Advertisements
Feeds:
Posts
Comments

Archive for the ‘Nutrition and Phytochemistry’ Category


Micronutrients, Macronutrients and Dietary Patterns: Nutrition and Fertility

Reporter: Aviva Lev-Ari, PhD, RN

Folic acid. Folic acid is important for germ cell production and pregnancy. The recommended daily dose to prevent neural tube defects is 400-800 µg. Women who take folic acid-containing multivitamins are less likely to be anovulatory, and the time to achieve a pregnancy is reduced. Those who consume more than 800 µg of folic acid daily are more likely to conceive with assisted reproductive technology (ART) than those whose daily intake is less than 400 µg.

Vitamin D. Vitamin D may affect fertility through receptors found in the ovaries and endometrium. An extremely low vitamin D level (< 20 ng/mL) is associated with higher risk for spontaneous miscarriage risk. Some reports suggest that women with adequate vitamin D levels (> 30 ng/mL) are more likely to conceive after ART when compared with those whose vitamin D levels are insufficient (20-30 ng/mL), or deficient (< 20 ng/mL). These findings, however, are inconclusive.

Carbohydrates. Dietary carbohydrates affect glucose homeostasis and insulin sensitivity, and by these mechanisms can affect reproduction. The impact is most pronounced among women with polycystic ovary syndrome (PCOS). In women with PCOS, a reduction in glycemic load improves insulin sensitivity as well as ovulatory function. Whole grains have antioxidant effects and also improve insulin sensitivity, thereby positively influencing reproduction.

Omega-3 supplements. Omega-3 polyunsaturated fatty acids lower the risk for endometriosis. Increased levels of omega-3 polyunsaturated fatty acids are associated with higher clinical pregnancy and live birth rates.

Protein and dairy. Some reports suggest that dairy protein intake lowers ovarian reserve. Other reports suggest improved ART outcomes with increased dairy intake. Meat, fish, and dairy products, however, can also serve as vehicles for environmental contamination that may adversely affect the embryo. Fish, on the other hand, has been shown to exert positive effects on fertility.

Dietary approach. In general, a Mediterranean diet is favored (high intake of fruits, vegetables, fish, chicken, and olive oil) among women diagnosed with infertility.

Recommendations

A well-balanced diet, rich in vegetables and fruits, is preferred for infertile women and should provide the required micro- and macronutrients. It remains common for patients consume a wide variety of vitamin, mineral, and micronutrient supplements daily.[4] Supplements should not replace food sources of vitamins and trace elements because of differences in bioavailability (natural versus synthetic), and inaccuracy of label declarations may result in suboptimal intake of important nutrients.[5,6] Furthermore, naturally occurring vitamins and micronutrients are more efficiently absorbed.

With respect to overall diet, women are advised to follow a caloric intake that won’t contribute to being overweight or obese. Obesity is on the rise among younger people, including children. Obese women have a lower chance of conceiving and are less likely to have an uncomplicated pregnancy.[7] Proper weight can be maintained with an appropriate diet and regular exercise.

Finally, women must abstain from substances that are potentially harmful to pregnancy (eg, smoking, alcohol, recreational drugs, high caffeine intake).

Causes of Infertility

  • ovulatory defect,
  • tubal occlusion,
  • low sperm counts), and many

Factors lower the chance of pregnancy

  • older age,
  • lower ovarian reserve,
  • endometriosis

Factors can’t be altered

  • age and
  • ovarian reserve

Modifiable Factors:

  • body weight and
  • lifestyle habits

 

REFERENCES

SOURCE

http://Peter Kovacs. Food and Fertility: What Should Women Consume When Trying to Conceive? – Medscape – Dec 06, 2018.

Advertisements

Read Full Post »


Live 11:00 AM- 12:00 Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : Opening Remarks October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

11:00 Welcome

 

 

Prof. Antonio Giordano, MD, PhD.

Director and President of the Sbarro Health Research Organization, College of Science and Technology, Temple University

Welcome to this symposium on Italian lifestyle and health.  This is similar to a symposium we had organized in New York.  A year ago Bloomberg came out with a study on higher longevity of the italian population and this study was concluded that this increased longevity was due to the italian lifestyle and diet especially in the southern part of Italy, a region which is older than Rome (actually founded by Greeks and Estonians).  However this symposium will delve into the components of this healthy Italian lifestyle which contributes to this longevity effect.  Some of this work was done in collaboration with Temple University and sponsored by the Italian Consulate General in Philadelphia ( which sponsors programs in this area called Ciao Philadelphia).

Greetings: Fucsia Nissoli Fitzgerald, Deputy elected in the Foreign Circumscription – North and Central America Division

Speaking for the Consulate General is Francesca  Cardurani-Meloni.   I would like to talk briefly about the Italian cuisine and its evolution, from the influence of the North and South Italy, economic factors, and influence by other cultures.  Italian cooking is about simplicity, cooking with what is in season and freshest.  The meal is not about the food but about comfort around the table, and comparible to a cullinary heaven, about sharing with family and friends, and bringing the freshest ingredients to the table.

Consul General, Honorable Pier Attinio Forlano, General Consul of Italy in Philadelphia

 

11:30 The Impact of Environment and Life Style in Human Disease

Prof. Antonio Giordano MD, PhD.

 

 

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Read Full Post »


Omega-3 fats Supplements Effect on Cardiovascular Health: EPA and DHA has little or no effect on Mortality or Cardiovascular Health

Reporter: Aviva Lev-Ari, PhD, RN

 

Cochrane Database Syst Rev. 2018 Jul 18;7:CD003177. doi: 10.1002/14651858.CD003177.pub3. [Epub ahead of print]

Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease.

Abstract

BACKGROUND:

Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this.

OBJECTIVES:

To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids.

SEARCH METHODS:

We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake.

DATA COLLECTION AND ANALYSIS:

Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression.

MAIN RESULTS:

We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months’ duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses – LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence).

AUTHORS’ CONCLUSIONS:

This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.

PMID:
30019766
DOI:
10.1002/14651858.CD003177.pub3

SOURCE

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A heart-healthy diet has been the basis of atherosclerotic cardiovascular disease (ASCVD) prevention and treatment for decades. The potential cardiovascular (CV) benefits of specific individual components of the “food-ome” (defined as the vast array of foods and their constituents) are still incompletely understood, and nutritional science continues to evolve.

 

The scientific evidence base in nutrition is still to be established properly. It is because of the complex interplay between nutrients and other healthy lifestyle behaviours associated with changes in dietary habits. However, several controversial dietary patterns, foods, and nutrients have received significant media exposure and are stuck by hype.

 

Decades of research have significantly advanced our understanding of the role of diet in the prevention and treatment of ASCVD. The totality of evidence includes randomized controlled trials (RCTs), cohort studies, case-control studies, and case series / reports as well as systematic reviews and meta-analyses. Although a robust body of evidence from RCTs testing nutritional hypotheses is available, it is not feasible to obtain meaningful RCT data for all diet and health relationships.

 

Studying preventive diet effects on ASCVD outcomes requires many years because atherosclerosis develops over decades and may be cost-prohibitive for RCTs. Most RCTs are of relatively short duration and have limited sample sizes. Dietary RCTs are also limited by frequent lack of blinding to the intervention and confounding resulting from imperfect diet control (replacing 1 nutrient or food with another affects other aspects of the diet).

 

In addition, some diet and health relationships cannot be ethically evaluated. For example, it would be unethical to study the effects of certain nutrients (e.g., sodium, trans fat) on cardiovascular disease (CVD) morbidity and mortality because they increase major risk factors for CVD. Epidemiological studies have suggested associations among diet, ASCVD risk factors, and ASCVD events. Prospective cohort studies yield the strongest observational evidence because the measurement of dietary exposure precedes the development of the disease.

 

However, limitations of prospective observational studies include: imprecise exposure quantification; co-linearity among dietary exposures (e.g., dietary fiber tracks with magnesium and B vitamins); consumer bias, whereby consumption of a food or food category may be associated with non-dietary practices that are difficult to control (e.g., stress, sleep quality); residual confounding (some non-dietary risk factors are not measured); and effect modification (the dietary exposure varies according to individual/genetic characteristics).

 

It is important to highlight that many healthy nutrition behaviours occur with other healthy lifestyle behaviours (regular physical activity, adequate sleep, no smoking, among others), which may further confound results. Case-control studies are inexpensive, relatively easy to do, and can provide important insight about an association between an exposure and an outcome. However, the major limitation is how the study population is selected or how retrospective data are collected.

 

In nutrition studies that involve keeping a food diary or collecting food frequency information (i.e., recall or record), accurate memory and recording of food and nutrient intake over prolonged periods can be problematic and subject to error, especially before the diagnosis of disease.

 

The advent of mobile technology and food diaries may provide opportunities to improve accuracy of recording dietary intake and may lead to more robust evidence. Finally, nutrition science has been further complicated by the influences of funding from the private sector, which may have an influence on nutrition policies and practices.

 

So, the future health of the global population largely depends on a shift to healthier dietary patterns. Green leafy vegetables and antioxidant suppliments have significant cardio-protective properties when consumed daily. Plant-based proteins are significantly more heart-healthy compared to animal proteins.

 

However, in the search for the perfect dietary pattern and foods that provide miraculous benefits, consumers are vulnerable to unsubstantiated health benefit claims. As clinicians, it is important to stay abreast of the current scientific evidence to provide meaningful and effective nutrition guidance to patients for ASCVD risk reduction.

 

Available evidence supports CV benefits of nuts, olive oil and other liquid vegetable oils, plant-based diets and plant-based proteins, green leafy vegetables, and antioxidant-rich foods. Although juicing may be of benefit for individuals who would otherwise not consume adequate amounts of fresh fruits and vegetables, caution must be exercised to avoid excessive calorie intake. Juicing of fruits / vegetables with pulp removal increases calorie intake. Portion control is necessary to avoid weight gain and thus cardiovascular health.

 

There is currently no evidence to supplement regular intake of antioxidant dietary supplements. Gluten is an issue for those with gluten-related disorders, and it is important to be mindful of this in routine clinical practice; however, there is no evidence for CV or weight loss benefits, apart from the potential caloric restriction associated with a gluten free diet.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/28254181

 

https://www.sciencedirect.com/science/article/pii/S0735109713060294?via%3Dihub

 

http://circ.ahajournals.org/content/119/8/1161

 

http://refhub.elsevier.com/S0735-1097(17)30036-0/sref6

 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0031709841&origin=inward&txGid=af40773f7926694c7f319d91efdcd40c

 

https://www.magonlinelibrary.com/doi/10.12968/hosp.2000.61.4.1875

 

https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255

 

https://pharmaceuticalintelligence.com/2018/05/31/supplements-offer-little-cv-benefit-and-some-are-linked-to-harm-in-j-am-coll-cardiol/

Read Full Post »


ADDRESS FOR CORRESPONDENCE: Dr. Andrew M. Freeman, Division of Cardiology, Department of Medicine, National Jewish Health, 1400 Jackson Street, J317, Denver, Colorado 80206. E-mail: andrew@docandrew.com.

Item Level of Evidence Available and Included in This Paper Recommendations for Patients Dietary pattern with added fats, fried food, eggs, organ and processed meats, and sugar-sweetened beverages (Southern diet pattern) Prospective studies Avoid Dietary cholesterol RCTs and prospective studies along with meta-analyses Limit Canola oil RCT meta-analyses show improvement in lipids but no prospective studies or RCTs for CVD outcomes In moderation Coconut oil RCT meta-analyses and observational studies on adverse lipid effects. No prospective studies or RCTs for CVD outcomes Avoid Sunflower oil No prospective studies or RCTs for CVD outcomes In moderation Olive oil RCTs supporting improved CVD outcomes In moderation Palm oil RCTs and observation studies showing worsened CVD outcomes Avoid Antioxidant-rich fruits and vegetables RCTs and observational studies showing improved CVD outcomes and improvements in blood lipids Frequent Antioxidant supplements RCTs and prospective and observational studies show potential harm Avoid Nuts RCT and large prospective and meta-analysis studies showing improved CVD outcomes In moderation Green leafy vegetables Large meta-analyses and variably sized observational studies as well as a large prospective study Frequent Protein from plant sources Large observational and prospective studies Frequent Gluten-containing foods Observational studies and RCTs Avoid if sensitive or allergic
CENTRAL ILLUSTRATION Evidence for Cardiovascular Health Impact of Foods Reviewed Summary of heart-harmful and heart-healthy foods/diets Coconut oil and palm oil are high in saturated fatty acids and raise cholesterol Extra-virgin olive oil reduces some CVD outcomes when Blueberries and strawberries (>3 servings/week) induce protective antioxidants 30 g serving of nuts/day. Portion control is necessary to avoid weight gain.† Green leafy vegetables have significant cardioprotective properties when consumed daily Plant-based proteins are significantly more heart-healthy compared to animal proteins Eggs have a serum cholesterol-raising effect Juicing of fruits/vegetables with pulp removal increases Southern diets caloric concentration* (added fats and oils, fried foods, eggs, organ and processed meats, sugar-sweetened drinks) High-dose antioxidant supplements Juicing of fruits/vegetables without pulp removal* Gluten-containing foods (for people without gluten-related disease) Evidence of harm; limit or avoid Evidence of benefit; recommended Inconclusive evidence; for harm or benefit Sunflower oil and other liquid vegetable oils consumed in moderate quantities Freeman, A.M. et al. J Am Coll Cardiol. 2017;69(9):1172–87. This figure summarizes the foods discussed in this paper that should be consumed often, and others that should be avoided from a cardiovascular health perspective. *It is important to note that juicing becomes less of a benefit if calorie intake increases because of caloric concentration with pulp removal. †Moderate quantities are required to prevent caloric excess.
Source: J Am Coll Cardiol
Curated by: Emily Willingham, PhD
May 30, 2018

Takeaway

  • Antioxidants and niacin are tied to increased all-cause mortality, and other popular supplements offer little detectable cardiovascular (CV) benefit.
  • Folic acid and B6 and B12 might offer some stroke protection.

Why this matters

  • Supplements, including multivitamins, vitamins C and D, and calcium, remain hugely popular.
  • These authors evaluated supplement-related randomized controlled trials published before and since the US Preventive Services Task Force’s 2013 evidence review and 2014 recommendation statement.

Keyresults

  • 4 most common supplements (vitamins D and C, calcium, multivitamins) had no effect on CV outcomes, all-cause mortality.
  • With folic acid
    • Modest stroke reduction (2 studies: relative risk [RR], 0.80; P=.003).
    • CV disease reduction (5 studies: RR, 0.83; P=.002).
  • Other supplements
    • B-complex: reduced stroke risk, 9/12 trials (RR, 0.90; P=.04).
    • Niacin: taken with statin, tied to 10% increased all-cause mortality (P=.05).
    • Antioxidants: increased all-cause mortality, 21 trials (RR, 1.06; P=.05; without selenium: RR, 1.09 [95% CI, 1.04-1.13; P=.0002]).
    • No effect of vitamins A, B6, E, beta-carotene, minerals.

Study design

  • Meta-analysis, 179 randomized controlled trials (15 since 2013/2014).
  • Outcomes: all-cause/CV mortality, total CV disease risk/related outcomes.
  • Funding: Canada Research Chair Endorsement, others.

Limitations

  • No long-term cohort studies included.

  • Selected populations in clinical trials.

  • Supplement differences possible.

SOURCE

http://univadis.com/player/ykvkttzwr?m=1_20180531&partner=unl&rgid=5wrwznernxgefmacwqyebgmyb&ts=2018053100&o=tile_01_id

Other related articles in this Open Access Online Scientific Journal include the following: 

Nutrition: Articles of Note @PharmaceuticalIntelligence.com

Author and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/03/28/nutrition-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »


Benefits of Fiber in Diet

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

UPDATED on 1/15/2019

This is How Much Daily Fiber to Eat for Better Health – More appears better in meta-analysis — as in more than 30 g/day

by Ashley Lyles, Staff Writer, MedPage Today

In the systematic review, observational data showed a 15% to 30% decline in cardiovascular-related death, all-cause mortality, and incidence of stroke, coronary heart disease, type 2 diabetes, and colorectal cancer among people who consumed the most dietary fiber compared to those consuming the lowest amounts.

Whole grain intake yielded similar findings.

Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer.

https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(18)31809-9.pdf

Eating more dietary fiber was linked with lower risk of disease and death, a meta-analysis showed.

According to observational studies, risk was reduced most for a range of critical outcomes from all-cause mortality to stroke when daily fiber consumption was between 25 grams and 29 grams, reported Jim Mann, PhD, of University of Otago in Dunedin, New Zealand, and colleagues in The Lancet.

By upping daily intake to 30 grams or more, people had even greater prevention of certain conditions: colorectal and breast cancer, type 2 diabetes, and cardiovascular diseases, according to dose-response curves the authors created.

Quantitative guidelines relating to dietary fiber have not been available, the researchers said. With the GRADE method, they determined that there was moderate and low-to-moderate certainty of evidence for the benefits of dietary fiber consumption and whole grain consumption, respectively.

Included in the systematic review were 58 clinical trials and 185 prospective studies for a total of 4,635 adult participants with 135 million person-years of information (one trial in children was included, but analyzed separately from adults). Trials and prospective studies assessing weight loss, supplement use, and participants with a chronic disease were excluded.

 

Food is digested by bathing in enzymes that break down its molecules. Those molecular fragments then pass through the gut wall and are absorbed in our intestines. But our bodies make a limited range of enzymes, so that we cannot break down many of the tough compounds in plants. The term “dietary fiber” refers to those indigestible molecules. These dietary fibers are indigestible only to us. The gut is coated with a layer of mucus, on which sits a carpet of hundreds of species of bacteria, part of the human microbiome. Some of these microbes carry the enzymes needed to break down various kinds of dietary fibers.

 

Scientists at the University of Gothenburg in Sweden are running experiments that are yielding some important new clues about fiber’s role in human health. Their research indicates that fiber doesn’t deliver many of its benefits directly to our bodies. Instead, the fiber we eat feeds billions of bacteria in our guts. Keeping them happy means our intestines and immune systems remain in good working order. The scientists have recently reported that the microbes are involved in the benefits obtained from the fruits-and-vegetables diet. Research proved that low fiber diet decreases the gut bacteria population by tenfold.

 

Along with changes to the microbiome there were also rapid changes observed in the experimental mice. Their intestines got smaller, and its mucus layer thinner. As a result, bacteria wound up much closer to the intestinal wall, and that encroachment triggered an immune reaction. After a few days on the low-fiber diet, mouse intestines developed chronic inflammation. After a few weeks, they started putting on fat and developing higher blood sugar levels. Inflammation can help fight infections, but if it becomes chronic, it can harm our bodies. Among other things, chronic inflammation may interfere with how the body uses the calories in food, storing more of it as fat rather than burning it for energy.

 

In a way fiber benefits human health is by giving, indirectly, another source of food. When bacteria finished harvesting the energy in the dietary fiber, they cast off the fragments as waste. That waste — in the form of short-chain fatty acids — is absorbed by intestinal cells, which use it as fuel. But the gut’s microbes do more than just make energy. They also send messages. Intestinal cells rely on chemical signals from the bacteria to work properly. The cells respond to the signals by multiplying and making a healthy supply of mucus. They also release bacteria-killing molecules. By generating these responses, gut bacteria help to maintain a peaceful coexistence with the immune system. They rest on the gut’s mucus layer at a safe distance from the intestinal wall. Any bacteria that wind up too close get wiped out by antimicrobial poisons.

 

A diet of fiber-rich foods, such as fruits and vegetables, reduces the risk of developing diabetes, heart disease and arthritis. Eating more fiber seems to lower people’s mortality rate, whatever be the cause. Researchers hope that they will learn more about how fiber influences the microbiome to use it as a way to treat disorders. Lowering inflammation with fiber may also help in the treatment of immune disorders such as inflammatory bowel disease. Fiber may also help reverse obesity. They found that fiber supplements helped obese people to lose weight. It’s possible that each type of fiber feeds a particular set of bacteria, which send their own important signals to our bodies.

 

References:

 

https://www.nytimes.com/2018/01/01/science/food-fiber-microbiome-inflammation.html

 

 

https://www.ncbi.nlm.nih.gov/pubmed/29276171

 

https://www.ncbi.nlm.nih.gov/pubmed/29276170

 

https://www.ncbi.nlm.nih.gov/pubmed/29486139

 

https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983

 

https://nutritiouslife.com/eat-empowered/high-fiber-diet/

 

http://www.eatingwell.com/article/287742/10-amazing-health-benefits-of-eating-more-fiber/

 

http://www.cookinglight.com/eating-smart/nutrition-101/what-is-a-high-fiber-diet

 

https://www.helpguide.org/articles/healthy-eating/high-fiber-foods.htm

 

https://www.gicare.com/diets/high-fiber-diet/

 

Read Full Post »


“Minerals in Medicine” –  40 Minerals that are crucial to Human Health and Biomedicine: Exhibit by NIH Clinical Center and The Smithsonian Institution National Museum of Natural History

Reporter: Aviva Lev-Ari, PhD, RN

 

Friday, September 9, 2016

NIH Clinical Center and The Smithsonian Institution partner to launch Minerals in Medicine Exhibition

What

The National Institutes of Health Clinical Center, in partnership with The Smithsonian Institution National Museum of Natural History, will open a special exhibition of more than 40 minerals that are crucial to human health and biomedicine. “Minerals in Medicine” is designed to enthrall and enlighten NIH Clinical Center’s patients, their loved ones, and the NIH community. Media are invited into America’s Research Hospital, the NIH Clinical Center, to experience this unique exhibition during a ribbon cutting ceremony on Monday September 12 at 4pm.

Beyond taking in the minerals’ arresting beauty, spectators can learn about their important role in keeping the human body healthy, and in enabling the creation of life-saving medicines and cutting edge medical equipment that is used in the NIH Clinical Center and healthcare facilities worldwide. The exhibition, which is on an eighteen-month loan from the National Museum of Natural History, includes specimens that were handpicked from the museum’s vast collection by NIH physicians in partnership with Smithsonian Institution geologists. Some of the minerals on display were obtained regionally as they are part of the Maryland and Virginia landscape.

Who

  • John I. Gallin, M.D., Director of the NIH Clinical Center
  • Jeffrey E. Post, Ph.D., Smithsonian Institution National Museum of Natural History, Chair of the Department of Mineral Sciences and Curator of the National Gem and Mineral Collection

When

Monday, September 12, 2016, 4:00 – 5:00 p.m.

Where

NIH Clinical Center (Building 10), 10 Center Drive, Bethesda, MD, 20892; 1st Floor near Admissions

How

RSVP encouraged, but not required, to attend in person. NIH Visitors Map: http://www.ors.od.nih.gov/maps/Pages/NIH-Visitor-Map.aspx

About the NIH Clinical Center: The NIH Clinical Center is the clinical research hospital for the National Institutes of Health. Through clinical research, clinician-investigators translate laboratory discoveries into better treatments, therapies and interventions to improve the nation’s health. More information: http://clinicalcenter.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-clinical-center-smithsonian-institution-partner-launch-minerals-medicine-exhibition

Read Full Post »

Older Posts »