Feeds:
Posts
Comments

Archive for the ‘interventional oncology’ Category


Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 3:00 PM-5:30 PM Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

uesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Bioinformatics and Systems Biology

The Clinical Proteomic Tumor Analysis Consortium: Resources and Data Dissemination

This session will provide information regarding methodologic and computational aspects of proteogenomic analysis of tumor samples, particularly in the context of clinical trials. Availability of comprehensive proteomic and matching genomic data for tumor samples characterized by the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) program will be described, including data access procedures and informatic tools under development. Recent advances on mass spectrometry-based targeted assays for inclusion in clinical trials will also be discussed.

Amanda G Paulovich, Shankha Satpathy, Meenakshi Anurag, Bing Zhang, Steven A Carr

Methods and tools for comprehensive proteogenomic characterization of bulk tumor to needle core biopsies

Shankha Satpathy
  • TCGA has 11,000 cancers with >20,000 somatic alterations but only 128 proteins as proteomics was still young field
  • CPTAC is NCI proteomic effort
  • Chemical labeling approach now method of choice for quantitative proteomics
  • Looked at ovarian and breast cancers: to measure PTM like phosphorylated the sample preparation is critical

 

Data access and informatics tools for proteogenomics analysis

Bing Zhang
  • Raw and processed data (raw MS data) with linked clinical data can be extracted in CPTAC
  • Python scripts are available for bioinformatic programming

 

Pathways to clinical translation of mass spectrometry-based assays

Meenakshi Anurag

·         Using kinase inhibitor pulldown (KIP) assay to identify unique kinome profiles

·         Found single strand break repair defects in endometrial luminal cases, especially with immune checkpoint prognostic tumors

·         Paper: JNCI 2019 analyzed 20,000 genes correlated with ET resistant in luminal B cases (selected for a list of 30 genes)

·         Validated in METABRIC dataset

·         KIP assay uses magnetic beads to pull out kinases to determine druggable kinases

·         Looked in xenografts and was able to pull out differential kinomes

·         Matched with PDX data so good clinical correlation

·         Were able to detect ESR1 fusion correlated with ER+ tumors

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Survivorship

Artificial Intelligence and Machine Learning from Research to the Cancer Clinic

The adoption of omic technologies in the cancer clinic is giving rise to an increasing number of large-scale high-dimensional datasets recording multiple aspects of the disease. This creates the need for frameworks for translatable discovery and learning from such data. Like artificial intelligence (AI) and machine learning (ML) for the cancer lab, methods for the clinic need to (i) compare and integrate different data types; (ii) scale with data sizes; (iii) prove interpretable in terms of the known biology and batch effects underlying the data; and (iv) predict previously unknown experimentally verifiable mechanisms. Methods for the clinic, beyond the lab, also need to (v) produce accurate actionable recommendations; (vi) prove relevant to patient populations based upon small cohorts; and (vii) be validated in clinical trials. In this educational session we will present recent studies that demonstrate AI and ML translated to the cancer clinic, from prognosis and diagnosis to therapy.
NOTE: Dr. Fish’s talk is not eligible for CME credit to permit the free flow of information of the commercial interest employee participating.

Ron C. Anafi, Rick L. Stevens, Orly Alter, Guy Fish

Overview of AI approaches in cancer research and patient care

Rick L. Stevens
  • Deep learning is less likely to saturate as data increases
  • Deep learning attempts to learn multiple layers of information
  • The ultimate goal is prediction but this will be the greatest challenge for ML
  • ML models can integrate data validation and cross database validation
  • What limits the performance of cross validation is the internal noise of data (reproducibility)
  • Learning curves: not the more data but more reproducible data is important
  • Neural networks can outperform classical methods
  • Important to measure validation accuracy in training set. Class weighting can assist in development of data set for training set especially for unbalanced data sets

Discovering genome-scale predictors of survival and response to treatment with multi-tensor decompositions

Orly Alter
  • Finding patterns using SVD component analysis. Gene and SVD patterns match 1:1
  • Comparative spectral decompositions can be used for global datasets
  • Validation of CNV data using this strategy
  • Found Ras, Shh and Notch pathways with altered CNV in glioblastoma which correlated with prognosis
  • These predictors was significantly better than independent prognostic indicator like age of diagnosis

 

Identifying targets for cancer chronotherapy with unsupervised machine learning

Ron C. Anafi
  • Many clinicians have noticed that some patients do better when chemo is given at certain times of the day and felt there may be a circadian rhythm or chronotherapeutic effect with respect to side effects or with outcomes
  • ML used to determine if there is indeed this chronotherapy effect or can we use unstructured data to determine molecular rhythms?
  • Found a circadian transcription in human lung
  • Most dataset in cancer from one clinical trial so there might need to be more trials conducted to take into consideration circadian rhythms

Stratifying patients by live-cell biomarkers with random-forest decision trees

Stratifying patients by live-cell biomarkers with random-forest decision trees

Guy Fish CEO Cellanyx Diagnostics

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

Virtual Educational Session
Tumor Biology, Molecular and Cellular Biology/Genetics, Bioinformatics and Systems Biology, Prevention Research

The Wound Healing that Never Heals: The Tumor Microenvironment (TME) in Cancer Progression

This educational session focuses on the chronic wound healing, fibrosis, and cancer “triad.” It emphasizes the similarities and differences seen in these conditions and attempts to clarify why sustained fibrosis commonly supports tumorigenesis. Importance will be placed on cancer-associated fibroblasts (CAFs), vascularity, extracellular matrix (ECM), and chronic conditions like aging. Dr. Dvorak will provide an historical insight into the triad field focusing on the importance of vascular permeability. Dr. Stewart will explain how chronic inflammatory conditions, such as the aging tumor microenvironment (TME), drive cancer progression. The session will close with a review by Dr. Cukierman of the roles that CAFs and self-produced ECMs play in enabling the signaling reciprocity observed between fibrosis and cancer in solid epithelial cancers, such as pancreatic ductal adenocarcinoma.

Harold F Dvorak, Sheila A Stewart, Edna Cukierman

 

The importance of vascular permeability in tumor stroma generation and wound healing

Harold F Dvorak

Aging in the driver’s seat: Tumor progression and beyond

Sheila A Stewart

Why won’t CAFs stay normal?

Edna Cukierman

 

Tuesday, June 23

3:00 PM – 5:00 PM EDT

 

 

 

 

 

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM
Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions


Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Reporter: Stephen J. Williams, PhD

 Minisymposium: Evaluating Cancer Genomics from Normal Tissues through Evolution to Metastatic Disease

Oncologic therapy shapes the fitness landscape of clonal hematopoiesis

April 28, 2020, 4:10 PM – 4:20 PM

Presenter/Authors
Kelly L. Bolton, Ryan N. Ptashkin, Teng Gao, Lior Braunstein, Sean M. Devlin, Minal Patel, Antonin Berthon, Aijazuddin Syed, Mariko Yabe, Catherine Coombs, Nicole M. Caltabellotta, Mike Walsh, Ken Offit, Zsofia Stadler, Choonsik Lee, Paul Pharoah, Konrad H. Stopsack, Barbara Spitzer, Simon Mantha, James Fagin, Laura Boucai, Christopher J. Gibson, Benjamin Ebert, Andrew L. Young, Todd Druley, Koichi Takahashi, Nancy Gillis, Markus Ball, Eric Padron, David Hyman, Jose Baselga, Larry Norton, Stuart Gardos, Virginia Klimek, Howard Scher, Dean Bajorin, Eder Paraiso, Ryma Benayed, Maria Arcilla, Marc Ladanyi, David Solit, Michael Berger, Martin Tallman, Montserrat Garcia-Closas, Nilanjan Chatterjee, Luis Diaz, Ross Levine, Lindsay Morton, Ahmet Zehir, Elli Papaemmanuil. Memorial Sloan Kettering Cancer Center, New York, NY, University of North Carolina at Chapel Hill, Chapel Hill, NC, University of Cambridge, Cambridge, United Kingdom, Dana-Farber Cancer Institute, Boston, MA, Washington University, St Louis, MO, The University of Texas MD Anderson Cancer Center, Houston, TX, Moffitt Cancer Center, Tampa, FL, National Cancer Institute, Bethesda, MD

Abstract
Recent studies among healthy individuals show evidence of somatic mutations in leukemia-associated genes, referred to as clonal hematopoiesis (CH). To determine the relationship between CH and oncologic therapy we collected sequential blood samples from 525 cancer patients (median sampling interval time = 23 months, range: 6-53 months) of whom 61% received cytotoxic therapy or external beam radiation therapy and 39% received either targeted/immunotherapy or were untreated. Samples were sequenced using deep targeted capture-based platforms. To determine whether CH mutational features were associated with tMN risk, we performed Cox proportional hazards regression on 9,549 cancer patients exposed to oncologic therapy of whom 75 cases developed tMN (median time to transformation=26 months). To further compare the genetic and clonal relationships between tMN and the proceeding CH, we analyzed 35 cases for which paired samples were available. We compared the growth rate of the variant allele fraction (VAF) of CH clones across treatment modalities and in untreated patients. A significant increase in the growth rate of CH mutations was seen in DDR genes among those receiving cytotoxic (p=0.03) or radiation therapy (p=0.02) during the follow-up period compared to patients who did not receive therapy. Similar growth rates among treated and untreated patients were seen for non-DDR CH genes such as DNMT3A. Increasing cumulative exposure to cytotoxic therapy (p=0.01) and external beam radiation therapy (2×10-8) resulted in higher growth rates for DDR CH mutations. Among 34 subjects with at least two CH mutations in which one mutation was in a DDR gene and one in a non-DDR gene, we studied competing clonal dynamics for multiple gene mutations within the same patient. The risk of tMN was positively associated with CH in a known myeloid neoplasm driver mutation (HR=6.9, p<10-6), and increased with the total number of mutations and clone size. The strongest associations were observed for mutations in TP53 and for CH with mutations in spliceosome genes (SRSF2, U2AF1 and SF3B1). Lower hemoglobin, lower platelet counts, lower neutrophil counts, higher red cell distribution width and higher mean corpuscular volume were all positively associated with increased tMN risk. Among 35 cases for which paired samples were available, in 19 patients (59%), we found evidence of at least one of these mutations at the time of pre-tMN sequencing and in 13 (41%), we identified two or more in the pre-tMN sample. In all cases the dominant clone at tMN transformation was defined by a mutation seen at CH Our serial sampling data provide clear evidence that oncologic therapy strongly selects for clones with mutations in the DDR genes and that these clones have limited competitive fitness, in the absence of cytotoxic or radiation therapy. We further validate the relevance of CH as a predictor and precursor of tMN in cancer patients. We show that CH mutations detected prior to tMN diagnosis were consistently part of the dominant clone at tMN diagnosis and demonstrate that oncologic therapy directly promotes clones with mutations in genes associated with chemo-resistant disease such as TP53.

  • therapy resulted also in clonal evolution and saw changes in splice variants and spliceosome
  • therapy promotes current DDR mutations
  • clonal hematopoeisis due to selective pressures
  • mutations, variants number all predictive of myeloid disease
  • deferring adjuvant therapy for breast cancer patients with patients in highest MDS risk group based on biomarkers, greatly reduced their risk for MDS

5704 – Pan-cancer genomic characterization of patient-matched primary, extracranial, and brain metastases

Presenter/AuthorsOlivia W. Lee, Akash Mitra, Won-Chul Lee, Kazutaka Fukumura, Hannah Beird, Miles Andrews, Grant Fischer, John N. Weinstein, Michael A. Davies, Jason Huse, P. Andrew Futreal. The University of Texas MD Anderson Cancer Center, TX, The University of Texas MD Anderson Cancer Center, TX, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, AustraliaDisclosures O.W. Lee: None. A. Mitra: None. W. Lee: None. K. Fukumura: None. H. Beird: None. M. Andrews: ; Merck Sharp and Dohme. G. Fischer: None. J.N. Weinstein: None. M.A. Davies: ; Bristol-Myers Squibb. ; Novartis. ; Array BioPharma. ; Roche and Genentech. ; GlaxoSmithKline. ; Sanofi-Aventis. ; AstraZeneca. ; Myriad Genetics. ; Oncothyreon. J. Huse: None. P. Futreal: None.

Abstract: Brain metastases (BM) occur in 10-30% of patients with cancer. Approximately 200,000 new cases of brain metastases are diagnosed in the United States annually, with median survival after diagnosis ranging from 3 to 27 months. Recently, studies have identified significant genetic differences between BM and their corresponding primary tumors. It has been shown that BM harbor clinically actionable mutations that are distinct from those in the primary tumor samples. Additional genomic profiling of BM will provide deeper understanding of the pathogenesis of BM and suggest new therapeutic approaches.
We performed whole-exome sequencing of BM and matched tumors from 41 patients collected from renal cell carcinoma (RCC), breast cancer, lung cancer, and melanoma, which are known to be more likely to develop BM. We profiled total 126 fresh-frozen tumor samples and performed subsequent analyses of BM in comparison to paired primary tumor and extracranial metastases (ECM). We found that lung cancer shared the largest number of mutations between BM and matched tumors (83%), followed by melanoma (74%), RCC (51%), and Breast (26%), indicating that cancer type with high tumor mutational burden share more mutations with BM. Mutational signatures displayed limited differences, suggesting a lack of mutagenic processes specific to BM. However, point-mutation heterogeneity revealed that BM evolve separately into different subclones from their paired tumors regardless of cancer type, and some cancer driver genes were found in BM-specific subclones. These models and findings suggest that these driver genes may drive prometastatic subclones that lead to BM. 32 curated cancer gene mutations were detected and 71% of them were shared between BM and primary tumors or ECM. 29% of mutations were specific to BM, implying that BM often accumulate additional cancer gene mutations that are not present in primary tumors or ECM. Co-mutation analysis revealed a high frequency of TP53 nonsense mutation in BM, mostly in the DNA binding domain, suggesting TP53 nonsense mutation as a possible prerequisite for the development of BM. Copy number alteration analysis showed statistically significant differences between BM and their paired tumor samples in each cancer type (Wilcoxon test, p < 0.0385 for all). Both copy number gains and losses were consistently higher in BM for breast cancer (Wilcoxon test, p =1.307e-5) and lung cancer (Wilcoxon test, p =1.942e-5), implying greater genomic instability during the evolution of BM.
Our findings highlight that there are more unique mutations in BM, with significantly higher copy number alterations and tumor mutational burden. These genomic analyses could provide an opportunity for more reliable diagnostic decision-making, and these findings will be further tested with additional transcriptomic and epigenetic profiling for better characterization of BM-specific tumor microenvironments.

  • are there genomic signatures different in brain mets versus non metastatic or normal?
  • 32 genes from curated databases were different between brain mets and primary tumor
  • frequent nonsense mutations in TP53
  • divergent clonal evolution of drivers in BMets from primary
  • they were able to match BM with other mutational signatures like smokers and lung cancer signatures

5707 – A standard operating procedure for the interpretation of oncogenicity/pathogenicity of somatic mutations

Presenter/AuthorsPeter Horak, Malachi Griffith, Arpad Danos, Beth A. Pitel, Subha Madhavan, Xuelu Liu, Jennifer Lee, Gordana Raca, Shirley Li, Alex H. Wagner, Shashikant Kulkarni, Obi L. Griffith, Debyani Chakravarty, Dmitriy Sonkin. National Center for Tumor Diseases, Heidelberg, Germany, Washington University School of Medicine, St. Louis, MO, Mayo Clinic, Rochester, MN, Georgetown University Medical Center, Washington, DC, Dana-Farber Cancer Institute, Boston, MA, Frederick National Laboratory for Cancer Research, Rockville, MD, University of Southern California, Los Angeles, CA, Sunquest, Boston, MA, Baylor College of Medicine, Houston, TX, Memorial Sloan Kettering Cancer Center, New York, NY, National Cancer Institute, Rockville, MDDisclosures P. Horak: None. M. Griffith: None. A. Danos: None. B.A. Pitel: None. S. Madhavan: ; Perthera Inc. X. Liu: None. J. Lee: None. G. Raca: None. S. Li: ; Sunquest Information Systems, Inc. A.H. Wagner: None. S. Kulkarni: ; Baylor Genetics. O.L. Griffith: None. D. Chakravarty: None. D. Sonkin: None.AbstractSomatic variants in cancer-relevant genes are interpreted from multiple partially overlapping perspectives. When considered in discovery and translational research endeavors, it is important to determine if a particular variant observed in a gene of interest is oncogenic/pathogenic or not, as such knowledge provides the foundation on which targeted cancer treatment research is based. In contrast, clinical applications are dominated by diagnostic, prognostic, or therapeutic interpretations which in part also depends on underlying variant oncogenicity/pathogenicity. The Association for Molecular Pathology, the American Society of Clinical Oncology, and the College of American Pathologists (AMP/ASCO/CAP) have published structured somatic variant clinical interpretation guidelines which specifically address diagnostic, prognostic, and therapeutic implications. These guidelines have been well-received by the oncology community. Many variant knowledgebases, clinical laboratories/centers have adopted or are in the process of adopting these guidelines. The AMP/ASCO/CAP guidelines also describe different data types which are used to determine oncogenicity/pathogenicity of a variant, such as: population frequency, functional data, computational predictions, segregation, and somatic frequency. A second collaborative effort created the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets to provide a harmonized vocabulary that provides an evidence-based ranking system of molecular targets that supports their value as clinical targets. However, neither of these clinical guideline systems provide systematic and comprehensive procedures for aggregating population frequency, functional data, computational predictions, segregation, and somatic frequency to consistently interpret variant oncogenicity/pathogenicity, as has been published in the ACMG/AMP guidelines for interpretation of pathogenicity of germline variants. In order to address this unmet need for somatic variant oncogenicity/pathogenicity interpretation procedures, the Variant Interpretation for Cancer Consortium (VICC, a GA4GH driver project) Knowledge Curation and Interpretation Standards (KCIS) working group (WG) has developed a Standard Operating Procedure (SOP) with contributions from members of ClinGen Somatic Clinical Domain WG, and ClinGen Somatic/Germline variant curation WG using an approach similar to the ACMG/AMP germline pathogenicity guidelines to categorize evidence of oncogenicity/pathogenicity as very strong, strong, moderate or supporting. This SOP enables consistent and comprehensive assessment of oncogenicity/pathogenicity of somatic variants and latest version of an SOP can be found at https://cancervariants.org/wg/kcis/.

  • best to use this SOP for somatic mutations and not rearangements
  • variants based on oncogenicity as strong to weak
  • useful variant knowledge on pathogenicity curated from known databases
  • the recommendations would provide some guideline on curating unknown somatic variants versus known variants of hereditary diseases
  • they have not curated RB1 mutations or variants (or for other RBs like RB2? p130?)

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

#AACR20

 

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Early Detection and ctDNA 1:35 – 3:55 PM

Reporter: Stephen J. Williams, PhD

Introduction
Alberto Bardelli

  • circulating tumor DNA has been around but with NGS now we can have more specificity in analyzing ctDNA
  • interest lately in using liquid biopsy to gain insight on tumor heterogeneity versus single needle biopsy of the solid tumor
  • these talks will however be on ctDNA as a diagnostic and therapeutic monitoring modality

Prediction of cancer and tissue of origin in individuals with suspicion of cancer using a cell-free DNA multi-cancer early detection test
David Thiel 

@MayoClinic

  • test has a specificity over 90% and intended to used along with guideline
  • The Circulating  Cell-free Genome Atlas Study (clinical trial NCT02889978) (CCGA) study divided into three substudies: highest performing assay, refining assay, validation of assays
  • methylation based assays worked better than sequencing (bisulfite sequencing)
  • used a machine learning algorithm to help refine assay
  • prediction was >90%; subgroup for high clinical suspicion of cancer
  • HCS sensitivity was 100% and specificity very high; but sensitivity on training set was 40% and results may have been confounded by including kidney cancer
  • TOO tissue of origin was predicted in greater than 99% in both training and validation sets

A first-of-its-kind prospective study of a multi-cancer blood test to screen and manage 10,000 women with no history of cancer

  • DETECT-A study: prospective interventional study; can multi blood test be used prospectively and can lead to a personalized care; can the screen be used to complement current therapy?
  • 10,000 women aged 65-75;  these women could not have previous cancer and conducted through Geisinger Health Network; multi test detects DNA and protein and standard of care screening
  • the study focused on safety so a committee was consulted on each case, and used a diagnostic PET-CT
  • blood test alone not good but combined with protein and CT scans much higher (5 fold increase) detection for breast cancer

Nickolas Papadopoulos

@HopkinsMedicine

Discussant
David Huntsman

  • there are mutiple opportunities yet at same time there are still challenges to utilize these cell free tests in therapeutic monitoring, diagnostic, and screening however sensitivities for some cancers are still too low to use in large scale screening however can supplement current screening guidelines
  • we have to ask about false positive rate and need to concentrate on prospective studies
  • we must consider how tests will be used, population health studies will need to show improved survival

 

Phylogenetic tracking and minimal residual disease detection using ctDNA in early-stage NSCLC: A lung TRACERx study
Chris Abbosh @ucl

  • TRACERx study in collaboration with Charles Swanton.
  • multiplex PCR to track 200 SNVs: correlate tumor tissue biopsy with ctDNA
  • spike in assay shows very good sensitivity and specificity for SNVs variants tracked, did over 400 TRACERx libraries
  • sensitivity increases when tracking more variants but specificity does go down a bit
  • tracking variants can show evidence of subclonal dynamics and evolution and copy number deletion events;  they also show neoantigen editing or changing of their neoantigens
  • this assay can detect low variants in a reproducible manner

The TRACERx (TRAcking Cancer Evolution through therapy (Rx)) lung study is a multi-million pound research project taking place over nine years, which will transform our understanding of non-small cell lung cancer (NSCLC) and take a practical step towards an era of precision medicine. The study will uncover mechanisms of cancer evolution by analysing the intratumour heterogeneity in lung tumours from approximately 850 patients and tracking its evolutionary trajectory from diagnosis through to relapse. At £14 million, it’s the biggest single investment in lung cancer research by Cancer Research UK, and the start of a strategic UK-wide focus on the disease, aimed at making real progress for patients.

Led by Professor Charles Swanton at UCL, the study will bring together a network of experts from different disciplines to help integrate clinical and genomic data and identify patients who could benefit from trials of new, targeted treatments. In addition, it will use a whole suite of cutting edge analytical techniques on these patients’ tumour samples, giving unprecedented insight into the genomic landscape of primary and metastatic tumours and the impact of treatment upon this landscape.

In future, TRACERx will enable us to define how intratumour heterogeneity impacts upon cancer immunity throughout tumour evolution and therapy. Such studies will help define how the clinical evaluation of intratumour heterogeneity can inform patient stratification and the development of combinatorial therapies incorporating conventional, targeted and immune based therapeutics.

Intratumour heterogeneity is increasingly recognised as a major hurdle to achieve improvements in therapeutic outcome and biomarker validation. Intratumour genetic diversity provides a substrate for tumour adaptation and evolution. However, the evolutionary genomic landscape of non-small cell lung cancer (NSCLC) and how it changes through the disease course has not been studied in detail. TRACERx is a prospective observational study with the following objectives:

Primary Objectives

  • Define the relationship between intratumour heterogeneity and clinical outcome following surgery and adjuvant therapy (including relationships between intratumour heterogeneity and clinical disease stage and histological subtypes of NSCLC).
  • Establish the impact of adjuvant platinum-containing regimens upon intratumour heterogeneity in relapsed disease compared to primary resected tumour.

Key Secondary Objectives

  • Develop and validate an intratumour heterogeneity (ITH) ratio index as a prognostic and predictive biomarker in relation to disease-free survival and overall survival.
  • Infer a complete picture of NSCLC evolutionary dynamics – define drivers of genomic instability, metastatic progression and drug resistance by identifying and tracking the dynamics of somatic mutational heterogeneity, and chromosomal structural and numerical instability present in the primary tumour and at metastatic sites. Individual tumour phylogenetic tree analysis will:
    • Establish the order of somatic events in relation to genomic instability onset and metastatic progression
    • Decipher genetic “bottlenecking” events following metastasis and drug therapy
    • Establish dynamics of tumour evolution during the disease course from early to late stage NSCLC.
  • Initiate a longitudinal biobank of circulating tumour cells (CTCs) and circulating-free tumour DNA (cfDNA) to develop analytical methods for the early detection and monitoring of tumour evolution over time.
  • Develop a longitudinal tissue resource to serve as a platform to assess the relationship between genetic intratumour heterogeneity and the host immune response.
  • Define relationships between intratumour heterogeneity and targeted/cytotoxic therapeutic outcome.
  • Use a lung cancer specific gene panel in a certified Good Clinical Practice (GCP) laboratory environment to define clonally dominant disease drivers to address the role of clonal driver dominance in targeted therapeutic response and to guide stratification of lung cancer treatment and future clinical study inclusion (paired primary-metastatic site comparisons in at least 270 patients with relapsed disease).

 

 

Utility of longitudinal circulating tumor DNA (ctDNA) modeling to predict RECIST-defined progression in first-line patients with epidermal growth factor receptor mutation-positive (EGFRm) advanced non-small cell lung cancer (NSCLC)
Martin Johnson

 

Impact of the EML4-ALK fusion variant on the efficacy of lorlatinib in patients (pts) with ALK-positive advanced non-small cell lung cancer (NSCLC)
Todd Bauer

 

From an interview with Dr. Bauer at https://www.lungcancernews.org/2019/08/14/making-headway-with-lorlatinib/

Lorlatinib, a smallmolecule inhibitor of ALK and ROS1, was granted accelerated U.S. Food and Drug Administration approval in November 2018 for patients with ALK-positive metastatic NSCLC whose disease has progressed on crizotinib and at least one other ALK inhibitor or whose disease has progressed on alectinib or ceritinib as the first ALK inhibitor therapy for metastatic disease. Todd M. Bauer, MD, a medical oncologist and senior investigator at Sarah Cannon Research Institute/Tennessee Oncology, PLLC, in Nashville, has been very involved with the development of lorlatinib since the beginning. In the following interview, Dr. Bauer discusses some of lorlatinib’s unique toxicities, as well as his first-hand experiences with the drug.

For further reading: Solomon B, Besse B, Bauer T, et al. Lorlatinib in Patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet. 2018;19(12):P1654-1667.

Abstract

BACKGROUND: Lorlatinib is a potent, brain-penetrant, third-generation inhibitor of ALK and ROS1 tyrosine kinases with broad coverage of ALK mutations. In a phase 1 study, activity was seen in patients with ALK-positive non-small-cell lung cancer, most of whom had CNS metastases and progression after ALK-directed therapy. We aimed to analyse the overall and intracranial antitumour activity of lorlatinib in patients with ALK-positive, advanced non-small-cell lung cancer.

METHODS: In this phase 2 study, patients with histologically or cytologically ALK-positive or ROS1-positive, advanced, non-small-cell lung cancer, with or without CNS metastases, with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and adequate end-organ function were eligible. Patients were enrolled into six different expansion cohorts (EXP1-6) on the basis of ALK and ROS1 status and previous therapy, and were given lorlatinib 100 mg orally once daily continuously in 21-day cycles. The primary endpoint was overall and intracranial tumour response by independent central review, assessed in pooled subgroups of ALK-positive patients. Analyses of activity and safety were based on the safety analysis set (ie, all patients who received at least one dose of lorlatinib) as assessed by independent central review. Patients with measurable CNS metastases at baseline by independent central review were included in the intracranial activity analyses. In this report, we present lorlatinib activity data for the ALK-positive patients (EXP1-5 only), and safety data for all treated patients (EXP1-6). This study is ongoing and is registered with ClinicalTrials.gov, number NCT01970865.

FINDINGS: Between Sept 15, 2015, and Oct 3, 2016, 276 patients were enrolled: 30 who were ALK positive and treatment naive (EXP1); 59 who were ALK positive and received previous crizotinib without (n=27; EXP2) or with (n=32; EXP3A) previous chemotherapy; 28 who were ALK positive and received one previous non-crizotinib ALK tyrosine kinase inhibitor, with or without chemotherapy (EXP3B); 112 who were ALK positive with two (n=66; EXP4) or three (n=46; EXP5) previous ALK tyrosine kinase inhibitors with or without chemotherapy; and 47 who were ROS1 positive with any previous treatment (EXP6). One patient in EXP4 died before receiving lorlatinib and was excluded from the safety analysis set. In treatment-naive patients (EXP1), an objective response was achieved in 27 (90·0%; 95% CI 73·5-97·9) of 30 patients. Three patients in EXP1 had measurable baseline CNS lesions per independent central review, and objective intracranial responses were observed in two (66·7%; 95% CI 9·4-99·2). In ALK-positive patients with at least one previous ALK tyrosine kinase inhibitor (EXP2-5), objective responses were achieved in 93 (47·0%; 39·9-54·2) of 198 patients and objective intracranial response in those with measurable baseline CNS lesions in 51 (63·0%; 51·5-73·4) of 81 patients. Objective response was achieved in 41 (69·5%; 95% CI 56·1-80·8) of 59 patients who had only received previous crizotinib (EXP2-3A), nine (32·1%; 15·9-52·4) of 28 patients with one previous non-crizotinib ALK tyrosine kinase inhibitor (EXP3B), and 43 (38·7%; 29·6-48·5) of 111 patients with two or more previous ALK tyrosine kinase inhibitors (EXP4-5). Objective intracranial response was achieved in 20 (87·0%; 95% CI 66·4-97·2) of 23 patients with measurable baseline CNS lesions in EXP2-3A, five (55·6%; 21·2-86·3) of nine patients in EXP3B, and 26 (53·1%; 38·3-67·5) of 49 patients in EXP4-5. The most common treatment-related adverse events across all patients were hypercholesterolaemia (224 [81%] of 275 patients overall and 43 [16%] grade 3-4) and hypertriglyceridaemia (166 [60%] overall and 43 [16%] grade 3-4). Serious treatment-related adverse events occurred in 19 (7%) of 275 patients and seven patients (3%) permanently discontinued treatment because of treatment-related adverse events. No treatment-related deaths were reported.

INTERPRETATION: Consistent with its broad ALK mutational coverage and CNS penetration, lorlatinib showed substantial overall and intracranial activity both in treatment-naive patients with ALK-positive non-small-cell lung cancer, and in those who had progressed on crizotinib, second-generation ALK tyrosine kinase inhibitors, or after up to three previous ALK tyrosine kinase inhibitors. Thus, lorlatinib could represent an effective treatment option for patients with ALK-positive non-small-cell lung cancer in first-line or subsequent therapy.

  • loratinib could be used for crizotanib resistant tumors based on EML4-ALK variants present in ctDNA

Reference:
1. Updated efficacy and safety data from the global phase III ALEX study of alectinib (ALC) vs crizotinib (CZ) in untreated advanced ALK+ NSCLCJ Clin Oncol 36, 2018 (suppl; abstr 9043).

Discussion

Corey Langer

 

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Symposium New Drugs on the Horizon Part 1 4:50- 6:00 pm

Reporter: Stephen J. Williams, PhD.

SESSION VSY.DDT01 – New Drugs on the Horizon: Part 1

April 27, 2020, 4:50 PM – 6:05 PM
Virtual Meeting: All Session Times Are U.S. EDT

Session Type
Virtual Symposium
Track(s)
Experimental and Molecular Therapeutics,Drug Development
10 Presentations
4:50 PM – 6:00 PM
– CochairAndrew J. Phillips. C4 Therapeutics, Watertown, MA

4:50 PM – 6:00 PM
– CochairMichael Brands. Bayer Pharma AG, Berlin, Germany

4:50 PM – 4:54 PM
– IntroductionAndrew J. Phillips. C4 Therapeutics, Watertown, MA

4:54 PM – 5:14 PM
DDT01-01 – A first-in-class Menin-MLL1 antagonist for the treatment of MLL-r and NPM1 mutant leukemias Jerry McGeehan. Syndax Pharmaceuticals, Inc., Waltham, MA

  • Their inhibitor binds to C terminus of Menin MLL1 which is required for AML progression
  • MLL-4 is from a translocation causing a fusion protein; the inhibitor block leukemic transcription program
  • anti transcription program when Menin inhibitor is used; displaces Menin from chromatin

menin mllr

 

 

 

  • worked in tumor models
  • their inhibitors have good antiproliferative activity seems has good bio-availability in rat and dog
  • they have active QT signal (cardiac tox) screen program in their clinical studies
  • initial pre phase1 have not found the max effective dose
  • not a complete response so may have to look at combination

 

5:14 PM – 5:17 PM
– Discussion

5:17 PM – 5:37 PM
DDT01-02 – BAY 2416964: The first Aryl Hydrocarbon Receptor (AhR) inhibitor to enter phase I clinical development as a novel cancer immunotherapy. Ilona Gutcher, Christina Kober, Julian Röwe, Ulrike Roehn, Lars Roese, Florian Prinz, Detlef Stoeckigt, Benjamin Bader, Matyas Gorjanacz, Rafael Carretero, Norbert Schmees, Horst Irlbacher, Helge Roider, Katharina Sahm, Hilmar Weinmann, Ingo V. Hartung, Bertolt Kreft, Rienk Offringa, Michael Platten. Bayer AG, Berlin, Germany, Bayer AG, Germany, DKFZ, Heidelberg, Germany

  • has a more proinflammatory effect in vivo than other I/O inhibitors
  • rescues TNF alpha immunomodulation
  • further increases IL2 and IFN gamma when combined with I/O inhibitor so by a different mechanism
  • looking to use in NSCLC
  • prelim tox looks fine

5:37 PM – 5:40 PM
– Discussion

5:40 PM – 6:00 PM
DDT01-03 – IPN60090: A potent and selective inhibitor of glutaminase being developed for KEAP1/NFE2L2 mutant NSCLC and ASNS-low HGSOC patients. Jeffrey J. Kovacs. UT MD Anderson Cancer Center, Houston, TX

  • Being developed for NSCLC and high grade serous ovarian cancer
  • glutaminolysis repsonsible for many of the building blocks of cell function
  • these compounds had selective antiproliferative but was focus on GLS1
  • good PK and bioavailability; mouse half life is short but dog is longer so estimated human is 8 hours
  • increased pentose phosphate pathway; reliance on GLS1 activity promotes metabolic reprogramming
  • the inhibitor significantly reduced glutathione in responder cell lines; responders had higher level of ROS
  • use ribose pathway and pentose shunt to help deal with REDOX
  • get a antitumor response in KEAP mut PDX models and these PDX respond poorly to I/O checkpoint inhibitors
  •  ASN2 was higher in nonresponders (alt. formation of Gln) as well as GPT2
  • ASN2 high expressing nonresponding OVCA lines; need low ASN2 in OVCA for response
  • so given metabolic plasticity used shRNA screens after inhibitor
  • PI3K turned up so can use mTORC inhibitor in combo; works well with GLS1 inhibitor to inhibit tumorigenesis
  • they are looking at other combos including std. chemo and I/O checkpoints
  • currently doing dose escalation clinical study

6:00 PM – 6:04 PM
– Discussion

6:04 PM – 6:05 PM
– Closing Remarks Michael Brands. Bayer Pharma AG, Berlin, Germany

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

Read Full Post »


Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 27, 2020 Opening Remarks and Clinical Session 9 am

Reporter: Stephen J. Williams, PhD.

9:00 AM Opening Session

9:00 AM – 9:05 AM
– Opening Video

9:05 AM – 9:15 AM
– AACR President: Opening Remarks Elaine R. Mardis. Nationwide Children’s Hospital, Columbus, OH

 

Dr. Mardis is the Robert E. and Louise F. Dunn Distinguished Professor of Medicine @GenomeInstitute at Washington University of St. Louis School of Medicine.

Opening remarks:  Dr. Mardis gave her welcome from her office.  She expressed many thanks to healthcare workers and the hard work of scientists and researchers.  She also expressed some regret for the many scientists who had wonderful research to present and how hard it was to make the decision to go virtual however she feels there now more than ever still needs a venue to discuss scientific and clinical findings.  Some of the initiatives that she has had the opportunity to engage in the areas of groundbreaking discoveries and clinical trials.  606,000 lives will be lost in US this year from cancer.  AACR is being vigilant as also an advocacy platform and public policy platform in Congress and Washington.  The AACR has been at the front of public policy on electronic cigarettes.  Blood Cancer Discovery is their newest journal.  They are going to host joint conferences with engineers, mathematicians and physicists to discuss how they can help to transform oncology.  Cancer Health Disparity Annual Conference is one of the fastest growing conferences.  They will release a report later this year about the scope of the problem and policy steps needed to alleviate these disparities.  Lack of racial and ethnic minorities in cancer research had been identified an issue and the AACR is actively working to reduce the disparities within the ranks of cancer researchers.   Special thanks to Dr. Margaret Foti for making the AACR the amazing organization it is.

 

9:15 AM – 9:30 AM- AACR Annual Meeting Program Chair: Review of Program for AACR Virtual Annual Meeting Antoni Ribas. UCLA Medical Center, Los Angeles, CA

Antoni Ribas, MD PhD is Professor, Medicine, Surgery, Molecular and Medical Pharmacology; Director, Parker Institute for Cancer Immunotherapy Center at UCLA; Director, UCLA Jonsson Comprehensive Cancer Center Tumor Immunology Program aribas@mednet.ucla.edu

The AACR felt it was important to keep the discourse in the cancer research field as the Annual AACR meeting is the major way scientists and clinicians discuss the latest and most pertinent results.  A three day virtual meeting June 22-24 will focus more on the translational and basic research while this meeting is more focused on clinical trials.  There will be educational programs during the June virtual meeting.  The COVID in Cancer part of this virtual meeting was put in specially for this meeting and there will be a special meeting on this in July.  They have created an AACR COVID task force.  The AACR has just asked Congress and NIH to extend the grants due to the COVID induced shutdown of many labs.

9:30  Open Clinical Plenary Session (there are 17 sessions today but will only cover a few of these)

9:30 AM – 9:31 AM
– Chairperson Nilofer S. Azad. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD @noza512

9:30 AM – 9:31 AM
– Chairperson Manuel Hidalgo. Weill Cornell Medicine, New York, NY

9:30 AM – 9:35 AM
– Introduction Nilofer S. Azad. Johns Hopkins Sidney Kimmel Comp. Cancer Center, Baltimore, MD

9:35 AM – 9:45 AM
CT011 – Evaluation of durvalumab in combination with olaparib and paclitaxel in high-risk HER2 negative stage II/III breast cancer: Results from the I-SPY 2 TRIAL Lajos Pusztai, et al

see https://www.abstractsonline.com/pp8/#!/9045/presentation/10593

AbstractBackground: I-SPY2 is a multicenter, phase 2 trial using response-adaptive randomization within molecular subtypes defined by receptor status and MammaPrint risk to evaluate novel agents as neoadjuvant therapy for breast cancer. The primary endpoint is pathologic complete response (pCR, ypT0/is ypN0)). DNA repair deficiency in cancer cells can lead to immunogenic neoantigens, activation of the STING pathway, and PARP inhibition can also upregulate PD-L1 expression. Based on these rationales we tested the combination of durvalumab (anti-PDL1), olaparib (PARP inhibitor) and paclitaxel in I-SPY2.
Methods: Women with tumors ≥ 2.5 cm were eligible for screening. Only HER2 negative (HER2-) patients were eligible for this treatment, hormone receptor positive (HR+) patients had to have MammaPrint high molecular profile. Treatment included durvalumab 1500 mg every 4 weeks x 3, olaparib 100 mg twice daily through weeks 1-11 concurrent with paclitaxel 80 mg/m2 weekly x 12 (DOP) followed by doxorubicin/cyclophosphamide (AC) x 4. The control arm was weekly paclitaxel x 12 followed by AC x 4. All patients undergo serial MRI imaging and imaging response at 3 & 12 weeks combined with accumulating pCR data are used to estimate, and continuously update, predicted pCR rate for the trial arm. Regimens “graduation with success” when the Bayesian predictive probability of success in a 300-patient phase 3 neoadjuvant trial in the appropriate biomarker groups reaches > 85%.
Results: A total of 73 patients received DOP treatment including 21 HR- tumors (i.e. triple-negative breast cancer, TNBC) and 52 HR+ tumors between May 2018 – June 2019. The control group included 299 patients with HER2- tumors. The DOP arm graduated in June 2019, 13 months after enrollment had started, for all HER2- negative and the HR+/HER2- cohorts with > 0.85% predictive probabilities of success. 72 patient completed surgery and evaluable for pCR, the final predicted probabilities of success in a future phase III trial to demonstrate higher pCR rate with DOP compared to control are 81% for all HER2- cancers (estimated pCR rate 37%), 80% for TNBC (estimated pCR rate 47%) and 74.5% for HR+/HER2- patients (estimated pCR rate 28%). Association between pCR and germline BRCA status and immune gene expression including PDL1 will be presented at the meeting. No unexpected toxicities were seen, but 10 patients (14%) had possibly immune or olaparib related grade 2/3 AEs (3 pneumonitis, 2 adrenal insufficiency, 1 colitis, 1 pancreatitis, 2 elevated LFT, 1 skin toxicity, 2 hypothyroidism, 1 hyperthyroidism, 1 esophagitis).
Conclusion: I-SPY2 demonstrated a significant improvement in pCR with durvalumab and olaparib included with paclitaxel compared to chemotherapy alone in women with stage II/III high-risk, HER2-negative breast cancer, improvement was seen in both the HR+ and TNBC subsets.

  • This combination of durvalumab and olaparib is safe in triple negative breast cancer
  • expected synergy between PARP inhibitors and PDL1 inhibitors as olaparib inhibits DNA repair and would increase the mutational burden, which is in lung cancer shown to be a biomarker for efficacy of immune checkpoint inhibitors such as Opdivio
  • three subsets of breast cancers were studied: her2 negative, triple negative and ER+ tumors
  • MRI imaging tumor size was used as response
  • olaparib arm had elevation of liver enzymes and there was a pancreatitis
  • however paclitaxel was used within the combination as well as a chemo arm but the immuno arm alone may not be better than chemo alone but experimental arm with all combo definitely better than chemo alone
  • they did not look at BRCA1/2 status, followup talk showed that this is a select group that may see enhanced benefit; PARP inhibitors were seen to be effective only in BRCA1/2 mutant ovarian cancer previously

 

10:10 AM – 10:20 AM
CT012 – Evaluation of atezolizumab (A), cobimetinib (C), and vemurafenib (V) in previously untreated patients with BRAFV600 mutation-positive advanced melanoma: Primary results from the phase 3 IMspire150 trial Grant A. McArthur,

for abstract please see https://www.abstractsonline.com/pp8/#!/9045/presentation/10594

AbstractBackground: Approved systemic treatments for advanced melanoma include immune checkpoint inhibitor therapy (CIT) and targeted therapy with BRAF plus MEK inhibitors for BRAFV600E/K mutant melanoma. Response rates with CITs are typically lower than those observed with targeted therapy, but CIT responses are more durable. Preclinical and clinical data suggest a potential for synergy between CIT and BRAF plus MEK inhibitors. We therefore evaluated whether combining CIT with targeted therapy could improve efficacy vs targeted therapy alone. Methods: Treatment-naive patients with unresectable stage IIIc/IV melanoma (AJCC 7th ed), measurable disease by RECIST 1.1, and BRAFV600 mutations in their tumors were randomized to the anti­-programmed death-ligand 1 antibody A + C + V or placebo (Pbo) + C + V. A or Pbo were given on days 1 and 15 of each 28-day cycle. Treatment was continued until disease progression or unacceptable toxicity. The primary outcome was investigator-assessed progression-free survival (PFS). Results: 514 patients were enrolled (A + C + V = 256; Pbo + C + V = 258) and followed for a median of 18.9 months. Investigator-assessed PFS was significantly prolonged with A + C + V vs Pbo + C + V (15.1 vs 10.6 months, respectively; hazard ratio: 0.78; 95% confidence interval: 0.63-0.97; P=0.025), an effect seen in all prognostic subgroups. While objective response rates were similar in the A + C + V and Pbo + C + V groups, median duration of response was prolonged with A + C + V (21.0 months) vs Pbo + C + V (12.6 months). Overall survival data were not mature at the time of analysis. Common treatment-related adverse events (AEs; >30%) in the A + C + V and Pbo + C + V groups were blood creatinine phosphokinase (CPK) increase (51.3% vs 44.8%), diarrhea (42.2% vs 46.6%), rash (40.9% in both arms), arthralgia (39.1% vs 28.1%), pyrexia (38.7% vs 26.0%), alanine aminotransferase (ALT) increase (33.9% vs 22.8%), and lipase increase (32.2% vs 27.4%). Common treatment-related grade 3/4 AEs (>10%) that occurred in the A + C + V and Pbo + C + V groups were lipase increase (20.4% vs 20.6%), blood CPK increase (20.0% vs 14.9%), ALT increase (13.0% vs 8.9%), and maculopapular rash (12.6% vs 9.6%). The incidence of treatment-related serious AEs was similar between the A + C + V (33.5%) and Pbo + C + V (28.8%) groups. 12.6% of patients in the A + C + V group and 15.7% in the Pbo + C + V group stopped all treatment because of AEs. The safety profile of the A + C + V regimen was generally consistent with the known profiles of the individual components. Conclusion: Combination therapy with A + C + V was tolerable and manageable, produced durable responses, and significantly increased PFS vs Pbo + C + V. Thus, A + C + V represents a viable treatment option for BRAFV600 mutation-positive advanced melanoma. ClinicalTrials.gov ID: NCT02908672

 

 

10:25 AM – 10:35 AM
CT013 – SWOG S1320: Improved progression-free survival with continuous compared to intermittent dosing with dabrafenib and trametinib in patients with BRAF mutated melanoma Alain Algazi,

for abstract and more author information please see https://www.abstractsonline.com/pp8/#!/9045/presentation/10595

AbstractBackground: BRAF and MEK inhibitors yield objective responses in the majority of BRAFV600E/K mutant melanoma patients, but acquired resistance limits response durations. Preclinical data suggests that intermittent dosing of these agents may delay acquired resistance by deselecting tumor cells that grow optimally in the presence of these agents. S1320 is a randomized phase 2 clinical trial designed to determine whether intermittent versus continuous dosing of dabrafenib and trametinib improves progression-free survival (PFS) in patients with advanced BRAFV600E/K melanoma.
Methods: All patients received continuous dabrafenib and trametinib for 8-weeks after which non-progressing patients were randomized to receive either continuous treatment or intermittent dosing of both drugs on a 3-week-off, 5-week-on schedule. Unscheduled treatment interruptions of both drugs for > 14 days were not permitted. Responses were assessed using RECIST v1.1 at 8-week intervals scheduled to coincide with on-treatment periods for patients on the intermittent dosing arm. Adverse events were assessed using CTCAE v4 monthly. The design assumed exponential PFS with a median of 9.4 months using continuous dosing, 206 eligible patients and 156 PFS events. It had 90% power with a two-sided α = 0.2 to detect a change to a median with an a priori hypothesis that intermittent dosing would improve the median PFS to 14.1 months using a Cox model stratified by the randomization stratification factors.
Results: 242 patients were treated and 206 patients without disease progression after 8 weeks were randomized, 105 to continuous and 101 to intermittent treatment. 70% of patients had not previously received immune checkpoint inhibitors. There were no significant differences between groups in terms of baseline patient characteristics. The median PFS was statistically significantly longer, 9.0 months from randomization, with continuous dosing vs. 5.5 months from randomization with intermittent dosing (p = 0.064). There was no difference in overall survival between groups (median OS = 29.2 months in both arms p = 0.93) at a median follow up of 2 years. 77% of patient treated continuously discontinued treatment due to disease progression vs. 84% treated intermittently (p = 0.34).
Conclusions: Continuous dosing with the BRAF and MEK inhibitors dabrafenib and trametinib yields superior PFS compared with intermittent dosing.

  • combo of MEK and BRAF inhibitors can attract immune cells like TREGs so PDL1 inhibitor might help improve outcome
  • PFS was outcome endpoint
  • LDH was elevated in three patients (why are they seeing liver tox?  curious like previous study); are seeing these tox with the PDL1 inhibitors
  • there was marked survival over placebo group and PFS was statistically  with continuous dosing however intermittent dosing shows no improvement

Dr. Wafik el Diery gave a nice insight as follows

Follow on Twitter at:

@pharma_BI

@AACR

@GenomeInstitute

@CureCancerNow

@UCLAJCCC

#AACR20

#AACR2020

#curecancernow

#pharmanews

 

 

 

Read Full Post »


Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »


Live Notes and Conference Coverage in Real Time. COVID19 And The Impact on Cancer Patients Town Hall with Leading Oncologists; April 4, 2020

Reporter: Stephen J. Williams, PhD 

@StephenJWillia2

UPDATED 5/11/2020 see below

This update is the video from the COVID-19 Series 4.

UPDATED 4/08/2020 see below

The Second in a Series of Virtual Town Halls with Leading Oncologist on Cancer Patient Care during COVID-19 Pandemic: What you need to know

The second virtual Town Hall with Leading International Oncologist, discussing the impact that the worldwide COVID-19 outbreak has on cancer care and patient care issues will be held this Saturday April 4, 2020.  This Town Hall Series is led by Dr. Roy Herbst and Dr. Hossain Borghaei who will present a panel of experts to discuss issues pertaining to oncology practice as well as addressing physicians and patients concerns surrounding the risk COVID-19 presents to cancer care.  Some speakers on the panel represent oncologist from France and Italy, and will give their views of the situation in these countries.

 

Speakers include:

Roy S. Herbst, MD, PhD, Ensign Professor of Medicine (Medical Oncology) and Professor of Pharmacology; Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital; Associate Cancer Center Director for Translational Research, Yale Cancer Center

Hossain Borghaei, DO, MS , Chief of Thoracic Medical Oncology and Director of Lung Cancer Risk Assessment, Fox Chase Cancer Center

Giuseppe Curigliano, MD, PhD, University of Milan and Head of Phase I Division at IEO, European Institute of Oncology

Paolo Ascierto, MD National Tumor Institute Fondazione G. Pascale, Medical oncologist from National Cancer Institute of Naples, Italy

Fabrice Barlesi, MD, PhD, Thoracic oncologist Cofounder Marseille Immunopole Coordinator #ThePioneeRproject, Institut Gustave Roussy

Jack West, MD, Department of Medical Oncology & Therapeutics Research, City of Hope California

Rohit Kumar, MD Department of Medicine, Section of Pulmonary Medicine, Fox Chase Cancer Center

Christopher Manley, MD Director, Interventional Pulmonology Fox Chase Cancer Center

Hope Rugo, MD FASCO Division of Hematology and Oncology, University of California San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center

Harriet Kluger, MD Professor of Medicine (Medical Oncology); Director, Yale SPORE in Skin Cancer, Yale Cancer Center

Marianne J. Davies, DNP, MSN, RN, APRN, CNS-BC, ACNP-BC, AOCNP Assistant Professor of Nursing, Yale University

Barbara Burtness, MD Professor of Medicine (Medical Oncology);  Head and Neck Cancers Program, Yale University

 

@pharma_BI and @StephenJWillia2 will be Tweeting out live notes using #CancerCareandCOVID19

Live Notes

Part I: Practice Management

Dr. Jack West from City of Hope talked about telemedicine:  Coordination of the patient experience, which used to be face to face now moved to a telemedicine alternative.  For example a patient doing well on personalized therapy, many patients are well suited for a telemedicine experience.  A benefit for both patient and physician.

Dr. Rohit Kumar: In small cancer hospitals, can be a bit difficult to determine which patient needs to come in and which do not.  For outpatients testing for COVID is becoming very pertinent as these tests need to come back faster than it is currently.  For inpatients the issue is personal protection equipment.  They are starting to reuse masks after sterilization with dry heat.   Best to restructure the system of seeing patients and scheduling procedures.

Dr. Christopher Manley: hypoxia was an issue for COVID19 patients but seeing GI symptoms in 5% of patients.  Nebulizers have potential to aerosolize.  For patients in surgery prep room surgical masks are fine.  Ventilating these patients are a challenge as hypoxia a problem.  Myocarditis is a problem in some patients.  Diffuse encephalopathy and kidney problems are being seen. So Interleukin 6 (IL6) inhibitors are being used to reduce the cytokine storm presented in patients suffering from COVID19.

Dr. Hope Rugo from UCSF: Breast cancer treatment during this pandemic has been challenging, even though they don’t use too much immuno-suppressive drugs.  How we decide on timing of therapy and future visits is crucial.  For early stage breast cancer, neoadjuvant therapy is being used to delay surgeries.  Endocrine therapy is more often being used. In patients that need chemotherapy, they are using growth factor therapy according to current guidelines.  Although that growth factor therapy might antagonize some lung problems, there is less need for multiple visits.

For metastatic breast cancer,  high risk ER positive are receiving endocrine therapy and using telemedicine for followups.  For chemotherapy they are trying to reduce the schedules or frequency it is given. Clinical trials have been put on hold, mostly pharmokinetic studies are hard to carry out unless patients can come in, so as they are limiting patient visits they are putting these type of clinical studies on hold.

Dr. Harriet Kluger:  Melanoma community of oncologists gathered together two weeks ago to discuss guidelines and best practices during this pandemic.   The discussed that there is a lack of data on immunotherapy long term benefit and don’t know the effectiveness of neoadjuvant therapy.  She noted that many patients on BRAF inhibitors like Taflinar (dabrafenib)   or Zelboraf (vemurafenib) might get fevers as a side effect from these inhibitors and telling them to just monitor themselves and get tested if they want. Yale has also instituted a practice that, if a patient tests positive for COVID19, Yale wants 24 hours between the next patient visit to limit spread and decontaminate.

Marianne Davies:  Blood work is now being done at satellite sites to limit number of in person visits to Yale.  Usually they did biopsies to determine resistance to therapy but now relying on liquid biopsies (if insurance isn’t covering it they are working with patient to assist).  For mesothelioma they are dropping chemotherapy that is very immunosuppressive and going with maintenance pembrolizumab (Keytruda).  It is challenging in that COPD mimics the symptoms of COVID and patients are finding it difficult to get nebulizers at the pharmacy because of shortages; these patients that develop COPD are also worried they will not get the respirators they need because of rationing.

Dr. Barbara Burtness: Head and neck cancer.  Dr. Burtness stresses to patients that the survival rate now for HPV positive head and neck is much better and leaves patients with extra information on their individual cancers.  She also noted a registry or database that is being formed to track data on COVID in patients undergoing surgery  and can be found here at https://globalsurg.org/covidsurg/

About CovidSurg

  • There is an urgent need to understand the outcomes of COVID-19 infected patients who undergo surgery.
  • Capturing real-world data and sharing international experience will inform the management of this complex group of patients who undergo surgery throughout the COVID-19 pandemic, improving their clinical care.
  • CovidSurg has been designed by an international collaborating group of surgeons and anesthetists, with representation from Canada, China, Germany, Hong Kong, Italy, Korea, Singapore, Spain, United Kingdom, and the United States.

Dr. Burtness had noted that healthcare care workers are at high risk of COVID exposure during ear nose and throat (ENT) procedures as the coronavirus resides in the upper respiratory tract.  As for therapy for head and neck cancers, they are staying away from high dose cisplatin because of the nephrotoxicity seen with high dose cisplatin.  An alternative is carboplatin which generally you do not see nephrotoxicity as an adverse event (a weekly carboplatin).  Changing or increasing dose schedule (like 6 weeks Keytruda) helps reduce immunologic problems related to immunosupression and patients do not have to come in as often.

Italy and France

Dr. Paolo Ascierto:   with braf inhibitors, using in tablet form so patients can take from home.  Also they are moving chemo schedules for inpatients so longer dosing schedules.  Fever still a side effect from braf inhibitors and they require a swab to be performed to ascertain patient is COVID19 negative.  Also seeing pneumonitis as this is an adverse event from checkpoint inhibitors so looking at CT scans and nasal swab to determine if just side effect of I/O drugs or a COVID19 case.  He mentioned that their area is now doing okay with resources.

Dr. Guiseppe Curigliano mentioned about the redesign of the Italian health system with spokes and hubs of health care.  Spokes are generalized medicine while the hubs represent more specialized centers like CV hubs or cancer hubs.  So for instance, if a melanoma patient in a spoke area with COVID cases they will be referred to a hub.  He says they are doing better in his area

In the question and answer period, Dr. West mentioned that they are relaxing many HIPAA regulations concerning telemedicine.  There is a website on the Centers for Connective Health Policy that shows state by state policy on conducting telemedicine.   On immuno oncology therapy, many in the panel had many questions concerning the long term risk to COVID associated with this type of therapy.  Fabrice mentioned they try to postpone use of I/O and although Dr. Kluger said there was an idea floating around that PD1/PDL1 inhibitors could be used as a prophylactic agent more data was needed.

Please revisit this page as the recording of this Town Hall will be made available next week.

UPDATED 4/08/2020

Below find the LIVE RECORDING and TAKEAWAYS by the speakers

 

 
Town Hall Takeaways
 

Utilize Telehealth to Its Fullest Benefit

 

·       Patients doing well on targeted therapy or routine surveillance are well suited to telemedicine

·       Most patients are amenable to this, as it is more convenient for them and minimizes their exposure

·       A patient can speak to multiple specialists with an ease that was not previously possible

·       CMS has relaxed some rules to accommodate telehealth, though private insurers have not moved as quickly, and the Center for Connected Health Policy maintains a repository of current state-by-state regulations:  https://www.cchpca.org/

 

Practice Management Strategies

 

·       In the face of PPE shortages, N95 masks can be decontaminated using UV light, hydrogen peroxide, or autoclaving with dry heat; the masks can be returned to the original user until the masks are no longer suitable for use

·       For blood work or scans, the use of external satellite facilities should be explored

·       Keep pumps outside of the room so nurses can attend to them quickly

·       Limit the use of nebulizers, CPAPs, and BiPAPs due to risk of aerosolization

 

Pool Our Knowledge for Care of COVID Patients

 

·       There is now a global registry for tracking surgeries in COVID-positive cancer patients:  https://globalsurg.org/cancercovidsurg/

·       Caution is urged in the presence of cardiac complications, as ventilated patients may appear to improve, only to suffer severe myocarditis and cardiac arrest following extubation

·       When the decision is made to intubate, intubate quickly, as less invasive methods result in aerosolization and increased risks to staff

 

Study the Lessons of Europe

 

·       The health care system in Italy has been reorganized into “spokes” and “hubs,” with a number of cancer hubs; if there is a cancer patient in a spoke hospital with many COVID patients, this patient may be referred to a hub hospital

·       Postpone adjuvant treatments whenever possible

·       Oral therapies, which can be managed at home, are preferred over therapies that must be administered in a healthcare setting

·       Pneumonitis patients without fevers may be treated with steroids, but nasal swab testing is needed in the presence of concomitant fever

·       Any staff who are not needed on site should be working from home, and rotating schedules can be used to keep people healthy

·       Devise an annual epidemic control plan now that we have new lessons from COVID

 

We Must Be Advocates for Our Cancer Patients

 

·       Be proactive with other healthcare providers on behalf of patients with a good prognosis

·       Consider writing letters for cancer patients for inclusion into their chart, or addendums on notes, then encourage patients to print these out, or give it to them during their visit

·       The potential exists for a patient to be physiologically stable on a ventilator, but intolerant of decannulation; early discussions are necessary to determine reasonable expectations of care

·       Be sure to anticipate a second wave of patients, comprised of cancer patients for whom treatments and surgery have been delayed!

 

Tumor-Specific Learnings

 

Ø  Strategies in Breast Cancer:

·       In patients with early-stage disease, promote the use of neoadjuvant therapy where possible to delay the need for surgery

·       For patients with metastatic disease in the palliative setting, transition to less frequent chemotherapy dosing if possible

·       While growth factors may pose a risk in interstitial lung disease, new guidelines are emerging

 

Ø  Strategies in Melanoma:

·       The melanoma community has released specific recommendations for treatment during the pandemic:  https://www.nccn.org/covid-19/pdf/Melanoma.pdf

·       The use of BRAF/MEK inhibitors can cause fevers that are drug-related, and access to an alternate clinic where patients can be assessed is a useful resource

 

Ø  Strategies in Lung Cancer:

·       For patients who are stable on an oral, targeted therapy, telehealth check-in is a good option

·       For patients who progress on targeted therapies, increased use of liquid biopsies when appropriate can minimize use of bronchoscopy suites and other resources

·       For patients on pembrolizumab monotherapy, consider switching to a six-week dosing of 400 mg

·       Many lung cancer patients worry about “discrimination” should they develop a COVID infection; it is important to support patients and help manage expectations and concerns

 

 

UPDATED 5/11/2020

Townhall on COVID-19 and Cancer Care with Leading Oncologists Series 4

Addressing the Challenges of Cancer Care in the Community

 

 

Read Full Post »


The Second in a Series of Virtual Town Halls with Leading Oncologist on Cancer Patient Care during COVID-19 Pandemic: What you need to know

Reporter: Stephen J. Williams, PhD 

@StephenJWillia2

The second virtual Town Hall with Leading International Oncologist, discussing the impact that the worldwide COVID-19 outbreak has on cancer care and patient care issues will be held this Saturday April 4, 2020.  This Town Hall Series is led by Dr. Roy Herbst and Dr. Hossein Borghaei who will present a panel of experts to discuss issues pertaining to oncology practice as well as addressing physicians and patients concerns surrounding the risk COVID-19 presents to cancer care.  Some speakers on the panel represent oncologist from France and Italy, and will give their views of the situation in these countries.

Please register at the link below.

Link to register: https://us04web.zoom.us/webinar/register/WN_YzsFbGacTg2DV73j6pYqxQ

This series is being hosted in partnership with Axiom Healthcare Strategies, Inc..

The Town Hall proceedings and live notes will be made available on this site and Live Notes will be Tweeted in Real Time using the #CancerCareandCOVID19 and @pharma_BI

 

Webinar banner

   Microsoft (Outlook)
Topic

COVID-19 Oncology Town Hall
Description

The goal of these town halls is to improve outcomes of cancer patients across the globe, by sharing insights and lessons learned from oncologists fighting COVID-19. Dr. Roy Herbst and Dr. Hossein Borghaei will be joined by a panel of thought leaders with expertise in a variety of solid tumors to discuss how COVID-19 has impacted patient care in oncology.

Following the session, a video, transcript, and key takeaways will be released on Monday 4/6.

Time

For Live Notes From the Last Town Hall Meeting Specifically on Lung Cancer and COVID19 please go to

For more information on Cancer Care and Issues of Cancer and COVID19 please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

 

Read Full Post »

Older Posts »