Posts Tagged ‘retinoblastoma gene’

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

Reporter: Stephen J. Williams, PhD


Session VMS.ET04.01 – Novel Targets and Therapies

Targeting chromatin remodeling-associated genetic vulnerabilities in cancer: PBRM1 defects are synthetic lethal with PARP and ATR inhibitors

Presenter/AuthorsRoman Merial Chabanon, Daphné Morel, Léo Colmet-Daage, Thomas Eychenne, Nicolas Dorvault, Ilirjana Bajrami, Marlène Garrido, Suzanna Hopkins, Cornelia Meisenberg, Andrew Lamb, Theo Roumeliotis, Samuel Jouny, Clémence Astier, Asha Konde, Geneviève Almouzni, Jyoti Choudhary, Jean-Charles Soria, Jessica Downs, Christopher J. Lord, Sophie Postel-Vinay. Gustave Roussy, Villejuif, France, The Francis Crick Institute, London, United Kingdom, Institute of Cancer Research, London, United Kingdom, Sage Bionetworks, Seattle, WA, Institute of Cancer Research, London, United Kingdom, Institute of Cancer Research, London, United Kingdom, Institut Curie, Paris, France, Université Paris-Sud/Université Paris-Saclay, Le Kremlin-Bicêtre, France, Gustave Roussy Cancer Campus and U981 INSERM, ATIP-Avenir group, Villejuif, FranceDisclosures R.M. Chabanon: None. D. Morel: None. L. Colmet-Daage: None. T. Eychenne: None. N. Dorvault: None. I. Bajrami: None. M. Garrido: None. S. Hopkins: ; Fishawack Group of Companies. C. Meisenberg: None. A. Lamb: None. T. Roumeliotis: None. S. Jouny: None. C. Astier: None. A. Konde: None. G. Almouzni: None. J. Choudhary: None. J. Soria: ; Medimmune/AstraZeneca. ; Astex. ; Gritstone. ; Clovis. ; GSK. ; GamaMabs. ; Lilly. ; MSD. ; Mission Therapeutics. ; Merus. ; Pfizer. ; PharmaMar. ; Pierre Fabre. ; Roche/Genentech. ; Sanofi. ; Servier. ; Symphogen. ; Takeda. J. Downs: None. C.J. Lord: ; AstraZeneca. ; Merck KGaA. ; Artios. ; Tango. ; Sun Pharma. ; GLG. ; Vertex. ; Ono Pharma. ; Third Rock Ventures. S. Postel-Vinay: ; Merck KGaA. ; Principal investigator of clinical trials for Gustave Roussy.; Boehringer Ingelheim. ; Principal investigator of clinical trials for Gustave Roussy.; Roche. ; Principal investigator of clinical trials for Gustave Roussy. Benefited from reimbursement for attending symposia.; AstraZeneca. ; Principal investigator of clinical trials for Gustave Roussy.; Clovis. ; Principal investigator of clinical trials for Gustave Roussy.; Bristol-Myers Squibb. ; Principal investigator of clinical trials for Gustave Roussy.; Agios. ; Principal investigator of clinical trials for Gustave Roussy.; GSK.AbstractAim: Polybromo-1 (PBRM1), a specific subunit of the pBAF chromatin remodeling complex, is frequently inactivated in cancer. For example, 40% of clear cell Renal Cell Carcinoma (ccRCC) and 15% of cholangiocarcinoma present deleterious PBRM1 mutations. There is currently no precision medicine-based therapeutic approach that targets PBRM1 defects. To identify novel, targeted therapeutic strategies for PBRM1-defective cancers, we carried out high-throughput functional genomics and drug screenings followed by in vitro and in vivo validation studies.
Methods: High-throughput siRNA-drug sensitization and drug sensitivity screens evaluating > 150 cancer-relevant small molecules in dose-response were performed in Pbrm1 siRNA-transfected mouse embryonic stem cells (mES) and isogenic PBRM1-KO or -WT HAP1 cells, respectively. After identification of PBRM1-selective small molecules, revalidation was carried out in a series of in-house-generated isogenic models of PBRM1 deficiency – including 786-O (ccRCC), A498 (ccRCC), U2OS (osteosarcoma) and H1299 (non-small cell lung cancer) human cancer cell lines – and non-isogenic ccRCC models, using multiple clinical compounds. Mechanistic dissection was performed using immunofluorescence, RT-qPCR, western blotting, DNA fiber assay, transcriptomics, proteomics and DRIP-sequencing to evaluate markers of DNA damage response (DDR), replication stress and cell-autonomous innate immune signaling. Preclinical data were integrated with TCGA tumor data.
Results: Parallel high-throughput drug screens independently identified PARP inhibitors (PARPi) as being synthetic lethal with PBRM1 defects – a cell type-independent effect which was exacerbated by ATR inhibitors (ATRi) and which we revalidated in vitro in isogenic and non-isogenic systems and in vivo in a xenograft model. PBRM1 defects were associated with increased replication fork stress (higher γH2AX and RPA foci levels, decreased replication fork speed and increased ATM checkpoint activation), R-loop accumulation and enhanced genomic instability in vitro; these effects were exacerbated upon PARPi exposure. In patient tumor samples, we also found that PBRM1-mutant cancers possessed a higher mutational load. Finally, we found that ATRi selectively activated the cGAS/STING cytosolic DNA sensing pathway in PBRM1-deficient cells, resulting in increased expression of type I interferon genes.
Conclusion: PBRM1-defective cancer cells present increased replication fork stress, R-loop formation, genome instability and are selectively sensitive to PARPi and ATRi through a synthetic lethal mechanism that is cell type-independent. Our data provide the pre-clinical rationale for assessing PARPi as a monotherapy or in combination with ATRi or immune-modulating agents in molecularly-selected patients with PBRM1-defective cancers.

1057 – Targeting MTHFD2 using first-in-class inhibitors kills haematological and solid cancer through thymineless-induced replication stress

Presenter/AuthorsThomas Helleday. University of Sheffield, Sheffield, United KingdomDisclosures T. Helleday: None.AbstractSummary
Thymidine synthesis pathways are upregulated pathways in cancer. Since the 1940s, targeting nucleotide and folate metabolism to induce thymineless death has remained first-line anti-cancer treatment. Recent discoveries that showing cancer cells have rewired networks and exploit unique enzymes for proliferation, have renewed interest in metabolic pathways. The cancer-specific expression of MTHFD2 has gained wide-spread attention and here we describe an emerging role for MTHFD2 in the DNA damage response (DDR). The folate metabolism enzyme MTHFD2 is one of the most consistently overexpressed metabolic enzymes in cancer and an emerging anticancer target. We show a novel role for MTHFD2 being essential for DNA replication and genomic stability in cancer cells. We describe first-in-class nanomolar MTHFD2 inhibitors (MTHFD2i), with protein co-crystal structures demonstrating binding in the active site of MTHFD2 and engaging with the target in cells and tumours. We show MTHFD2i reduce replication fork speed and induce replication stress, followed by S phase arrest, apoptosis and killing of a range of haematological and solid cancer cells in vitro and in vivo, with a therapeutic window spanning up to four orders of magnitude compared to non-transformed cells. Mechanistically, MTHFD2i prevent thymidine production leading to mis-incorporation of uracil into DNA and replication stress. As MTHFD2 expression is cancer specific there is a potential of MTHFD2i to synergize with other treatments. Here, we show MTHFD2i synergize with dUTPase inhibitors as well as other DDR inhibitors and demonstrate the mechanism of action. These results demonstrate a new link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically.
MTHFD2, one-carbon metabolism, folate metabolism, DNA replication, replication stress, synthetic lethal, thymineless death, small-molecule inhibitor, DNA damage response



1060 – Genetic and pharmacologic inhibition of Skp2, an E3 ubiquitin ligase and RB1-target, has antitumor activity in RB1-deficient human and mouse small cell lung cancer (SCLC)

Hongling ZhaoVineeth SukrithanNiloy IqbalCari NicholasYingjiao XueJoseph LockerJuntao ZouLiang ZhuEdward L. Schwartz. Albert Einstein College of Medicine, Bronx, NY, Albert Einstein College of Medicine, Bronx, NY, Albert Einstein College of Medicine, Bronx, NY, University of Pittsburgh Medical Center, Pittsburgh, PA, Albert Einstein College of Medicine, Bronx, NY
 H. Zhao: None. V. Sukrithan: None. N. Iqbal: None. C. Nicholas: None. Y. Xue: None. J. Locker: None. J. Zou: None. L. Zhu: None. E.L. Schwartz: None.
The identification of driver mutations and their corresponding targeted drugs has led to significant improvements in the treatment of non-small cell lung cancer (NSCLC) and other solid tumors; however, similar advances have not been made in the treatment of small cell lung cancer (SCLC). Due to their aggressive growth, frequent metastases, and resistance to chemotherapy, the five-year overall survival of SCLC is less than 5%. While SCLC tumors can be sensitive to first-line therapy of cisplatin and etoposide, most patients relapse, often in less than 3 months after initial therapy. Dozens of drugs have been tested clinically in SCLC, including more than 40 agents that have failed in phase III trials.
The near uniform bi-allelic inactivation of the tumor suppressor gene RB1 is a defining feature of SCLC. RB1 is mutated in highly aggressive tumors, including SCLC, where its functional loss, along with that of TP53, is both required and sufficient for tumorigenesis. While it is known that RB1 mutant cells fail to arrest at G1/S in response to checkpoint signals, this information has not led to effective strategies to treat RB1-deficient tumors, and it has been challenging to develop targeted drugs for tumors that are driven by the loss of gene function.
Our group previously identified Skp2, a substrate recruiting subunit of the SCF-Skp2 E3 ubiquitin ligase, as an early repression target of pRb whose knockout blocked tumorigenesis in Rb1-deficient prostate and pituitary tumors. Here we used genetic mouse models to demonstrate that deletion of Skp2 completely blocked the formation of SCLC in Rb1/p53-knockout mice (RP mice). Skp2 KO caused an increased accumulation of the Skp2-degradation target p27, a cyclin-dependent kinase inhibitor, and we confirmed this was the mechanism of protection in the RP-Skp2 KO mice by using the knock-in of a mutant p27 that was unable to bind to Skp2. Building on the observed synthetic lethality between Rb1 and Skp2, we found that small molecules that bind to and/or inhibit Skp2 induced apoptosis and inhibited SCLC cell growth. In a panel of SCLC cell lines, growth inhibition by a Skp2 inhibitor was not correlated with sensitivity/resistance to etoposide. Targeting Skp2 also had in vivo antitumor activity in mouse tumors and human patient-derived xenograft models of SCLC. Using the genetic and pharmacologic approaches, antitumor activity was seen in vivo in established SCLC primary lung tumors, in liver metastases, and in chemotherapy-resistant tumors. The identification and validation of an actionable target downstream of RB1 could have a broad impact on treatment of SCLC and other advanced tumors with mutant RB1, for which there are currently no targeted therapies available.

Read Full Post »

Live 12:00 – 1:00 P.M  Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.

Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.

The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.

Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches

Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role

The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease

The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;

  •  growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
  • modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
  • Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
  • developed a junk food calculator and a Mediterranean diet calculator
  • the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
  • Impact of diet: have model in Germany how this diet can increase health and life expectancy
  • from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
  • so there is an inverse relationship with our index and breast cancer

Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet

  • huge problem with use of pesticides and increase in celiac disease

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

Cancer as a disease of the environment.  Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.

Epigenetic effects

  • gene gatekeepers (Rb and P53)
  • DNA repair and damage stabilization

Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)

Asbestos and Mesothelioma:  they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy

Diet, Tomato and Cancer

  • looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
  • RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato (     )

Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato.  The tomato variety  with highest activity was near Ravela however black tomatoes have shown high antitumor activity.  We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar.  We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect

please see post https://news.temple.edu/news/2017-08-28/muse-cancer-fighting-tomatoes-study-italian-food


To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles







# hashtags





Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Read Full Post »