Advertisements
Feeds:
Posts
Comments

Archive for the ‘Chemical Biology and its relations to Metabolic Disease’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Food is digested by bathing in enzymes that break down its molecules. Those molecular fragments then pass through the gut wall and are absorbed in our intestines. But our bodies make a limited range of enzymes, so that we cannot break down many of the tough compounds in plants. The term “dietary fiber” refers to those indigestible molecules. These dietary fibers are indigestible only to us. The gut is coated with a layer of mucus, on which sits a carpet of hundreds of species of bacteria, part of the human microbiome. Some of these microbes carry the enzymes needed to break down various kinds of dietary fibers.

 

Scientists at the University of Gothenburg in Sweden are running experiments that are yielding some important new clues about fiber’s role in human health. Their research indicates that fiber doesn’t deliver many of its benefits directly to our bodies. Instead, the fiber we eat feeds billions of bacteria in our guts. Keeping them happy means our intestines and immune systems remain in good working order. The scientists have recently reported that the microbes are involved in the benefits obtained from the fruits-and-vegetables diet. Research proved that low fiber diet decreases the gut bacteria population by tenfold.

 

Along with changes to the microbiome there were also rapid changes observed in the experimental mice. Their intestines got smaller, and its mucus layer thinner. As a result, bacteria wound up much closer to the intestinal wall, and that encroachment triggered an immune reaction. After a few days on the low-fiber diet, mouse intestines developed chronic inflammation. After a few weeks, they started putting on fat and developing higher blood sugar levels. Inflammation can help fight infections, but if it becomes chronic, it can harm our bodies. Among other things, chronic inflammation may interfere with how the body uses the calories in food, storing more of it as fat rather than burning it for energy.

 

In a way fiber benefits human health is by giving, indirectly, another source of food. When bacteria finished harvesting the energy in the dietary fiber, they cast off the fragments as waste. That waste — in the form of short-chain fatty acids — is absorbed by intestinal cells, which use it as fuel. But the gut’s microbes do more than just make energy. They also send messages. Intestinal cells rely on chemical signals from the bacteria to work properly. The cells respond to the signals by multiplying and making a healthy supply of mucus. They also release bacteria-killing molecules. By generating these responses, gut bacteria help to maintain a peaceful coexistence with the immune system. They rest on the gut’s mucus layer at a safe distance from the intestinal wall. Any bacteria that wind up too close get wiped out by antimicrobial poisons.

 

A diet of fiber-rich foods, such as fruits and vegetables, reduces the risk of developing diabetes, heart disease and arthritis. Eating more fiber seems to lower people’s mortality rate, whatever be the cause. Researchers hope that they will learn more about how fiber influences the microbiome to use it as a way to treat disorders. Lowering inflammation with fiber may also help in the treatment of immune disorders such as inflammatory bowel disease. Fiber may also help reverse obesity. They found that fiber supplements helped obese people to lose weight. It’s possible that each type of fiber feeds a particular set of bacteria, which send their own important signals to our bodies.

 

References:

 

https://www.nytimes.com/2018/01/01/science/food-fiber-microbiome-inflammation.html

 

 

https://www.ncbi.nlm.nih.gov/pubmed/29276171

 

https://www.ncbi.nlm.nih.gov/pubmed/29276170

 

https://www.ncbi.nlm.nih.gov/pubmed/29486139

 

https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983

 

https://nutritiouslife.com/eat-empowered/high-fiber-diet/

 

http://www.eatingwell.com/article/287742/10-amazing-health-benefits-of-eating-more-fiber/

 

http://www.cookinglight.com/eating-smart/nutrition-101/what-is-a-high-fiber-diet

 

https://www.helpguide.org/articles/healthy-eating/high-fiber-foods.htm

 

https://www.gicare.com/diets/high-fiber-diet/

 

Advertisements

Read Full Post »


  1. Lungs can supply blood stem cells and also produce platelets: Lungs, known primarily for breathing, play a previously unrecognized role in blood production, with more than half of the platelets in a mouse’s circulation produced there. Furthermore, a previously unknown pool of blood stem cells has been identified that is capable of restoring blood production when bone marrow stem cells are depleted.

 

  1. A new drug for multiple sclerosis: A new multiple sclerosis (MS) drug, which grew out of the work of UCSF (University of California, San Francisco) neurologist was approved by the FDA. Ocrelizumab, the first drug to reflect current scientific understanding of MS, was approved to treat both relapsing-remitting MS and primary progressive MS.

 

  1. Marijuana legalized – research needed on therapeutic possibilities and negative effects: Recreational marijuana will be legal in California starting in January, and that has brought a renewed urgency to seek out more information on the drug’s health effects, both positive and negative. UCSF scientists recognize marijuana’s contradictory status: the drug has proven therapeutic uses, but it can also lead to tremendous public health problems.

 

  1. Source of autism discovered: In a finding that could help unlock the fundamental mysteries about how events early in brain development lead to autism, researchers traced how distinct sets of genetic defects in a single neuronal protein can lead to either epilepsy in infancy or to autism spectrum disorders in predictable ways.

 

  1. Protein found in diet responsible for inflammation in brain: Ketogenic diets, characterized by extreme low-carbohydrate, high-fat regimens are known to benefit people with epilepsy and other neurological illnesses by lowering inflammation in the brain. UCSF researchers discovered the previously undiscovered mechanism by which a low-carbohydrate diet reduces inflammation in the brain. Importantly, the team identified a pivotal protein that links the diet to inflammatory genes, which, if blocked, could mirror the anti-inflammatory effects of ketogenic diets.

 

  1. Learning and memory failure due to brain injury is now restorable by drug: In a finding that holds promise for treating people with traumatic brain injury, an experimental drug, ISRIB (integrated stress response inhibitor), completely reversed severe learning and memory impairments caused by traumatic brain injury in mice. The groundbreaking finding revealed that the drug fully restored the ability to learn and remember in the brain-injured mice even when the animals were initially treated as long as a month after injury.

 

  1. Regulatory T cells induce stem cells for promoting hair growth: In a finding that could impact baldness, researchers found that regulatory T cells, a type of immune cell generally associated with controlling inflammation, directly trigger stem cells in the skin to promote healthy hair growth. An experiment with mice revealed that without these immune cells as partners, stem cells cannot regenerate hair follicles, leading to baldness.

 

  1. More intake of good fat is also bad: Liberal consumption of good fat (monounsaturated fat) – found in olive oil and avocados – may lead to fatty liver disease, a risk factor for metabolic disorders like type 2 diabetes and hypertension. Eating the fat in combination with high starch content was found to cause the most severe fatty liver disease in mice.

 

  1. Chemical toxicity in almost every daily use products: Unregulated chemicals are increasingly prevalent in products people use every day, and that rise matches a concurrent rise in health conditions like cancers and childhood diseases, Thus, researcher in UCSF is working to understand the environment’s role – including exposure to chemicals – in health conditions.

 

  1. Cytomegalovirus found as common factor for diabetes and heart disease in young women: Cytomegalovirus is associated with risk factors for type 2 diabetes and heart disease in women younger than 50. Women of normal weight who were infected with the typically asymptomatic cytomegalovirus, or CMV, were more likely to have metabolic syndrome. Surprisingly, the reverse was found in those with extreme obesity.

 

References:

 

https://www.ucsf.edu/news/2017/12/409241/most-popular-science-stories-2017

 

https://www.ucsf.edu/news/2017/03/406111/surprising-new-role-lungs-making-blood

 

https://www.ucsf.edu/news/2017/03/406296/new-multiple-sclerosis-drug-ocrelizumab-could-halt-disease

 

https://www.ucsf.edu/news/2017/06/407351/dazed-and-confused-marijuana-legalization-raises-need-more-research

 

https://www.ucsf.edu/news/2017/01/405631/autism-researchers-discover-genetic-rosetta-stone

 

https://www.ucsf.edu/news/2017/09/408366/how-ketogenic-diets-curb-inflammation-brain

 

https://www.ucsf.edu/news/2017/07/407656/drug-reverses-memory-failure-caused-traumatic-brain-injury

 

https://www.ucsf.edu/news/2017/05/407121/new-hair-growth-mechanism-discovered

 

https://www.ucsf.edu/news/2017/06/407536/go-easy-avocado-toast-good-fat-can-still-be-bad-you-research-shows

 

https://www.ucsf.edu/news/2017/06/407416/toxic-exposure-chemicals-are-our-water-food-air-and-furniture

 

https://www.ucsf.edu/news/2017/02/405871/common-virus-tied-diabetes-heart-disease-women-under-50

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The trillions of microbes in the human gut are known to aid the body in synthesizing key vitamins and other nutrients. But this new study suggests that things can sometimes be more adversarial.

 

Choline is a key nutrient in a range of metabolic processes, as well as the production of cell membranes. Researchers identified a strain of choline-metabolizing E. coli that, when transplanted into the guts of germ-free mice, consumed enough of the nutrient to create a choline deficiency in them, even when the animals consumed a choline-rich diet.

 

This new study indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency. Mice harboring high levels of choline-consuming bacteria showed increased susceptibility to metabolic disease in the context of a high-fat diet.

 

DNA methylation is essential for normal development and has been linked to everything from aging to carcinogenesis. This study showed changes in DNA methylation across multiple tissues, not just in adult mice with a choline-consuming gut microbiota, but also in the pups of those animals while they developed in utero.

 

Bacterially induced reduction of methyl-donor availability influenced global DNA methylation patterns in both adult mice and their offspring and engendered behavioral alterations. This study reveal an underappreciated effect of bacterial choline metabolism on host metabolism, epigenetics, and behavior.

 

The choline-deficient mice with choline-consuming gut microbes also showed much higher rates of infanticide, and exhibited signs of anxiety, with some mice over-grooming themselves and their cage-mates, sometimes to the point of baldness.

 

Tests have also shown as many as 65 percent of healthy individuals carry genes that encode for the enzyme that metabolizes choline in their gut microbiomes. This work suggests that interpersonal differences in microbial metabolism should be considered when determining optimal nutrient intake requirements.

 

References:

 

https://news.harvard.edu/gazette/story/2017/11/harvard-research-suggests-microbial-menace/

 

http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(17)30304-9

 

https://www.ncbi.nlm.nih.gov/pubmed/23151509

 

https://www.ncbi.nlm.nih.gov/pubmed/25677519

 

http://mbio.asm.org/content/6/2/e02481-14

 

Read Full Post »


Energy dysfunction detected in skin cells a possible additional explanation of the Alzheimer’s disease’s hallmark Dementia

Reporter: Aviva Lev-Ari, PhD, RN

A team at Harvard-affiliated McLean Hospital tested the cells of late-onset Alzheimer’s patients and found malfunctions in their energy production, including problems with the health of their mitochondria, the cellular power plants that provide most of their energy.

The brain, because it is the body’s most energy-hungry organ, demanding as much as 20 times the energy of other tissues. Such a malfunction, he said, could damage or kill nerve cells and help explain the cognitive decline associated with the disease.

McLean researchers detect dysfunction in cells’ energy production in late-onset patients

“Although people hope with a lot of these conditions we study — normal or abnormal — that there are going to be simple answers … it’s never simple, it’s always all kinds of factors interacting to determine whether you get lucky or not, whether you get sick or not,” Cohen said.

The next step, Cohen said, will be to do a similar study on the neurons and other brain cells of Alzheimer’s patients, to see whether the energy dysfunction detected in skin cells is replicated there. Even if medical understanding of the disease remains imperfect, Cohen said the ultimate hope is to find an intervention that interrupts Alzheimer’s most devastating effects.

“You don’t have to fix everything to keep somebody from getting sick,” Cohen said. “The reason somebody gets sick is you’re unlucky five different ways and it all combines to tip you over the edge. Maybe you only need to fix one of them and you don’t tip over the edge anymore.”

SOURCE

https://news.harvard.edu/gazette/story/2017/11/new-clues-to-alzheimers-disease/

Other related articles on Mitochondria’s functions published in this Open Access Online Scientific Journal include the following:

Search all +5,200 Journal articles for “Mitochondria”

https://pharmaceuticalintelligence.com/?s=Mitochondria

Proteomics, Metabolomics, Signaling Pathways, and Cell Regulation – Articles of Note, LPBI Group’s Scientists @ http://pharmaceuticalintelligence.com

https://www.linkedin.com/pulse/proteomics-metabolomics-signaling-pathways-cell-lev-ari-phd-rn/

Read Full Post »


The Role of Exosomes in Metabolic Regulation

Author: Larry H. Bernstein, MD, FCAP

 

On 9/25/2017, Aviva Lev-Ari, PhD, RN commissioned Dr. Larry H. Bernstein to write a short article on the following topic reported on 9/22/2017 in sciencemission.com

 

We are publishing, below the new article created by Larry H. Bernstein, MD, FCAP.

 

Background

During the period between 9/2015  and 6/2017 the Team at Leaders in Pharmaceutical Business Intelligence (LPBI)  has launched an R&D effort lead by Aviva Lev-Ari, PhD, RN in conjunction with SBH Sciences, Inc. headed by Dr. Raphael Nir.

This effort, also known as, “DrugDiscovery @LPBI Group”  has yielded several publications on EXOSOMES on this Open Access Online Scientific Journal. Among them are included the following:

 

QIAGEN – International Leader in NGS and RNA Sequencing, 10/08/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

cell-free DNA (cfDNA) tests could become the ultimate “Molecular Stethoscope” that opens up a whole new way of practicing Medicine, 09/08/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

Detecting Multiple Types of Cancer With a Single Blood Test (Human Exomes Galore), 07/02/2017

Reporter and Curator: Irina Robu, PhD

 

Exosomes: Natural Carriers for siRNA Delivery, 04/24/2017

Reporter: Aviva Lev-Ari, PhD, RN

 

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI, 01/05/2017

Curator: Marzan Khan, B.Sc

 

SBI’s Exosome Research Technologies, 12/29/2016

Reporter: Aviva Lev-Ari, PhD, RN

 

A novel 5-gene pancreatic adenocarcinoma classifier: Meta-analysis of transcriptome data – Clinical Genomics Research @BIDMC, 12/28/2016

Curator: Tilda Barliya, PhD

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab, 12/28/2016

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

 

Exosomes – History and Promise, 04/28/2016

Reporter: Aviva Lev-Ari, PhD, RN

 

Exosomes, 11/17/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Liquid Biopsy Assay May Predict Drug Resistance, 11/16/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Glypican-1 identifies cancer exosomes, 10/31/2015

Curator: Larry H. Bernstein, MD, FCAP

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation, 03/24/2015

Reporter: Aviva Lev-Ari, PhD, RN

 

Cambridge Healthtech Institute’s Second Annual Exosomes and Microvesicles as Biomarkers and Diagnostics Conference, March 16-17, 2015 in Cambridge, MA, 03/17, 2015

Reporter: Aviva Lev-Ari, PhD, RN

 

The newly created think-piece on the relationship between regulatory functions of Exosomes and Metabolic processes is developed conceptually, below.

 

The Role of Exosomes in Metabolic Regulation

Author: Larry H. Bernstein, MD, FCAP

We have had more than a half century of research into the genetic code and transcription leading to abundant work on RNA and proteomics. However, more recent work in the last two decades has identified RNA interference in siRNA. These molecules may be found in the circulation, but it has been a challenge to find their use in therapeutics. Exosomes were first discovered in the 1980s, but only recently there has been a huge amount of research into their origin, structure and function. Exosomes are 30–120 nm endocytic membrane-bound extracellular vesicles (EVs)(1-23) , and more specifically multiple vesicle bodies (MVBs) by a budding process from invagination of the outer cell membrane that carry microRNA (miRNA), and have structures composed of protein and lipids (1,23-27 ). EVs are the membrane vesicles secreted by eukaryotic cells for intracellular communication by transferring the proteins, lipids, and RNA under various physiologic conditions as well as during the disease stage. EVs also act as a signalosomes in many biological processes. Inward budding of the plasma membrane forms small vesicles that fuse. Intraluminal vesicles (ILVs) are formed by invagination of the limiting endosomal membrane during the maturation process of early endosome.

EVs are the MVBs secreted that serve in intracellular communication by transferring a cargo consisting of proteins, lipids, and RNA under various physiologic conditions (4, 23). Exosome-mediated miRNA transfer between cells is considered to be necessary for intercellular signaling and exosome-associated miRNAs in biofluids (23). Exosomes carry various molecular constituents of their cell of origin, including proteins, lipids, mRNAs, and microRNAs (miRNAs) (. They are released from many cell types, such as dendritic cells (DCs), lymphocytes, platelets, mast cells, epithelial cells, endothelial cells, and neurons, and can be found in most bodily fluids including blood, urine, saliva, amniotic fluid, breast milk, hydrothoracic fluid, and ascitic fluid, as well as in culture medium of most cell types.Exosomes have also been shown to be involved in noncoding RNA surveillance machinery in generating antibody diversity (24). There are also a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) that accumulate R-loop structures upon RNA exosome ablation, thereby, resolving deleterious DNA/RNA hybrids arising from active enhancers and distal divergent eRNA-expressing elements (lncRNA-CSR) engaged in long-range DNA interactions (25). RNA exosomes are large multimeric 3′-5′ exo- and endonucleases representing the central RNA 3′-end processing factor and are implicated in processing, quality control, and turnover of both coding and noncoding RNAs. They are large macromolecular cages that channel RNA to the ribonuclease sites (29). A major interest has been developed to characterize of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids (1). Moreover, exosomes play an active role in tumorigenesis, metastasis, and response to therapy through the transfer of oncogenes and onco-miRNAs between cancer cells and the tumor stroma. Blood cells and the vascular endothelium is also exosomal shedding, which has significance for cardiovascular,   neurologicological disorders, stroke, and antiphospholipid syndrome (1). Dysregulation of microRNAs and the affected pathways is seen in numerous pathologies their expression can reflect molecular processes of tumor onset and progression qualifying microRNAs as potential diagnostic and prognostic biomarkers (30).

Exosomes are secreted by many cells like B lymphocytes and dendritic cells of hematopoietic and non-hematopoietic origin viz. platelets, Schwann cells, neurons, mast cells, cytotoxic T cells, oligodendrocytes, intestinal epithelial cells were also found to be releasing exosomes (4). They are engaged in complex functions like persuading immune response as the exosomes secreted by antigen presenting cells activate T cells (4). They all have a common set of proteins e.g. Rab family of GTPases, Alix and ESCRT (required for transport) protein and they maintain their cytoskeleton dynamics and participate in membrane fusion. However, they are involved in retrovirus disease pathology as a result of recruitment of the host`s endosomal compartments in order to generate viral vesicles, and they can either spread or limit an infection based on the type of pathogen and its target cells (5).

Upon further consideration, it is understandable how this growing biological work on exosomes has enormous significance for laboratory diagnostics (1, 3, 5, 6, 11, 14, 15, 17-20, 23,30-41) . They are released from many cell types, such as dendritic cells (DCs), lymphocytes, platelets, mast cells, epithelial cells, endothelial cells, and neurons, and can be found in most bodily fluids including blood, urine, saliva, amniotic fluid, breast milk, thoracic and abdominal effusions, and ascitic fluid (1). The involvement of exosomes in disease is broad, and includes: cancer, autoimmune and infectious disease, hematologic disorders, neurodegenerative diseases, and cardiovascular disease. Proteins frequently identified in exosomes include membrane transporters and fusion proteins (e.g., GTPases, annexins, and flotillin), heat shock proteins (e.g., HSC70), tetraspanins (e.g., CD9, CD63, and CD81), MVB biogenesis proteins (e.g., alix and TSG101), and lipid-related proteins and phospholipases. The exosomal lipid composition has been thoroughly analyzed in exosomes secreted from several cell types including DCs and mast cells, reticulocytes, and B-lymphocytes (1). Dysregulation of microRNAs of pathways observed in numerous pathologies (5, 10, 12, 21, 27, 35, 37) including cancers (30), particularly, colon, pancreas, breast, liver, brain, lung (2, 6, 17-20, 30, 33-36, 38, 39). Following these considerations, it is important that we characterize the content of exosomal cargo to gain clues to their biogenesis, targeting, and cellular effects which may lead to identification of biomarkers for disease diagnosis, prognosis and response to treatment (42).

We might continue in pursuit of a particular noteworthy exosome, the NLRP3 inflammasome, which is activated by a variety of external or host-derived stimuli, thereby, initiating an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1b maturation and secretion (43).
Inflammasomes are multi-protein signaling complexes that activate the inflammatory caspases and the maturation of interleukin-1b. The NLRP3 inflammasome is linked with human autoinflammatory and autoimmune diseases (44). This makes the NLRP3 inflammasome a promising target for anti-inflammatory therapies. The NLRP3 inflammasome is activated in response to a variety of signals that indicate tissue damage, metabolic stress, and infection (45). Upon activation, the NLRP3 inflammasome serves as a platform for activation of the cysteine protease caspase-1, which leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Heritable and acquired inflammatory diseases are both characterized by dysregulation of NLRP3 inflammasome activation (45).
Receptors of innate immunity recognize conserved moieties associated with either cellular damage [danger-associated molecular patterns (DAMPs)] or invading organisms [pathogen-associated molecular patterns (PAMPs)](45). Either chronic stimulation or overwhelming tissue damage is injurious and responsible for the pathology seen in a number of autoinflammatory and autoimmune disorders, such as arthritis and diabetes. The nucleotide-binding domain leucine-rich repeat (LRR)-containing receptors (NLRs) are PRRs are found intracellularly and they share a unique domain architecture. It consists of a central nucleotide binding and oligomerization domain called the NACHT domain that is located between an N-terminal effector domain and a C-terminal LRR domain (45). The NLR family members NLRP1, NLRP3, and NLRC4 are capable of forming multiprotein complexes called inflammasomes when activated.

The (NLRP3) inflammasome is important in chronic airway diseases such as asthma and chronic obstructive pulmonary disease because the activation results, in pro-IL-1β processing and the secretion of the proinflammatory cytokine IL-1β (46). It has been proposed that Activation of the NLRP3 inflammasome by invading pathogens may prove cell type-specific in exacerbations of airway inflammation in asthma (46). First, NLRP3 interacts with the adaptor protein ASC by sensing microbial pathogens and self-danger signals. Then pro-caspase-1 is recruited and the large protein complex called the NLRP3 inflammasome is formed. This is followed by autocleavage and activation of caspase-1, after which pro-IL-1β and pro-IL-18 are converted into their mature forms. Ion fluxes disrupt membrane integrity, and also mitochondrial damage both play key roles in NLRP3 inflammasome activation (47). Depletion of mitochondria as well as inhibitors that block mitochondrial respiration and ROS production prevented NLRP3 inflammasome activation. Futhermore, genetic ablation of VDAC channels (namely VDAC1 and VDAC3) that are located on the mitochondrial outer membrane and that are responsible for exchanging ions and metabolites with the cytoplasm, leads to diminished mitochondrial (mt) ROS production and inhibition of NLRP3 inflammasome activation (47). Inflammasome activation not only occurs in immune cells, primarily macrophages and dendritic cells, but also in kidney cells, specifically the renal tubular epithelium. The NLRP3 inflammasome is probably involved in the pathogenesis of acute kidney injury, chronic kidney disease, diabetic nephropathy and crystal-related nephropathy (48). The inflammasome also plays a role in autoimmune kidney disease. IL-1 blockade and two recently identified specific NLRP3 inflammasome blockers, MCC950 and β-hydroxybutyrate, may prove to have value in the treatment of inflammasome-mediated conditions.

Autophagosomes derived from tumor cells are referred to as defective ribosomal products in blebs (DRibbles). DRibbles mediate tumor regression by stimulating potent T-cell responses and, thus, have been used as therapeutic cancer vaccines in multiple preclinical cancer models (49). It has been found that DRibbles could induce a rapid differentiation of monocytes and DC precursor (pre-DC) cells into functional APCs (49). Consequently, DRibbles could potentially induce strong innate immune responses via multiple pattern recognition receptors. This explains why DRibbles might be excellent antigen carriers to induce adaptive immune responses to both tumor cells and viruses. This suggests that isolated autophagosomes (DRibbles) from antigen donor cells activate inflammasomes by providing the necessary signals required for IL-1β production.

The Hsp90 system is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function (50). The co-chaperones enable Hsp90 to chaperone structurally and functionally diverse client proteins. Sahasrabudhe et al. (50) show that the nature of the client protein dictates the contribution of a co-chaperone to its maturation. The study reveals the general importance of the cochaperone Sgt1 (50). In addition to Hsp90, we have to consider Hsp60. Adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins (21).

A new Protein Organic Solvent Precipitation (PROSPR) method efficiently isolates the EV repertoire from human biological samples. Proteomic profiling of PROSPR-enriched CNS EVs indicated that > 75 % of the proteins identified matched previously reported exosomal and microvesicle cargoes. In addition lipidomic characterization of enriched CNS vesicles identified previously reported EV-specific lipid families and novel lipid isoforms not previously detected in human EVs. The characterization of these structures from central nervous system (CNS) tissues is relevant to current neuroscience, especially to advance the understanding of neurodegeneration in amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD)(15). In addition, study of EVs in brain will enable characterization of the degenerative posttranslational modifications (DPMs) occurring in those proteins.
Neurodegenerative disease is characterized by dysregulation because of NLRP3 inflammasome activation. Alzheimer’s disease (AD) and Parkinson’s disease (PD), both neurodegenerative diseases are associated with the NLRP3 inflammasome. PD is characterized by accumulation of Lewy bodies (LB) formed by a-synuclein (aSyn) aggregation. A recent study revealed that aSyn induces synthesis of pro-IL-1b by an interaction with TLR2 and activates NLRP3 inflammasome resulting in caspase-1 activation and IL-1b maturation in human primary monocytes (43). In addition mitophagy downregulates NLRP3 inflammasome activation by eliminating damaged mitochondria, blocking NLRP3 inflammasome activating signals. It is notable that in this aberrant activation mitophagy downregulates NLRP3 inflammasome activation by eliminating damaged mitochondria, blocking NLRP3 inflammasome activating signals (43).

REFERENCES

  1. Lin J, Li J, Huang B, Liu J, Chen X. Exosomes: Novel Biomarkers for Clinical Diagnosis. Scie World J 2015; Article ID 657086, 8 pages http://dx.doi.org/10.1155/2015/657086
  2. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, et al. Identification of Double-stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and p53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer. J Biol Chem 2014; 289: 3869-3875. doi: 10.1074/jbc.C113.532267.
  3. Lässer C, Eldh M, Lötvall J. Isolation and Characterization of RNA-Containing Exosomes. J. Vis. Exp. 2012; 59, e3037. doi:10.3791/3037(2012).
  4. Kaur A, Leishangthem GD, Bhat P, et al. Role of Exosomes in Pathology – A Review. Journal of Pathology and Toxicology 2014; 1: 07-11
  5. Hosseini HM, Fooladi AAI, Nourani MR and Ghanezadeh F. The Role of Exosomes in Infectious Diseases. Inflammation & Allergy – Drug Targets 2013; 12:29-37.
  6. Ciregia F, Urbani A and Palmisano G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front. Mol. Neurosci. 2017;10:276. doi: 10.3389/fnmol.2017.00276
  7. Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol (2014)
  8. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Current Opin in Cell Biol 2014 Aug; 29: 116-125. https://doi.org/10.1016/j.ceb.2014.05.004
  9. McKelvey KJ, Powell KL, Ashton AW, Morris JM and McCracken SA. Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015; 4:7   DOI: 10.5772/61186
  10. Xiao T, Zhang W, Jiao B, Pan C-Z, Liu X and Shen L. The role of exosomes in the pathogenesis of Alzheimer’ disease. Translational Neurodegen 2017; 6:3. DOI 10.1186/s40035-017-0072-x
  11. Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. J Am Soc Nephrol 2009; 20: 363–379. doi: 10.1681/ASN.2008040406
  12. Waldenström A, Ronquist G. Role of Exosomes in Myocardial Remodeling. Circ Res. 2014; 114:315-324.
  13. Xin H, Li Y and Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front. Cell. Neurosci. 10 Nov, 2014; 8(377) doi: 10.3389/fncel.2014.00377
  14. Wang S, Zhang L, Wan S, Cansiz S, Cui C, et al. Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS Nano, 2017; 11(4):3943–3949 DOI: 10.1021/acsnano.7b00373
  15. Gallart-Palau X, Serra A, Sze SK. (2016) Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 11(1):41.
  16. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008 Oct; 8(19):4083-99. doi: 10.1002/pmic.200800109.
  17. Sandfeld-Paulsen R, Aggerholm-Pedersen N, Bæk R, Jakobs KR, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Onc 2016 Dec; 10(10):1595-1602.
  18. Li W, Li C, Zhou T, et al. Role of exosomal proteins in cancer diagnosis. Molecular Cancer 2017; 16:145 DOI 10.1186/s12943-017-0706-8
  19. Zhang W, Xia W, Lv Z, Xin Y, Ni C, Yang L. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes? Cell Physiol Biochem 2017; 41:755-768. DOI: 10.1159/00045873
  20. Thakur BK ,…, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research 2014 June; 24(6):766-769. doi:10.1038/cr.2014.44.
  21. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, Knowlton AA. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304: H954–H965, 2013. doi:10.1152/ajpheart.00835.2012.
  22. De Toro J, Herschlik L, Waldner C and Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 2015; 6:203. doi: 10.3389/fimmu.2015.00203
  23. Chevilleta JR, Kanga Q, Rufa IK, Briggs HA, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS 2014 Oct 14; 111(41): 14888–14893. pnas.org/cgi/doi/10.1073/pnas.1408301111
  24. Basu U, Meng F-L, Keim C, Grinstein V, Pefanis E, et al. The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates. Cell 2011; 144: 353–363, DOI 10.1016/j.cell.2011.01.001
  25. Pefanis E, Wang J, …, Rabadan R, Basu U. RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell 2015; 161: 774–789. http://dx.doi.org/10.1016/j.cell.2015.04.034
  26. Kilchert C,Wittmann S & Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. In RNA processing and modifications. Nature Reviews Molecular Cell Biology 17, 227–239 (2016) doi:10.1038/nrm.2015.15
  27. Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl. 1):137–146. DOI: 10.1111/dom.13027.
  28. Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Molecular BioSystems MB-REV-02-2016-000082.R1
  29. Hopfner K-P, Hartung S. The RNA Exosomes. In Nucleic Acids and Molecular Biology. 2011. Ribonucleases pp 223-244. https://link.springer.com/chapter/10.1007/978-3-642-21078-5_9/fulltext.html
  30. Fuessel S, Lohse-Fischer A, Vu Van D, Salomo K, Erdmann K, Wirth MP. (2017) Quantification of MicroRNAs in Urine-Derived Specimens. In Urothelial Carcinoma, Methods Mol Biol 1655:201-226.
  31. Street JM, Barran PE, Mackay CL, Weidt S, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. Journal of Translational Medicine 2012; 10:5. http://www.translational-medicine.com/content/10/1/5
  32. Pisitkun T, Shen R-F, and Knepper MA. Identification and proteomic profiling of exosomes in human urine. PNAS 2004, Sept 7; 101(36): 13368–13373. http://www.pnas.org/cgi/doi/10.1073/pnas.0403453101
  33. Duijvesz D, Burnum-Johnson KE, Gritsenko MA, Hoogland AM, Vredenbregt-van den Berg MS, et al. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer. PLoS ONE 2013; 8(12): e82589. doi:10.1371/journal.pone.0082589
  34. Welton JL, Khanna S, Giles PJ, Brennan P, et al. Proteomics Analysis of Bladder Cancer Exosomes. Molecular & Cellular Proteomics 2010; 9:1324–1338. DOI 10.1074/mcp.M000063-MCP201
  35. Lee S, Suh G-Y, Ryter SW, and Choi AMK. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, PyrinDomain-Containing-3 Inflammasome in Lung Disease. Am J Respir Cell Mol Biol 2016 Feb; 54(2):151–160. DOI: 10.1165/rcmb.2015-0231TR.
  36. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol (2015)
  37. Zhao X, Wu Y, Duan J, Ma Y, Shen Z, et al. Quantitative Proteomic Analysis of Exosome Protein Content Changes Induced by Hepatitis B Virus in Huh-7 Cells Using SILAC Labeling and LC–MS/MS. J. Proteome Res.; 2014, 13 (12):5391–5402. DOI: 10.1021/pr5008703
  38. Liang B, Peng P, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 2013 Mar; 80:171-182. https://doi.org/10.1016/j.jprot.2012.12.029
  39. Beckler MD, Higginbotham JN, Franklin JL,…, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell Proteomics. 2013 Feb 12; (2). https://edrn.nci.nih.gov/publications/23161513-proteomic-analysis-of-exosomes
  40. Alvarez-Llamas G, Díaz J, Zubiri I. Proteome of Human Urinary Exosomes in Diabetic Nephropathy. In Biomarkers in Kidney Disease. Vinood B. Patel, Ed. Springer Science 2015; pp 1-21. DOI 10.1007/978-94-007-7743-9_22-1
  41. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008 Oct; 8(19):4083-99. doi: 10.1002/pmic.200800109.
  42. Scheya JKL, Luther M, Rose KL. Proteomics characterization of exosome cargo. Methods 2015 Oct; 87(1): 75-82. https://doi.org/10.1016/j.ymeth.2015.03.018
  43. Kim M-J, Yoon J-H & Ryu J-H. Mitophagy: a balance regulator of NLRP3 inflammasome Activation. BMB Rep. 2016; 49(10): 529-535. https://doi.org/10.5483/BMBRep.2016.49.10.115
  44. Eun-Kyeong Jo, Kim JK, Shin D-M and C Sasakawa. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Molec Immunol 2016; 13: 148–159. doi:10.1038/cmi.2015.95
  45. Leemans JC, Cassel SL, and Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev. 2011 Sept; 243(1): 152–162. doi:10.1111/j.1600-065X.2011.01043.x.
  46. Hirota JA, Im H, Rahman MM, Rumzhum NN, Manetsch M, Pascoe CD, Bunge K, Alkhouri H, Oliver BG, Ammit AJ. The nucleotide-binding domain and leucine-rich repeat protein-3 inflammasome is not activated in airway smooth muscle upon toll-like receptor-2 ligation. Am J Respir Cell Mol Biol. 2013 Oct; 49(4):517-24. doi: 10.1165/rcmb.2013-0047OC.
  47. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory immune diseases. Clin Exp Rheumatol. 2016 Jul-Aug; 34(4 Suppl 98):12-6. Epub 2016 Jul 21.
  48. Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton). 2016 Sep; 21(9):736-44. doi: 10.1111/nep.12785
  49. Xing Y, Cao R and Hu H-M. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death and Disease (2016) 7, e2322; doi:10.1038/cddis.2016.206
  50. Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Molecular Cell 2017 Sept; 67:947–961. http://dx.doi.org/10.1016/j.molcel.2017.08.004

 

Read Full Post »


Regulatory MicroRNAs in Aberrant Cholesterol Transport and Metabolism

Curator: Marzan Khan, B.Sc

Aberrant levels of lipids and cholesterol accumulation in the body lead to cardiometabolic disorders such as atherosclerosis, one of the leading causes of death in the Western World(1). The physical manifestation of this condition is the build-up of plaque along the arterial endothelium causing the arteries to constrict and resist a smooth blood flow(2). This obstructive deposition of plaque is merely the initiation of atherosclerosis and is enriched in LDL cholesterol (LDL-C) as well foam cells which are macrophages carrying an overload of toxic, oxidized LDL(2). As the condition progresses, the plaque further obstructs blood flow and creates blood clots, ultimately leading to myocardial infarction, stroke and other cardiovascular diseases(2). Therefore, LDL is referred to as “the bad cholesterol”(2).

Until now, statins are most widely prescribed as lipid-lowering drugs that inhibit the enzyme 3-hydroxy-3methylgutaryl-CoA reductase (HMGCR), the rate-limiting step in de-novo cholesterol biogenesis (1). But some people cannot continue with the medication due to it’s harmful side-effects(1). With the need to develop newer therapeutics to combat cardiovascular diseases, Harvard University researchers at Massachusetts General Hospital discovered 4 microRNAs that control cholesterol, triglyceride, and glucose homeostasis(3)

MicroRNAs are non-coding, regulatory elements approximately 22 nucleotides long, with the ability to control post-transcriptional expression of genes(3). The liver is the center for carbohydrate and lipid metabolism. Stringent regulation of endogenous LDL-receptor (LDL-R) pathway in the liver is crucial to maintain a minimal concentration of LDL particles in blood(3). A mechanism whereby peripheral tissues and macrophages can get rid of their excess LDL is mediated by ATP-binding cassette, subfamily A, member 1 (ABCA1)(3). ABCA1 consumes nascent HDL particles- dubbed as the “good cholesterol” which travel back to the liver for its contents of triglycerides and cholesterol to be excreted(3).

Genome-wide association studies (GWASs) meta-analysis carried out by the researchers disclosed 4 microRNAs –(miR-128-1, miR-148a, miR-130b, and miR-301b) to lie close to single-nucleotide polymorphisms (SNPs) associated with abnormal metabolism and transport of lipids and cholesterol(3) Experimental analyses carried out on relevant cell types such as the liver and macrophages have proven that these microRNAs bind to the 3’ UTRs of both LDL-R and ABCA1 transporters, and silence their activity. Overexpression of miR-128-1 and miR148a in mice models caused circulating HDL-C to drop. Corroborating the theory under investigation further, their inhibition led to an increased clearance of LDL from the blood and a greater accumulation in the liver(3).

That the antisense inhibition of miRNA-128-1 increased insulin signaling in mice, propels us to hypothesize that abnormal expression of miR-128-1 might cause insulin resistance in metabolic syndrome, and defective insulin signaling in hepatic steatosis and dyslipidemia(3)

Further examination of miR-148 established that Liver-X-Receptor (LXR) activation of the Sterol regulatory element-binding protein 1c (SREBP1c), the transcription factor responsible for controlling  fatty acid production and glucose metabolism, also mediates the expression of miR-148a(4,5) That the promoter region of miR-148 contained binding sites for SREBP1c was shown by chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq)(4). More specifically, SREBP1c attaches to the E-box2, E-box3 and E-box4 elements on miR-148-1a promoter sites to control its expression(4).

Earlier, the same researchers- Andres Naars and his team had found another microRNA called miR-33 to block HDL generation, and this blockage to reverse upon antisense targeting of miR-33(6).

These experimental data substantiate the theory of miRNAs being important regulators of lipoprotein receptors and transporter proteins as well as underscore the importance of employing antisense technologies to reverse their gene-silencing effects on LDL-R and ABCA1(4). Such a therapeutic approach, that will consequently lower LDL-C and promote HDL-C seems to be a promising strategy to treat atherosclerosis and other cardiovascular diseases(4).

References:

1.Goedeke L1,Wagschal A2,Fernández-Hernando C3, Näär AM4. miRNA regulation of LDL-cholesterol metabolism. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2047-2052

https://www.ncbi.nlm.nih.gov/pubmed/26968099

2.MedicalNewsToday. Joseph Nordgvist. Atherosclerosis:Causes, Symptoms and Treatments. 13.08.2015

http://www.medicalnewstoday.com/articles/247837.php

3.Wagschal A1,2, Najafi-Shoushtari SH1,2, Wang L1,2, Goedeke L3, Sinha S4, deLemos AS5, Black JC1,6, Ramírez CM3, Li Y7, Tewhey R8,9, Hatoum I10, Shah N11, Lu Y11, Kristo F1, Psychogios N4, Vrbanac V12, Lu YC13, Hla T13, de Cabo R14, Tsang JS11, Schadt E15, Sabeti PC8,9, Kathiresan S4,6,8,16, Cohen DE7, Whetstine J1,6, Chung RT5,6, Fernández-Hernando C3, Kaplan LM6,10, Bernards A1,6,16, Gerszten RE4,6, Näär AM1,2. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. . Nat Med.2015 Nov;21(11):1290

https://www.ncbi.nlm.nih.gov/pubmed/26501192

4.Goedeke L1,2,3,4, Rotllan N1,2, Canfrán-Duque A1,2, Aranda JF1,2,3, Ramírez CM1,2, Araldi E1,2,3,4, Lin CS3,4, Anderson NN5,6, Wagschal A7,8, de Cabo R9, Horton JD5,6, Lasunción MA10,11, Näär AM7,8, Suárez Y1,2,3,4, Fernández-Hernando C1,2,3,4. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med. 2015 Nov;21(11):1280-9.

https://www.ncbi.nlm.nih.gov/pubmed/26437365

5.Eberlé D1, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004 Nov;86(11):839-48.

https://www.ncbi.nlm.nih.gov/pubmed/15589694

6.Harvard Medical School. News. MicoRNAs and Metabolism.

https://hms.harvard.edu/news/micrornas-and-metabolism

7. MGH – Four microRNAs identified as playing key roles in cholesterol, lipid metabolism

http://www.massgeneral.org/about/pressrelease.aspx?id=1862

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

  • Cardiovascular Diseases, Volume Three: Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics,

on Amazon since 11/29/2015

http://www.amazon.com/dp/B018PNHJ84

 

HDL oxidation in type 2 diabetic patients

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/27/hdl-oxidation-in-type-2-diabetic-patients/

 

HDL-C: Target of Therapy – Steven E. Nissen, MD, MACC, Cleveland Clinic vs Peter Libby, MD, BWH

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/11/07/hdl-c-target-of-therapy-steven-e-nissen-md-macc-cleveland-clinic-vs-peter-libby-md-bwh/

 

High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/

 

Risk of Major Cardiovascular Events by LDL-Cholesterol Level (mg/dL): Among those treated with high-dose statin therapy, more than 40% of patients failed to achieve an LDL-cholesterol target of less than 70 mg/dL.

Reporter: Aviva Lev-Ari, PhD., RN

https://pharmaceuticalintelligence.com/2014/07/29/risk-of-major-cardiovascular-events-by-ldl-cholesterol-level-mgdl-among-those-treated-with-high-dose-statin-therapy-more-than-40-of-patients-failed-to-achieve-an-ldl-cholesterol-target-of-less-th/

 

LDL, HDL, TG, ApoA1 and ApoB: Genetic Loci Associated With Plasma Concentration of these Biomarkers – A Genome-Wide Analysis With Replication

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/18/ldl-hdl-tg-apoa1-and-apob-genetic-loci-associated-with-plasma-concentration-of-these-biomarkers-a-genome-wide-analysis-with-replication/

 

Two Mutations, in the PCSK9 Gene: Eliminates a Protein involved in Controlling LDL Cholesterol

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/04/15/two-mutations-in-a-pcsk9-gene-eliminates-a-protein-involve-in-controlling-ldl-cholesterol/

Artherogenesis: Predictor of CVD – the Smaller and Denser LDL Particles

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/11/15/artherogenesis-predictor-of-cvd-the-smaller-and-denser-ldl-particles/

 

A Concise Review of Cardiovascular Biomarkers of Hypertension

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/04/25/a-concise-review-of-cardiovascular-biomarkers-of-hypertension/

 

Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase

Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/13/triglycerides-is-it-a-risk-factor-or-a-risk-marker-for-atherosclerosis-and-cardiovascular-disease-the-impact-of-genetic-mutations-on-angptl4-gene-encoder-of-angiopoietin-like-4-protein-that-in/

 

Excess Eating, Overweight, and Diabetic

Larry H Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/15/excess-eating-overweight-and-diabetic/

 

Obesity Issues

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/12/obesity-issues/

 

Read Full Post »


3D Liver Model in a Droplet

Curator: Marzan Khan, BSc

Recently, a Harvard University Professor of Physics and Applied Physics, David Weitz and his team of researchers have successfully generated 3D models of liver tissue composed of two different kinds of liver cells, precisely compartmentalized in a core-shell droplet, using the microfluidics approach(1). Compared to alternative in-vitro methods, this approach comes with more advantages – it is cost-effective, can be quickly assembled and produces millions of organ droplets in a second(1). It is the first “organ in a droplet” technology that enables two disparate liver cells to physically co-exist and exchange biochemical information, thus making it a good mimic of the organ in vivo(1).

Liver tissue models are used by researchers to investigate the effect of drugs and other chemical compounds, either alone or in combination on liver toxicity(2). The liver is the primary center of drug metabolism, detoxification and removal and all of these processes need to be carried out systematically in order to maintain a homeostatic environment within the body(2) Any deviation from the steady state will shift the dynamic equilibrium of metabolism, leading to production of reactive oxygen species (ROS)(2). These are harmful because they will exert oxidative stress on the liver, and ultimately cause the organ to malfunction. Drug-induced liver toxicity is a critical problem – 10% of all cases of acute hepatitis, 5% of all hospital admissions, and 50% of all acute liver failures are caused by it(2).

Before any novel drug is launched into the market, it is tested in-vitro, in animal models, and then progresses onto human clinical trials(1). Weitz’s system can produce up to one-thousand organ droplets per second, each of which can be used in an experiment to test for drug toxicity(1). Clarifying further, he asserts that “Each droplet is like a mini experiment. Normally, if we are running experiments, say in test tubes, we need a milliliter of fluid per test tube. If we were to do a million experiments, we would need a thousand liters of fluid. That’s the equivalent of a thousand milk jugs! Here, each droplet is only a nanoliter, so we can do the whole experiment with one milliliter of fluid, meaning we can do a million more experiments with the same amount of fluid.”

Testing hepatocytes alone on a petri dish is a poor indicator of liver-specific functions because the liver is made up of multiple cells systematically arranged on an extracellular matrix and functionally interdependent(3). The primary hepatocytes, hepatic stellate cells, Kupffer cells, endothelial cells and fibroblasts form the basic components of a functioning liver(3). Weitz’s upgraded system contains hepatocytes (that make up the majority of liver cells and carry out most of the important functions) supported by a network of fibroblasts(3). His microfluidic chip is comprised of a network of constricted, circular channels spanning the micrometer range, the inner phase of which contains hepatocytes mixed in a cell culture solution(3). The surrounding middle phase accommodates fibroblasts in an alginate solution and the two liquids remain separated due to differences in their chemical properties as well as the physics of fluids travelling in narrow channels. Addition of a fluorinated carbon oil interferes with the two aqueous layers, forcing them to become individual monodisperse droplets(3). The hydrogel shell is completed when a 0.15% solution of acetic acid facilitates the cross-linking of alginate to form a gelatinous shell, locking the fibroblasts in place(3). Thus, the aqueous core of hepatocytes are encapsulated by fibroblasts confined to a strong hydrogel network, creating a core-shell hydrogel scaffold of 3D liver micro-tissue in a droplet(3). Using empirical analysis, scientists have shown that albumin secretion and urea synthesis (two important markers of liver function) were significantly higher in a co-culture of hepatocytes and fibroblasts 3D core-shell spheroids compared to a monotypic cell-culture of hepatocyte-only spheroids(3). These results validate the theory that homotypic as well as heterotypic communication between cells are important to achieve optimal organ function in vitro(3).

This system of creating micro-tissues in a droplet with enhanced properties is a step-forward in biomedical science(3). It can be used in experiments to test for a myriad of drugs, chemicals and cosmetics on different human tissue samples, as well as to understand the biological connectivity of contrasting cells(3).

diagram

Image source: DOI: 10.1039/c6lc00231

A simple demonstration of the microfluidic chip that combines different solutions to create a core-shell droplet consisting of two different kinds of liver cells.

References:

  1. National Institute of Biomedical Imaging and Bioengineering. (2016, December 13). New device creates 3D livers in a droplet.ScienceDaily. Retrieved February 9, 2017 from https://www.sciencedaily.com/releases/2016/12/161213112337.htm
  2. Singh, D., Cho, W. C., & Upadhyay, G. (2015). Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview.Frontiers in Physiology,6, 363. http://doi.org/10.3389/fphys.2015.00363
  3. Qiushui Chen, Stefanie Utech, Dong Chen, Radivoje Prodanovic, Jin-Ming Lin and David A. Weitz; Controlled assembly of heterotypic cells in a core– shell scaffold: organ in a droplet; Lab Chip, 2016, 16, 1346; DOI: 10.1039/c6lc00231

Other related articles on 3D on a Chip published in this Open Access Online Scientific Journal include the following:

 

What could replace animal testing – ‘Human-on-a-chip’ from Lawrence Livermore National Laboratory

Reporter: Aviva Lev-Ari, PhD, RN

AGENDA for Second Annual Organ-on-a-Chip World Congress & 3D-Culture Conference, July 7-8, 2016, Wyndham Boston Beacon Hill by SELECTBIO US

Reporter: Aviva Lev-Ari, PhD, RN

Medical MEMS, BioMEMS and Sensor Applications

Curator and Reporter: Aviva Lev-Ari, PhD, RN

Contribution to Inflammatory Bowel Disease (IBD) of bacterial overgrowth in gut on a chip

Larry H. Bernstein, MD, FCAP, Curator

Current Advances in Medical Technology

Larry H. Bernstein, MD, FCAP, Curator

 

Other related articles on Liver published in this Open Access Online Scientific Journal include the following:

 

Alnylam down as it halts development for RNAi liver disease candidate

by Stacy Lawrence

LIVE 9/21 8AM to 2:40PM Targeting Cardio-Metabolic Diseases: A focus on Liver Fibrosis and NASH Targets at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

Reporter: Aviva Lev-Ari, PhD, RN

2016 Nobel in Economics for Work on The Theory of Contracts to winners: Oliver Hart and Bengt Holmstrom

Reporter: Aviva Lev-Ari, PhD, RN

LIVE 9/20 2PM to 5:30PM New Viruses for Therapeutic Gene Delivery at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

Reporter: Aviva Lev-Ari, PhD, RN

Seven Cancers: oropharynx, larynx, oesophagus, liver, colon, rectum and breast are caused by Alcohol Consumption

Reporter: Aviva Lev-Ari, PhD, RN

 

Other related articles on 3D on a Chip published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute,  Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

Real Time Coverage of the AGENDA for Powering Precision Health (PPH) with Science, 9/26/2016, Cambridge Marriott Hotel, Cambridge, MA

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Read Full Post »

Older Posts »