Advertisements
Feeds:
Posts
Comments

Archive for the ‘Pharmacotherapy and Cell Activity’ Category


Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic, ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of Hereditary Transthyretin-Mediated Amyloidosis in Adults

Reporter: Aviva Lev-Ari, PhD, RN

Aug 10,2018

− First and Only FDA-approved Treatment Available in the United States for this Indication –

− ONPATTRO Shown to Improve Polyneuropathy Relative to Placebo, with Reversal of Neuropathy Impairment Compared to Baseline in Majority of Patients –

− Improvement in Specified Measures of Quality of Life and Disease Burden Demonstrated Across Diverse, Global Patient Population –

− Alnylam to Host Conference Call Today at 3:00 p.m. ET. −

CAMBRIDGE, Mass.–(BUSINESS WIRE)–Aug. 10, 2018– Alnylam Pharmaceuticals, Inc. (Nasdaq: ALNY), the leading RNAi therapeutics company, announced today that the United States Food and Drug Administration (FDA) approved ONPATTRO™ (patisiran) lipid complex injection, a first-of-its-kind RNA interference (RNAi) therapeutic, for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. ONPATTRO is the first and only FDA-approved treatment for this indication. hATTR amyloidosis is a rare, inherited, rapidly progressive and life-threatening disease with a constellation of manifestations. In addition to polyneuropathy, hATTR amyloidosis can lead to other significant disabilities including decreased ambulation with the loss of the ability to walk unaided, a reduced quality of life, and a decline in cardiac functioning. In the largest controlled study of hATTR amyloidosis, ONPATTRO was shown to improve polyneuropathy – with reversal of neuropathy impairment in a majority of patients – and to improve a composite quality of life measure, reduce autonomic symptoms, and improve activities of daily living.

ONPATTRO was reviewed by the FDA under Priority Review and had previously been granted Breakthrough Therapy and Orphan Drug Designations. On July 27, patisiran received a positive opinion from the Committee for Medicinal Products for Human Use (CHMP) for the treatment of hereditary transthyretin-mediated amyloidosis in adults with stage 1 or stage 2 polyneuropathy under accelerated assessment by the European Medicines Agency. The recommended Summary of Product Characteristics (SmPC) for the European Union (EU) includes data on secondary and exploratory endpoints. Expected in September, the European Commission will review the CHMP recommendation to make a final decision on marketing authorization, applicable to all 28 EU member states, plus Iceland, Liechtenstein and Norway. Regulatory filings in other markets, including Japan, are planned beginning in mid-2018.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20180810005398/en/

 

INTELLECTUAL PROPERTY

Alnylam protects its Intellectual Property (IP) with fundamental, chemistry, delivery, and target patents and patent applications covering the development and commercialization of RNAi therapeutics as well as that afforded by the various trademark, copyright, and trade secret laws.

Alnylam’s patent estate includes a large number of issued patents and pending patent applications in the world’s major pharmaceutical markets—United States, European Union, and Japan, along with other countries throughout the world. This broad portfolio covers, for example, oligonucleotides, including synthetic RNA molecules, both modified and unmodified, optimized for a variety of delivery modalities, such as lipid- and conjugate-based systems, their synthesis and use, including use as therapeutics, diagnostics, and research reagents. We believe these patents and pending applications place Alnylam in the strongest possible position to not only build our company over the long term and accelerate our efforts to bring life-saving drugs to patients in need, but to enable other companies for advancement of RNAi therapeutics with licenses to our IP estate and associated know-how. This belief has been validated by the progress of Alnylam to date with multiple programs in pre-clinical and clinical development and with well over 30 distinct agreements entered into with leading pharmaceutical, biotechnology, and research reagent companies.

Alnylam has an extensive array of registered trademarks in the United States, European Union, Japan and other countries throughout the world as well as various copyrighted works. In addition to patent protection, Alnylam further safeguards its IP through the use of trade secret protection afforded by the relevant state and federal trade secret laws.

SOURCE

http://www.alnylam.com/our-science/intellectual-property/

Post       : Patisiran

URL        : http://newdrugapprovals.org/2018/08/13/patisiran/

Posted     : August 13, 2018 at 9:51 am

Author     : DR ANTHONY MELVIN CRASTO Ph.D

Tags       : 50FKX8CB2Y, 6024128, ALN-18328, ALN-TTR02, Alnylam

Pharmaceuticals, BREAKTHROUGH THERAPY, FAST TRACK, FDA 2018,

GENZ-438027, Onpattro, Orphan Drug Designation, patisiran, Priority

review, SAR-438037

Categories : 0rphan drug status, Breakthrough Therapy Designation,

FAST TRACK FDA, FDA 2018, Priority review

https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Patisiran.png/60

0px-Patisiran.png

Patisiran

Sense strand:

https://integrity.thomson-pharma.com/integrity/img//en/vspacer_en.gif

GUAACCAAGAGUAUUCCAUdTdT

https://integrity.thomson-pharma.com/integrity/img//en/vspacer_en.gif

Anti-sense strand:

https://integrity.thomson-pharma.com/integrity/img//en/vspacer_en.gif

AUGGAAUACUCUUGGUUACdTdT

RNA, (A-U-G-G-A-A-Um-A-C-U-C-U-U-G-G-U-Um-A-C-dT-dT), complex with RNA

(G-Um-A-A-Cm-Cm-A-A-G-A-G-Um-A-Um-Um-Cm-Cm-A-Um-dT-dT) (1:1),

ALN-18328, 6024128  , ALN-TTR02  , GENZ-438027  , SAR-438037  ,

50FKX8CB2Y (UNII code)

for RNA, (A-U-G-G-A-A-Um-A-C-U-C-U-U-G-G-U-Um-A-C-dT-dT), complex

with RNA(G-Um-A-A-Cm-Cm-A-A-G-A-G-Um-A-Um-Um-Cm-Cm-A-Um-dT-dT) (1:1)

Nucleic Acid Sequence

Sequence Length: 42, 21, 2112 a 7 c 7 g 4 t 12 umultistranded (2);

modified

CAS 1420706-45-1

Treatment of Amyloidosis,

SEE…..https://endpts.com/gung-ho-alnylam-lands-historic-fda-ok-on-patisi

ran-revving-up-the-first-global-rollout-for-an-rnai-breakthrough/

Lipid-nanoparticle-encapsulated double-stranded siRNA targeting a 3

untranslated region of mutant and wild-type transthyretin mRNA

Patisiran (trade name Onpattro®) is a medication for the treatment of

polyneuropathy ( https://en.wikipedia.org/wiki/Polyneuropathy )  in

people with hereditary transthyretin-mediated amyloidosis (

https://en.wikipedia.org/wiki/Hereditary_transthyretin-mediated_amyloidosi

s

) . It is the first small interfering RNA (

https://en.wikipedia.org/wiki/Small_interfering_RNA ) -based drug

approved by the FDA ( https://en.wikipedia.org/wiki/FDA ) . Through

this mechanism, it is a gene silencing (

https://en.wikipedia.org/wiki/Gene_silencing )  drug that interferes

with the production of an abnormal form of transthyretin (

https://en.wikipedia.org/wiki/Transthyretin ) .

https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Patisiran.png/60

0px-Patisiran.png

( https://en.wikipedia.org/wiki/File:Patisiran.png )

Chemical structure of Patisiran.

During its development, patisiran was granted orphan drug status (

https://en.wikipedia.org/wiki/Orphan_drug_status ) , fast track

designation ( https://en.wikipedia.org/wiki/Fast_track_designation ) ,

priority review ( https://en.wikipedia.org/wiki/Priority_review )  and

breakthrough therapy designation (

https://en.wikipedia.org/wiki/Breakthrough_therapy_designation )  due

to its novel mechanism and the rarity of the condition it is designed

to treat.[1] ( https://en.wikipedia.org/wiki/Patisiran#cite_note-1 )

[2] ( https://en.wikipedia.org/wiki/Patisiran#cite_note-2 )  It was

approved by the FDA in August 2018 and is expected to cost around

$345,000 to $450,000 per year.[3] (

https://en.wikipedia.org/wiki/Patisiran#cite_note-3 )

Patisiran was granted orphan drug designation in the U.S. and Japan

for the treatment of familial amyloid polyneuropathy. Fast track

designation was also granted in the U.S. for this indication. In the

E.U., orphan drug designation was assigned to the compound for the

treatment of transthyretin-mediated amyloidosis (initially for the

treatment of familial amyloid polyneuropathy)

Hereditary transthyretin-mediated amyloidosis (

https://en.wikipedia.org/wiki/Hereditary_transthyretin-mediated_amyloidosi

s

)  is a fatal rare disease (

https://en.wikipedia.org/wiki/Rare_disease )  that is estimated to

affect 50,000 people worldwide. Patisiran is the first drug approved

by the FDA to treat this condition.[4] (

https://en.wikipedia.org/wiki/Patisiran#cite_note-4 )

Patisiran is a second-generation siRNA therapy targeting mutant

transthyretin (TTR) developed by Alnylam for the treatment of familial

amyloid polyneuropathy. The product is delivered by means of Arbutus

Biopharma’s (formerly Tekmira Pharmaceuticals) lipid nanoparticle

technology

https://endpts.com/wp-content/uploads/2018/08/GettyImages-902989426.jpg

“A lot of peo­ple think it’s win­ter out there for RNAi. But I think

it’s spring­time.” — Al­ny­lam CEO John Maraganore, NYT, Feb­ru­ary 7,

2011.

Patisiran — designed to silence messenger RNA and block the production

of TTR protein before it is made — is number 6 on Clarivate’s list of

blockbusters (

https://endpts.com/12-blockbusters-the-surging-list-of-1b-plus-drugs-rolli

ng-out-on-the-market-this-year-might-surprise-you/

)  set to launch this year, with a 2022 sales forecast of $1.22

billion. Some of the peak sales estimates range significantly higher

as analysts crunch the numbers on a disease that afflicts only about

30,000 people worldwide.

PATENT

WO 2016033326

https://patents.google.com/patent/WO2016033326A2

Transthyretin (TTR) is a tetrameric protein produced primarily in the

liver.

Mutations in the TTR gene destabilize the protein tetramer, leading to

misfolding of monomers and aggregation into TTR amyloid fibrils

(ATTR). Tissue deposition results in systemic ATTR amyloidosis

(Coutinho et al, Forty years of experience with type I amyloid

neuropathy. Review of 483 cases. In: Glenner et al, Amyloid and

Amyloidosis, Amsterdam: Excerpta Media, 1980 pg. 88-93; Hou et al.,

Transthyretin and familial amyloidotic polyneuropathy. Recent progress

in understanding the molecular mechanism of

neurodegeneration. FEBS J 2007, 274: 1637-1650; Westermark et al,

Fibril in senile systemic amyloidosis is derived from normal

transthyretin. Proc Natl Acad Sci USA 1990, 87: 2843-2845). Over 100

reported TTR mutations exhibit a spectrum of disease symptoms.

[0004] TTR amyloidosis manifests in various forms. When the peripheral

nervous system is affected more prominently, the disease is termed

familial amyloidotic

polyneuropathy (FAP). When the heart is primarily involved but the

nervous system is not, the disease is called familial amyloidotic

cardiomyopathy (FAC). A third major type of TTR amyloidosis is called

leptomeningeal/CNS (Central Nervous System) amyloidosis.

[0005] The most common mutations associated with familial amyloid

polyneuropathy (FAP) and ATTR-associated cardiomyopathy, respectively, are Val30Met

(Coelho et al, Tafamidis for transthyretin familial amyloid

polyneuropathy: a randomized, controlled trial. Neurology 2012, 79:

785-792) and Vall22Ile (Connors et al, Cardiac amyloidosis in African

Americans: comparison of clinical and laboratory features of

transthyretin VI 221 amyloidosis and immunoglobulin light chain

amyloidosis. Am Heart J 2009, 158: 607-614). [0006] Current treatment

options for FAP focus on stabilizing or decreasing the amount of

circulating amyloidogenic protein. Orthotopic liver transplantation

reduces mutant TTR levels (Holmgren et al, Biochemical effect of liver

transplantation in two Swedish patients with familial amyloidotic

polyneuropathy (FAP-met30). Clin Genet 1991, 40: 242-246), with

improved survival reported in patients with early-stage FAP, although

deposition of wild-type TTR may continue (Yazaki et al, Progressive

wild-type transthyretin deposition after liver transplantation

preferentially occurs into myocardium in FAP patients. Am J Transplant

2007, 7:235-242; Adams et al, Rapid progression of familial amyloid

polyneuropathy: a multinational natural history study Neurology 2015

Aug 25; 85(8) 675-82; Yamashita et al, Long-term survival after liver

transplantation in patients with familial amyloid polyneuropathy.

Neurology 2012, 78: 637-643; Okamoto et al., Liver

transplantation for familial amyloidotic polyneuropathy: impact on

Swedish patients’ survival. Liver Transpl 2009, 15: 1229-1235; Stangou

et al, Progressive cardiac amyloidosis following liver transplantation

for familial amyloid polyneuropathy: implications for amyloid

fibrillogenesis. Transplantation 1998, 66:229-233; Fosby et al, Liver

transplantation in the Nordic countries – An intention to treat and

post-transplant analysis from The Nordic Liver Transplant Registry

1982-2013. Scand J Gastroenterol. 2015 Jun; 50(6):797-808.

Transplantation, in press).

[0007] Tafamidis and diflunisal stabilize circulating TTR tetramers,

which can slow the rate of disease progression (Berk et al,

Repurposing diflunisal for familial amyloid polyneuropathy: a

randomized clinical trial. JAMA 2013, 310: 2658-2667; Coelho et al.,

2012; Coelho et al, Long-term effects of tafamidis for the treatment

of transthyretin familial amyloid polyneuropathy. J Neurol 2013, 260:

2802-2814; Lozeron et al, Effect on disability and safety of Tafamidis

in late onset of Met30 transthyretin familial amyloid polyneuropathy.

Eur J Neurol 2013, 20: 1539-1545). However, symptoms continue to

worsen on treatment in a large proportion of patients, highlighting

the need for new, disease-modifying treatment options for FAP.

[0008] Description of dsRNA targeting TTR can be found in, for example,

International patent application no. PCT/US2009/061381 (WO2010/048228) and

International patent application no. PCT/US2010/05531 1 (WO201

1/056883).

Summary

[0009] Described herein are methods for reducing or arresting an increase

in a Neuropathy Impairment Score (NIS) or a modified NIS (mNIS+7) in a

human subject by administering an effective amount of a transthyretin

(TTR)-inhibiting composition, wherein the effective amount reduces a

concentration of TTR protein in serum of the human subject to below 50

μg/ml or by at least 80%. Also described herein are methods for

adjusting a dosage of a TTR- inhibiting composition for treatment of

increasing NIS or Familial Amyloidotic Polyneuropathy (FAP) by

administering the TTR- inhibiting composition to a subject having the

increasing NIS or FAP, and determining a level of TTR protein in the

subject having the increasing NIS or FAP. In some embodiments, the

amount of the TTR- inhibiting composition subsequently administered to

the subject is increased if the level of TTR protein is greater than

50 μg/ml, and the amount of the TTR- inhibiting composition

subsequently administered to the subject is decreased if the level of

TTR protein is below 50 μg/ml. Also described herein are formulated

versions of a TTR inhibiting siRNA.

http://www.alnylam.com/wp-content/uploads/2017/03/Acting_Upstream_of_Today

_s_Medicines.jpg

PATENT

WO 2016203402

PAPERS

Annals of Medicine (Abingdon, United Kingdom) (2015), 47(8), 625-638.

Pharmaceutical Research (2017), 34(7), 1339-1363

Annual Review of Pharmacology and Toxicology (2017), 57, 81-105

CLIP

https://www.thepharmaletter.com/media/image/alnylam-large.jpg

 

Alnylam Announces First-Ever FDA Approval of an RNAi Therapeutic,

ONPATTRO™ (patisiran) for the Treatment of the Polyneuropathy of

Hereditary Transthyretin-Mediated Amyloidosis in Adults

Aug 10,2018

− First and Only FDA-approved Treatment Available in the United States

for this Indication –

− ONPATTRO Shown to Improve Polyneuropathy Relative to Placebo, with

Reversal of Neuropathy Impairment Compared to Baseline in Majority of

Patients –

− Improvement in Specified Measures of Quality of Life and Disease

Burden Demonstrated Across Diverse, Global Patient Population –

SOURCE

http://investors.alnylam.com/news-releases/news-release-details/alnylam-announces-first-ever-fda-approval-rnai-therapeutic?elqTrackId=5b9b83df05514e548f022d8324583ba1&elq=e50414057f3841798651d20561bbe4db&elqaid=22818&elqat=1&elqCampaignId=10597

https://endpts.com/gung-ho-alnylam-lands-historic-fda-ok-on-patisir an-revving-up-the-first-global-rollout-for-an-rnai-breakthrough/

Advertisements

Read Full Post »


5:00 – 5:45 PM Early Diagnosis Through Predictive Biomarkers, NonInvasive Testing

Reporter: Stephen J. Williams, Ph.D.

 

Diagnosing cancer early is often the difference between survival and death. Hear from experts regarding the new and emerging technologies that form the next generation of cancer diagnostics.

Moderator: Heather Rose, Director of Licensing, Thomas Jefferson University
Speakers:
Bonnie Anderson, Chairman and CEO, Veracyte @BonnieAndDx
Kevin Hrusovsky, Founder and Chairman, Powering Precision Health @KevinHrusovsky

Bonnie Anderson and Veracyte produces genomic tests for thyroid and other cancer diagnosis.  Kevin Hrusovksy and Precision Health uses peer reviewed evidence based medicine to affect precision medicine decision.

Bonnie: aim to get a truth of diagnosis.  Getting tumor tissue is paramount as well as properly preserved tissue.  They use deep RNA sequencing  and machine learning  in their clinically approved tests.

Kevin: Serial biospace entrepreneur.  Two diseases, cancer and neurologic, have been diseases which have been hardest to get reproducible and validated biomarkers of early disease.  He concentrates on protein biomarkers.

Heather:  FDA has recently approved drugs for early disease intervention.  However the use of biomarkers can go beyond patient stratification in clinical trials.

Kevin: 15 approved drugs for MS but the markers are scans looking for brain atrophy which is too late of an endpoint.  So we need biomarkers of early disease progression.  We can use those early biomarkers of disease progression so pharma can target those early biomarkers and or use those early biomarkers of disease progression  for endpoint

Bonnie: exciting time in the early diagnostics field. She prefers transcriptomics to DNA based methods such as WES or WGS (whole exome or whole genome sequencing).  It was critical to show data on the cost savings imparted by their transcriptomic based thryoid cancer diagnostic test for payers to consider this test eligible for reimbursement.

Kevin: There has been 20 million  CAT scans for  cancer but it is estimated 90% of these scans led to misdiagnosis. Biomarker  development  has revolutionized diagnostics in this disease area.  They have developed a breakthrough panel of ten protein biomarkers in serum which he estimates may replace 5 million mammograms.

All panelists agreed on the importance of regulatory compliance and the focus of new research should be on early detection.  In addition they believe that Dr. Gotlieb’s appointment to the FDA is a positive for the biomarker development field, as Dr. Gotlieb understands the potential and importance of early detection and prevention of disease.  Kevin also felt Dr. Gotlieb understands the importance of incorporating biomarkers as endpoints in clinical trials.  Over 750 phase 1,2, and 3 clinical trials use biomarker endpoints but the pharma companies still need to prove the biomarkers clinical relevance to the FDA.They also agreed it would be helpful to involve advocacy groups in putting more pressure on the healthcare providers and policy makers on this importance of diagnostics as a preventative measure.

In addition, the discovery and use of biomarkers as disease endpoints has led to a resurgence of Alzheimer’s disease drug development by companies which have previously given up on these type of neurodegenerative diseases.

Kevin feels proteomics offers great advantages over DNA-based diagnostics, especially in cancer such as ovarian cancer, where a high degree of specificity for a diagnostic test is required to ascertain if a woman should undergo prophylactic oophorectomy.  He suggests that a new blood-based protein biomarker panel is being developed for early detection of some forms of ovarian cancer.

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

 

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

https://pharmaceuticalintelligence.com/press-coverage/

Read Full Post »


Curation of selected topics and articles on Role of G-Protein Coupled Receptors in Chronic Disease as supplemental information for #TUBiol3373

Curator: Stephen J. Williams, PhD 

Below is a series of posts and articles related to the role of G protein coupled receptors (GPCR) in various chronic diseases.  This is only a cursory collection and by no means represents the complete extensive literature on pathogenesis related to G protein function or alteration thereof.  However it is important to note that, although we think of G protein signaling as rather short lived, quick, their chronic activation may lead to progression of various disease. As to whether disease onset, via GPCR, is a result of sustained signal, loss of desensitization mechanisms, or alterations of transduction systems is an area to be investigated.

From:

Molecular Pathogenesis of Progressive Lung Diseases

Author: Larry H. Bernstein, MD, FCAP

 

Chronic Obstructive Lung Disease (COPD)

Inflammatory and infectious factors are present in diseased airways that interact with G-protein coupled receptors (GPCRs), such as purinergic receptors and bradykinin (BK) receptors, to stimulate phospholipase C [PLC]. This is followed by the activation of inositol 1,4,5-trisphosphate (IP3)-dependent activation of IP3 channel receptors in the ER, which results in channel opening and release of stored Ca2+ into the cytoplasm. When ER Ca2+ stores are depleted a pathway for Ca2+ influx across the plasma membrane is activated. This has been referred to as “capacitative Ca2+ entry”, and “store-operated calcium entry” (3). In the next step PLC mediated Ca2+ i is mobilized as a result of GPCR activation by inflammatory mediators, which triggers cytokine production by Ca2+ i-dependent activation of the transcription factor nuclear factor kB (NF-kB) in airway epithelia.

 

 

 

In Alzheimer’s Disease

Important Lead in Alzheimer’s Disease Model

Larry H. Bernstein, MD, FCAP, Curator discusses findings from a research team at University of California at San Diego (UCSD) which the neuropeptide hormone corticotropin-releasing factor (CRF) as having an important role in the etiology of Alzheimer’s Disease (AD). CRF activates the CRF receptor (a G stimulatory receptor).  It was found inhibition of the CRF receptor prevented cognitive impairment in a mouse model of AD.  Furthermore researchers at the Flanders Interuniversity Institute for Biotechnology found the loss of a protein called G protein-coupled receptor 3 (GPR3) may lower the amyloid plaque aggregation, resulting in improved cognitive function.  Additionally inhibition of several G-protein coupled receptors alter amyloid precursor processing, providing a further mechanism of the role of GPCR in AD (see references in The role of G protein-coupled receptors in the pathology of Alzheimer’s disease by Amantha Thathiah and Bart De Strooper Nature Reviews Feb 2011; 12: 73-87 and read post).

 

In Cardiovascular and Thrombotic Disease

 

Adenosine Receptor Agonist Increases Plasma Homocysteine

 

and read related articles in curation on effects of hormones on the cardiovascular system at

Action of Hormones on the Circulation

 

In Cancer

A Curated History of the Science Behind the Ovarian Cancer β-Blocker Trial

 

Further curations and references of G proteins and chronic disease can be found at the Open Access journal https://pharmaceuticalintelligence.com using the search terms “GCPR” and “disease” in the Search box in the upper right of the home page.

 

 

 

 

 

 

Read Full Post »


Untangling Dementia – Scientists used a designer compound to prevent and reverse brain damage caused by tau in mice. Miller lab, Washington University, St. Louis

Reporter: Aviva Lev-Ari, PhD, RN

Designer compound may untangle damage leading to some dementias

NIH-funded preclinical study suggests a possible treatment for Alzheimer’s disease and other neurodegenerative disorders.

In a study of mice and monkeys, National Institutes of Health funded researchers showed that they could prevent and reverse some of the brain injury caused by the toxic form of a protein called tau. The results, published in Science Translational Medicine, suggest that the study of compounds, called tau antisense oligonucleotides, that are genetically engineered to block a cell’s assembly line production of tau, might be pursued as an effective treatment for a variety of disorders.

Cells throughout the body normally manufacture tau proteins. In several disorders, toxic forms of tau clump together inside dying brain cells and form neurofibrillary tangles, including Alzheimer’s disease, tau-associated frontotemporal dementia, chronic traumatic encephalopathy and progressive supranuclear palsy. Currently there are no effective treatments for combating toxic tau.

“This compound may literally help untangle the brain damage caused by tau,” said Timothy Miller, M.D., Ph.D., the David Clayson Professor of Neurology at Washington University, St. Louis, and the study’s senior author.

Antisense oligonucleotides are short sequences of DNA or RNA programmed to turn genes on or off. Led by Sarah L. DeVos, a graduate student in Dr. Miller’s lab, the researchers tested sequences designed to turn tau genes off in mice that are genetically engineered to produce abnormally high levels of a mutant form of the human protein. Tau clusters begin to appear in the brains of 6-month-old mice and accumulate with age. The mice develop neurologic problems and die earlier than control mice.

Injections of the compound into the fluid filled spaces of the mice brains prevented tau clustering in 6-9 month old mice and appeared to reverse clustering in older mice. The compound also caused older mice to live longer and have healthier brains than mice that received a placebo. In addition, the compound prevented the older mice from losing their ability to build nests.

SOURCE

https://www.nih.gov/news-events/news-releases/designer-compound-may-untangle-damage-leading-some-dementias

 

Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy

Science Translational Medicine  25 Jan 2017:
Vol. 9, Issue 374,
DOI: 10.1126/scitranslmed.aag0481

Read Full Post »


Reversal of Alzheimer Disease in Fruit Flies

Curator: Larry H. Bernstein, MD, FCAP

 

 

Reversal of AD in fruit flies

Transatlantic team reverses Alzheimer’s, Parkinson’s symptoms in fruit flies

by Amirah Al Idrus | Apr 26, 2016

http://www.fiercebiotech.com/research/transatlantic-team-reverses-alzheimer-s-parkinson-s-symptoms-fruit-flies

Scientists from the University of Leicester and the University of Maryland have reversed Alzheimer’s and Parkinson’s symptoms by inhibiting an enzyme in fruit fly models, highlighting a new avenue to treat neurodegenerative diseases.

Maryland’s Robert Schwarcz and Leicester’s Flaviano Giorgini studied the amino acid tryptophan, which degrades in the body into several metabolites that have different effects on the nervous system. These include 3-hydroxykynurenine (3-HK), which can damage the nervous system, and kynurenic acid (KYNA), which can prevent nerve degeneration. The relative abundance of these two compounds in the brain could be critical in Parkinson’s, Alzheimer’s and Huntington’s disease, the University of Maryland said in a statement.

3-HK and KYNA  exist in a balance between “good” and “bad” metabolites in the body. In neurodegenerative disease, the balance shifts toward the “bad,” Giorgini said in a statement. The researchers shifted the balance back toward “good” by giving genetically modified fruit flies a chemical that selectively inhibits the enzyme TDO, which controls the relationship between 3-HK and KYNA. This increased levels of the “protective” KYNA, and improved movement and lengthened life span in fruit flies genetically modified to model neurodegenerative disease.

Giorgini’s team at Leicester has previously used genetic approaches to inhibit TDO and another enzyme, KMO. The treatment lowered the levels of toxic tryptophan metabolites and reduced neuron loss in fruit fly models of Huntington’s disease.

It is estimated that 5 million Americans have Alzheimer’s disease and as many as 1 million have Parkinson’s. Current treatments may help to control symptoms but do not halt or delay disease progression. “Our hope is that by improving our knowledge of how these nerve cells become sick and die in the brain, we can help devise ways to interfere with these processes, and thereby either delay disease onset or prevent disease altogether,” Giorgini said in the Leicester statement. Giorgini’s next step will be to validate the work in mammalian models.

Meanwhile, a UC San Diego team recently spotlighted the dendritic spines of neurons as a possible target in Alzheimer’s. And The Wall Street Journalreported this week that seniors are clamoring to participate in a clinical trial to see if the diabetes drug metformin can stave off the diseases that come with aging, including cognitive decline.

– here’s a statement from the University of Maryland
– and here’s the University of Leicester’s statement
– read the study abstract

 

Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

Carlo BredaaKorrapati V. SathyasaikumarbShama Sograte IdrissiaFrancesca M. Notarangelob,
….., Robert Schwarczb, and Flaviano Giorginia,1
http://www.pnas.org/content/early/2016/04/21/1604453113.abstract

Significance

Neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s (HD) present a significant and increasing burden on society. Perturbations in the kynurenine pathway (KP) of tryptophan degradation have been linked to the pathogenesis of these disorders, and thus manipulation of this pathway may have therapeutic relevance. Here we show that genetic inhibition of two KP enzymes—kynurenine-3-monooxygenase and tryptophan-2,3-dioxygenase (TDO)—improved neurodegeneration and other disease symptoms in fruit fly models of AD, PD, and HD, and that alterations in levels of neuroactive KP metabolites likely underlie the beneficial effects. Furthermore, we find that inhibition of TDO using a drug-like compound reverses several disease phenotypes, underscoring the therapeutic promise of targeting this pathway in neurodegenerative disease.

Abstract

Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer’s model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

neurodegeneration, KMO, TDO, Parkinson’s disease, Alzheimer’s disease

 

The kynurenine pathway (KP), the major catabolic route of tryptophan (TRP) metabolism in mammals (Fig. 1), has been closely linked to the pathogenesis of several brain disorders (1). This pathway contains several neuroactive metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynurenic acid (KYNA) (2). QUIN is a well-characterized endogenous neurotoxin that specifically activates N-methyl-D-aspartate (NMDA) receptors, thereby inducing excitotoxicity (34). The metabolites 3-HK and QUIN are also neurotoxic via the generation of free radicals and oxidative stress (56). Conversely, KYNA—synthesized by kynurenine aminotransferases (KATs)—is neuroprotective through its antioxidant properties and antagonism of both the α7 nicotinic acetylcholine receptor and the glycine coagonist site of the NMDA receptor (713). Levels of these metabolites are regulated at two critical points in the KP: (i) the initial, rate-limiting conversion of TRP into N-formylkynurenine by either tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2); and (ii) synthesis of 3-HK from kynurenine by the flavoprotein kynurenine-3-monoxygenase (KMO) (1).

 

 

Fig. 1.

Consequences of KP manipulation. KP metabolites and enzymatic steps are indicated in black, whereas the key KP enzymes TDO, KMO, and KATs are indicated in purple. The metabolites 3-HK and QUIN are neurotoxic (as indicated by red arrows), whereas KYNA and TRP are neuroprotective (as indicated by green arrows). Inhibition of TDO results in increased TRP levels, and either TDO or KMO inhibition leads to a reduction in the 3-HK/KYNA ratio (highlighted in blue). The enzyme 3-hydroxyanthranilic acid dioxygenase is not present in flies, and thus QUIN is not synthesized.

Alterations in levels of the KP metabolites have been observed in a broad range of brain disorders, including both neurodegenerative and psychiatric conditions (14). In neurodegenerative diseases such as Huntington’s (HD), Parkinson’s (PD), and Alzheimer’s (AD), a shift toward increased synthesis of the neurotoxic metabolites QUIN and 3-HK relative to KYNA may contribute to disease (1). Indeed, in patients with HD and HD model mice, 3-HK and QUIN levels are increased in the neostriatum and cortex (1516). Moreover, KYNA levels are reduced in the striatum of patients with HD (17). Several studies have also found perturbation in KP metabolites in the blood and cerebrospinal fluid of patients with AD, with decreased levels of KYNA correlating with reduced cognitive performance (1819). Similarly, in the basal ganglia of patients with PD, a reduction in KYNA levels combined with increased 3-HK has been observed (2021).

Drosophila melanogaster has provided a useful model for interrogation of the KP in both normal physiology and in neurodegenerative disease (2223). In fruit flies, TDO and KMO are encoded by vermillion (v) andcinnabar (cn), respectively, and both are implicated in Drosophila eye color pigmentation and brain plasticity (2425). In flies, TDO is the sole enzyme that catalyzes the initial step of the KP, as IDO1 and IDO2 are not present (Fig. 1), and so provides a distinctive model for examining the role of this critical step in the pathway. Moreover, we have previously found that downregulating cn and v gene expression significantly reduces neurodegeneration in flies expressing a mutant huntingtin (HTT) fragment—the central causative insult underlying HD (22). We also observed that pharmacological manipulations that reduced the 3-HK/KYNA ratio were always associated with neuroprotection. Notably, reintroduction of physiological levels of 3-HK in HD flies that lacked this metabolite due to KMO inhibition was sufficient to abolish neuroprotection (22). Furthermore, in a Caenorhabditis elegans model of PD, genetic down-regulation of TDO ameliorates α-synuclein (aSyn) toxicity (26). This effect appeared to be independent of changes in the levels of serotonin or KP metabolites but was correlated with increased TRP levels. Supplementing worms with TRP also suppressed aSyn-dependent phenotypes (26). The present study was designed to further define the mechanism(s) that underlies the neuroprotection conferred by TRP treatment and TDO inhibition and to extend our analyses of the neuroprotective potential of the KP to fruit fly models of AD and PD.

 

Discussion

Impairments in KP metabolism have been linked to several neurodegenerative disorders, and in particular to the pathogenesis of HD (37). Notably, increased levels of 3-HK and QUIN have been measured in the neostriatum and cortex of patients with early stage HD (15), and these changes are associated with an up-regulation of IDO1 transcription (38) and a reduction in the activity of KAT, which is critical for KYNA synthesis (17). These data in patients with HD are supported by observations in HD mice, which show increased cerebral KMO activity (39). We previously found that either genetic or pharmacological inhibition of KMO is protective in HD flies and leads to a corresponding increase in KYNA levels relative to 3-HK (22). Furthermore, we reported that KYNA treatment reduced neurodegeneration in these flies. Here, we have extended this work by generating transgenic flies that overexpress hKAT and thereby synthesize ∼20-fold more KYNA than control flies. This increased formation of KYNA reduced neurodegeneration and eclosion defects in HD model flies. Furthermore, KMO inhibition by RNAi revealed beneficial effects in several behavioral and disease-relevant outcome measures, including larval crawling, longevity, climbing, and rhabdomere degeneration, in AD and PD model flies. These results strongly support the notion that KMO inhibition has relevance as a treatment strategy in a broad range of neurodegenerative diseases. In addition, these data also suggest that the design of small molecules capable of increasing KAT activity could have therapeutic relevance for neurodegenerative disorders.

The present results, demonstrating that both genetic and pharmacological inhibition of TDO provides robust neuroprotection in fly models of AD and PD, also confirmed and extended the results of our previous study, which had identified TDO as a candidate drug target in HD flies (22). These protective effects are associated with a decrease in the 3-HK/KYNA ratio, i.e., a shift toward increased KYNA synthesis. Work inC. elegans has revealed that TDO inhibition is also protective in models of proteotoxicity, although amelioration of the phenotypes occurred independently of changes in the levels of KP metabolites and was instead associated with elevated TRP levels (26). Although the underlying mechanism remained unclear, the favorable effects of high TRP levels in the nematode were substantiated by the fact that TRP treatment conferred robust protection from disease-related phenotypes (Fig. 1). In the present study, too, TRP supplementation of the diet was effective, ameliorating rhabdomere degeneration and eclosion defects in HD flies. However, TRP feeding was also associated with a reduction in the 3-HK/KYNA ratio, suggesting that the protective effects of the amino acid may be linked to an increase in the production of the neuroprotective metabolite KYNA (Fig. 1). Indeed, partial inhibition of KYNA synthesis in TDO-deficient flies proved sufficient to completely reverse neuroprotection. In addition, restoration of physiological 3-HK levels in TDO-deficient HD flies did not reverse neuroprotection, in contrast to KMO-deficient flies (22). In primary neurons, 3-HK toxicity is dependent upon its uptake via neutral amino acid transporters, and coapplication of TRP can block this toxicity by competing for the same transporters (6). Thus, it is possible that the vast excess of TRP observed in the heads of HTT93Q v−/− flies (approximately eightfold versus controls) competes with 3-HK for rhabdomere uptake, thereby requiring hyperphysiological levels of 3-HK to reverse TDO-dependent neuroprotection. A similar mechanism may also contribute to the neuroprotection observed with TRP treatment in general. Herein, we have also found that RNAi knockdown of either cn or v does not increase TRP levels, and thus the neuroprotection observed in the AD and PD flies strongly correlates with a decrease in the 3-HK/KYNA ratio. The mechanism causing TRP treatment to favor KYNA synthesis over the formation of 3-HK in Drosophila, as well as the unexpected qualitative differences in the effects of TDO inhibition and TRP administration on KP metabolism between fruit flies and nematodes, clearly requires further investigation.

Interestingly, we found that QUIN—which is not normally synthesized in fruit flies (30)—potentiated neurodegeneration in HD flies, and reversed the protective effects of KMO inhibition. As the same QUIN treatment did not cause neuron loss in wild-type flies, mutant HTT may potentiate vulnerability by enhancing NMDA receptor function (4041) and/or by increasing susceptibility to toxic free radicals (42), i.e., by augmenting the two major mechanisms known to be involved in QUIN-induced neurotoxicity (43). If verified in mammals, a reduction in brain QUIN levels—along with a decrease in 3-HK levels—relative to KYNA could therefore be especially promising in the treatment of HD (44). Our observation of increased levels of QUIN in HTT93Q versus WT flies is enigmatic, but may be due to altered feeding behavior, increased permeability of the blood–brain barrier (4546), or differences in KP metabolism, and would be interesting to explore in future studies.

In conclusion, the present set of experiments further validates the hypothesis that KP metabolism is causally linked to neuronal viability and that modulation of the KP constitutes a promising therapeutic strategy for a variety of major neurodegenerative disorders. Notably, we provide the first genetic evidence to our knowledge that KMO inhibition is protective in animal models of PD and AD and that pharmacological targeting of TDO is also neuroprotective. We have clarified the mechanism underlying the protective effects of TDO inhibition, which will stimulate efforts to target this step of the KP in neurodegenerative disease. These results, together with supportive studies in flies (47) and rodents (48), raise the possibility that inhibition of TDO and KMO—or combinatorial treatment—may offer therapeutic advantages. The availability of new TDO inhibitors (4950), and access to the crystal structures of both TDO (51) and KMO (52), should allow further testing of these hypotheses in the near future.

 

 

 

 

Read Full Post »

CRISPR/Cas9, Familial Amyloid Polyneuropathy ( FAP) and Neurodegenerative Disease


CRISPR/Cas9, Familial Amyloid Polyneuropathy ( FAP) and Neurodegenerative Disease

Curator: Larry H. Bernstein, MD, FCAP

 

CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology

https://www.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology

The development of efficient and reliable ways to make precise, targeted changes to the genome of living cells is a long-standing goal for biomedical researchers. Recently, a new tool based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from Streptococcus pyogenes has generated considerable excitement (1). This follows several attempts over the years to manipulate gene function, including homologous recombination (2) and RNA interference (RNAi) (3). RNAi, in particular, became a laboratory staple enabling inexpensive and high-throughput interrogation of gene function (4, 5), but it is hampered by providing only temporary inhibition of gene function and unpredictable off-target effects (6). Other recent approaches to targeted genome modification – zinc-finger nucleases [ZFNs, (7)] and transcription-activator like effector nucleases [TALENs (8)]– enable researchers to generate permanent mutations by introducing doublestranded breaks to activate repair pathways. These approaches are costly and time-consuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies.

The Biology of Cas9

The functions of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material. These repeats were initially discovered in the 1980s in E. coli (9), but their function wasn’t confirmed until 2007 by Barrangou and colleagues, who demonstrated that S. thermophilus can acquire resistance against a bacteriophage by integrating a genome fragment of an infectious virus into its CRISPR locus (10).

Three types of CRISPR mechanisms have been identified, of which type II is the most studied. In this case, invading DNA from viruses or plasmids is cut into small fragments and incorporated into a CRISPR locus amidst a series of short repeats (around 20 bps). The loci are transcribed, and transcripts are then processed to generate small RNAs (crRNA – CRISPR RNA), which are used to guide effector endonucleases that target invading DNA based on sequence complementarity (Figure 1) (11).

Figure 1. Cas9 in vivo: Bacterial Adaptive Immunity

https://www.neb.com/~/media/NebUs/Files/Feature%20Articles/Images/FA_Cas9_Fig1_Cas9InVivo.png

In the acquisition phase, foreign DNA is incorporated into the bacterial genome at the CRISPR loci. CRISPR loci is then transcribed and processed into crRNA during crRNA biogenesis. During interference, Cas9 endonuclease complexed with a crRNA and separate tracrRNA cleaves foreign DNA containing a 20-nucleotide crRNA complementary sequence adjacent to the PAM sequence. (Figure not drawn to scale.)

https://www.neb.com/~/media/NebUs/Files/Feature%20Articles/Images/FA_Cas9_GenomeEditingGlossary.png

One Cas protein, Cas9 (also known as Csn1), has been shown, through knockdown and rescue experiments to be a key player in certain CRISPR mechanisms (specifically type II CRISPR systems). The type II CRISPR mechanism is unique compared to other CRISPR systems, as only one Cas protein (Cas9) is required for gene silencing (12). In type II systems, Cas9 participates in the processing of crRNAs (12), and is responsible for the destruction of the target DNA (11). Cas9’s function in both of these steps relies on the presence of two nuclease domains, a RuvC-like nuclease domain located at the amino terminus and a HNH-like nuclease domain that resides in the mid-region of the protein (13).

To achieve site-specific DNA recognition and cleavage, Cas9 must be complexed with both a crRNA and a separate trans-activating crRNA (tracrRNA or trRNA), that is partially complementary to the crRNA (11). The tracrRNA is required for crRNA maturation from a primary transcript encoding multiple pre-crRNAs. This occurs in the presence of RNase III and Cas9 (12).

During the destruction of target DNA, the HNH and RuvC-like nuclease domains cut both DNA strands, generating double-stranded breaks (DSBs) at sites defined by a 20-nucleotide target sequence within an associated crRNA transcript (11, 14). The HNH domain cleaves the complementary strand, while the RuvC domain cleaves the noncomplementary strand.

The double-stranded endonuclease activity of Cas9 also requires that a short conserved sequence, (2–5 nts) known as protospacer-associated motif (PAM), follows immediately 3´- of the crRNA complementary sequence (15). In fact, even fully complementary sequences are ignored by Cas9-RNA in the absence of a PAM sequence (16).

Cas9 and CRISPR as a New Tool in Molecular Biology

The simplicity of the type II CRISPR nuclease, with only three required components (Cas9 along with the crRNA and trRNA) makes this system amenable to adaptation for genome editing. This potential was realized in 2012 by the Doudna and Charpentier labs (11). Based on the type II CRISPR system described previously, the authors developed a simplified two-component system by combining trRNA and crRNA into a single synthetic single guide RNA (sgRNA). sgRNAprogrammed Cas9 was shown to be as effective as Cas9 programmed with separate trRNA and crRNA in guiding targeted gene alterations (Figure 2A).

To date, three different variants of the Cas9 nuclease have been adopted in genome-editing protocols. The first is wild-type Cas9, which can site-specifically cleave double-stranded DNA, resulting in the activation of the doublestrand break (DSB) repair machinery. DSBs can be repaired by the cellular Non-Homologous End Joining (NHEJ) pathway (17), resulting in insertions and/or deletions (indels) which disrupt the targeted locus. Alternatively, if a donor template with homology to the targeted locus is supplied, the DSB may be repaired by the homology-directed repair (HDR) pathway allowing for precise replacement mutations to be made (Figure 2A) (17, 18).

Cong and colleagues (1) took the Cas9 system a step further towards increased precision by developing a mutant form, known as Cas9D10A, with only nickase activity. This means it cleaves only one DNA strand, and does not activate NHEJ. Instead, when provided with a homologous repair template, DNA repairs are conducted via the high-fidelity HDR pathway only, resulting in reduced indel mutations (1, 11, 19). Cas9D10A is even more appealing in terms of target specificity when loci are targeted by paired Cas9 complexes designed to generate adjacent DNA nicks (20) (see further details about “paired nickases” in Figure 2B).

The third variant is a nuclease-deficient Cas9 (dCas9, Figure 2C) (21). Mutations H840A in the HNH domain and D10A in the RuvC domain inactivate cleavage activity, but do not prevent DNA binding (11, 22). Therefore, this variant can be used to sequence-specifically target any region of the genome without cleavage. Instead, by fusing with various effector domains, dCas9 can be used either as a gene silencing or activation tool (21, 23–26). Furthermore, it can be used as a visualization tool. For instance, Chen and colleagues used dCas9 fused to Enhanced Green Fluorescent Protein (EGFP) to visualize repetitive DNA sequences with a single sgRNA or nonrepetitive loci using multiple sgRNAs (27).

Figure 2. CRISPR/Cas9 System Applications

https://www.neb.com/~/media/NebUs/Files/Feature%20Articles/Images/FA_Cas9_Fig2_Cas9forGenomeEditing.png?device=modal

  1. Wild-type Cas9 nuclease site specifically cleaves double-stranded DNA activating double-strand break repair machinery. In the absence of a homologous repair template non-homologous end joining can result in indels disrupting the target sequence. Alternatively, precise mutations and knock-ins can be made by providing a homologous repair template and exploiting the homology directed repair pathway.
    B. Mutated Cas9 makes a site specific single-strand nick. Two sgRNA can be used to introduce a staggered double-stranded break which can then undergo homology directed repair.
    C. Nuclease-deficient Cas9 can be fused with various effector domains allowing specific localization. For example, transcriptional activators, repressors, and fluorescent proteins.

Targeting Efficiency and Off-target Mutations

Targeting efficiency, or the percentage of desired mutation achieved, is one of the most important parameters by which to assess a genome-editing tool. The targeting efficiency of Cas9 compares favorably with more established methods, such as TALENs or ZFNs (8). For example, in human cells, custom-designed ZFNs and TALENs could only achieve efficiencies ranging from 1% to 50% (29–31). In contrast, the Cas9 system has been reported to have efficiencies up to >70% in zebrafish (32) and plants (33), and ranging from 2–5% in induced pluripotent stem cells (34). In addition, Zhou and colleagues were able to improve genome targeting up to 78% in one-cell mouse embryos, and achieved effective germline transmission through the use of dual sgRNAs to simultaneously target an individual gene (35).

A widely used method to identify mutations is the T7 Endonuclease I mutation detection assay (36, 37) (Figure 3). This assay detects heteroduplex DNA that results from the annealing of a DNA strand, including desired mutations, with a wildtype DNA strand (37).

Figure 3. T7 Endonuclease I Targeting Efficiency Assay

https://www.neb.com/~/media/NebUs/Files/Feature%20Articles/Images/FA_Cas9_Fig3_T7Assay_TargetEfficiency.png

Genomic DNA is amplified with primers bracketing the modified locus. PCR products are then denatured and re-annealed yielding 3 possible structures. Duplexes containing a mismatch are digested by T7 Endonuclease I. The DNA is then electrophoretically separated and fragment analysis is used to calculate targeting efficiency.

Another important parameter is the incidence of off-target mutations. Such mutations are likely to appear in sites that have differences of only a few nucleotides compared to the original sequence, as long as they are adjacent to a PAM sequence. This occurs as Cas9 can tolerate up to 5 base mismatches within the protospacer region (36) or a single base difference in the PAM sequence (38). Off-target mutations are generally more difficult to detect, requiring whole-genome sequencing to rule them out completely.

Recent improvements to the CRISPR system for reducing off-target mutations have been made through the use of truncated gRNA (truncated within the crRNA-derived sequence) or by adding two extra guanine (G) nucleotides to the 5´ end (28, 37). Another way researchers have attempted to minimize off-target effects is with the use of “paired nickases” (20). This strategy uses D10A Cas9 and two sgRNAs complementary to the adjacent area on opposite strands of the target site (Figure 2B). While this induces DSBs in the target DNA, it is expected to create only single nicks in off-target locations and, therefore, result in minimal off-target mutations.

By leveraging computation to reduce off-target mutations, several groups have developed webbased tools to facilitate the identification of potential CRISPR target sites and assess their potential for off-target cleavage. Examples include the CRISPR Design Tool (38) and the ZiFiT Targeter, Version 4.2 (39, 40).

Applications as a Genome-editing and Genome Targeting Tool

Following its initial demonstration in 2012 (9), the CRISPR/Cas9 system has been widely adopted. This has already been successfully used to target important genes in many cell lines and organisms, including human (34), bacteria (41), zebrafish (32), C. elegans (42), plants (34), Xenopus tropicalis (43), yeast (44), Drosophila (45), monkeys (46), rabbits (47), pigs (42), rats (48) and mice (49). Several groups have now taken advantage of this method to introduce single point mutations (deletions or insertions) in a particular target gene, via a single gRNA (14, 21, 29). Using a pair of gRNA-directed Cas9 nucleases instead, it is also possible to induce large deletions or genomic rearrangements, such as inversions or translocations (50). A recent exciting development is the use of the dCas9 version of the CRISPR/Cas9 system to target protein domains for transcriptional regulation (26, 51, 52), epigenetic modification (25), and microscopic visualization of specific genome loci (27).

The CRISPR/Cas9 system requires only the redesign of the crRNA to change target specificity. This contrasts with other genome editing tools, including zinc finger and TALENs, where redesign of the protein-DNA interface is required. Furthermore, CRISPR/Cas9 enables rapid genome-wide interrogation of gene function by generating large gRNA libraries (51, 53) for genomic screening.

The Future of CRISPR/Cas9

The rapid progress in developing Cas9 into a set of tools for cell and molecular biology research has been remarkable, likely due to the simplicity, high efficiency and versatility of the system. Of the designer nuclease systems currently available for precision genome engineering, the CRISPR/Cas system is by far the most user friendly. It is now also clear that Cas9’s potential reaches beyond DNA cleavage, and its usefulness for genome locus-specific recruitment of proteins will likely only be limited by our imagination.

 

Scientists urge caution in using new CRISPR technology to treat human genetic disease

By Robert Sanders, Media relations | MARCH 19, 2015
http://news.berkeley.edu/2015/03/19/scientists-urge-caution-in-using-new-crispr-technology-to-treat-human-genetic-disease/

http://news.berkeley.edu/wp-content/uploads/2015/03/crispr350.jpg

The bacterial enzyme Cas9 is the engine of RNA-programmed genome engineering in human cells. (Graphic by Jennifer Doudna/UC Berkeley)

A group of 18 scientists and ethicists today warned that a revolutionary new tool to cut and splice DNA should be used cautiously when attempting to fix human genetic disease, and strongly discouraged any attempts at making changes to the human genome that could be passed on to offspring.

Among the authors of this warning is Jennifer Doudna, the co-inventor of the technology, called CRISPR-Cas9, which is driving a new interest in gene therapy, or “genome engineering.” She and colleagues co-authored a perspective piece that appears in the March 20 issue of Science, based on discussions at a meeting that took place in Napa on Jan. 24. The same issue of Science features a collection of recent research papers, commentary and news articles on CRISPR and its implications.    …..

A prudent path forward for genomic engineering and germline gene modification

David Baltimore1,  Paul Berg2, …., Jennifer A. Doudna4,10,*, et al.
http://science.sciencemag.org/content/early/2015/03/18/science.aab1028.full
Science  19 Mar 2015.  http://dx.doi.org:/10.1126/science.aab1028

 

Correcting genetic defects

Scientists today are changing DNA sequences to correct genetic defects in animals as well as cultured tissues generated from stem cells, strategies that could eventually be used to treat human disease. The technology can also be used to engineer animals with genetic diseases mimicking human disease, which could lead to new insights into previously enigmatic disorders.

The CRISPR-Cas9 tool is still being refined to ensure that genetic changes are precisely targeted, Doudna said. Nevertheless, the authors met “… to initiate an informed discussion of the uses of genome engineering technology, and to identify proactively those areas where current action is essential to prepare for future developments. We recommend taking immediate steps toward ensuring that the application of genome engineering technology is performed safely and ethically.”

 

Amyloid CRISPR Plasmids and si/shRNA Gene Silencers

http://www.scbt.com/crispr/table-amyloid.html

Santa Cruz Biotechnology, Inc. offers a broad range of gene silencers in the form of siRNAs, shRNA Plasmids and shRNA Lentiviral Particles as well as CRISPR/Cas9 Knockout and CRISPR Double Nickase plasmids. Amyloid gene silencers are available as Amyloid siRNA, Amyloid shRNA Plasmid, Amyloid shRNA Lentiviral Particles and Amyloid CRISPR/Cas9 Knockout plasmids. Amyloid CRISPR/dCas9 Activation Plasmids and CRISPR Lenti Activation Systems for gene activation are also available. Gene silencers and activators are useful for gene studies in combination with antibodies used for protein detection.    Amyloid CRISPR Knockout, HDR and Nickase Knockout Plasmids

 

CRISPR-Cas9-Based Knockout of the Prion Protein and Its Effect on the Proteome


Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana C.G, Wang H, et al.
PLoS ONE 2014; 9(12): e114594. http://dx.doi.org/10.1371/journal.pone.0114594

The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer’s disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.

http://journals.plos.org/plosone/article/figure/image?size=inline&id=info:doi/10.1371/journal.pone.0114594.g001

http://journals.plos.org/plosone/article/figure/image?size=inline&id=info:doi/10.1371/journal.pone.0114594.g003

 

Development and Applications of CRISPR-Cas9 for Genome Engineering

Patrick D. Hsu,1,2,3 Eric S. Lander,1 and Feng Zhang1,2,*
Cell. 2014 Jun 5; 157(6): 1262–1278.   doi:  10.1016/j.cell.2014.05.010

Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.

The development of recombinant DNA technology in the 1970s marked the beginning of a new era for biology. For the first time, molecular biologists gained the ability to manipulate DNA molecules, making it possible to study genes and harness them to develop novel medicine and biotechnology. Recent advances in genome engineering technologies are sparking a new revolution in biological research. Rather than studying DNA taken out of the context of the genome, researchers can now directly edit or modulate the function of DNA sequences in their endogenous context in virtually any organism of choice, enabling them to elucidate the functional organization of the genome at the systems level, as well as identify causal genetic variations.

Broadly speaking, genome engineering refers to the process of making targeted modifications to the genome, its contexts (e.g., epigenetic marks), or its outputs (e.g., transcripts). The ability to do so easily and efficiently in eukaryotic and especially mammalian cells holds immense promise to transform basic science, biotechnology, and medicine (Figure 1).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343198/bin/nihms659174f1.jpg

For life sciences research, technologies that can delete, insert, and modify the DNA sequences of cells or organisms enable dissecting the function of specific genes and regulatory elements. Multiplexed editing could further allow the interrogation of gene or protein networks at a larger scale. Similarly, manipulating transcriptional regulation or chromatin states at particular loci can reveal how genetic material is organized and utilized within a cell, illuminating relationships between the architecture of the genome and its functions. In biotechnology, precise manipulation of genetic building blocks and regulatory machinery also facilitates the reverse engineering or reconstruction of useful biological systems, for example, by enhancing biofuel production pathways in industrially relevant organisms or by creating infection-resistant crops. Additionally, genome engineering is stimulating a new generation of drug development processes and medical therapeutics. Perturbation of multiple genes simultaneously could model the additive effects that underlie complex polygenic disorders, leading to new drug targets, while genome editing could directly correct harmful mutations in the context of human gene therapy (Tebas et al., 2014).

Eukaryotic genomes contain billions of DNA bases and are difficult to manipulate. One of the breakthroughs in genome manipulation has been the development of gene targeting by homologous recombination (HR), which integrates exogenous repair templates that contain sequence homology to the donor site (Figure 2A) (Capecchi, 1989). HR-mediated targeting has facilitated the generation of knockin and knockout animal models via manipulation of germline competent stem cells, dramatically advancing many areas of biological research. However, although HR-mediated gene targeting produces highly precise alterations, the desired recombination events occur extremely infrequently (1 in 106–109 cells) (Capecchi, 1989), presenting enormous challenges for large-scale applications of gene-targeting experiments.

Genome Editing Technologies Exploit Endogenous DNA Repair Machinery

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343198/bin/nihms659174f2.gif

To overcome these challenges, a series of programmable nuclease-based genome editing technologies have been developed in recent years, enabling targeted and efficient modification of a variety of eukaryotic and particularly mammalian species. Of the current generation of genome editing technologies, the most rapidly developing is the class of RNA-guided endonucleases known as Cas9 from the microbial adaptive immune system CRISPR (clustered regularly interspaced short palindromic repeats), which can be easily targeted to virtually any genomic location of choice by a short RNA guide. Here, we review the development and applications of the CRISPR-associated endonuclease Cas9 as a platform technology for achieving targeted perturbation of endogenous genomic elements and also discuss challenges and future avenues for innovation.   ……

Figure 4   Natural Mechanisms of Microbial CRISPR Systems in Adaptive Immunity

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343198/bin/nihms659174f4.gif

……  A key turning point came in 2005, when systematic analysis of the spacer sequences separating the individual direct repeats suggested their extrachromosomal and phage-associated origins (Mojica et al., 2005Pourcel et al., 2005Bolotin et al., 2005). This insight was tremendously exciting, especially given previous studies showing that CRISPR loci are transcribed (Tang et al., 2002) and that viruses are unable to infect archaeal cells carrying spacers corresponding to their own genomes (Mojica et al., 2005). Together, these findings led to the speculation that CRISPR arrays serve as an immune memory and defense mechanism, and individual spacers facilitate defense against bacteriophage infection by exploiting Watson-Crick base-pairing between nucleic acids (Mojica et al., 2005Pourcel et al., 2005). Despite these compelling realizations that CRISPR loci might be involved in microbial immunity, the specific mechanism of how the spacers act to mediate viral defense remained a challenging puzzle. Several hypotheses were raised, including thoughts that CRISPR spacers act as small RNA guides to degrade viral transcripts in a RNAi-like mechanism (Makarova et al., 2006) or that CRISPR spacers direct Cas enzymes to cleave viral DNA at spacer-matching regions (Bolotin et al., 2005).   …..

As the pace of CRISPR research accelerated, researchers quickly unraveled many details of each type of CRISPR system (Figure 4). Building on an earlier speculation that protospacer adjacent motifs (PAMs) may direct the type II Cas9 nuclease to cleave DNA (Bolotin et al., 2005), Moineau and colleagues highlighted the importance of PAM sequences by demonstrating that PAM mutations in phage genomes circumvented CRISPR interference (Deveau et al., 2008). Additionally, for types I and II, the lack of PAM within the direct repeat sequence within the CRISPR array prevents self-targeting by the CRISPR system. In type III systems, however, mismatches between the 5′ end of the crRNA and the DNA target are required for plasmid interference (Marraffini and Sontheimer, 2010).  …..

In 2013, a pair of studies simultaneously showed how to successfully engineer type II CRISPR systems from Streptococcus thermophilus (Cong et al., 2013) andStreptococcus pyogenes (Cong et al., 2013Mali et al., 2013a) to accomplish genome editing in mammalian cells. Heterologous expression of mature crRNA-tracrRNA hybrids (Cong et al., 2013) as well as sgRNAs (Cong et al., 2013Mali et al., 2013a) directs Cas9 cleavage within the mammalian cellular genome to stimulate NHEJ or HDR-mediated genome editing. Multiple guide RNAs can also be used to target several genes at once. Since these initial studies, Cas9 has been used by thousands of laboratories for genome editing applications in a variety of experimental model systems (Sander and Joung, 2014). ……

The majority of CRISPR-based technology development has focused on the signature Cas9 nuclease from type II CRISPR systems. However, there remains a wide diversity of CRISPR types and functions. Cas RAMP module (Cmr) proteins identified in Pyrococcus furiosus and Sulfolobus solfataricus (Hale et al., 2012) constitute an RNA-targeting CRISPR immune system, forming a complex guided by small CRISPR RNAs that target and cleave complementary RNA instead of DNA. Cmr protein homologs can be found throughout bacteria and archaea, typically relying on a 5 site tag sequence on the target-matching crRNA for Cmr-directed cleavage.

Unlike RNAi, which is targeted largely by a 6 nt seed region and to a lesser extent 13 other bases, Cmr crRNAs contain 30–40 nt of target complementarity. Cmr-CRISPR technologies for RNA targeting are thus a promising target for orthogonal engineering and minimal off-target modification. Although the modularity of Cmr systems for RNA-targeting in mammalian cells remains to be investigated, Cmr complexes native to P. furiosus have already been engineered to target novel RNA substrates (Hale et al., 20092012).   ……

Although Cas9 has already been widely used as a research tool, a particularly exciting future direction is the development of Cas9 as a therapeutic technology for treating genetic disorders. For a monogenic recessive disorder due to loss-of-function mutations (such as cystic fibrosis, sickle-cell anemia, or Duchenne muscular dystrophy), Cas9 may be used to correct the causative mutation. This has many advantages over traditional methods of gene augmentation that deliver functional genetic copies via viral vector-mediated overexpression—particularly that the newly functional gene is expressed in its natural context. For dominant-negative disorders in which the affected gene is haplosufficient (such as transthyretin-related hereditary amyloidosis or dominant forms of retinitis pigmentosum), it may also be possible to use NHEJ to inactivate the mutated allele to achieve therapeutic benefit. For allele-specific targeting, one could design guide RNAs capable of distinguishing between single-nucleotide polymorphism (SNP) variations in the target gene, such as when the SNP falls within the PAM sequence.

 

 

CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases

Zhuchi Tu, Weili Yang, Sen Yan, Xiangyu Guo and Xiao-Jiang Li

Molecular Neurodegeneration 2015; 10:35  http://dx.doi.org:/10.1186/s13024-015-0031-x

Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.

Neurodegenerative diseases — Alzheimer’s disease(AD),Parkinson’s disease(PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and frontotemporal dementia (FTD) — are characterized by age-dependent and selective neurodegeneration. As the life expectancy of humans lengthens, there is a greater prevalence of these neurodegenerative diseases; however, the pathogenesis of most of these neurodegenerative diseases remain unclear, and we lack effective treatments for these important brain disorders.

CRISPR/Cas9,  Non-human primates,  Neurodegenerative diseases,  Animal model

There are a number of excellent reviews covering different types of neurodegenerative diseases and their genetic mouse models [812]. Investigations of different mouse models of neurodegenerative diseases have revealed a common pathology shared by these diseases. First, the development of neuropathology and neurological symptoms in genetic mouse models of neurodegenerative diseases is age dependent and progressive. Second, all the mouse models show an accumulation of misfolded or aggregated proteins resulting from the expression of mutant genes. Third, despite the widespread expression of mutant proteins throughout the body and brain, neuronal function appears to be selectively or preferentially affected. All these facts indicate that mouse models of neurodegenerative diseases recapitulate important pathologic features also seen in patients with neurodegenerative diseases.

However, it seems that mouse models can not recapitulate the full range of neuropathology seen in patients with neurodegenerative diseases. Overt neurodegeneration, which is the most important pathological feature in patient brains, is absent in genetic rodent models of AD, PD, and HD. Many rodent models that express transgenic mutant proteins under the control of different promoters do not replicate overt neurodegeneration, which is likely due to their short life spans and the different aging processes of small animals. Also important are the remarkable differences in brain development between rodents and primates. For example, the mouse brain takes 21 days to fully develop, whereas the formation of primate brains requires more than 150 days [13]. The rapid development of the brain in rodents may render neuronal cells resistant to misfolded protein-mediated neurodegeneration. Another difficulty in using rodent models is how to analyze cognitive and emotional abnormalities, which are the early symptoms of most neurodegenerative diseases in humans. Differences in neuronal circuitry, anatomy, and physiology between rodent and primate brains may also account for the behavioral differences between rodent and primate models.

 

Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases

Hsiuchen Chen and David C. Chan
Human Molec Gen 2009; 18, Review Issue 2 R169–R176
http://dx.doi.org:/10.1093/hmg/ddp326

Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseases—including Parkinson’s, Alzheimer’s and Huntington’s disease—involve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.

 

Applications of CRISPR–Cas systems in Neuroscience

Matthias Heidenreich  & Feng Zhang
Nature Rev Neurosci 2016; 17:36–44   http://dx.doi.org:/10.1038/nrn.2015.2

Genome-editing tools, and in particular those based on CRISPR–Cas (clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR–Cas systems has the potential to advance both basic and translational neuroscience research.
Cellular neuroscience
, DNA recombination, Genetic engineering, Molecular neuroscience

Figure 3: In vitro applications of Cas9 in human iPSCs.close

http://www.nature.com/nrn/journal/v17/n1/carousel/nrn.2015.2-f3.jpg

a | Evaluation of disease candidate genes from large-population genome-wide association studies (GWASs). Human primary cells, such as neurons, are not easily available and are difficult to expand in culture. By contrast, induced pluripo…

  1. Genome-editing Technologies for Gene and Cell Therapy

Molecular Therapy 12 Jan 2016

  1. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing

Scientific Reports 31 Mar 2016

  1. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection

Scientific Reports 12 Nov 2015

 

Alzheimer’s Disease: Medicine’s Greatest Challenge in the 21st Century

https://www.physicsforums.com/insights/can-gene-editing-eliminate-alzheimers-disease/

The development of the CRISPR/Cas9 system has made gene editing a relatively simple task.  While CRISPR and other gene editing technologies stand to revolutionize biomedical research and offers many promising therapeutic avenues (such as in the treatment of HIV), a great deal of debate exists over whether CRISPR should be used to modify human embryos. As I discussed in my previous Insight article, we lack enough fundamental biological knowledge to enhance many traits like height or intelligence, so we are not near a future with genetically-enhanced super babies. However, scientists have identified a few rare genetic variants that protect against disease.  One such protective variant is a mutation in the APP gene that protects against Alzheimer’s disease and cognitive decline in old age. If we can perfect gene editing technologies, is this mutation one that we should be regularly introducing into embryos? In this article, I explore the potential for using gene editing as a way to prevent Alzheimer’s disease in future generations. Alzheimer’s Disease: Medicine’s Greatest Challenge in the 21st Century Can gene editing be the missing piece in the battle against Alzheimer’s? (Source: bostonbiotech.org) I chose to assess the benefit of germline gene editing in the context of Alzheimer’s disease because this disease is one of the biggest challenges medicine faces in the 21st century. Alzheimer’s disease is a chronic neurodegenerative disease responsible for the majority of the cases of dementia in the elderly. The disease symptoms begins with short term memory loss and causes more severe symptoms – problems with language, disorientation, mood swings, behavioral issues – as it progresses, eventually leading to the loss of bodily functions and death. Because of the dementia the disease causes, Alzheimer’s patients require a great deal of care, and the world spends ~1% of its total GDP on caring for those with Alzheimer’s and related disorders. Because the prevalence of the disease increases with age, the situation will worsen as life expectancies around the globe increase: worldwide cases of Alzheimer’s are expected to grow from 35 million today to over 115 million by 2050.

Despite much research, the exact causes of Alzheimer’s disease remains poorly understood. The disease seems to be related to the accumulation of plaques made of amyloid-β peptides that form on the outside of neurons, as well as the formation of tangles of the protein tau inside of neurons. Although many efforts have been made to target amyloid-β or the enzymes involved in its formation, we have so far been unsuccessful at finding any treatment that stops the disease or reverses its progress. Some researchers believe that most attempts at treating Alzheimer’s have failed because, by the time a patient shows symptoms, the disease has already progressed past the point of no return.

While research towards a cure continues, researchers have sought effective ways to prevent Alzheimer’s disease. Although some studies show that mental and physical exercise may lower ones risk of Alzheimer’s disease, approximately 60-80% of the risk for Alzheimer’s disease appears to be genetic. Thus, if we’re serious about prevention, we may have to act at the genetic level. And because the brain is difficult to access surgically for gene therapy in adults, this means using gene editing on embryos.

Reference https://www.physicsforums.com/insights/can-gene-editing-eliminate-alzheimers-disease/

 

Utilising CRISPR to Generate Predictive Disease Models: a Case Study in Neurodegenerative Disorders


Dr. Bhuvaneish.T. Selvaraj  – Scottish Centre for Regenerative Medicine

http://www.crisprsummit.com/utilising-crispr-to-generate-predictive-disease-models-a-case-study-in-neurodegenerative-disorders

  • Introducing the latest developments in predictive model generation
  • Discover how CRISPR is being used to develop disease models to study and treat neurodegenerative disorders
  • In depth Q&A session to answer your most pressing questions

 

Turning On Genes, Systematically, with CRISPR/Cas9

http://www.genengnews.com/gen-news-highlights/turning-on-genes-systematically-with-crispr-cas9/81250697/

 

Scientists based at MIT assert that they can reliably turn on any gene of their choosing in living cells. [Feng Zhang and Steve Dixon]  http://www.genengnews.com/media/images/GENHighlight/Dec12_2014_CRISPRCas9GeneActivationSystem7838101231.jpg

With the latest CRISPR/Cas9 advance, the exhortation “turn on, tune in, drop out” comes to mind. The CRISPR/Cas9 gene-editing system was already a well-known means of “tuning in” (inserting new genes) and “dropping out” (knocking out genes). But when it came to “turning on” genes, CRISPR/Cas9 had little potency. That is, it had demonstrated only limited success as a way to activate specific genes.

A new CRISPR/Cas9 approach, however, appears capable of activating genes more effectively than older approaches. The new approach may allow scientists to more easily determine the function of individual genes, according to Feng Zhang, Ph.D., a researcher at MIT and the Broad Institute. Dr. Zhang and colleagues report that the new approach permits multiplexed gene activation and rapid, large-scale studies of gene function.

The new technique was introduced in the December 10 online edition of Nature, in an article entitled, “Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.” The article describes how Dr. Zhang, along with the University of Tokyo’s Osamu Nureki, Ph.D., and Hiroshi Nishimasu, Ph.D., overhauled the CRISPR/Cas9 system. The research team based their work on their analysis (published earlier this year) of the structure formed when Cas9 binds to the guide RNA and its target DNA. Specifically, the team used the structure’s 3D shape to rationally improve the system.

In previous efforts to revamp CRISPR/Cas9 for gene activation purposes, scientists had tried to attach the activation domains to either end of the Cas9 protein, with limited success. From their structural studies, the MIT team realized that two small loops of the RNA guide poke out from the Cas9 complex and could be better points of attachment because they allow the activation domains to have more flexibility in recruiting transcription machinery.

Using their revamped system, the researchers activated about a dozen genes that had proven difficult or impossible to turn on using the previous generation of Cas9 activators. Each gene showed at least a twofold boost in transcription, and for many genes, the researchers found multiple orders of magnitude increase in activation.

After investigating single-guide RNA targeting rules for effective transcriptional activation, demonstrating multiplexed activation of 10 genes simultaneously, and upregulating long intergenic noncoding RNA transcripts, the research team decided to undertake a large-scale screen. This screen was designed to identify genes that confer resistance to a melanoma drug called PLX-4720.

“We … synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor,” wrote the authors of the Nature paper. “The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual [single-guide RNA] and complementary DNA overexpression.”

A gene signature based on the top screening hits, the authors added, correlated with a gene expression signature of BRAF inhibitor resistance in cell lines and patient-derived samples. It was also suggested that large-scale screens such as the one demonstrated in the current study could help researchers discover new cancer drugs that prevent tumors from becoming resistant.

More at –  http://www.genengnews.com/gen-news-highlights/turning-on-genes-systematically-with-crispr-cas9/81250697/

 

Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease
Miguel L. Soares1,2, Teresa Coelho3,6, Alda Sousa4,5, …, Maria Joa˜o Saraiva2,5 and Joel N. Buxbaum1
Human Molec Gen 2005; 14(4): 543–553   http://dx.doi.org:/10.1093/hmg/ddi051
https://www.researchgate.net/profile/Isabel_Conceicao/publication/8081351_Susceptibility_and_modifier_genes_in_Portuguese_transthyretin_V30M_amyloid_polyneuropathy_complexity_in_a_single-gene_disease/links/53e123d70cf2235f352733b3.pdf

Familial amyloid polyneuropathy type I is an autosomal dominant disorder caused by mutations in the transthyretin (TTR ) gene; however, carriers of the same mutation exhibit variability in penetrance and clinical expression. We analyzed alleles of candidate genes encoding non-fibrillar components of TTR amyloid deposits and a molecule metabolically interacting with TTR [retinol-binding protein (RBP)], for possible associations with age of disease onset and/or susceptibility in a Portuguese population sample with the TTR V30M mutation and unrelated controls. We show that the V30M carriers represent a distinct subset of the Portuguese population. Estimates of genetic distance indicated that the controls and the classical onset group were furthest apart, whereas the late-onset group appeared to differ from both. Importantly, the data also indicate that genetic interactions among the multiple loci evaluated, rather than single-locus effects, are more likely to determine differences in the age of disease onset. Multifactor dimensionality reduction indicated that the best genetic model for classical onset group versus controls involved the APCS gene, whereas for late-onset cases, one APCS variant (APCSv1) and two RBP variants (RBPv1 and RBPv2) are involved. Thus, although the TTR V30M mutation is required for the disease in Portuguese patients, different genetic factors may govern the age of onset, as well as the occurrence of anticipation.

Autosomal dominant disorders may vary in expression even within a given kindred. The basis of this variability is uncertain and can be attributed to epigenetic factors, environment or epistasis. We have studied familial amyloid polyneuropathy (FAP), an autosomal dominant disorder characterized by peripheral sensorimotor and autonomic neuropathy. It exhibits variation in cardiac, renal, gastrointestinal and ocular involvement, as well as age of onset. Over 80 missense mutations in the transthyretin gene (TTR ) result in autosomal dominant disease http://www.ibmc.up.pt/~mjsaraiv/ttrmut.html). The presence of deposits consisting entirely of wild-type TTR molecules in the hearts of 10– 25% of individuals over age 80 reveals its inherent in vivo amyloidogenic potential (1).

FAP was initially described in Portuguese (2) where, until recently, the TTR V30M has been the only pathogenic mutation associated with the disease (3,4). Later reports identified the same mutation in Swedish and Japanese families (5,6). The disorder has since been recognized in other European countries and in North American kindreds in association with V30M, as well as other mutations (7).

TTR V30M produces disease in only 5–10% of Swedish carriers of the allele (8), a much lower degree of penetrance than that seen in Portuguese (80%) (9) or in Japanese with the same mutation. The actual penetrance in Japanese carriers has not been formally established, but appears to resemble that seen in Portuguese. Portuguese and Japanese carriers show considerable variation in the age of clinical onset (10,11). In both populations, the first symptoms had originally been described as typically occurring before age 40 (so-called ‘classical’ or early-onset); however, in recent years, more individuals developing symptoms late in life have been identified (11,12). Hence, present data indicate that the distribution of the age of onset in Portuguese is continuous, but asymmetric with a mean around age 35 and a long tail into the older age group (Fig. 1) (9,13). Further, DNA testing in Portugal has identified asymptomatic carriers over age 70 belonging to a subset of very late-onset kindreds in whose descendants genetic anticipation is frequent. The molecular basis of anticipation in FAP, which is not mediated by trinucleotide repeat expansions in the TTR or any other gene (14), remains elusive.

Variation in penetrance, age of onset and clinical features are hallmarks of many autosomal dominant disorders including the human TTR amyloidoses (7). Some of these clearly reflect specific biological effects of a particular mutation or a class of mutants. However, when such phenotypic variability is seen with a single mutation in the gene encoding the same protein, it suggests an effect of modifying genetic loci and/or environmental factors contributing differentially to the course of disease. We have chosen to examine age of onset as an example of a discrete phenotypic variation in the presence of the particular autosomal dominant disease-associated mutation TTR V30M. Although the role of environmental factors cannot be excluded, the existence of modifier genes involved in TTR amyloidogenesis is an attractive hypothesis to explain the phenotypic variability in FAP. ….

ATTR (TTR amyloid), like all amyloid deposits, contains several molecular components, in addition to the quantitatively dominant fibril-forming amyloid protein, including heparan sulfate proteoglycan 2 (HSPG2 or perlecan), SAP, a plasma glycoprotein of the pentraxin family (encoded by the APCS gene) that undergoes specific calcium-dependent binding to all types of amyloid fibrils, and apolipoprotein E (ApoE), also found in all amyloid deposits (15). The ApoE4 isoform is associated with an increased frequency and earlier onset of Alzheimer’s disease (Ab), the most common form of brain amyloid, whereas the ApoE2 isoform appears to be protective (16). ApoE variants could exert a similar modulatory effect in the onset of FAP, although early studies on a limited number of patients suggested this was not the case (17).

In at least one instance of senile systemic amyloidosis, small amounts of AA-related material were found in TTR deposits (18). These could reflect either a passive co-aggregation or a contributory involvement of protein AA, encoded by the serum amyloid A (SAA ) genes and the main component of secondary (reactive) amyloid fibrils, in the formation of ATTR.

Retinol-binding protein (RBP), the serum carrier of vitamin A, circulates in plasma bound to TTR. Vitamin A-loaded RBP and L-thyroxine, the two natural ligands of TTR, can act alone or synergistically to inhibit the rate and extent of TTR fibrillogenesis in vitro, suggesting that RBP may influence the course of FAP pathology in vivo (19). We have analyzed coding and non-coding sequence polymorphisms in the RBP4 (serum RBP, 10q24), HSPG2 (1p36.1), APCS (1q22), APOE (19q13.2), SAA1 and SAA2 (11p15.1) genes with the goal of identifying chromosomes carrying common and functionally significant variants. At the time these studies were performed, the full human genome sequence was not completed and systematic singlenucleotide polymorphism (SNP) analyses were not available for any of the suspected candidate genes. We identified new SNPs in APCS and RBP4 and utilized polymorphisms in SAA, HSPG2 and APOE that had already been characterized and shown to have potential pathophysiologic significance in other disorders (16,20–22). The genotyping data were analyzed for association with the presence of the V30M amyloidogenic allele (FAP patients versus controls) and with the age of onset (classical- versus late-onset patients). Multilocus analyses were also performed to examine the effects of simultaneous contributions of the six loci for determining the onset of the first symptoms.  …..

The potential for different underlying models for classical and late onset is supported by the MDR analysis, which produces two distinct models when comparing each class with the controls. One could view the two onset classes as unique diseases. If this is the case, then the failure to detect a single predictive genetic model is consistent with two related, but different, diseases. This is exactly what would be expected in such a case of genetic heterogeneity (28). Using this approach, a major gene effect can be viewed as a necessary, but not sufficient, condition to explain the course of the disease. Analyzing the cases but omitting from the analysis of phenotype the necessary allele, in this case TTR V30M, can then reveal a variety of important modifiers that are distinct between the phenotypes.

The significant comparisons obtained in our study cohort indicate that the combined effects mainly result from two and three-locus interactions involving all loci except SAA1 and SAA2 for susceptibility to disease. A considerable number of four-site combinations modulate the age of onset with SAA1 appearing in a majority of significant combinations in late-onset disease, perhaps indicating a greater role of the SAA variants in the age of onset of FAP.

The correlation between genotype and phenotype in socalled simple Mendelian disorders is often incomplete, as only a subset of all mutations can reliably predict specific phenotypes (34). This is because non-allelic genetic variations and/or environmental influences underlie these disorders whose phenotypes behave as complex traits. A few examples include the identification of the role of homozygozity for the SAA1.1 allele in conferring the genetic susceptibility to renal amyloidosis in FMF (20) and the association of an insertion/deletion polymorphism in the ACE gene with disease severity in familial hypertrophic cardiomyopathy (35). In these disorders, the phenotypes arise from mutations in MEFV and b-MHC, but are modulated by independently inherited genetic variation. In this report, we show that interactions among multiple genes, whose products are confirmed or putative constituents of ATTR deposits, or metabolically interact with TTR, modulate the onset of the first symptoms and predispose individuals to disease in the presence of the V30M mutation in TTR. The exact nature of the effects identified here requires further study with potential application in the development of genetic screening with prognostic value pertaining to the onset of disease in the TTR V30M carriers.

If the effects of additional single or interacting genes dictate the heterogeneity of phenotype, as reflected in variability of onset and clinical expression (with the same TTR mutation), the products encoded by alleles at such loci could contribute to the process of wild-type TTR deposition in elderly individuals without a mutation (senile systemic amyloidosis), a phenomenon not readily recognized as having a genetic basis because of the insensitivity of family history in the elderly.

 

Safety and Efficacy of RNAi Therapy for Transthyretin Amyloidosis

Coelho T, Adams D, Silva A, et al.
N Engl J Med 2013;369:819-29.    http://dx.doi.org:/10.1056/NEJMoa1208760

Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart. A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin.

Methods We identified a potent antitransthyretin small interfering RNA, which was encapsulated in two distinct first- and second-generation formulations of lipid nanoparticles, generating ALN-TTR01 and ALN-TTR02, respectively. Each formulation was studied in a single-dose, placebo-controlled phase 1 trial to assess safety and effect on transthyretin levels. We first evaluated ALN-TTR01 (at doses of 0.01 to 1.0 mg per kilogram of body weight) in 32 patients with transthyretin amyloidosis and then evaluated ALN-TTR02 (at doses of 0.01 to 0.5 mg per kilogram) in 17 healthy volunteers.

Results Rapid, dose-dependent, and durable lowering of transthyretin levels was observed in the two trials. At a dose of 1.0 mg per kilogram, ALN-TTR01 suppressed transthyretin, with a mean reduction at day 7 of 38%, as compared with placebo (P=0.01); levels of mutant and nonmutant forms of transthyretin were lowered to a similar extent. For ALN-TTR02, the mean reductions in transthyretin levels at doses of 0.15 to 0.3 mg per kilogram ranged from 82.3 to 86.8%, with reductions of 56.6 to 67.1% at 28 days (P<0.001 for all comparisons). These reductions were shown to be RNAi mediated. Mild-to-moderate infusion-related reactions occurred in 20.8% and 7.7% of participants receiving ALN-TTR01 and ALN-TTR02, respectively.

ALN-TTR01 and ALN-TTR02 suppressed the production of both mutant and nonmutant forms of transthyretin, establishing proof of concept for RNAi therapy targeting messenger RNA transcribed from a disease-causing gene.

 

Alnylam May Seek Approval for TTR Amyloidosis Rx in 2017 as Other Programs Advance


https://www.genomeweb.com/rnai/alnylam-may-seek-approval-ttr-amyloidosis-rx-2017-other-programs-advance

Officials from Alnylam Pharmaceuticals last week provided updates on the two drug candidates from the company’s flagship transthyretin-mediated amyloidosis program, stating that the intravenously delivered agent patisiran is proceeding toward a possible market approval in three years, while a subcutaneously administered version called ALN-TTRsc is poised to enter Phase III testing before the end of the year.

Meanwhile, Alnylam is set to advance a handful of preclinical therapies into human studies in short order, including ones for complement-mediated diseases, hypercholesterolemia, and porphyria.

The officials made their comments during a conference call held to discuss Alnylam’s second-quarter financial results.

ATTR is caused by a mutation in the TTR gene, which normally produces a protein that acts as a carrier for retinol binding protein and is characterized by the accumulation of amyloid deposits in various tissues. Alnylam’s drugs are designed to silence both the mutant and wild-type forms of TTR.

Patisiran, which is delivered using lipid nanoparticles developed by Tekmira Pharmaceuticals, is currently in a Phase III study in patients with a form of ATTR called familial amyloid polyneuropathy (FAP) affecting the peripheral nervous system. Running at over 20 sites in nine countries, that study is set to enroll up to 200 patients and compare treatment to placebo based on improvements in neuropathy symptoms.

According to Alnylam Chief Medical Officer Akshay Vaishnaw, Alnylam expects to have final data from the study in two to three years, which would put patisiran on track for a new drug application filing in 2017.

Meanwhile, ALN-TTRsc, which is under development for a version of ATTR that affects cardiac tissue called familial amyloidotic cardiomyopathy (FAC) and uses Alnylam’s proprietary GalNAc conjugate delivery technology, is set to enter Phase III by year-end as Alnylam holds “active discussions” with US and European regulators on the design of that study, CEO John Maraganore noted during the call.

In the interim, Alnylam continues to enroll patients in a pilot Phase II study of ALN-TTRsc, which is designed to test the drug’s efficacy for FAC or senile systemic amyloidosis (SSA), a condition caused by the idiopathic accumulation of wild-type TTR protein in the heart.

Based on “encouraging” data thus far, Vaishnaw said that Alnylam has upped the expected enrollment in this study to 25 patients from 15. Available data from the trial is slated for release in November, he noted, stressing that “any clinical endpoint result needs to be considered exploratory given the small sample size and the very limited duration of treatment of only six weeks” in the trial.

Vaishnaw added that an open-label extension (OLE) study for patients in the ALN-TTRsc study will kick off in the coming weeks, allowing the company to gather long-term dosing tolerability and clinical activity data on the drug.

Enrollment in an OLE study of patisiran has been completed with 27 patients, he said, and, “as of today, with up to nine months of therapy … there have been no study drug discontinuations.” Clinical endpoint data from approximately 20 patients in this study will be presented at the American Neurological Association meeting in October.

As part of its ATTR efforts, Alnylam has also been conducting natural history of disease studies in both FAP and FAC patients. Data from the 283-patient FAP study was presented earlier this year and showed a rapid progression in neuropathy impairment scores and a high correlation of this measurement with disease severity.

During last week’s conference call, Vaishnaw said that clinical endpoint and biomarker data on about 400 patients with either FAC or SSA have already been collected in a nature history study on cardiac ATTR. Maraganore said that these findings would likely be released sometime next year.

Alnylam Presents New Phase II, Preclinical Data from TTR Amyloidosis Programs
https://www.genomeweb.com/rnai/alnylam-presents-new-phase-ii-preclinical-data-ttr-amyloidosis-programs

 

Amyloid disease drug approved

Nature Biotechnology 2012; (3http://dx.doi.org:/10.1038/nbt0212-121b

The first medication for a rare and often fatal protein misfolding disorder has been approved in Europe. On November 16, the E gave a green light to Pfizer’s Vyndaqel (tafamidis) for treating transthyretin amyloidosis in adult patients with stage 1 polyneuropathy symptoms. [Jeffery Kelly, La Jolla]

 

Safety and Efficacy of RNAi Therapy for Transthyretin …

http://www.nejm.org/…/NEJMoa1208760?&#8230;

The New England Journal of Medicine

Aug 29, 2013 – Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart.

 

Alnylam’s RNAi therapy targets amyloid disease

Ken Garber
Nature Biotechnology 2015; 33(577)    http://dx.doi.org:/10.1038/nbt0615-577a

RNA interference’s silencing of target genes could result in potent therapeutics.

http://www.nature.com/nbt/journal/v33/n6/images/nbt0615-577a-I1.jpg

The most clinically advanced RNA interference (RNAi) therapeutic achieved a milestone in April when Alnylam Pharmaceuticals in Cambridge, Massachusetts, reported positive results for patisiran, a small interfering RNA (siRNA) oligonucleotide targeting transthyretin for treating familial amyloidotic polyneuropathy (FAP).  …

  1. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases

Nature Biotechnology 11 April 2016

  1. CRISPR-Cas systems for editing, regulating and targeting genomes

Nature Biotechnology 02 March 2014

  1. Near-optimal probabilistic RNA-seq quantification

Nature Biotechnology 04 April 2016

 

Translational Neuroscience: Toward New Therapies

https://books.google.com/books?isbn=0262029863

Karoly Nikolich, ‎Steven E. Hyman – 2015 – ‎Medical

Tafamidis for Transthyretin Familial Amyloid Polyneuropathy: A Randomized, Controlled Trial. … Multiplex Genome Engineering Using CRISPR/Cas Systems.

 

Is CRISPR a Solution to Familial Amyloid Polyneuropathy?

Author and Curator: Larry H. Bernstein, MD, FCAP

Originally published as

https://pharmaceuticalintelligence.com/2016/04/13/is-crispr-a-solution-to-familial-amyloid-polyneuropathy/

 

http://scholar.aci.info/view/1492518a054469f0388/15411079e5a00014c3d

FAP is characterized by the systemic deposition of amyloidogenic variants of the transthyretin protein, especially in the peripheral nervous system, causing a progressive sensory and motor polyneuropathy.

FAP is caused by a mutation of the TTR gene, located on human chromosome 18q12.1-11.2.[5] A replacement of valine by methionine at position 30 (TTR V30M) is the mutation most commonly found in FAP.[1] The variant TTR is mostly produced by the liver.[citation needed] The transthyretin protein is a tetramer.    ….

 

 

Read Full Post »


Alzheimer’s Disease: Novel Therapeutical Approaches — Articles of Note @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

The Rogue Immune Cells That Wreck the Brain

Beth Stevens thinks she has solved a mystery behind brain disorders such as Alzheimer’s and schizophrenia.

by Adam Piore   April 4, 2016            

https://www.technologyreview.com/s/601137/the-rogue-immune-cells-that-wreck-the-brain/

Microglia are part of a larger class of cells—known collectively as glia—that carry out an array of functions in the brain, guiding its development and serving as its immune system by gobbling up diseased or damaged cells and carting away debris. Along with her frequent collaborator and mentor, Stanford biologist Ben Barres, and a growing cadre of other scientists, Stevens, 45, is showing that these long-overlooked cells are more than mere support workers for the neurons they surround. Her work has raised a provocative suggestion: that brain disorders could somehow be triggered by our own bodily defenses gone bad.

In one groundbreaking paper, in January, Stevens and researchers at the Broad Institute of MIT and Harvard showed that aberrant microglia might play a role in schizophrenia—causing or at least contributing to the massive cell loss that can leave people with devastating cognitive defects. Crucially, the researchers pointed to a chemical pathway that might be targeted to slow or stop the disease. Last week, Stevens and other researchers published a similar finding for Alzheimer’s.

This might be just the beginning. Stevens is also exploring the connection between these tiny structures and other neurological diseases—work that earned her a $625,000 MacArthur Foundation “genius” grant last September.

All of this raises intriguing questions. Is it possible that many common brain disorders, despite their wide-ranging symptoms, are caused or at least worsened by the same culprit, a component of the immune system? If so, could many of these disorders be treated in a similar way—by stopping these rogue cells?

VIEW VIDEO

Science  31 Mar 2016;        http://dx.doi.org:/10.1126/science.aad8373      Complement and microglia mediate early synapse loss in Alzheimer mouse models.
Soyon Hong1, Victoria F. Beja-Glasser1,*, Bianca M. Nfonoyim1,*,…., Ben A. Barres6, Cynthia A. Lemere,2, Dennis J. Selkoe2,7, Beth Stevens1,8,

Synapse loss in Alzheimer’s disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3 or the microglial complement receptor CR3, reduces the number of phagocytic microglia as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble β-amyloid (Aβ) oligomers on synapses and hippocampal long-term potentiation (LTP). Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aβ oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.

Genome-wide association studies (GWAS) implicate microglia and complement-related pathways in AD (1). Previous research has demonstrated both beneficial and detrimental roles of complement and microglia in plaque-related neuropathology (23); however, their roles in synapse loss, a major pathological correlate of cognitive decline in AD (4), remain to be identified. Emerging research implicates microglia and immune-related mechanisms in brain wiring in the healthy brain (1). During development, C1q and C3 localize to synapses and mediate synapse elimination by phagocytic microglia (57). We hypothesized that this normal developmental synaptic pruning pathway is activated early in the AD brain and mediates synapse loss.

Scientists have known about glia for some time. In the 1800s, the pathologist Rudolf Virchow noted the presence of small round cells packing the spaces between neurons and named them “nervenkitt” or “neuroglia,” which can be translated as nerve putty or glue. One variety of these cells, known as astrocytes, was defined in 1893. And then in the 1920s, the Spanish scientist Pio del Río Hortega developed novel ways of staining cells taken from the brain. This led him to identify and name two more types of glial cells, including microglia, which are far smaller than the others and are characterized by their spidery shape and multiple branches. It is only when the brain is damaged in adulthood, he suggested, that microglia spring to life—rushing to the injury, where it was thought they helped clean up the area by eating damaged and dead cells. Astrocytes often appeared on the scene as well; it was thought that they created scar tissue.

This emergency convergence of microglia and astrocytes was dubbed “gliosis,” and by the time Ben Barres entered medical school in the late 1970s, it was well established as a hallmark of neurodegenerative diseases, infection, and a wide array of other medical conditions. But no one seemed to understand why it occurred. That intrigued Barres, then a neurologist in training, who saw it every time he looked under a microscope at neural tissue in distress. “It was just really fascinating,” he says. “The great mystery was: what is the point of this gliosis? Is it good? Is it bad? Is it driving the disease process, or is it trying to repair the injured brain?”

Barres began looking for the answer. He learned how to grow glial cells in a dish and apply a new recording technique to them. He could measure their electrical qualities, which determine the biochemical signaling that all brain cells use to communicate and coördinate activity.

Barres’s group had begun to identify the specific compounds astrocytes secreted that seemed to cause neurons to grow synapses. And eventually, they noticed that these compounds also stimulated production of a protein called C1q.

Conventional wisdom held that C1q was activated only in sick cells—the protein marked them to be eaten up by immune cells—and only outside the brain. But Barres had found it in the brain. And it was in healthy neurons that were arguably at their most robust stage: in early development. What was the C1q protein doing there?

https://d267cvn3rvuq91.cloudfront.net/i/images/glia33.jpg?sw=590&cx=0&cy=0&cw=2106&ch=2106

A stained astrocyte.

The answer lies in the fact that marking cells for elimination is not something that happens only in diseased brains; it is also essential for development. As brains develop, their neurons form far more synaptic connections than they will eventually need. Only the ones that are used are allowed to remain. This pruning allows for the most efficient flow of neural transmissions in the brain, removing noise that might muddy the signal.

Kalaria, RN. Microglia and Alzheimer’s disease. Current Opinion in Hematology: January 1999 – Volume 6 – Issue 1 – p 15

Microglia play a major role in the cellular response associated with the pathological lesions of Alzheimer’s disease. As brain-resident macrophages, microglia elaborate and operate under several guises that seem reminiscent of circulating and tissue monocytes of the leucocyte repertoire. Although microglia bear the capacity to synthesize amyloid β, current evidence is most consistent with their phagocytic role. This largely involves the removal of cerebral amyloid and possibly the transformation of amyloid β into fibrils. The phagocytic functions also encompass the generation of cytokines, reactive oxygen and nitrogen species, and various proteolytic enzymes, events that may exacerbate neuronal damage rather than incite outgrowth or repair mechanisms. Microglia do not appear to function as true antigen-presenting cells. However, there is circumstantial evidence that suggests functional heterogeneity within microglia. Pharmacological agents that suppress microglial activation or reduce microglial-mediated oxidative damage may prove useful strategies to slow the progression of Alzheimer’s disease.

Streit WJ. Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 1 July 2004; 77(1):1–8
http://dx.doi.org:/10.1002/jnr.20093

The most visible and, until very recently, the only hypothesis regarding the involvement of microglial cells in Alzheimer’s disease (AD) pathogenesis is centered around the notion that activated microglia are neurotoxin-producing immune effector cells actively involved in causing the neurodegeneration that is the cause for AD dementia. The concept of detrimental neuroinflammation has gained a strong foothold in the AD arena and is being expanded to other neurodegenerative diseases. This review takes a comprehensive and critical look at the overall evidence supporting the neuroinflammation hypothesis and points out some weaknesses. The current work also reviews evidence for an alternative theory, the microglial dysfunction hypothesis, which, although eliminating some of the shortcomings, does not necessarily negate the amyloid/neuroinflammation theory. The microglial dysfunction theory offers a different perspective on the identity of activated microglia and their role in AD pathogenesis taking into account the most recent insights gained from studying basic microglial biology.

REFERENCES

  1. Keren Asraf, Nofar Torika, Ella Roasso, Sigal Fleisher-Berkovich, Differential effect of intranasally administrated kinin B1 and B2 receptor antagonists in Alzheimer’s disease mice, Biological Chemistry, 2016, 397, 4CrossRef
  2. Honghua Zheng, Chia-Chen Liu, Yuka Atagi, Xiao-Fen Chen, Lin Jia, Longyu Yang,Wencan He, Xilin Zhang, Silvia S. Kang, Terrone L. Rosenberry, John D. Fryer, Yun-Wu Zhang, Huaxi Xu, Guojun Bu, Opposing Roles of the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and TREM-like Transcript 2 (TREML2) in Microglia Activation, Neurobiology of Aging, 2016CrossRef
  3. Yuanyuan Li, Xufei Du, Gang Pei, Jiulin Du, Jian Zhao, Patricia Gaspar, β-Arrestin1 regulates the morphology and dynamics of microglia in zebrafishin vivo,European Journal of Neuroscience, 2016, 43, 2, 131Wiley Online Library
  4. YongCheol Yoo, Kyunghee Byun, Taewook Kang, Delger Bayarsaikhan, Jin Young Kim, Seyeoun Oh, Young Hye Kim, Se-Young Kim, Won-Il Chung, Seung U. Kim,Bonghee Lee, Young Mok Park, Amyloid-Beta-Activated Human Microglial Cells Through ER-Resident Proteins, Journal of Proteome Research, 2015, 14, 1, 214CrossRef
  5. J.S. Baizer, K.M. Wong, S. Manohar, S.H. Hayes, D. Ding, R. Dingman, R.J. Salvi, Effects of acoustic trauma on the auditory system of the rat: The role of microglia, Neuroscience, 2015, 303, 299CrossRef
  6. Frank L. Heppner, Richard M. Ransohoff, Burkhard Becher, Immune attack: the role of inflammation in Alzheimer disease, Nature Reviews Neuroscience, 2015, 16, 6, 358CrossRef
  7. Zhen Fan, Yahyah Aman, Imtiaz Ahmed, Gaël Chetelat, Brigitte Landeau, K. Ray Chaudhuri, David J. Brooks, Paul Edison, Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia, Alzheimer’s & Dementia, 2015, 11, 6, 608CrossRef
  8. Athanasios Lourbopoulos, Ali Ertürk, Farida Hellal, Microglia in action: how aging and injury can change the brain’s guardians, Frontiers in Cellular Neuroscience, 2015, 9CrossRef
  9. Yue Tian, Shanbin Guo, Xiuying Wu, Ling Ma, Xiaochun Zhao, Minocycline Alleviates Sevoflurane-Induced Cognitive Impairment in Aged Rats, Cellular and Molecular Neurobiology, 2015, 35, 4, 585CrossRef
  10. Melanie Meyer-Luehmann, Marco Prinz, Myeloid Cells in Alzheimer’s Disease: Culprits, Victims or Innocent Bystanders?, Trends in Neurosciences, 2015, 38, 10, 659CrossRef
  11. Jessica M. Collins, Anna E. King, Adele Woodhouse, Matthew T.K. Kirkcaldie,James C. Vickers, The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer’s disease, Experimental Neurology, 2015, 267, 219CrossRef
  12. Gaurav Singhal, Emily J. Jaehne, Frances Corrigan, Bernhard T. Baune, Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment, Frontiers in Cellular Neuroscience, 2014, 8CrossRef
  13. Jinhua Ma, Bo-Ryoung Choi, ChiHye Chung, Sun Min, Won Jeon, Jung-Soo Han, Chronic brain inflammation causes a reduction in GluN2A and GluN2B subunits of NMDA receptors and an increase in the phosphorylation of mitogen-activated protein kinases in the hippocampus, Molecular Brain, 2014, 7, 1, 33CrossRef
  14. Linn Malmsten, Swetha Vijayaraghavan, Outi Hovatta, Amelia Marutle, Taher Darreh-Shori, Fibrillar β-amyloid 1-42 alters cytokine secretion, cholinergic signalling and neuronal differentiation, Journal of Cellular and Molecular Medicine,2014, 18, 9, 1874Wiley Online Library
  15. Xiao-shuang Jiang, Ying-qin Ni, Tian-jin Liu, Meng Zhang, Rui Jiang, Ge-zhi Xu, Generation and characterization of immortalized rat retinal microglial cell lines,Journal of Neuroscience Research, 2014, 92, 4, 424Wiley Online Library
  16. Wolfgang J Streit, Qing-Shan Xue, Human CNS immune senescence and neurodegeneration, Current Opinion in Immunology, 2014, 29, 93CrossRef
  17. Ashley M. Fenn, John C. Gensel, Yan Huang, Phillip G. Popovich, Jonathan Lifshitz,Jonathan P. Godbout, Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia, Biological Psychiatry, 2014, 76, 7, 575CrossRef
  18. N. Xie, C. Wang, Y. Lian, C. Wu, H. Zhang, Q. Zhang, Inhibition of mitochondrial fission attenuates Aβ-induced microglia apoptosis, Neuroscience, 2014, 256, 36CrossRef
  19. Noël C. Derecki, Natalie Katzmarski, Jonathan Kipnis, Melanie Meyer-Luehmann, Microglia as a critical player in both developmental and late-life CNS pathologies,Acta Neuropathologica, 2014, 128, 3, 333CrossRef
  20. Petra Majerova, Monika Zilkova, Zuzana Kazmerova, Andrej Kovac, Kristina Paholikova, Branislav Kovacech, Norbert Zilka, Michal Novak, Microglia display modest phagocytic capacity for extracellular tau oligomers, Journal of Neuroinflammation, 2014, 11, 1CrossRef

Kira Irving MosherabTony Wyss-Corayac. Microglial dysfunction in brain aging and Alzheimer’s disease.

Review – Part of the Special Issue: Alzheimer’s Disease – Amyloid, Tau and Beyond. Biochemical Pharmacology 15 Apr 2014; 88(4):594–604   doi:10.1016/j.bcp.2014.01.008

Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer’s disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.

http://ars.els-cdn.com/content/image/1-s2.0-S000629521400032X-fx1.jpg

 

A Olmos-Alonso, STT Schetters, S Sri, K Askew, …, VH Perry, D Gomez-Nicola.
Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 8 Jan 2016.  http://dx.doi.org/10.1093/brain/awv379

The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease.

The neuropathology of Alzheimer’s disease shows a robust innate immune response characterized by the presence of activated microglia, with increased or de novo expression of diverse macrophage antigens (Akiyama et al., 2000; Edison et al., 2008), and production of inflammatory cytokines (Dickson et al., 1993; Fernandez-Botran et al., 2011). Evidence indicates that non-steroidal anti-inflammatory drugs (NSAIDs) protect from the onset or progression of Alzheimer’s disease (Hoozemans et al., 2011), suggestive of the idea that inflammation is a causal component of the disease rather than simply a consequence of the neurodegeneration. In fact, inflammation (Holmes et al., 2009), together with tangle pathology (Nelson et al., 2012) or neurodegeneration-related biomarkers (Wirth et al., 2013) correlate better with cognitive decline than amyloid-b accumulation, but the underlying mechanisms of the sequence of events that contribute to the clinical symptoms are poorly understood. The contribution of inflammation to disease pathogenesis is supported by recent genome-wide association studies, highlighting immune-related genes such as CR1 (Jun et al., 2010), TREM2 (Guerreiro et al., 2013; Jonsson et al., 2013) or HLA-DRB5–HLA-DRB1 in association with Alzheimer’s disease (European Alzheimer’s Disease et al., 2013). Additionally, a growing body of evidence suggests that systemic inflammation may interact with the innate immune response in the brain to act as a ‘driver’ of disease progression and exacerbate symptoms (Holmes et al., 2009, 2011). Microglial cells are the master regulators of the neuroin- flammatory response associated with brain disease (GomezNicola and Perry, 2014a, b). Activated microglia have been demonstrated in transgenic models of Alzheimer’s disease (LaFerla and Oddo, 2005; Jucker, 2010) and have been recently shown to dominate the gene expression landscape of patients with Alzheimer’s disease (Zhang et al., 2013). Recently, microglial activation through the transcription factor PU.1 has been reported to be capital for the progression of Alzheimer’s disease, highlighting the role of microglia in the disease-initiating steps (Gjoneska et al., 2015). Results from our group, using a murine model of chronic neurodegeneration (prion disease), show large numbers of microglia with an activated phenotype (Perry et al., 2010) and a cytokine profile similar to that of Alzheimer’s disease (Cunningham et al., 2003). The expansion of the microglial population during neurodegeneration is almost exclusively dependent upon proliferation of resident cells (GomezNicola et al., 2013, 2014a; Li et al., 2013). An increased microglial proliferative activity has also been described in a mouse model of Alzheimer’s disease (Kamphuis et al., 2012) and in post-mortem samples from patients with Alzheimer’s disease (Gomez-Nicola et al., 2013, 2014b). This proliferative activity is regulated by the activation of the colony stimulating factor 1 receptor (CSF1R; GomezNicola et al., 2013). Pharmacological strategies inhibiting the kinase activity of CSF1R provide beneficial effects on the progression of chronic neurodegeneration, highlighting the detrimental contribution of microglial proliferation (Gomez-Nicola et al., 2013). The presence of a microglial proliferative response with neurodegeneration is also supported by microarray analysis correlating clinical scores of incipient Alzheimer’s disease with the expression of Cebpa and Spi1 (PU.1), key transcription factors controlling microglial lineage commitment and proliferation (Blalock et al., 2004). Consistent with these data, Csf1r is upregulated in mouse models of amyloidosis (Murphy et al., 2000), as well as in human post-mortem samples from patients with Alzheimer’s disease (Akiyama et al., 1994). Although these ideas would lead to the evaluation of the efficacy of CSF1R inhibitors in Alzheimer’s disease, we have little evidence regarding the level of microglial proliferation in Alzheimer’s disease or the effects of CSF1R targeting in animal models of Alzheimer’s disease-like pathology. In this study, we set out to define the microglial proliferative response in both human Alzheimer’s disease and a mouse model of Alzheimer’s disease-like pathology, as well as the activation of the CSF1R pathway. We provide evidence for a consistent and robust activation of a microglial proliferative response, associated with the activation of CSF1R. We provide proof-of-target engagement and efficacy of an orally available CSF1R inhibitor (GW2580), which inhibits microglial proliferation and partially prevents the pathological progression of Alzheimer’s disease-like pathology, supporting the evaluation of CSF1R-targeting approaches as a therapy for Alzheimer’s disease.

Post-mortem samples of Alzheimer’s disease For immunohistochemical analysis, human brain autopsy tissue samples (temporal cortex, paraffin-embedded, formalin- fixed, 96% formic acid-treated, 6-mm sections) from the National CJD Surveillance Unit Brain Bank (Edinburgh, UK) were obtained from cases of Alzheimer’s disease (five females and five males, age 58–76) or age-matched controls (four females and five males, age 58–79), in whom consent for use of autopsy tissues for research had been obtained. All cases ful- filled the criteria for the pathological diagnosis of Alzheimer’s disease. Ethical permission for research on autopsy materials stored in the National CJD Surveillance Unit was obtained from Lothian Region Ethics Committee

Figure 1 Characterization of the microglial proliferative response in Alzheimer’s disease. (A–C) Immunohistochemical analysis and quantification of the number of total microglial cells (Iba1+ ; A) or proliferating microglial cells (Iba1+Ki67 + ; B) in the grey (GM) and white matter (WM) of the temporal cortex of Alzheimer’s disease cases (AD) and age-matched non-demented controls (NDC). (C) Representative pictures of the localization of a marker of proliferation (Ki67, dark blue) in microglial cells (Iba1+ , brown) in the grey matter of the temporal cortex of non-demented controls or Alzheimer’s disease cases. (D) RT-PCR analysis of the mRNA expression of CSF1R, CSF1, IL34, SPI1 (PU.1), CEBPA, RUNX1 and PCNA in the temporal cortex of Alzheimer’s disease cases and age-matched non-demented controls. Expression of mRNA represented as mean SEM and indicated as relative expression to the normalization factor (geometric mean of four housekeeping genes; GAPDH, HPRT, 18S and GUSB) using the 2-CT method. Statistical differences: *P 50.05, **P 50.01, ***P 50.001. Data were analysed with a two-way ANOVA and a post hoc Tukey test (A and B) or with a two-tailed Fisher t-test (D). Scale bar in C = 50 mm.

Increased microglial proliferation and CSF1R activity are closely associated with the progression of Alzheimer’s disease-like pathology 

Pharmacological targeting of CSF1R activation with an orally-available inhibitor blocks microglial proliferation in APP/PS1 mice

CSF1R inhibition prevents the progression of Alzheimer’s disease-like pathology

The innate immune component has a clear influence over the onset and progression of Alzheimer’s disease. The analysis of therapeutic approaches aimed at controlling neuroinflammation in Alzheimer’s disease is moving forward at the preclinical and clinical level, with several clinical trials aimed at modulating inflammatory components of the disease. We have previously demonstrated that the proliferation of microglial cells is a core component of the neuroinflammatory response in a model of prion disease, another chronic neurodegenerative disease, and is controlled by the activation of CSF1R (Gomez-Nicola et al., 2013). This aligns with recent reports pinpointing the causative effect of the activation of the microglial proliferative response on the neurodegenerative events of human and mouse Alzheimer’s disease, highlighting the activity of the master regulator PU.1 (Gjoneska et al., 2015). Our results provide a proof of efficacy of CSF1R inhibition for the blockade of microglial proliferation in a model of Alzheimer’s disease-like pathology. Treatment with the orally available CSF1R kinase-inhibitor (GW2580) proves to be an effective disease-modifying approach, partially improving memory and behavioural performance, and preventing synaptic degeneration. These results support the previously reported link of the inflammatory response generated by microglia in models of Alzheimer’s disease with the observed synaptic and behavioural deficits, regardless of amyloid deposition (Jones and Lynch, 2014).

Our findings support the relevance of CSF1R signalling and microglial proliferation in chronic neurodegeneration and validate the evaluation of CSF1R inhibitors in clinical trials for Alzheimer’s disease. Our findings show that the inhibition of microglial proliferation in a model of Alzheimer’s disease-like pathology does not modify the burden of amyloid-b plaques, suggesting an uncoupling of the amyloidogenic process from the pathological progression of the disease.

 

Other Related Articles published in this Open Access Online Scientific Journal include the following:

Role of infectious agent in Alzheimer’s Disease?

Alzheimer’s disease, snake venome, amyloid and transthyretin

Alzheimer’s Disease – tau art thou, or amyloid

Breakthrough Prize for Alzheimer’s Disease 2016

Tau and IGF1 in Alzheimer’s Disease

Amyloid and Alzheimer’s Disease

Important Lead in Alzheimer’s Disease Model

BWH Researchers: Genetic Variations can Influence Immune Cell Function: Risk Factors for Alzheimer’s Disease,DM, and MS later in life

BACE1 Inhibition role played in the underlying Pathology of Alzheimer’s Disease

Late Onset of Alzheimer’s Disease and One-carbon Metabolism

Alzheimer’s Disease Conundrum – Are We Near the End of the Puzzle?

Ustekinumab New Drug Therapy for Cognitive Decline resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

New Alzheimer’s Protein – AICD

Developer of Alzheimer’s drug Exelon at Hebrew University’s School of Pharmacy: Israel Prize in Medicine awarded to Prof. Marta Weinstock-Rosin

TyrNovo’s Novel and Unique Compound, named NT219, selectively Inhibits the process of Aging and Neurodegenerative Diseases, without affecting Lifespan

@NIH – Discovery of Causal Gene Mutation Responsible for two Dissimilar Neurological diseases: Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)

Introduction to Nanotechnology and Alzheimer disease

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

New ADNI Project to Perform Whole-genome Sequencing of Alzheimer’s Patients,

Brain Biobank

Removing Alzheimer plaques

Tracking protein expression

Schizophrenia genomics

Breakup of amyloid plaques

Mindful Discoveries

Beyond tau and amyloid

Serum Folate and Homocysteine, Mood Disorders, and Aging

Long Term Memory and Prions

Retromer in neurological disorders

Neurovascular pathways to neurodegeneration

Studying Alzheimer’s biomarkers in Down syndrome

Amyloid-Targeting Immunotherapy Targeting Neuropathologies with GSK33 Inhibitor

Brain Science

Sleep quality, amyloid and cognitive decline

microglia and brain maintenance

Notable Papers in Neurosciences

New Molecules to reduce Alzheimer’s and Dementia risk in Diabetic patients

The Alzheimer Scene around the Web

MRI Cortical Thickness Biomarker Predicts AD-like CSF and Cognitive Decline in Normal Adults

 

Keywords:

  • Alzheimer’s disease
  • microglia
  • gliosis
  • neurodegeneration
  • inflammation

 

Read Full Post »

Older Posts »