Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Nutrition’


Live 2:30-4:30 PM  Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health:  October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

 

2:30 Mediterranean Diet, Intangible Heritage and Sustainable Tourism?

Prof. Fabio Parasecoli, PhD.

 

 

Nutrition and Food Department, New York University

We focus on more of the cultural aspects and the relevance of this diet to tourism in Italy where there is a high rate of unemployment.  The diet is interesting from a touristic standpoint as the diet have the perspective of the different ingredients inherent in Italy.  The mediterranean diet food pyramid totally different than US.  How do we explain to consumers these medical concepts; for example in China, Germany they are using different ways to explain the benefits of this diet.

A Cultural Formation

  • a way of life, for tourism there is the way of life people want to adopt (easiest way to do this is go to the Mediterranean and learn the lifestyle)
  • so for example Olive Garden for marketing purposes sent a few chefs for half a day training so the image of learning to cook in the mediterranean diet style can be very powerful communicative tool
  • 2003 UNESCO Convention for Safeguarding the Culturing Heritage: protecting landscapes but then decided to protect other intangible heritage like oral, language, oral traditions like transmitting recipes, social and festive events (how do we cook how do we grow tomatoes, wheat etc)
  • UNESCO: promoted France Gastronomic, Mediterranean Diet, and traditional Mexican Cuisine (Mayan)
  • defined Greece, Italy, Morroco then included Cyprus Crotia and Portugal in the Mediterranean diet
  • has it been used for promotion: no UNESCO did not use this since does not safeguard the culture
  • (gastrodiplomacy); like Korea and kimchie; included in the list of cultural cuisine but can create tourist bubbles as you tourism places like hotels don’t always use; for reasons of economy or safety or accessibility , local food
  • Centrality of Territorio:  food consumed from tourist should come from the area

Sustainable Tourism: a form of tourism where have the intention to get to know the place;

have to think in three ways

  1. environmental
  2. social
  3. cultural

how do we make a circular economy so no waste; for example certain companies using food waste to make other products

Tourism clusters made of many groups; he is working on a way to jump start these networks in Nigeria;

Sustainable Food Supply Chain Tourism can be used as way to engage people and promote the diet

Question: are there regions where people are not adopting the diet because of taste, preferences

Yes there is always a problem with accessibility, affordability, trade issues and regional acceptance. For instance in Australia a big push back against the Mediterranean diet.  Medical professionals need to work with communication experts and media experts in developing ways to communicate the benefits since “no one wants to be preached at” and “as economies get richer people want to be more modern and try new things”

In Nigeria we are working with many different industries like transportation, engineers, the IT industry and chefs to build a scalable model

 

3.00 Italy as a Case Study: Increasing Students’ Level of Awareness of the Historical, Cultural, Political and Culinary Significance of Food

Prof. Lisa Sasson

Nutrition and Food Department, New York University

Started a program at NYU to understand food  from a nutritionist and historical point of view as a cultural heritage in Italy, but when students came back students mentioned it changed their food shopping habits

they described diet as wine, pasta, and olive oil

Artisional Production:  understanding the taste and flavor; she wanted them to learn about the food culture and educate their tastes

Food Memories: how we pass on recipes and food aromas, food tastes.  The students were experienced food in a unique way for the first time, experiencing what cheese, quality oil other foods when fresh tastes like.  Artisional foods may be expensive but need only a little of it because the tastes and flavors are so potent due to the phytochemicals

Within six months students:

  1. increased consumption of weekly wine consumption with meals
  2. increased consuming satisfying meals
  3. increased time consuming meals

In the womb the fetus is actually acquiring sense of taste (amniotic fluid changes with mother diet; can detect flavor chemicals)

Student Perceptions after a study Abroad Program

  • eating foods local and seasonal
  • replacing butter with quality olive oil
  • using herbs
  • very little sugar
  • unsweetened beverages
  • limiting red meats
  • fish a couple of times a week
  • dairy in moderation
  • no processed foods

Eating and Dining for Americans is a Challenge:  The students ate well and satisfying meals but ate alot but did not gain weight

3:30 Italian Migration and Global Diaspora

Dr. Vincenzo Milione, PhD

Director of Demographics Studies, Calandra Institute, City University of New York

for a PDF of this presentation please click heresbarro handout.

Dr. Millione used the U.S. Census Bureau Data to estimate the growth of the Italian diaspora descendants in host countries in the Americas and to determine the mixed global ancestry of Italian descendants.

  • Italian emigration to the US happened in two waves
  1.            Wave 1: early 1900 peaking between 1901 and 1911 (turn of century)
  2.            Wave 2: 1951-1971 (post WWII)

This pattern was similar between North and South America although South American had first Italian immigration; in 1860 we got rid of slavery so many jobs not filled new orleans

Developing a mathematical model of Italian diaspora: the model is centered on the host country population dynamics but descendants are separated into first generation and multi generation

Model dependent on:

  • birth and death rates
  • first generation population growth
  • multi generational population growth
  • emigration from host country over time

He was able to calculate an indices he termed Year of Italianization Change (YIC): the year the growth of the multi generation supercedes the first generation immigrant population 

Country Year of Italianlization Change (YIC)
Brazil 1911
Uruguay 1915
Argentina 1918
USA 1936
Venezuela 1963
Canada 1968
Australia 1988

 

note: as a result there is an increasing loss of language and traditional customs with host country cultural adaptation among the native born descendants

In addition, over the last 20 years Italian-American population growth demonstrates that Italian-American self-identity in the United States has increased.  The census data identified two ancestries of the respondent.  In mixed ancestry Italian-American respondents to the extent they identify Italian first demonstrating the strong Italian-American identity.

The foreign born Italian Americans mirror the immigration pattern of Italian immigration from Italy until 1980 where more Italian Americans self identify as foreign born in other countries and not in Italy

Summary

  • over 5 million Italians have emigrated from Italy from 1980 to present
  • most went to North and South America but many went to other global countries
  • the Italian immigration to the different countries in the Americas varies over the period of mass emigration when the growth of multi generational Italian descendants is greater then first generation Italians (Year of Italianization Change) goes from 1911 in Brazil to 1988 in Australia
  • Immigrants to the USA was not just from Italy but from almost all nations globally over all geographical continents
  • Italina immigrants descendants greatly grew after 1930 with appreciable increase with other ethnicities such that 61% of Italian Americans are mixed ancestry in 2014: to date mixed ancestry represents 98% of Italian Americans
  • younger italian americans more likely to have mixed ancestry with Central and South America, Asian and African ethnicities

over time during immigration eating habits has changed but more research is needed if and how the italian recipes and diet has changed as well

 

4:15 Conclusions

Prof. Antonio Giordano, MD, PhD.

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Advertisements

Read Full Post »


Live 12:00 – 1:00 P.M  Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.

Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.

The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.

Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches

Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role

The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease

The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;

  •  growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
  • modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
  • Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
  • developed a junk food calculator and a Mediterranean diet calculator
  • the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
  • Impact of diet: have model in Germany how this diet can increase health and life expectancy
  • from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
  • so there is an inverse relationship with our index and breast cancer

Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet

  • huge problem with use of pesticides and increase in celiac disease

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

Cancer as a disease of the environment.  Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.

Epigenetic effects

  • gene gatekeepers (Rb and P53)
  • DNA repair and damage stabilization

Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)

Asbestos and Mesothelioma:  they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy

Diet, Tomato and Cancer

  • looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
  • RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato (     )

Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato.  The tomato variety  with highest activity was near Ravela however black tomatoes have shown high antitumor activity.  We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar.  We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect

please see post https://news.temple.edu/news/2017-08-28/muse-cancer-fighting-tomatoes-study-italian-food

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Read Full Post »


Announcement 11AM- 5PM: Live Conference Coverage  from Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health @S.H.R.O. and Temple University October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

 

 The Sbarro Health Research Organization, in collaboration with the Consulate General of Italy in Philadelphia will sponsor a symposium on the Mediterranean Diet and Human Health on October 19, 2018 at Temple University in Philadelphia, PA.  This symposium will discuss recent finding concerning the health benefits derived from a Mediterranean-style diet discussed by the leaders in this field of research.

Mediterranean Diet

The description of the Mediterranean Diet stems from the nutritionist Ancel Keys, who in 1945, in the wake of the US Fifth Army, landed in Southern Italy, where he observed one of the highest concentrations of centenarians in the world. He also noticed that cardiovascular diseases, widespread in the USA, were less frequent there. In particular, among the Southern Italians, the prevalence of “wellness” diseases such as hypertension and diabetes mellitus, was particularly associated with fat consumption, suggesting that the main factor responsible for the observations was the type of diet traditionally consumed among people facing the Mediterranean Sea, which is low in animal fat, as opposed to the Anglo-Saxon diet. The link between serum cholesterol and coronary heart disease mortality was subsequently demonstrated by the Seven Countries Study. Later, the concept of Mediterranean Diet was extended to a diet rich in fruits, vegetables, legumes, whole grains, fish and olive oil as the main source of lipid, shared among people living in Spain, Greece, Southern Italy and other countries facing the Mediterranean basin …

Prof. Antonino De Lorenzo, MD, PhD.

   

 

The Symposium will be held at:

Biolife Science Building, Room 234

Temple University, 1900 North 12th street

Philadelphia, PA 19122

 

For further information, please contact:

Ms. Marinela Dedaj – Sbarro Institute,  Office #: 215-204-9521

 

11:00 Welcome

Prof. Antonio Giordano, MD, PhD.

Director and President of the Sbarro Health Research Organization, College of Science and Technology, Temple University

 

Greetings

Fucsia Nissoli Fitzgerald

Deputy elected in the Foreign Circumscription – North and Central America Division

 

Consul General, Honorable Pier Attinio Forlano

General Consul of Italy in Philadelphia

 

11:30 The Impact of Environment and Life Style in Human Disease

Prof. Antonio Giordano MD, PhD.

 

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

 

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

 

13:00 Lunch

 

2:30 Mediterranean Diet, Intangible Heritage and Sustainable Tourism?

Prof. Fabio Parasecoli, PhD.

Nutrition and Food Department, New York University

 

3.00 Italy as a Case Study: Increasing Students’ Level of Awareness of the Historical, Cultural, Political and Culinary Significance of Food

Prof. Lisa Sasson

Nutrition and Food Department, New York University

 

3:30 Italian Migration and Global Diaspora

Dr. Vincenzo Milione, PhD

Director of Demographics Studies, Calandra Institute, City University of New York

 

4:00 Pasta Arte: New Model of Circular Agricultural Economy: When an Innovated Tradition Takes Care of You and of the Environment

Dr. Massimo Borrelli

CEO and Founder of Arte

 

4:15 Conclusions

Prof. Antonio Giordano, MD, PhD.

 

Coordinator of the Symposium, Dr. Alessandra Moia, PhD.

 

Prof. Antonio Giordano, MD, PhD.

Professor of Molecular Biology at Temple University in Philadelphia, PA where he is also Director of the Sbarro Institute for Cancer Research and Molecular Medicine. He is also Professor of Pathology at the University of Siena, Italy. He has published over 500 articles, received over 40 awards for his contributions to cancer research and is the holder of 17 patents.

 

Prof. Antonino De Lorenzo, MD, PhD.

Full Professor of Human Nutrition and Director of the Specialization School in Food Science at the University of Rome “Tor Vergata”. He is the Coordinator of the Specialization Schools in Food Science at the National University Council and Coordinator of the PhD. School of “Applied Medical-Surgical Sciences” Director of UOSD “Service of Clinical Nutrition, Parenteral Therapy and Anorexia”. He also serves as President of “Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica”.

 

Dr. Iris Maria Forte, PhD.

Iris Maria Forte is an oncology researcher of INT G. Pascale Foundation of Naples, Italy. She majored in Medical Biotechnology at the “Federico II” University of Naples, earned a PhD. in “Oncology and Genetics” at the University of Siena in 2012 and a Master of II level in “Environment and Cancer” in 2014. Iris Maria Forte has worked with Antonio Giordano’s group since 2008 and her research interests include both molecular and translational cancer research. She published 21 articles mostly focused in understanding the molecular basis of human cancer. She worked on different kinds of human solid tumors but her research principally focused on pleural mesothelioma and on cell cycle deregulation in cancer.

 

Prof. Fabio Parasecoli, PhD.

Professor in the Department of Nutrition and Food Studies. He has a Doctorate in Agricultural Sciences (Dr.sc.agr.) from Hohenheim University, Stuttgart (Germany), MA in Political Sciences from the Istituto Universitario Orientale, Naples (Italy), BA/MA in Modern Foreign Languages and Literature from the Università La Sapienza, Rome (Italy). His research explores the intersections among food, media, and politics. His most recent projects focus on Food Design and the synergies between Food Studies and design.

 

Prof. Lisa Sasson, MS

Dietetic Internship Director and a Clinical Associate Professor in the department. She has interests in dietetic education, weight and behavior management, and problem-based learning. She also is a private practice nutritionist with a focus on weight management. She serves as co-director of the Food, Nutrition and Culture program in Florence Italy, the New York State Dietetic Association and the Greater New York Dietetic Association (past president and treasurer).

 

Dr. Vincenzo Milione, PhD.

Director of Demographic Studies for The John D. Calandra Italian American Institute, Queens College, City University of New York. He has conducted social science research on Italian Americans. His research has included the educational and occupational achievements; Italian language studies at the elementary and secondary levels, high school non-completion rates; negative media portrayals of ethnic populations including migration studies and global diaspora.

 

Dr. Massimo Borrelli

Agricultural entrepreneur, Manager of the Italian Consortium for Biogas (CIB) and delegate for the Bioeconomy National Department of Confagricoltura. He developed A.R.T.E based on a model of agricultural circular economy, beginning and ending in the ground. He constructed the first biogas plant in the territory creating a new way to make agriculture, investing in research and development, experimentation and most of all, in people. In a few short years, he succeeded to close the production chain producing goods characterized by their high quality and usage of renewable energy.

 

Dr. Alessandra Moia, PhD.

Vice-President for Institutional and International Relations of the Istituto Nazionale per la Dieta Mediterranea e la Nutrigenomica (I.N.D.I.M.). Has managed relations with the academic institutions to increase awareness and develops projects for the diffusion of the Mediterranean Diet. She served as Director of Finance for the National Institute of Nutrition, for the Ministry of Agriculture and Forestry.

 

About the Sbarro Health Research Organization

The Sbarro Health Research Organization (SHRO) is non-profit charity committed to funding excellence in basic genetic research to cure and diagnose cancer, cardiovascular diseases, diabetes and other chronic illnesses and to foster the training of young doctors in a spirit of professionalism and humanism. To learn more about the SHRO please visit www.shro.org

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

 

Read Full Post »


Curator: Gail S. Thornton, M.A.

Co-Editor: The VOICES of Patients, Hospital CEOs, HealthCare Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures

  •  In a national survey, the Fiber Choice® line of chewable prebiotic fiber tablets and gummies, achieved the #1 share of gastroenterologist (GE) recommendations, more than four times greater than that for the nearest branded competitor
  • Fiber Choice contains a well-studied prebiotic fiber that promotes regularity and supports the growth of beneficial microorganisms for general digestive health
  • The convenience, taste and efficacy of Fiber Choice, makes it a GE-endorsed choice toward helping address the “fiber gap” in American diets

 Boca Raton, Fla. – (June 3, 2018) – IM HealthScience® (IMH), innovators of medical foods and dietary supplements, today announced a high-quality and replicated nationwide survey conducted among a representative and projectible sample of U.S. gastroenterologists, which revealed Fiber Choice® as the #1-recommended chewable prebiotic fiber brand.

The results of a ProVoice survey, fielded in May 2018 by IQVIA, showed Fiber Choice as the leader by far. Its share of gastroenterologist endorsements was more than four times greater than that of its nearest branded competitor.

Less than 3 percent of Americans get the recommended minimum amount of fiber, and 97 percent need to increase their fiber intake[1]. Although the recommended daily fiber intake is 25 to 38 grams[2], most Americans only get about half that amount. This “fiber gap” reflects a diet with relatively few high-fiber foods, such as fruits, vegetables, nuts, legumes and whole-grains, and is large enough for the U.S. government to deem it a public health concern for most of the U.S. population.

To help bridge this gap, gastroenterologists recommend fibers including Fiber Choice chewable tablets and gummies. For doctors, it’s a simple, convenient and tasty way to help their patients get the fiber needed for overall good digestive health.

“Dietary fiber is known for keeping our bodies regular,” said Michael Epstein, M.D., FACG, AGAF, a leading gastroenterologist and Chief Medical Advisor of IM HealthScience. “Most importantly, it’s essential that you get enough fiber in your diet. One way to do that is to supplement your daily intake of dietary fiber with natural, prebiotic fiber supplements.”

Inulin, the 100 percent natural prebiotic soluble fiber in Fiber Choice, has been studied extensively and has been shown to support laxation and overall digestive health as well as glycemic control, lowered cholesterol, improved cardiovascular health, weight control and better calcium absorption.

Fiber Choice can be found in the digestive aisle at Walmart, CVS, Target, Rite Aid and many other drug and food retailers.

About ProVoice Survey
ProVoice has the largest sample size of any professional healthcare survey in the U.S., with nearly 60,000 respondents across physicians, nurse practitioners, physician assistants, optometrists, dentists, and hygienists, measuring recommendations across more than 120 over-the-counter categories. Manufacturers use ProVoice for claim substantiation, promotion measurement, and HCP targeting.

IQVIA fielded replicated surveys in April 2018 and May 2018 respectively among U.S. gastroenterologists for IM HealthScience. The ProVoice survey methodology validated the claim at a 95 percent confidence level that “Fiber Choice® is the #1 gastroenterologist-recommended chewable prebiotic fiber supplement.”

About Fiber Choice®

The Fiber Choice® brand of chewables and gummies is made of inulin [pronounced: in-yoo-lin], a natural fiber found in many fruits and vegetables. Inulin works by helping to build healthy, good bacteria in the colon, while keeping food moving through the digestive system. This action has a beneficial and favorable effect in softening stools and improving bowel function.

Research shows that the digestive system does more than digest food; it plays a central role in the immune system. The healthy bacteria that live in the digestive tract promote immune system function, so prebiotic fiber helps nourish the body. Inulin also has secondary benefits, too, of possibly lowering cholesterol, balancing blood chemistry and regulating appetite, which can help reduce calorie intake and play a supporting role in weight management.

The usual adult dosage with Fiber Choice Chewable tablets is two tablets up to three times a day and for Fiber Choice Fiber Gummies is two gummies up to six per day.

About IM HealthScience®

IM HealthScience® (IMH) is the innovator of IBgard and FDgard for the dietary management of Irritable Bowel Syndrome (IBS) and Functional Dyspepsia (FD), respectively. In 2017, IMH added Fiber Choice®, a line of prebiotic fibers, to its product line via an acquisition. The sister subsidiary of IMH, Physician’s Seal®, also provides REMfresh®, a well-known continuous release and absorption melatonin (CRA-melatonin™) supplement for sleep. IMH is a privately held company based in Boca Raton, Florida. It was founded in 2010 by a team of highly experienced pharmaceutical research and development and management executives. The company is dedicated to developing products to address overall health and wellness, including conditions with a high unmet medical need, such as digestive health. The IM HealthScience advantage comes from developing products based on its patented, targeted-delivery technologies called Site Specific Targeting (SST). For more information, visit www.imhealthscience.com to learn about the company, or www.IBgard.com,  www.FDgard.comwww.FiberChoice.com, and www.Remfresh.com.

This information is for educational purposes only and is not meant to be a substitute for the advice of a physician or other health care professional. You should not use this information for diagnosing a health problem or disease. The company will strive to keep information current and consistent but may not be able to do so at any specific time. Generally, the most current information can be found on www.fiberchoice.com. Individual results may vary.

SOURCE/REFERENCES

[1] Greger, Michael, M.D., FACLM. (2015, September 29). Where Do You Get Your Fiber? [Blog post]. Retrieved from https://nutritionfacts.org/2015/09/29/where-do-you-get-your-fiber/

[2] Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. https://doi.org/10.17226/10490.

Other related articles published in this Open Access Online Scientific Journal include the following:

2018

Benefits of fiber in diet

https://pharmaceuticalintelligence.com/2018/03/14/benefits-of-fiber-in-diet/

2016

Nutrition & Aging: Dr. Simin Meydani appointed Vice Provost for Research @Tufts University

https://pharmaceuticalintelligence.com/2016/08/01/nutrition-aging-dr-simin-meydani-appointed-vice-provost-for-research-tufts-university/

2015

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

A heart-healthy diet has been the basis of atherosclerotic cardiovascular disease (ASCVD) prevention and treatment for decades. The potential cardiovascular (CV) benefits of specific individual components of the “food-ome” (defined as the vast array of foods and their constituents) are still incompletely understood, and nutritional science continues to evolve.

 

The scientific evidence base in nutrition is still to be established properly. It is because of the complex interplay between nutrients and other healthy lifestyle behaviours associated with changes in dietary habits. However, several controversial dietary patterns, foods, and nutrients have received significant media exposure and are stuck by hype.

 

Decades of research have significantly advanced our understanding of the role of diet in the prevention and treatment of ASCVD. The totality of evidence includes randomized controlled trials (RCTs), cohort studies, case-control studies, and case series / reports as well as systematic reviews and meta-analyses. Although a robust body of evidence from RCTs testing nutritional hypotheses is available, it is not feasible to obtain meaningful RCT data for all diet and health relationships.

 

Studying preventive diet effects on ASCVD outcomes requires many years because atherosclerosis develops over decades and may be cost-prohibitive for RCTs. Most RCTs are of relatively short duration and have limited sample sizes. Dietary RCTs are also limited by frequent lack of blinding to the intervention and confounding resulting from imperfect diet control (replacing 1 nutrient or food with another affects other aspects of the diet).

 

In addition, some diet and health relationships cannot be ethically evaluated. For example, it would be unethical to study the effects of certain nutrients (e.g., sodium, trans fat) on cardiovascular disease (CVD) morbidity and mortality because they increase major risk factors for CVD. Epidemiological studies have suggested associations among diet, ASCVD risk factors, and ASCVD events. Prospective cohort studies yield the strongest observational evidence because the measurement of dietary exposure precedes the development of the disease.

 

However, limitations of prospective observational studies include: imprecise exposure quantification; co-linearity among dietary exposures (e.g., dietary fiber tracks with magnesium and B vitamins); consumer bias, whereby consumption of a food or food category may be associated with non-dietary practices that are difficult to control (e.g., stress, sleep quality); residual confounding (some non-dietary risk factors are not measured); and effect modification (the dietary exposure varies according to individual/genetic characteristics).

 

It is important to highlight that many healthy nutrition behaviours occur with other healthy lifestyle behaviours (regular physical activity, adequate sleep, no smoking, among others), which may further confound results. Case-control studies are inexpensive, relatively easy to do, and can provide important insight about an association between an exposure and an outcome. However, the major limitation is how the study population is selected or how retrospective data are collected.

 

In nutrition studies that involve keeping a food diary or collecting food frequency information (i.e., recall or record), accurate memory and recording of food and nutrient intake over prolonged periods can be problematic and subject to error, especially before the diagnosis of disease.

 

The advent of mobile technology and food diaries may provide opportunities to improve accuracy of recording dietary intake and may lead to more robust evidence. Finally, nutrition science has been further complicated by the influences of funding from the private sector, which may have an influence on nutrition policies and practices.

 

So, the future health of the global population largely depends on a shift to healthier dietary patterns. Green leafy vegetables and antioxidant suppliments have significant cardio-protective properties when consumed daily. Plant-based proteins are significantly more heart-healthy compared to animal proteins.

 

However, in the search for the perfect dietary pattern and foods that provide miraculous benefits, consumers are vulnerable to unsubstantiated health benefit claims. As clinicians, it is important to stay abreast of the current scientific evidence to provide meaningful and effective nutrition guidance to patients for ASCVD risk reduction.

 

Available evidence supports CV benefits of nuts, olive oil and other liquid vegetable oils, plant-based diets and plant-based proteins, green leafy vegetables, and antioxidant-rich foods. Although juicing may be of benefit for individuals who would otherwise not consume adequate amounts of fresh fruits and vegetables, caution must be exercised to avoid excessive calorie intake. Juicing of fruits / vegetables with pulp removal increases calorie intake. Portion control is necessary to avoid weight gain and thus cardiovascular health.

 

There is currently no evidence to supplement regular intake of antioxidant dietary supplements. Gluten is an issue for those with gluten-related disorders, and it is important to be mindful of this in routine clinical practice; however, there is no evidence for CV or weight loss benefits, apart from the potential caloric restriction associated with a gluten free diet.

 

References:

 

https://www.ncbi.nlm.nih.gov/pubmed/28254181

 

https://www.sciencedirect.com/science/article/pii/S0735109713060294?via%3Dihub

 

http://circ.ahajournals.org/content/119/8/1161

 

http://refhub.elsevier.com/S0735-1097(17)30036-0/sref6

 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0031709841&origin=inward&txGid=af40773f7926694c7f319d91efdcd40c

 

https://www.magonlinelibrary.com/doi/10.12968/hosp.2000.61.4.1875

 

https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255

 

https://pharmaceuticalintelligence.com/2018/05/31/supplements-offer-little-cv-benefit-and-some-are-linked-to-harm-in-j-am-coll-cardiol/

Read Full Post »


Consuming Risk Free Food & Beverages

Author: Debashree Chakrabarti, MSc., Biological Sciences, UMass Lowell (Expected May 2016)

Leading researchers and medical health professionals have raised their concern about the over all declining status of health and well being world wide. A rising trend in childhood obesity, cardiovascular diseases, clinical depression syndrome in young adults is reason enough to try and broaden the scope of plausible agents which result in people making bad health decisions.  As a witness to the emerging dietary trends adopted by children and young adults, it is natural to question the ethics of processed food and beverages industry. Does it seem reasonable the 2L bottles of soda cost $2 USD? There are more people claiming to not like water since it is flavorless. 100% fresh juices are subject to scrutiny for their lack of adequate fiber content and excess presence of sugars. Products with high fructose corn syrups, added preservatives in processed meat, ‘read to eat’ meals are agreeably cost effective and saves a lot of time, however the over riding damage is in the long run with deficient immune system and gain of unnatural toxins which the body finds hard to eliminate. Another marketing frenzy is visible in the neutraceuticals range of instant energy drinks, protein shakes and over the counter pills. The focus is towards having the visibly attractive, muscular body regardless of the compromised health. The companies do their bit of limiting the usage by adding a precaution statement and dosage remarks on the product labels. This is however not translated as useful information to the young consumers who do not foresee the detrimental outcomes in advance.

As the prices of insurance packages and medical aid is negotiated, the same effort needs invested in the regulation of consumer dietary products. We do not want a ban on Colas however, we do not also need them to be sold at prices cheaper than water. Fresh fruits and vegetables need not be price tagged astronomically driving population to adopt a risk driven lifestyle. Taking initiatives to promote urban farming and local gardens, reaching out to the people about their choices and how it impacts the global financial predicament is a need of the hour. We are ok with the attitude of “Don’t tell me how to live my life” in a world relying heavily on subsidized medicines. This has to change. Subsidized medicine is a privilege and should be benefited to those responsible. Researchers and big pharma companies are not the only stake holders in this fight against an exponentially growing illness of misinformed decisions. People need to be brought in and educated. This includes strong arming anyone who feels they have a right to abuse their health or the health of the world.

92ab5dd0-9921-4c26-9a7c-cdf20397cb42.jpg

Another paradigm to this discussion is the need for more extensive research hubs world wide and making the accessibility of advanced medicines available to the dense population regions in Asia, Africa and Middle East Arab countries which host the majority of the population and have the least of the resources. We need 100 Massachusetts world wide with cutting edge researchers deep diving and venture capitalists backing them up. A vision for 2050 must encompass every individual being aware of what it takes to damage a human body which is a very robust machine. Eating right and being able to afford health must not be difficult. Choices available in the stores must be rational to the level where the most ignorant of the lot is still consuming risk free substances. Given the fantastic evolutionary armaments we have, it takes a lot to be unwell and yet we seem to making it fairly easy to catch cold. Healthy people translate to healthy economy.

Read Full Post »


The History and Creators of Total Parenteral Nutrition

Curator: Larry H. Bernstein, MD, FCAP

 

The History and Creators of Total Parenteral Nutrition

I am a pathologist who became involved in the measurement of acute and chronic malnutrition in hospitalized patients through my working with a burn surgeon, Walter Pleban, in the mid-1980s.  I had already been interested in this as a clinical pathology issue because the most abundant plasma protein, albumin, is markedly decreased, but that protein has a half-life of disappearance on 21 days.  This was problematic because it was inadequate for early recognition, or for response to feeding.  It became of considerable interest that two rapid turnover proteinhttp://www.ncbi.nlm.nih.gov/pubmed/20150597s – transthyretin (TTR)(then referred to as prealbumin) and retinol binding protein (RBP) that are synthesized by the liver have short half-lifes.  The measurement of TTR was then possible by an immunodiffusion assay on agarose overnight, but was not automated.  This changed with the introduction of an immunoassay for research use, and that offered by Beckman was ideal for the automated clinical laboratory.  One could then follow the level of TTR in the recovery phase.  There was some discussion for years about the fact that TTR might be considered an inverted acute phase protein because of a recognition that the liver decreases synthesis of TTR and produces acute phase proteins in the adaptive inflammatory response.  This is not insignificant, but it is also not quite relevant for reasons that have been addressed by Yves Ingenbleek and collaborators.  TTR is a key determinant of protein sufficiency and of sulfur homeostasis in health and disease.  I shall not say more, as the development of total parenteral (TPN), and also enteral (TEN) nutrition are of specific interest here.  However, the evaluation of patients’ nutritional status has widely been carried out by subjective global assessment, which is insufficient in a large population at risk.

 

History of parenteral nutrition.

The concept of feeding patients entirely parenterally by injecting nutrient substances or fluids intravenously was advocated and attempted long before the successful practical development of total parenteral nutrition (TPN) four decades ago. Realization of this 400 year old seemingly fanciful dream initially required centuries of fundamental investigation coupled with basic technological advances and judicious clinical applications. Most clinicians in the 1950’s were aware of the negative impact of starvation on morbidity, mortality, and outcomes, but only few understood the necessity for providing adequate nutritional support to malnourished patients if optimal clinical results were to be achieved. The prevailing dogma in the 1960’s was that, “Feeding entirely by vein is impossible; even if it were possible, it would be impractical; and even if it were practical, it would be unaffordable.” Major challenges to the development of TPN included: (1) formulate complete parenteral nutrient solutions (did not exist), (2) concentrate substrate components to 5-6 times isotonicity without precipitation (not easily done), (3) demonstrate utility and safety of long-term central venous catheterization (not looked upon with favor by the medical hierarchy), (4) demonstrate efficacy and safety of long-term infusion of hypertonic nutrient solutions (contrary to clinical practices at the time), (5) maintain asepsis and antisepsis throughout solution preparation and delivery (required a major culture change), and (6) anticipate, avoid, and correct metabolic imbalances or derangements (a monumental challenge and undertaking). This presentation recounts approaches to, and solution of, some of the daunting problems as really occurred in a comprehensive, concise and candid history of parenteral nutrition.

 

Historical highlights of the development of total parenteral nutrition.
The events and discoveries thought to be the most significant prerequisites to the development of total parenteral nutrition (TPN) dating back to the early 17th century are chronicled. A more detailed description and discussion of the subsequent early modern highlights of the basic and clinical research beginning in the mid-20th century and the advances culminating in the first demonstration of the feasibility and practicality of TPN, and its successful, safe and efficacious applications clinically, are presented. Some of the reasoning, insights, and philosophy of a pioneer clinician-scientist in the field are shared with readers.

 

The History, Principles, and Practice of Parenteral Nutrition in Preterm Neonates

Stanley J. Dudrick , Alpin D. Malkan
Chapter in:  
Nutrition for the Preterm Neonate    27 June 2013   pp 193-213

The history of the successful development of Total Parenteral Nutrition (TPN), first in beagle puppies in the basic science laboratories, and its subsequent clinical translations initially to adults, and shortly thereafter, to a newborn infant, is recounted by the original developer of the techniques, data, and results that have led to its widespread application and acceptance throughout the world. The principles, practices, standards, techniques, observations, technology, and several of the countless details which were so essential in guiding this dream to reality, are woven throughout the narrative. The advances and milestones are traced along this passionate, relentless journey to the present day, when preterm infants are actually expected to live and thrive. The precision and conscientious attention which are essential to the judicious, safe, efficacious use of TPN in preterm neonates throughout all aspects of solution formulation and delivery, together with appropriate monitoring and assessment of outcomes, are described and discussed briefly. The multiple risks and complications associated with this complex life-saving technique are extensively tabulated, with the intention to teach, in order to avoid, prevent, or overcome them. Moreover, attention has been directed toward pointing out many of the persisting shortcomings of the technique which remain to be prevented, overcome, or corrected by future research efforts and experiences. Finally, the costs, philosophy, humanity, and future advancements necessary to apply TPN to the care of preterm infants in developing countries are stated with optimism and hope.

 

Brief History of Parenteral and Enteral Nutrition in the Hospital in the USA
Bruce R. Bistrian
Clinical Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Elia M, Bistrian B (eds): The Economic, Medical/Scientifi c and Regulatory Aspects of Clinical Nutrition Practice: What Impacts What?
Nestlé Nutr Inst Workshop Ser Clin Perform Program, vol. 12, pp 127–136, Nestec Ltd., Vevey/S. Karger AG, Basel, © 2009.

The meteoric rise in parenteral and enteral nutrition was largely a consequence of the development of total parenteral nutrition and chemically defined diets in the late 1960s and early 1970s and the recognition of the extensive prevalence of protein calorie malnutrition associated with disease in this same period. The establishment of Nutrition Support Services (NSS) using the novel, multidisciplinary model of physician, clinical nurse specialist, pharmacist, and dietitian, which, at its peak in the 1990s, approached 550 well-established services in about 10% of the US acute care hospitals, also fostered growth. The American Society of Parenteral and Enteral Nutrition, a multidisciplinary society reflecting the interaction of these specialties, was established in 1976 and grew from less than 1,000 members to nearly 8,000 by 1990. Several developments in the 1990s initially slowed and then stopped this growth. A system of payments, called diagnosis-related groups, put extreme cost constraints on hospital finances which often limited financial support for NSS teams, particularly the physician and nurse specialist members. Furthermore, as the concern for the nutritional status of patients spread to other specialties, critical care physicians, trauma surgeons, gastroenterologists, endocrinologists, and nephrologists often took responsibility for nutrition support in their area of expertise with a dwindling of the model of an internist or general surgeon with special skills in nutrition support playing the key MD role across the specialties. Nutrition support of the hospitalized patient has dramatically improved in the US over the past 35 years, but the loss of major benefits possible and unacceptable risks of invasive nutritional support if not delivered when appropriate, delivered without monitoring by nutrition experts, or employed where inappropriate or ineffective will require continued attention by medical authorities, hospitals, funding agencies, and industry in the future.

The rapid ascension of parenteral and enteral nutrition into an important component of clinical care in the hospital setting can be traced to three developments that occurred over an about 5-year period in the late 1960s and early 1970s. First and foremost was the first successful use of total parenteral nutrition (TPN), initially in beagle dogs to show the feasibility, and then its successful extension to 30 patients with chronic, complicated gastrointestinal disease by Dudrick et al. [1] at the University of Pennsylvania. At about the same time chemically defined or elemental diets were developed in normal volunteers to be employed in the US Mercury Space Program [2] where storage space and a low residue made these diets very desirable. These novel formulas were subsequently used in clinical conditions in which digestion and/or absorption was impaired and were provided usually through nasoenteric feeding tubes [3]. Both parenteral and enteral nutrition were initially studied in surgical patients in whom protein calorie malnutrition through gut malfunction had long been an often insurmountable problem. The third and final development was the identification of the extraordinary prevalence of malnutrition in hospitalized patients occurring in up to half of those on both surgical [4] and medical [5] services described in 1974 and 1976 respectively, when defined by simple anthropometric tools of weight, height, and upper arm anthropometry and serum albumin levels.

At this point one can view the glass as half full or half empty. From the optimistic or glass half full standpoint the period from 1975 to 1985 after the above advances could be described as a logarithmic phase of growth in clinical nutrition. Nutrition Support Services (NSS) using the novel, multidisciplinary model of physician, nurse specialist, pharmacist, and dietitian initially began in the early 1970s [6, 7] and at their high point probably approached 550 well-established services [8] in about 10% of America’s acute care hospitals by 1990. A number of studies during this early period demonstrated the ability of such groups to dramatically reduce the risk of catheter-related sepsis and to limit the development of electrolyte and metabolic abnormalities with TPN and to reduce complications and increase the adequacy of enteral nutrition [9]. Financial benefits were less certain in part due to difficulties to fully estimate costs and benefits [9], but at the very least were cost neutral in most circumstances [10].

The American Society of Parenteral and Enteral Nutrition which reflected this unique multidisciplinary membership of the NSS was established and had its first meeting in Chicago in 1976. Membership, initially less than 1,000 grew to nearly 8,000 by 1990 and was composed of approximately 20% physicians, 15% nurses, 15% pharmacists, and 50% dietitians in 1990. The annual ASPEN Clinical Congress, which continues to date, became an important venue to educate and train and provide a forum for the presentation of new research findings.

Finally from a personal perspective when I first became involved with nutrition support during my PhD training in Nutritional Biochemistry and Metabolism at MIT from 1972 to 1975, a period in which we were conducting the early surveys of nutritional status [4, 5], there was a general lack of appreciation for the nutritional status of patients. Protein calorie malnutrition was so widespread and undertreated that we developed a system of measurement of delayed cutaneous hypersensitivity to document cutaneous anergy [11] in order to convince clinicians that their patients required invasive nutritional support to reverse anergy. By 1990 there was a general appreciation that hospital protein calorie malnutrition was common, that invasive feeding could improve outcome, and that lack of feeding for periods of longer than 7–10 days in critically ill patients was an unacceptable practice. During this period from 1975 to 1990 there was a steady increase in the number of converts to better nutritional practices, particularly in surgical patients and in the critically ill in intensive care units, both medical and surgical. Testing for cutaneous anergy was abandoned at our medical center in the mid 1980s [12], principally because prolonged inadequate feeding became so uncommon, and there was little difficulty in convincing the primary physician of the need for invasive feeding when appropriate.

What happened subsequent to 1990? Now we can discuss the glass that is half empty, and this largely relates to medical funding. In the early 1980s the Medicare system in the US began a system of hospital payments based on diagnosis-related groups, where a fixed amount of money was paid according to diagnosis rather than actual costs. Medicare is the government system of reimbursement for patients 65 years or older, the disabled, or those receiving dialysis therapy. But the other source of hospital payments from medical care for the indigent through the government program Medicaid is the joint responsibility of the individual state and the federal government, and private insurance links their payments to government policy. The severe cost-containment pressures brought on by these changes in medical insurance have adversely affected nutrition support team staffing which began to have its greatest impact in the 1990s and was particularly harsh on hyperalimentation nurses and physicians involved in nutrition support. Although there are medical and financial costs associated with the termination of a nutrition support nurse [13], this cost must often be forcefully documented with hospital authorities, and generally can be in terms of unacceptable rates of catheter infection without their presence. With physicians there is no acknowledged medical specialty for clinical nutrition, although there was a split vote of 2–1 against by the American Board of Medical Specialties in the 1990s which would have accomplished this had it passed. Therefore, if the local hospital administrator or chairmen of medicine or surgery cannot be convinced of the value of providing partial financial support to nutrition support physicians for their clinical participation, then either it is done as a free service as an avocation by these individuals or done as a component of their underlying specialty. Thus most intensivists will provide parenteral and enteral nutrition as part of their care, as will many surgical specialists, particularly trauma surgeons, burn surgeons, and general surgeons. Oversight for home parenteral and enteral nutrition is often provided by gastroenterologists. However it is likely in many instances that nutritional care by these specialists is at an acceptable if perhaps not ideal level. For medical patients parenteral and enteral nutritional support is now often delivered under the care of dietitians which is reasonably good vis-à-vis enteral nutrition, but with parenteral nutrition may sometimes be outside their level of clinical competence, particularly for the management of fluid and electrolyte disorders and insulin management in diabetic patients. Dietitians have been less severely impacted by cost considerations, because there is a Joint Commission on Accreditation of Hospital Organizations (JCAHO) requirement that hospitals nutritionally monitor their patients. Pharmacists are also very important in the provision of parenteral nutrition, particularly by determining compatibilities of parenteral nutrition admixtures, checking the stability of orders from day-to-day, and by making certain of the completeness of parenteral regimens. Their continued availability to provide this level of expertise is also mandated by JCAHO as well as by their own professional standards.

There has also been a change in the membership of ASPEN that reflects this trend. After an initial fall of total members through the 1990s, the number has more recently stabilized, but there has been a dramatic decrease in nurses from nearly 1,000 to about 300 in 1999 and less than 200 at present (2006) with a concomitant increase in dietitians to about 60% of a total of 5,000 members, which has been relatively stable for the past 7 years, and a slowly diminishing number of physicians from 1,000 (20%) in 1999 to 735 (15%) in 2006. However both physician and pharmacist numbers have stabilized from 2001 to 2006, at approximately 750 and 620 members. Fellowship opportunities for physicians have also diminished, and there is some concern about what the future holds for physicians principally interested in parenteral and enteral nutrition. The second major American society for clinical nutrition after ASPEN was an independent group of academic physicians and PhD nutritionists interested in this field, the American Society for Clinical Nutrition. Last year by vote of its members it chose to disband and become a component of the American Society of Nutrition. Hopefully this group of individuals will maintain their interest in this field and continue to promote the improvement of parenteral and enteral nutrition for the hospitalized patient. However the likelihood of getting specialty recognition from the American Board of Medical Specialties is dim under the present conditions.

How does this bode for the future? Presumably there will always be some physicians trained in clinical nutrition, but some programs, like the exemplary program at MIT which trained many of the academic clinical nutritionists, have been discontinued and not been replaced. Certainly there is ample evidence for the need for such individuals. For instance one of the most important recent developments in clinical medicine has been the demonstration that tight blood glucose control in the critically ill can dramatically improve the morbidity and mortality of patients [18]. However this was primarily a study in cardiac surgical patients, and a similar study in medical patients by the same group demonstrated that tight blood glucose control improved morbidity but did not affect mortality [19]. In fact in those medical patients who received therapy for less than 3 days, mortality was actually increased. These superb innovative studies were primarily conducted by an endocrinologist who is a specialist in critical care. However an important variable in these two landmark studies, not previously commented on, is that in the surgical study the patients also received hypertonic dextrose initially for the first 24 h and TPN subsequently [18]. The medical patients in the second study received the initial hypertonic dextrose followed by inadequate nasogastric tube feeding for the first 3 days providing substantially less calories and grossly inadequate protein [19]. It may well be that it is the combination with tight glucose control in the setting of adequate feeding that is essential to achieve all the benefits rather than the control of hyperglycemia alone. Similarly a recent study in cardiac surgical patients receiving tight glucose control during their surgery and tight regulation of both treatment and control postoperatively showed no benefit and, in fact, a suggestion of harm in the treatment group [20]. Perhaps lowering blood glucose in cardiac patients not receiving hypertonic dextrose before revascularization may deprive the heart of an essential fuel. Having some physicians thoroughly trained in clinical nutrition to discern these possibilities may be important in the future to design and interpret the results of clinical trials.

 

For Patients Who Can’t Eat, Dr. Stanley Dudrick’s Intravenous Feeding System Is a Lifeline

Nearly 100 patients at the University of Texas Medical Center are undergoing similar nutritional therapy. Each owes his survival to Dr. Dudrick, who in 1972, at the precocious age of 37, became head of the center’s department of surgery.

Dudrick was turned from a fledgling cardiac surgeon into a pioneer nutritionist one day when he was an intern in Philadelphia. “We had three patients who had gone through successful surgery—but they all died,” he recalls. “I was terribly discouraged. Then the chairman of the surgery department said that, if I analyzed it, I’d see they really died of starvation. They couldn’t eat, and they didn’t have enough reserve tissues to draw on. I was too dumb to make that observation myself.”

Dudrick immersed himself in the study of how to provide food for those who can’t eat. From 10 to 40 percent of hospital deaths are still caused, he believes, by malnutrition. Patients with gastrointestinal cancer are especially vulnerable, as well as those with kidney or liver failure or burn trauma.

Sir Christopher Wren experimented with intravenous feeding of dogs as early as the 17th century. In its modern traditional form (most familiar in the glucose drip bottle), it cannot support life for long, however. Dudrick solved the problem by developing a complete nutritive compound. But he faced another obstacle: “We couldn’t put it in through the arm because the mixture was too thick and produced problems in the small veins. We couldn’t thin it down with water either, because that produced edema, or excess fluid in the connective tissue.

“Then,” Dudrick says, “we hit on the idea of putting it into larger veins, where the blood flow is so great that the nutritional substances would be diluted and rushed throughout the body.” Often the compound is pumped into the superior vena cava, through a catheter threaded through a smaller vein near the collarbone.

Dudrick’s nutrient, specially mixed for each patient, is composed of some 40 substances, including amino acids, glucose, vitamins and minerals. In some cases druggists or patients themselves can prepare the mixture.

Total Parenteral Nutrition (TPN) is Dudrick’s term for his technique. (Parenteral refers to bypassing the intestines.) In 1964 he astounded a medical convention in Germany with the news that he had raised six beagle puppies entirely on TPN for 287 days. In 1966 he first tried it on six humans with apparently terminal illness; all recovered and four are still alive. Since then Dudrick has used TPN on about 6,000 patients and has received two American Medical Association awards.

Eldest of four children of a Nanticoke, Pa. coal miner turned insurance agent, Dudrick decided on a medical career after watching the family doctor pull his mother through a near-fatal illness. Both his sisters are nurses. Still a crusader, he worries that, while half the nation’s doctors are aware of TPN, only five percent are using it. “It takes time,” he says, “for doctors to accept so much responsibility for dealing with such complex advances in human chemistry, metabolism and nutrition.”

Success will depend on campaigning for the technique, while simplifying it. “Someday we’ll have TPN down so that it will commonly be done in a general practitioner’s office,” Dudrick predicts. “That’s what I’m hoping for. I want to leave something better behind when I go, rather than just practice medicine the way it has always been done.”

Born in Rangoon, Burma on August 26, 1935, Khursheed N. Jeejeebhoy fled seven years later with his family to India to escape the Japanese invaders. He attended medical school in Vellore, India; trained in London, England; married and had three children; and in 1967, accepted a position at the Toronto General Hospital and the University of Toronto.From the beginning of his career, he was always on the forefront of research: he was one of the first to discover lactose intolerance. In 1970, with a surgical colleague, he was experimenting with TPN on post-surgical patients when Judy Ellis Taylor came into his care.

 

Dr. Khursheed Jeejeebhoy received his medical degree from the Christian Medical College Hospital in Vellore, India in 1959 and completed residency in India and the UK. He obtained his PhD from London University in 1963. He became division director of gastroenterology at the University of Toronto and the Toronto General Hospital. Currently, he is directs nutrition support and is a staff physician at St. Michael’s Hospital. He is also a professor of medicine, professor in the department of nutritional sciences and professor in the department of physiology, all at the University of Toronto. He has published over 500 peer-reviewed articles, abstracts and book chapters. He has a CIHR funded research program. He is on the editorial boards of nutritional journals and contributes to the Medical Post. He has received numerous awards throughout his career from Canada, USA and UK. He has been elected senior member of the Canadian Medical Association.

 

This determined young woman intended to live and expected him to save her. He took her up on her challenge and developed first a viable, long-term form of TPN, then a version Judy could use at home.With Judy such a success, Dr. Jeejeebhoy (Jeej to his patients and colleagues) bent his efforts to saving other lives with TPN and to learning more about the nutrients that the human body needs and in what dosages, both orally and intravenously, so that he could better nourish his patients and reduce their suffering. He has written over 350 papers and 100 books and chapters; was made professor of medicine, physiology, and nutrition at the University of Toronto; has lectured in virtually every country; and has taught many graduate students from Europe, North America, Asia, and Australia, as well as the first doctor allowed to leave China to study temporarily after China started opening up to the west.

His patients are intensely loyal to him, for his understanding, listening skills, expertise. In 1990, he moved to St. Michael’s Hospital and built up a TPN program there. He entered the commercial arena when he conducted research in and developed a radical new, nutritional way to improve the function of patients with congestive heart failure. MyLife Requirements “contains a patented combination of three nutrients, which interact synergistically and are needed by the heart to maintain optimal health and to function efficiently.  These nutrients are Coenzyme Q10, and the amino acids Taurine and Carnitine.” Due to the interesting regulation of L-carnitine by Health Canada, this supplement is available only in the US, not here in Canada.

At the end of 2007, he retired, sort of, a few years after becoming Professor Emeritus at the University of Toronto due to mandatory retirement at age 65. He closed his university lab at the end of 2007 when his last grant ran out. That ended a 40-year run of successful research grant applications and groundbreaking research. He embarked on a new role at St. Mike’s at the beginning of 2008, teaching at a Home TPN clinic; he continues to see patients part-time at a private clinic; and he conducts hospital rounds every week. His patients and colleagues would not allow complete retirement! Besides, Jeej is far too curious and interested in exploring new ideas to completely retire either!

 

 

Read Full Post »

Older Posts »