integrated 2D and 3D screen-reading.

No other population screening trials of integrated 2D and 3D mammography have reported final results (panel); however, an interim analysis of the Oslo trial17 a large population screening study has shown that integrated 2D and 3D mammography substantially increases detection of breast cancer. The Oslo study investigators screened women with both 2D and 3D mammography, but randomised reading strategies (with vs without 3D mammograms) and adjusted for the different screen-readers,17whereas we used sequential screen-reading to keep the same reader for each exam­ination. Our estimates for comparative cancer detection and for cancer detection rates are consistent with those of the interim analysis of the Oslo study.17 The applied recall methods differed between the Oslo study (which used an arbitration meeting to decide recall) and the STORM study (we recalled based on a decision by either screen-reader), yet both studies show that 3D mammog­raphy reduces false-positive recalls when added to standard mammography.

An editorial in The Lancet18 might indeed signal the closing of a chapter of debate about the benefits and harms of screening. We hope that our work might be the beginning of a new chapter for mammography screening: our findings should encourage new assessments of screening using 2D and 3D mammography and should factor several issues related to our study. First, we compared standard 2D mammography with integrated 2D and 3D mammography the 3D mammograms were not interpreted independently of the 2D mammograms therefore 3D mammography only (without the 2D images) might not provide the same results. Our experience with breast tomosynthesis and a review6 of 3D mammography underscore the importance of 2D images in integrated 2D and 3D screen-reading. The 2D images form the basis of the radiologist’s ability to integrate the information from 3D images with that from 2D images. Second, although most screening in STORM was incident screening, the substantial increase in cancer detection rate with integrated 2D and 3D mammography results from the enhanced sensitivity of integrated 2D and 3D screening and is probably also a result of a prevalence effect (ie, the effect of a first screening round with integrated 2D and 3D mammography). We did not assess the effect of repeat (incident) screening with integrated 2D and 3D mammography on cancer detection it might provide a smaller effect on cancer detection rates than what we report. Third, STORM was not designed to measure biological differences between the cancers detected at integrated 2D and 3D screening compared with those detected at both screen-reading phases. Descriptive analyses suggest that, generally, breast cancers detected only at integrated 2D and 3D screening had similar features (eg, histology, pathological tumour size, node status) as those detected at both screen-reading phases. Thus, some of the cancers detected only at 2D and 3D screening might represent early detection (and would be expected to receive screening benefit) whereas some might represent over-detection and a harm from screening, as for conventional screening mam mography.1,19 The absence of consensus about over-diagnosis in breast-cancer screening should not detract from the importance of our study findings to applied screening research and to screening practice; however, our trial was not done to assess the extent to which integrated 2D and 3D mam­mography might contribute to over-diagnosis.

The average dose of glandular radiation from the many low-dose projections taken during a single acquisition of 3D mammography is roughly the same as that from 2D mammography.6,20–22 Using integrated 2D and 3D en­tails both a 2D and 3D acquisition in one breast com­pression, which roughly doubles the radiation dose to the breast. Therefore, integrated 2D and 3D mammography for population screening might only be justifiable if improved outcomes were not defined solely in terms of improved detection. For example, it would be valuable to show that the increased detection with integrated 2D and 3D screening leads to reduced interval cancer rates at follow-up. A limitation of our study might be that data for interval cancers were not available; however, because of the paired design we used, future evaluation of interval cancer rates from our study will only apply to breast cancers that were not identified using 2D only or integrated 2D and 3D screening. We know of two patients from our study who have developed interval cancers (follow-up range 8–16 months). We did not get this information from cancer registries and follow-up was very short, so these data should be interpreted very cautiously, especially because interval cancers would be expected to occur in the second year of the standard 2 year interval between screening rounds. Studies of interval cancer rates after integrated 2D and 3D mammography would need to be randomised controlled trials and have a very large sample size. Additionally, the development of reconstructed 2D images from a 3D mammogram23 provides a timely solution to concerns about radiation by providing both the 2D and 3D images from tomosynthesis, eliminating the need for two acquisitions.

We have shown that integrated 2D and 3D mammog­raphy in population breast-cancer screening increases detection of breast cancer and can reduce false-positive recalls depending on the recall strategy. Our results do not warrant an immediate change to breast-screening practice, instead, they show the urgent need for random­ised controlled trials of integrated 2D and 3D versus 2D mammography, and for further translational research in breast tomosynthesis. We envisage that future screening trials investigating this issue will include measures of breast cancer detection, and will be designed to assess interval cancer rates as a surrogate endpoint for screening efficacy.


SC had the idea for and designed the study, and collected and interpreted data. NH advised on study concepts and methods, analysed and interpreted data, searched the published work, and wrote and revised the report. DB and FC were lead radiologists, recruited participants, collected data, and commented on the draft report. MP, SB, PT, PB, PT, CF, and MV did the screen-reading, collected data, and reviewed the draft report. SM collected data and reviewed the draft report. PM planned the statistical analysis, analysed and interpreted data, and wrote and revised the report.

Conflicts of interest

SC, DB, FC, MP, SB, PT, PB, CF, MV, and SM received assistance from Hologic (Hologic USA; Technologic Italy) in the form of tomosynthesis technology and technical support for the duration of the study, and travel support to attend collaborators’ meetings. NH receives research support from a National Breast Cancer Foundation (NBCF Australia) Practitioner Fellowship, and has received travel support from Hologic to attend a collaborators’ meeting. PM receives research support through Australia’s National Health and Medical Research Council programme grant 633003 to the Screening & Test Evaluation Program.



1       Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet 2012; 380: 1778–86.

2       Glasziou P, Houssami N. The evidence base for breast cancer screening. Prev Med 2011; 53: 100–102.

3       Autier P, Esserman LJ, Flowers CI, Houssami N. Breast cancer screening: the questions answered. Nat Rev Clin Oncol 2012; 9: 599–605.

4       Baker JA, Lo JY. Breast tomosynthesis: state-of-the-art and review of the literature. Acad Radiol 2011; 18: 1298–310.

5       Helvie MA. Digital mammography imaging: breast tomosynthesis and advanced applications. Radiol Clin North Am 2010; 48: 917–29.

6      Houssami N, Skaane P. Overview of the evidence on digital breast tomosynthesis in breast cancer detection. Breast 2013; 22: 101–08.

7   Wallis MG, Moa E, Zanca F, Leifland K, Danielsson M. Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-ray imaging observer study. Radiology 2012; 262: 788–96.

8   Bernardi D, Ciatto S, Pellegrini M, et al. Prospective study of breast tomosynthesis as a triage to assessment in screening. Breast Cancer Res Treat 2012; 133: 267–71.

9   Michell MJ, Iqbal A, Wasan RK, et al. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin Radiol 2012; 67: 976–81.

10 Skaane P, Gullien R, Bjorndal H, et al. Digital breast tomosynthesis (DBT): initial experience in a clinical setting. Acta Radiol 2012; 53: 524–29.

11 Pellegrini M, Bernardi D, Di MS, et al. Analysis of proportional incidence and review of interval cancer cases observed within the mammography screening programme in Trento province, Italy. Radiol Med 2011; 116: 1217–25.

12 Caumo F, Vecchiato F, Pellegrini M, Vettorazzi M, Ciatto S, Montemezzi S. Analysis of interval cancers observed in an Italian mammography screening programme (2000–2006). Radiol Med 2009; 114: 907–14.

13 Bernardi D, Ciatto S, Pellegrini M, et al. Application of breast tomosynthesis in screening: incremental effect on mammography acquisition and reading time. Br J Radiol 2012; 85: e1174–78.

14 American College of Radiology. ACR BI-RADS: breast imaging reporting and data system, Breast Imaging Atlas. Reston: American College of Radiology, 2003.

15  Lachenbruch PA. On the sample size for studies based on McNemar’s test. Stat Med 1992; 11: 1521–25.

16  Bonett DG, Price RM. Confidence intervals for a ratio of binomial proportions based on paired data. Stat Med 2006; 25: 3039–47.

17  Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 2013; published online Jan 3. radiol.12121373.

18  The Lancet. The breast cancer screening debate: closing a chapter? Lancet 2012; 380: 1714.

19  Biesheuvel C, Barratt A, Howard K, Houssami N, Irwig L. Effects of study methods and biases on estimates of invasive breast cancer overdetection with mammography screening: a systematic review. Lancet Oncol 2007; 8: 1129–38.

20  Tagliafico A, Astengo D, Cavagnetto F, et al. One-to-one comparison between digital spot compression view and digital breast tomosynthesis. Eur Radiol 2012; 22: 539–44.

21  Tingberg A, Fornvik D, Mattsson S, Svahn T, Timberg P, Zackrisson S. Breast cancer screening with tomosynthesis—initial experiences. Radiat Prot Dosimetry 2011; 147: 180–83.

22  Feng SS, Sechopoulos I. Clinical digital breast tomosynthesis system: dosimetric characterization. Radiology 2012; 263: 35–42.

23  Gur D, Zuley ML, Anello MI, et al. Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images: an observer performance study. Acad Radiol 2012; 19: 166–71.

A very good and down-to-earth comment on this article was made by Jules H Sumkin who disclosed that he is an unpaid member of SAB Hologic Inc and have a PI research agreement between University of Pittsburgh and Hologic Inc.

The results of the study by Stefano Ciatto and colleagues1 are consistent with recently published prospective,2,3 retrospective,4 and observational5 reports on the same topic. The study1 had limitations, including the fact that the same radiologist interpreted screens sequentially the same day without cross-balancing which examination was read first. Also, the false-negative findings for integrated 2D and 3D mammography, and therefore absolute benefit from the procedure, could not be adequately assessed because cases recalled by 2D mammography alone (141 cases) did not result in a single detection of an additional cancer while the recalls from the integrated 2D and 3D mammography alone (73 cases) resulted in the detection of 20 additional cancers. Nevertheless, the results are in strong agreement with other studies reporting of substantial performance improvements when the screening is done with integrated 2D and 3D mammography.

I disagree with the conclusion of the study with regards to the urgent need for randomised clinical trials of integrated 2D and 3D versus 2D mammography. First, to assess differences in mortality as a result of an imaging-based diagnostic method, a randomised trial will require several repeated screens by the same method in each study group, and the strong results from all studies to date will probably result in substantial crossover and self-selection biases over time. Second, because of the high survival rate (or low mortality rate) of breast cancer, the study will require long follow-up times of at least 10 years. In a rapidly changing environment in terms of improvements in screening technologies and therapeutic inter­ventions, the avoidance of biases is likely to be very difficult, if not impossible. The use of the number of interval cancers and possible shifts in stage at detection, while appropriately accounting for confounders, would be almost as daunting a task. Third, the imaging detection of cancer is only the first step in many management decisions and interventions that can affect outcome. The appropriate control of biases related to patient management is highly unlikely. The arguments above, in addition to the existing reports to date that show substantial improvements in cancer detection, particularly with the detection of invasive cancers, with a simultaneous reduction in recall rates, support the argument that a randomised trial is neither necessary nor warranted. The current technology might be obsolete by the time results of an appropriately done and analysed randomised trial is made public.

In order to better link the information given by “scientific” papers to the context of daily patients’ reality I suggest to spend some time reviewing few of the videos in the below links:

  1. The following group of videos is featured on a website by Siemens. Nevertheless, the presenting radiologists are leading practitioners who affects thousands of lives every year – What the experts say about tomosynthesis. – click on ECR 2013
  2. Breast Tomosynthesis in Practice – part of a commercial ad of the Washington Radiology Associates featured on the website of Diagnostic Imaging. As well, affects thousands of lives in the Washington area every year.

The pivotal questions yet to be answered are:

  1. What should be done in order to translate increase in sensitivity and early detection into decrease in mortality?

  2. What is the price of such increase in sensitivity in terms of quality of life and health-care costs and is it worth-while to pay?

An article that summarises positively the experience of introducing Tomosynthesis into routine screening practice was recently published on AJR:

Implementation of Breast Tomosynthesis in a Routine Screening Practice: An Observational Study

Stephen L. Rose1, Andra L. Tidwell1, Louis J. Bujnoch1, Anne C. Kushwaha1, Amy S. Nordmann1 and Russell Sexton, Jr.1

Affiliation: 1 All authors: TOPS Comprehensive Breast Center, 17030 Red Oak Dr, Houston, TX 77090.

Citation: American Journal of Roentgenology. 2013;200:1401-1408



OBJECTIVE. Digital mammography combined with tomosynthesis is gaining clinical acceptance, but data are limited that show its impact in the clinical environment. We assessed the changes in performance measures, if any, after the introduction of tomosynthesis systems into our clinical practice.

MATERIALS AND METHODS. In this observational study, we used verified practice- and outcome-related databases to compute and compare recall rates, biopsy rates, cancer detection rates, and positive predictive values for six radiologists who interpreted screening mammography studies without (n = 13,856) and with (n = 9499) the use of tomosynthesis. Two-sided analyses (significance declared at p < 0.05) accounting for reader variability, age of participants, and whether the examination in question was a baseline were performed.

RESULTS. For the group as a whole, the introduction and routine use of tomosynthesis resulted in significant observed changes in recall rates from 8.7% to 5.5% (p < 0.001), nonsignificant changes in biopsy rates from 15.2 to 13.5 per 1000 screenings (p = 0.59), and cancer detection rates from 4.0 to 5.4 per 1000 screenings (p = 0.18). The invasive cancer detection rate increased from 2.8 to 4.3 per 1000 screening examinations (p = 0.07). The positive predictive value for recalls increased from 4.7% to 10.1% (p < 0.001).

CONCLUSION. The introduction of breast tomosynthesis into our practice was associated with a significant reduction in recall rates and a simultaneous increase in breast cancer detection rates.

Here are the facts in tables and pictures from this article

Table 1 AJR

Table 2-3 AJR


Table 4 AJR


p1 ajr

p2 ajr

Other articles related to the management of breast cancer were published on this Open Access Online Scientific Journal:

Automated Breast Ultrasound System (‘ABUS’) for full breast scanning: The beginning of structuring a solution for an acute need!

Introducing smart-imaging into radiologists’ daily practice.

Not applying evidence-based medicine drives up the costs of screening for breast-cancer in the USA.

New Imaging device bears a promise for better quality control of breast-cancer lumpectomies – considering the cost impact

Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @

Predicting Tumor Response, Progression, and Time to Recurrence

“The Molecular pathology of Breast Cancer Progression”

Personalized medicine gearing up to tackle cancer

What could transform an underdog into a winner?

Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment

Nanotech Therapy for Breast Cancer

A Strategy to Handle the Most Aggressive Breast Cancer: Triple-negative Tumors

Breakthrough Technique Images Breast Tumors in 3-D With Great Clarity, Reduced Radiation

Closing the Mammography gap

Imaging: seeing or imagining? (Part 1)

Imaging: seeing or imagining? (Part 2)

Read Full Post »

Ultrasound-based Screening for Ovarian Cancer

Author: Dror Nir, PhD

Occasionally, I check for news on ovarian cancer screening. I do that for sentimental reasons; I started the HistoScanning project aiming to develop an effective ultrasound-based screening solution for this cancer.

As awareness for ovarian cancer is highest in the USA, I checked for the latest news on the NCI web-site. I found that to-date: “There is no standard or routine screening test for ovarian cancer. Screening for ovarian cancer has not been proven to decrease the death rate from the disease.

Screening for ovarian cancer is under study and there are screening clinical trials taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI Web site.”

I also found that:

Estimated new cases and deaths from ovarian cancer in the United States in 2013:

  • New cases: 22,240
  • Deaths: 14,030

To get an idea on the significance of these numbers, lets compare them to the numbers related to breast cancer:

Estimated new cases and deaths from breast cancer in the United States in 2013:

  • New cases: 232,340 (female); 2,240 (male)
  • Deaths: 39,620 (female); 410 (male)

Death rate of ovarian cancer patients is almost 4 times higher than the rate in breast cancer patients!

Therefore, I decided to raise awareness to the results achieved for ovarian HistoScanning in a double-blind multicenter European study that was published in European Radiology three years ago. The gynecologists who recruited patients to this study used standard ultrasound machines of GE-Medical. I would like as well to disclose that I am one of the authors of this paper:

A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study, Olivier Lucidarme, European Radiology, August 2010, Volume 20, Issue 8, pp 1822-1830



To prospectively assess an innovative computer-aided diagnostic technology that quantifies characteristic features of backscattered ultrasound and theoretically allows transvaginal sonography (TVS) to discriminate benign from malignant adnexal masses.


Women (n = 264) scheduled for surgical removal of at least one ovary in five centres were included. Preoperative three-dimensional (3D)-TVS was performed and the voxel data were analysed by the new technology. The findings at 3D-TVS, serum CA125 levels and the TVS-based diagnosis were compared with histology. Cancer was deemed present when invasive or borderline cancerous processes were observed histologically.


Among 375 removed ovaries, 141 cancers (83 adenocarcinomas, 24 borderline, 16 cases of carcinomatosis, nine of metastases and nine others) and 234 non-cancerous ovaries (107 normal, 127 benign tumours) were histologically diagnosed. The new computer-aided technology correctly identified 138/141 malignant lesions and 206/234 non-malignant tissues (98% sensitivity, 88% specificity). There were no false-negative results among the 47 FIGO stage I/II ovarian lesions. Standard TVS and CA125 had sensitivities/specificities of 94%/66% and 89%/75%, respectively. Combining standard TVS and the new technology in parallel significantly improved TVS specificity from 66% to 92% (p < 0.0001).

table 3

table 4

An example of an ovary considered to be normal with TVS.

An example of an ovary considered to be normal with TVS.

The same TVS false-negative ovary with OVHS-detected foci of malignancy. The presence of an adenocarcinoma was confirmed histologically.

The same TVS
false-negative ovary with OVHS-detected foci of malignancy. The presence of an
adenocarcinoma was confirmed histologically.


Computer-aided quantification of backscattered ultrasound is  highly sensitive for the diagnosis of malignant ovarian masses.

 Personal note:

Based on this study a promising offer for ultrasound-based screening method for ovarian cancer was published in:  Int J Gynecol Cancer. 2011 Jan;21(1):35-43. doi: 10.1097/IGC.0b013e3182000528.: Mathematical models to discriminate between benign and malignant adnexal masses: potential diagnostic improvement using ovarian HistoScanning. Vaes EManchanda RNir RNir DBleiberg HAutier PMenon URobert A.

Regrettably, the results of these studies were never transformed into routine clinical products due to financial reasons.

Other research papers related to the management of Prostate cancer were published on this Scientific Web site:

Beta-Blockers help in better survival in ovarian cancer

Ovarian Cancer and fluorescence-guided surgery: A report

Role of Primary Cilia in Ovarian Cancer

Squeezing Ovarian Cancer Cells to Predict Metastatic Potential: Cell Stiffness as Possible Biomarker

BRCA1 a tumour suppressor in breast and ovarian cancer – functions in transcription, ubiquitination and DNA repair

Warning signs may lead to better early detection of ovarian cancer


Read Full Post »

Whole-body imaging as cancer screening tool; answering an unmet clinical need?

Author: Dror Nir, PhD

Sometimes technologies that were developed to answer clinical needs in a certain area are migrated to perform in a totally inappropriate area. A good example which I discussed several times in my posts is PSA.

Cancer patients’ prognoses, strongly depend on accurate tumor staging. It is also a prerequisite for therapy choice and planning. Whole-body imaging is frequently used in patients with advanced malignant diseases including presence of metastases as these may occur in any anatomic region. It is important to note that classifying a patient as harboring a potentially advanced disease is based on biopsy results of Sentinel Lymph-Nodes and not on imaging. Moreover, referring a patient to a whole-body imaging is a choice of the treating practitioner! Clearly, when the choice of treatment includes administration of drugs, the type of drugs to be used is determined by the characteristics of the primary tumor.

To date, the use of whole-body imaging for post treatment follow-up can be considered as anecdotal.

The most-used technologies for whole-body imaging are computed tomography (CT), positron emission tomography (PET) and MRI. The performance of these systems in detection of cancer metastases of more than 1cm in diameter is very similar and in general quite good, dependent on the primary disease and the body locations of the metastases. Alas, each of these modalities has its strengths and weakness in different cancer and different body locations. Therefore, in the last decade, combined modalities such as PET-CT and recently PET/MRI were introduced. In some cases [1-6] these are reported to show sensitivity of more than 90%.

To demonstrate the level of information produced during whole-body imaging procedure here is an example (taken from Whole-body MRI and PET-CT in the management of cancer patients). This resource includes additional, educating examples:


Fig. 1

From multimodality to single-step examination. Restaging in a 29-year-old woman treated for breast cancer and with newly elevated tumor markers and bone pain. 1a, 1b Radiograms of the skeleton were normal, but bone scintigraphy showed a pathological tracer uptake in the right pubic bone (arrow). Abdominal ultrasound exhibited a suspicious mass. 1c, 1d CT revealed tumor recurrence in the right breast and confirmed hepatic metastasis. 2a, 2b T1-weighted whole-body MRI depicted a metastasis in the right pubic bone (circle). 2c, 2d HASTE images of the thorax showed the tumor recurrence in the right breast (arrow) and dynamic contrast enhanced studies of the abdomen unmasked the liver metastasis

Before addressing the issue of using whole-body imaging as a screening tool I would like to draw attention to existence of other methods for screening and post treatment follow-up of cancer patients; e.g. detecting levels of cancer-specific bio-markers in the blood or urine or, in case of advanced disease, detecting the level of tumor cells circulating in the blood as presented in: Circulating Tumor Cells versus Imaging—Predicting Overall Survival in Metastatic Breast Cancer by G. Thomas Budd


Purpose: The presence of ≥5 circulating tumor cells (CTC) in 7.5 mL blood from patients with measurable metastatic breast cancer before and/or after initiation of therapy is associated with shorter progression-free and overall survival. In this report, we compared the use of CTCs to radiology for prediction of overall survival.

Experimental Design: One hundred thirty-eight metastatic breast cancer patients had imaging studies done before and a median of 10 weeks after the initiation of therapy. All scans were centrally reviewed by two independent radiologists using WHO criteria to determine radiologic response. CTC counts were determined ∼4 weeks after initiation of therapy. Specimens were analyzed at one of seven laboratories and reviewed by a central laboratory.

Results: Inter-reader variability for radiologic responses and CTC counts were 15.2% and 0.7%, respectively. The median overall survival of 13 (9%) patients with radiologic nonprogression and ≥5 CTCs was significantly shorter than that of the 83 (60%) patients with radiologic nonprogression and <5 CTCs (15.3 versus 26.9 months; P = 0.0389). The median overall survival of the 20 (14%) patients with radiologic progression and <5 CTCs was significantly longer than the 22 (16%) patients with ≥5 CTCs that showed progression by radiology (19.9 versus 6.4 months; P = 0.0039).

Conclusions: Assessment of CTCs is an earlier, more reproducible indication of disease status than current imaging methods. CTCs may be a superior surrogate end point, as they are highly reproducible and correlate better with overall survival than do changes determined by traditional radiology.

I would like first to present the following publication that could explain why people can easily be drawn why whole-body screening is an effective way to detect early cancers:

Enthusiasm for cancer screening in the United States by Schwartz LM, Woloshin S, Fowler FJ Jr, Welch HG SO, JAMA. 2004; 291(1):71.:

“ CONTEXT: Public health officials, physicians, and disease advocacy groups have worked hard to educate individuals living in the United States about the importance of cancer screening.

OBJECTIVE: To determine the public’s enthusiasm for early cancer detection.

DESIGN, SETTING, AND PARTICIPANTS: Survey using a national telephone interview of adults selected by random digit dialing, conducted from December 2001 through July 2002. Five hundred individuals participated (women aged>or =40 years and men aged>or =50 years; without a history of cancer).

MAIN OUTCOME MEASURES: Responses to a survey with 5 modules: a general screening module (eg, value of early detection, total-body computed tomography); and 4 screening test modules: Papanicolaou test; mammography; prostate-specific antigen (PSA) test; and sigmoidoscopy or colonoscopy.

RESULTS: Most adults (87%) believe routine cancer screening is almost always agood idea and that finding cancer early saves lives (74% said most or all the time). Less than one third believe that there will be a time when they will stop undergoing routine screening. A substantial proportion believe that an 80-year-old who chose not to be tested was irresponsible: ranging from 41% with regard to mammography to 32% for colonoscopy. Thirty-eight percent of respondents had experienced at least 1 false-positive screening test; more than 40% of these individuals characterized that experience as “very scary” or the “scariest time of my life.” Yet, looking back, 98% were glad they had had the initial screening test. Most had a strong desire to know about the presence of cancer regardless of its implications: two thirds said they would want to be tested for cancer even if nothing could be done; and 56% said they would want to be tested for what is sometimes termed pseudodisease (cancers growing so slowly that they would never cause problems during the person’s lifetime even if untreated). Seventy-three percent of respondents would prefer to receive a total-body computed tomographic scan instead of receiving 1000 dollars in cash.

CONCLUSIONS: The public is enthusiastic about cancer screening. This commitment is not dampened by false-positive test results or the possibility that testing could lead to unnecessary treatment. This enthusiasm creates an environment ripe for the premature diffusion of technologies such as total-body computed tomographic scanning, placing the public at risk of over testing and overtreatment.”

Whole-body screening is promoted as a one-stop shop for painlessly detecting hidden cancer and preventing cancer-related deaths. It is big business in the United States and in Canada where private clinics have begun offering full-body diagnostic procedures for a fee. The tests and procedures are often marketed to healthy people as a way to scan for hidden abnormalities or cancers, affording people the peace of mind that they are in good health [7 – 9].

When used in this manner, the evidence shows that whole-body cancer screening offers no proven health benefits and that it, in fact, exposes people to a number of unnecessary health risks. The problem I see is that the public is not exposed to “scientific publications” but is exposed to commercial ones!



  1. FDG PET and PET/CT: EANM procedure guidelines for tumor PET imaging: version 1.0
  2. Cancer of the Prostate, Testicles and Penis
  3. Gynecologic Cancers
  4. Malignant Melanoma
  5. Molecular Imaging in Cancer
  6. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications
  7. Full body CT scan for screening
  8. Screening for Cancer with PET and PET/CT: Potential and Limitations 

Written by: Dror Nir, PhD

Read Full Post »

Writer: Dror Nir, PhD


That is the question…

We are all used to clichés such as “seeing is believing”, “seeing is knowing”, “don’t be blind” and so on. Out of our seven (natural and supernatural) senses we tend to use and trust our eyes the most. Especially, when it comes to learning, accumulation of experience and acceptance of information as correct. On the other hand, we are taught from childhood to be aware of illusions and not to judge according to looks but rather according to matter. The problem is, does one recognise the substance inside an image? To answer this, a wide-ranging discipline of image interpretation was developed alongside with imaging technology. In order not to fatigue the innocent reader, I’ll review the state of the art of imaging in medicine in subsequent posts, each dedicated to a specific modality. This post is dedicated to…

Current main trends in ultrasound imaging in cancer patients’ management;

The most used imaging modality in medicine is ultrasound. This is due to the fact that it is noninvasive, practically harmless, relatively inexpensive and fairly accessible; i.e. everyone can operate it, even a layman! No formal training or certification is required!

Interesting enough, ultrasound is labeled by the regulatory agencies, FDA and CE, as a diagnostic medical device! This is real demonstration of the aforementioned tendency to believe our eyes, even if these eyes do not see well or the brain behind them is lacking the experience required for ultrasound image interpretation.

Since “ultrasound imaging in medicine” is the subject of many text books and articles I found it  appropriate, for the sake of this post, simply  to refer the reader to Wikipedia’s page ( on ultrasound in medicine: “Diagnostic Sonography (ultrasonography) is an ultrasound-based diagnostic imaging technique used for visualizing subcutaneous body structures including tendonsmuscles, joints, vessels and internal organs for possible pathology or lesionsObstetric sonography is commonly used during pregnancy and is widely recognized by the public. In physics, the term “ultrasound” applies to all sound waves with a frequency above the audible range of normal human hearing, about 20 kHz. The frequencies used in diagnostic ultrasound are typically between 2 and 18 MHz.”

When it comes to cancer patients’ management, ultrasound provides real-time imaging of body organs at a relatively cost effective workflow. However, it suffers from lack of sensitivity and specificity, especially if the investigator is still fairly inex­perienced. Therefore, no diagnosis is confirmed without biopsy of the suspected lesion discovered during the ultrasound scan. As mentioned in my previous post; identification of suspicious lesions in the prostate during TRUS is so inconclusive that in order to reach diagnosis biopsies are taken randomly.

Did we hit the target?

To improve prostate cancer detection, various biopsy strategies to increase the diagnostic yield of prostate biopsy have been devised: sampling of visually abnormal areas; more lateral placement of biopsies; anterior biop­sies; and obtaining an increased number of cores, with up to 45 biopsy cores [1-5].

In recent years, new features such as 3D and contrast-enhanced sonography, elastography and HistoScanning were added to the basic video image in order to improve the quality of ultrasound based investiga­tion of cancer patients.

3-D Sonography.

3-D ultrasound allows si­multaneous biplanar imaging of the organ with com­puter reconstructions providing a coronal plane as well as a rendered 3-D image. This promises to improve the detection and pre-clinical grading of cancer lesions. Still, the interpretation is very much “image quality” and “user experience” dependent.

3D imaging of breast using ABUS by Siemens; using the coronal view to better investigate a lesion.



3D imaging of breast using Voluson 730 by GE; three planes are presented for review by the radiologist.



 Contrast-Enhanced Sonography.

Using intravenous micro-bubble agents in combination with color and pow­er Doppler imaging contributes to increase in the signal obtained in areas of increased vascularity. The underlying assumption is that vascularization in the tumor’s area will be more pronounced than in normal tissue. Hot off the press: The UK National Institute for Health and Clinical Excellence (NICE) has published guidance that supports the use of contrast-enhanced ultrasound with Bracco’s SonoVue ultrasound contrast agent for the diagnosis of liver cancer [6].  The main use of contrast-enhanced ultrasound is directing biopsies to the “most suspicious” areas; i.e. those who presents higher vascularity. Never­theless, in reported clinical studies [7] targeted biopsies’ sensitivity on contrast-enhanced ultrasound was only 68%.



Elastography is an imaging technique that evaluates the elasticity of the tissue. The underlying assumption is that tumors present greater stiffness than normal tissue and therefore will be characterized by limited compressibility. The first person to introduce this concept was  Professor Jonathan Ophir, University of Huston, Texas []:
Estimation of differences in lesions’ stiffness relies  on computing the level of correlation between consecutive imaging frames while the tissue that is being imaged is subjected to changing compression, usually applied by the sonographer who manipulates the ultrasound probe. Since malignant and benign lesions exhibit similar elasticity, elastography is not suitable for lesion characterisation. Therefore, as in the previous example, elastography’s main use is identifying suspicious areas in which to take biopsies [8, 9].  Furthermore, users’ experiences related to elastography reveal a lot of controversy.  For example, according to Prof. Bruno Fornage of MD. Anderson []; “current commercially available scanners are confounded by a lack of intraobserver reliability, so that it’s not unusual to produce an opposite result on repeat testing a few seconds later”. “There are very few evidence-based non-industry sponsored studies reporting substantial superiority [of elastography] over standard grayscale ultrasound,” he said. “In fact, a sensitivity of 82% in the diagnosis of breast cancer has been reported for elastography, versus 94% for conventional grayscale ultrasound. More disturbing is that even if the technology of elastography worked flawlessly, the huge overlap in breast pathology between very firm solid benign lesions and less firm malignancies gives this technology no practical place in the differential diagnosis of solid breast masses.”



HistoScanning™ is a novel ultrasound-based software technology that utilizes advanced tissue characterization algorithms to address the clinical requirements for tissue characterization. It visualizes the position and extent of tissue suspected of being malignant in the target organ. In this respect its design is unique and superior to other ultrasound based-technologies [10, 11]. HistoScanning’s first clinically available application (since 2009) is in the management of prostate cancer patients.



HistoScanning indicating suspicious lesions superimposed on 3-D ultrasound of the prostate. The three imaging plans and 3D reconstruction of the segmented prostate are presented.



 To conclude; if we are looking to improve the current state of the art in ultrasound-based cancer patients’ management we should strive to introduce systems which will enable the medical practitioners to rule in or rule out suspicious lesions at imaging before they biopsy them. Using ultrasound just as a tool for directing biopsies as done today is not enough. Indeed, this requires capability of ultrasound-based tissue characterisation in addition to detection of ultrasound-based abnormality (i.e. circumstantial evidence for cancer). To-date, the only available system that bears the promise to provide such improvement is HistoScanning. Obviously, the level of confidence in the Negative Predictive Value of HistoScanning and future systems alike must be built to become high enough to provide the medical practitioner the reassurance and comfort that he is not missing any significant cancer by not taking a biopsy. Such confidence can only be built by subjecting these systems (i.e. HistoScanning and alike) to properly designed clinical studies and, not less important, by reporting the experience of early adopters who will test them in a controlled routine use.



  1. Flanigan RC, Catalona WJ, Richie JP, Ah-mann FR, Hudson MA, Scardino PT, de-Kernion JB, Ratliff TL, Kavoussi LR, Dalkin BL: Accuracy of digital rectal examination and transrectal ultrasonography in localiz­ing prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 1994; 152: 1506–1509.
  2. Eichler K, Hempel S, Wilby J, Myers L, Bach­mann LM, Kleijnen J: Diagnostic value of systematic biopsy methods in the investiga­tion of prostate cancer: a systematic review. J Urol 2006; 175: 1605–1612.
  3. Delongchamps NB, de la Roza G, Jones R, Jumbelic M, Haas GP: Saturation biopsies on autopsied prostates for detecting and charac­terizing prostate cancer. BJU Int 2009; 10: 49–54.
  4. Rifkin MD, Dähnert W, Kurtz AB: State of the art: endorectal sonography of prostate gland. AJR Am J Roentgenol 1990; 154: 691– 700.
  5. Chrouser KL, Lieber MM: Extended and sat­uration needle biopsy. Curr Urol Rep 2004; 5: 226–230.
  7. Yi A, Kim JK, Park SH, Kim KW, Kim HS, Kim JH, Eun HW, Cho KS: Contrast-en­hanced sonography for prostate cancer de­tection in patients with indeterminate clini­cal findings. Am J Roentgenol 2006; 186: 1431–1435.
  8. König K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T: Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 2005; 174: 115–117.
  9. 32 Pallwein L, Mitterberger M, Struve P, Hor-ninger W, Aigner F, Bartsch G, Gradl J, Schurich M, Pedross F, Frauscher F: Com­parison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol 2007; 17: 2278– 2285.
  10. SALOMON (G.), SPETHMANN (J.), BECKMANN (A.), AUTIER (P.), MOORE (C.), DURNER (L.), SANDMANN (M.), HASE (A.), SCHLOMM (T.), MICHL (U.), HEINZER (H.), GRAFEN (M.), STEUBER (T.).Accuracy of HistoScanning for the prediction of a negative surgical margin in patients undergoing radical prostatectomy. Published online in British Journal of Urology International (BJUI). 09/08/2012.
  11. SIMMONS (L.A.M.), AUTIER (P.), ZATURA (F.), BRAECKMAN (J.G.), PELTIER (A.), ROMICS (I.), STENZL (A.), TREURNICHT (K.), WALKER (T.), NM (D.), MOORE (C.M.), EMBERTON (M.).  Detection, localisation and characterisation of prostate cancer by Prostate Hist°Scanning; Published in British Journal of Urology International (BJUI). Issue 1 (July). Vol 110, P 28-35.


 Written by Dror Nir

Read Full Post »

The Incentive for “Imaging based cancer patient’ management”

 Writer: Dror Nir, PhD

It is generally agreed by radiologists and oncologists that in order to provide a comprehensive work-flow that complies with the principles of personalized medicine, future cancer patients’ management will heavily rely on “smart imaging” applications. These could be accompanied by highly sensitive and specific bio-markers, which are expected to be delivered by pharmaceutical companies in the upcoming decade. In the context of this post, smart imaging refers to imaging systems that are enhanced with tissue characterization and computerized image interpretation applications. It is expected that such systems will enable gathering of comprehensive clinical information on cancer tumors, such as location, size and rate of growth.

What is the main incentive for promoting cancer patients’ management based on smart imaging? 

It promises to enable personalized cancer patient management by providing the medical practitioner with a non-invasive and non-destructive tool to detect, stage and follow up cancer tumors in a standardized and reproducible manner. Furthermore, applying smart imaging that provides valuable disease-related information throughout the management pathway of cancer patient will eventually result in reducing the growing burden of health-care costs related to cancer patients’ treatment.

Let’s briefly review the segments that are common to all cancer patients’ pathway: screening, treatment and costs.


Screening for cancer: It is well known that one of the important factors in cancer treatment success is the specific disease staging. Often this is dependent on when the patient is diagnosed as a cancer patient. In order to detect cancer as early as possible, i.e. before any symptoms appear, leaders in cancer patients’ management came up with the idea of screening. To date, two screening programs are the most spoken of: the “officially approved and budgeted” breast cancer screening; and the unofficial, but still extremely costly, prostate cancer screening. After 20 years of practice, both are causing serious controversies:

In trend analysis of WHO mortality data base [1], the authors, Autier P, Boniol M, Gavin A and Vatten LJ, argue that breast cancer mortality in neighboring European countries with different levels of screening but similar access to treatment is the same: “The contrast between the time differences in implementation of mammography screening and the similarity in reductions in mortality between the country pairs suggest that screening did not play a direct part in the reductions in breast cancer mortality”.

In prostate cancer mortality at 11 years of follow-up [2],  the authors,Schröder FH et. al. argue regarding prostate cancer patients’ overdiagnosis and overtreatment: “To prevent one death from prostate cancer at 11 years of follow-up, 1055 men would need to be invited for screening and 37 cancers would need to be detected”.

The lobbying campaign (see picture below)  that AdmeTech ( is conducting in order to raise the USA administration’s awareness and get funding to improve prostate cancer treatment is a tribute to patients’ and practitioners’ frustration.




Treatment: Current state of the art in oncology is characterized by a shift in  the decision-making process from an evidence-based guidelines approach toward personalized medicine. Information gathered from large clinical trials with regard to individual biological cancer characteristics leads to a more comprehensive understanding of cancer.

Quoting from the National cancer institute ( website: “Advances accrued over the past decade of cancer research have fundamentally changed the conversations that Americans can have about cancer. Although many still think of a single disease affecting different parts of the body, research tells us through new tools and technologies, massive computing power, and new insights from other fields that cancer is, in fact, a collection of many diseases whose ultimate number, causes, and treatment represent a challenging biomedical puzzle. Yet cancer’s complexity also provides a range of opportunities to confront its many incarnations”.

Personalized medicine, whether it uses cytostatics, hormones, growth inhibitors, monoclonal antibodies, and loco-regional medical devices, proves more efficient, less toxic, less expensive, and creates new opportunities for cancer patients and health care providers, including the medical industry.

To date, at least 50 types of systemic oncological treatments can be offered with much more quality and efficiency through patient selection and treatment outcome prediction.

Figure taken from presentation given by Prof. Jaak Janssens at the INTERVENTIONAL ONCOLOGY SOCIETY meeting held in Brussels in October 2011

For oncologists, recent technological developments in medical imaging-guided tissue acquisition technology (biopsy) create opportunities to provide representative fresh biological materials in a large enough quantity for all kinds of diagnostic tests.


Health-care economics: We are living in an era where life expectancy is increasing while national treasuries are over their limits in supporting health care costs. In the USA, of the nation’s 10 most expensive medical conditions, cancer has the highest cost per person. The total cost of treating cancer in the U.S. rose from about $95.5 billion in 2000 to $124.6 billion in 2010, the National Cancer Institute ( estimates. The true sum is probably higher as this estimate is based on average costs from 2001-2006, before many expensive treatments came out; quoting from : “new drugs often cost $100,000 or more a year. Patients are being put on them sooner in the course of their illness and for a longer time, sometimes for the rest of their lives.”

With such high costs at stake, solutions to reduce the overall cost of cancer patients’ management should be considered. My experience is that introducing smart imaging applications into routine use could contribute to significant savings in the overall cost of cancer patients’ management, by enabling personalized treatment choice and timely monitoring of tumors’ response to treatment.



  1. 1.      BMJ. 2011 Jul 28;343:d4411. doi: 10.1136/bmj.d4411
  2. 2.      (N Engl J Med. 2012 Mar 15;366(11):981-90):

Read Full Post »

Reporter: Prabodh Kandala, PhD

Recent recommendations from the U.S. Preventive Services Task Force (USPSTF) advising elimination of routine prostate-specific antigen (PSA) screening for prostate cancer in healthy men are likely to encounter serious pushback from primary care physicians, according to results of a survey by Johns Hopkins investigators.

In a survey of 125 primary care doctors, the researchers found that while doctors agreed with older recommendations to curtail routine screening in men over age 75 and among those not expected to live 10 or more years, a large number said they faced significant barriers to stopping PSA testing in men who had been receiving it regularly. The most frequently cited reason by 74.4 percent of physicians was, “My patients expect me to continue getting yearly PSA tests,” followed by 66 percent of them who said, “It takes more time to explain why I’m not screening than to just continue screening.” More than half of those surveyed in the new study believed that, “By not ordering a PSA, it puts me at risk for malpractice.”

The survey was conducted in November 2011, right after draft recommendations were made to end routine screening of all men, but before last week, when the draft recommendations were officially approved.

“It can be very difficult for doctors to break down the belief that all cancer screening tests are invariably good for all people all the time,” says Craig E. Pollack, M.D., M.H.S., an assistant professor in the Division of General Internal Medicine at the Johns Hopkins University School of Medicine, and leader of the study published online in the journal Cancer. “Everyone agrees that PSA screening isn’t as good as we want it to be. If we had a test that was a slam dunk, it would be different. But now we know that for many men, the benefits may be small and the harms significant.”

Each year, more than 33,000 American men die of prostate cancer, and 20 million get the PSA test to detect the disease early.

According to the USPSTF, evidence suggests the potential harms caused by PSA screening of healthy men as a means of identifying prostate cancer outweigh its potential to save lives and that routine annual screening should be eliminated in the healthy. Elevated PSA readings are not necessarily evidence of prostate cancer, and can lead to unnecessary prostate biopsy. In addition, even when biopsies reveal signs of prostate cancer cells, evidence shows that a large proportion will never cause harm, even if left untreated. The disease in older men often progresses slowly so that those who have it frequently die of other causes.

Treatments for prostate cancer can include the removal of the prostate, radiation or other therapies, each of which has the potential to cause serious problems like erectile dysfunction, complete impotence, urinary incontinence or bowel damage. And men who choose to “watch and wait” after elevated PSA readings must live with the anxiety of knowing they have an untreated cancer that could start to progress.

In the new study, Pollack and his colleagues found that while most physicians said they took age and life expectancy into account when deciding to order PSA screening, many also said they had a hard time estimating life expectancy in their patients and could use a better tool. H. Ballentine Carter, M.D., a professor of urology at Johns Hopkins and the senior investigator on the study, is planning to investigate the potential of individualized prostate cancer screening recommendations. Specifically, he and colleagues plan to create a decision-making tool that incorporates age, life expectancy, family history and prior PSA results in order to help doctors and their patients make better choices for prostate cancer screening.

In another report derived from results of Pollack’s and Carter’s survey, published in April in the Archives of Internal Medicine, the researchers say nearly half of the providers agreed with the new USPSTF recommendations to eliminate routine screening for healthy men. Still, less than two percent said they would no longer order routine PSA screening in response to the draft recommendations; 21.9 percent said they would be much less likely to do so; 38.6 percent said they would be somewhat less likely to do so; and 37.7 percent said they would not change their screening practices.

“Men often expect PSA screening to be part of their annual physical,” Pollack says. “To change their minds, we need to address their perceptions about screening, allow time for screening discussions and reduce concerns regarding malpractice litigation.”


Read Full Post »