Feeds:
Posts
Comments

Archive for the ‘Integrin-targeted Combination Immunotherapy’ Category

Newly Found Functions of B Cell

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.1.8

4.1.8   Newly Found Functions of B Cell, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

The importance of B cells to human health is more than what is already known. Vaccines capable of eradicating disease activate B cells, cancer checkpoint blockade therapies are produced using B cells, and B cell deficiencies have devastating impacts. B cells have been a subject of fascination since at least the 1800s. The notion of a humoral branch to immunity emerged from the work of and contemporaries studying B cells in the early 1900s.

Efforts to understand how we could make antibodies from B cells against almost any foreign surface while usually avoiding making them against self, led to Burnet’s clonal selection theory. This was followed by the molecular definition of how a diversity of immunoglobulins can arise by gene rearrangement in developing B cells. Recombination activating gene (RAG)-dependent processes of V-(D)-J rearrangement of immunoglobulin (Ig) gene segments in developing B cells are now known to be able to generate an enormous amount of antibody diversity (theoretically at least 1016 possible variants).

With so much already known, B cell biology might be considered ‘‘done’’ with only incremental advances still to be made, but instead, there is great activity in the field today with numerous major challenges that remain. For example, efforts are underway to develop vaccines that induce broadly neutralizing antibody responses, to understand how autoantigen- and allergen-reactive antibodies arise, and to harness B cell-depletion therapies to correct non-autoantibody-mediated diseases, making it evident that there is still an enormous amount we do not know about B cells and much work to be done.

Multiple self-tolerance checkpoints exist to remove autoreactive specificities from the B cell repertoire or to limit the ability of such cells to secrete autoantigen-binding antibody. These include receptor editing and deletion in immature B cells, competitive elimination of chronically autoantigen binding B cells in the periphery, and a state of anergy that disfavors PC (plasma cell) differentiation. Autoantibody production can occur due to failures in these checkpoints or in T cell self-tolerance mechanisms. Variants in multiple genes are implicated in increasing the likelihood of checkpoint failure and of autoantibody production occurring.

Autoantibodies are pathogenic in a number of human diseases including SLE (Systemic lupus erythematosus), pemphigus vulgaris, Grave’s disease, and myasthenia gravis. B cell depletion therapy using anti-CD20 antibody has been protective in some of these diseases such as pemphigus vulgaris, but not others such as SLE and this appears to reflect the contribution of SLPC (Short lived plasma cells) versus LLPC (Long lived plasma cells) to autoantibody production and the inability of even prolonged anti-CD20 treatment to eliminate the later. These clinical findings have added to the importance of understanding what factors drive SLPC versus LLPC development and what the requirements are to support LLPCs.

B cell depletion therapy has also been efficacious in several other autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes, and rheumatoid arthritis (RA). While the potential contributions of autoantibodies to the pathology of these diseases are still being explored, autoantigen presentation has been posited as another mechanism for B cell disease-promoting activity.

In addition to autoimmunity, B cells play an important role in allergic diseases. IgE antibodies specific for allergen components sensitize mast cells and basophils for rapid degranulation in response to allergen exposures at various sites, such as in the intestine (food allergy), nose (allergic rhinitis), and lung (allergic asthma). IgE production may thus be favored under conditions that induce weak B cell responses and minimal GC (Germinal center) activity, thereby enabling IgE+ B cells and/or PCs to avoid being outcompeted by IgG+ cells. Aside from IgE antibodies, B cells may also contribute to allergic inflammation through their interactions with T cells.

B cells have also emerged as an important source of the immunosuppressive cytokine IL-10. Mouse studies revealed that B cell-derived IL-10 can promote recovery from EAE (Experimental autoimmune encephalomyelitis) and can be protective in models of RA and type 1 diabetes. Moreover, IL-10 production from B cells restrains T cell responses during some viral and bacterial infections. These findings indicate that the influence of B cells on the cytokine milieu will be context dependent.

The presence of B cells in a variety of solid tumor types, including breast cancer, ovarian cancer, and melanoma, has been associated in some studies with a positive prognosis. The mechanism involved is unclear but could include antigen presentation to CD4 and CD8 T cells, antibody production and subsequent enhancement of presentation, or by promoting tertiary lymphoid tissue formation and local T cell accumulation. It is also noteworthy that B cells frequently make antibody responses to cancer antigens and this has led to efforts to use antibodies from cancer patients as biomarkers of disease and to identify immunotherapy targets.

Malignancies of B cells themselves are a common form of hematopoietic cancer. This predilection arises because the gene modifications that B cells undergo during development and in immune responses are not perfect in their fidelity, and antibody responses require extensive B cell proliferation. The study of B cell lymphomas and their associated genetic derangements continues to be illuminating about requirements for normal B cell differentiation and signaling while also leading to the development of targeted therapies.

Overall this study attempted to capture some of the advances in the understanding of B cell biology that have occurred since the turn of the century. These include important steps forward in understanding how B cells encounter antigens, the co-stimulatory and cytokine requirements for their proliferation and differentiation, and how properties of the B cell receptor, the antigen, and helper T cells influence B cell responses. Many advances continue to transform the field including the impact of deep sequencing technologies on understanding B cell repertoires, the IgA-inducing microbiome, and the genetic defects in humans that compromise or exaggerate B cell responses or give rise to B cell malignancies.

Other advances that are providing insight include:

  • single-cell approaches to define B cell heterogeneity,
  • glycomic approaches to study effector sugars on antibodies,
  • new methods to study human B cell responses including CRISPR-based manipulation, and
  • the use of systems biology to study changes at the whole organism level.

With the recognition that B cells and antibodies are involved in most types of immune response and the realization that inflammatory processes contribute to a wider range of diseases than previously believed, including, for example, metabolic syndrome and neurodegeneration, it is expected that further

  • basic research-driven discovery about B cell biology will lead to more and improved approaches to maintain health and fight disease in the future.

References:

https://www.cell.com/cell/fulltext/S0092-8674(19)30278-8

https://onlinelibrary.wiley.com/doi/full/10.1002/hon.2405

https://www.pnas.org/content/115/18/4743

https://onlinelibrary.wiley.com/doi/full/10.1111/all.12911

https://cshperspectives.cshlp.org/content/10/5/a028795

https://www.sciencedirect.com/science/article/abs/pii/S0049017218304955

Read Full Post »

Immunoediting can be a constant defense in the cancer landscape

Immuno-editing can be a constant defense in the cancer landscape, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.

 

When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.

 

Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.

References:

 

https://www.linkedin.com/pulse/immunoediting-cancer-landscape-john-catanzaro/

 

https://www.cell.com/cell/fulltext/S0092-8674(16)31609-9

 

https://www.researchgate.net/publication/309432057_Circulating_tumor_cell_clusters_What_we_know_and_what_we_expect_Review

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840207/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00414/full

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388310/

 

https://www.linkedin.com/pulse/cancer-hallmark-analytics-omics-data-pathway-studio-review-catanzaro/

 

Read Full Post »

Immunotherapy may help in glioblastoma survival

Immunotherapy may help in glioblastoma survival, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. But, in a glimmer of hope, a recent study found that a drug designed to unleash the immune system helped some patients live longer. Glioblastoma powerfully suppresses the immune system, both at the site of the cancer and throughout the body, which has made it difficult to find effective treatments. Such tumors are complex and differ widely in their behavior and characteristics.

 

A small randomized, multi-institution clinical trial was conducted and led by researchers at the University of California at Los Angeles involved patients who had a recurrence of glioblastoma, the most common central nervous system cancer. The aim was to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab (checkpoint inhibitor) in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone.

 

Neoadjuvant PD-1 blockade was associated with upregulation of T cell– and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhanced both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.

 

Immunotherapy has not proved to be effective against glioblastoma. This small clinical trial explored the effect of PD-1 blockade on recurrent glioblastoma in relation to the timing of administration. A total of 35 patients undergoing resection of recurrent disease were randomized to either neoadjuvant or adjuvant pembrolizumab, and surgical specimens were compared between the two groups. Interestingly, the tumoral gene expression signature varied between the two groups, such that those who received neoadjuvant pembrolizumab displayed an INF-γ gene signature suggestive of T-cell activation as well as suppression of cell-cycle signaling, possibly consistent with growth arrest. Although the study was not powered for efficacy, the group found an increase in overall survival in patients receiving neoadjuvant pembrolizumab compared with adjuvant pembrolizumab of 13.7 months versus 7.5 months, respectively.

 

In this small pilot study, neoadjuvant PD-1 blockade followed by surgical resection was associated with intratumoral T-cell activation and inhibition of tumor growth as well as longer survival. How the drug works in glioblastoma has not been totally established. The researchers speculated that giving the drug before surgery prompted T-cells within the tumor, which had been impaired, to attack the cancer and extend lives. The drug didn’t spur such anti-cancer activity after the surgery because those T-cells were removed along with the tumor. The results are very important and very promising but would need to be validated in much larger trials.

 

References:

 

https://www.washingtonpost.com/health/2019/02/11/immunotherapy-may-help-patients-with-kind-cancer-that-killed-john-mccain/?noredirect=on&utm_term=.e1b2e6fffccc

 

https://www.ncbi.nlm.nih.gov/pubmed/30742122

 

https://www.practiceupdate.com/content/neoadjuvant-anti-pd-1-immunotherapy-promotes-immune-responses-in-recurrent-gbm/79742/37/12/1

 

https://www.esmo.org/Oncology-News/Neoadjuvant-PD-1-Blockade-in-Glioblastoma

 

https://neurosciencenews.com/immunotherapy-glioblastoma-cancer-10722/

 

Read Full Post »

TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

2.1.3.4

2.1.3.4   TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

eProceedings for Day 1 and Day 2

LIVE Day One – Koch Institute 2019 Immune Engineering Symposium, January 28, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/28/live-day-one-koch-institute-2019-immune-engineering-symposium-january-28-2019-kresge-auditorium-mit/

LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/29/live-day-two-koch-institute-2019-immune-engineering-symposium-january-29-2019-kresge-auditorium-mit/

  1. AMAZING Conference I covered in Real Time

  2. Aviv Regev Melanoma: malignant cells with resistance in cold niches in situ cells express the resistance program pre-treatment: resistance UP – cold Predict checkpoint immunotherapy outcomes CDK4/6 abemaciclib in cell lines

  3. Aviv Regev, a cell-cell interactions from variations across individuals Most UC-risk genes are cell type specificVariation – epithelial cell signature – organize US GWAS into cell type spec

  4. Diane Mathis Age-dependent Treg and mSC changes – Linear with increase in age Sex-dependent Treg and mSC changes – Female Treg loss in cases of Obesity leading to fibrosis Treg keep IL-33-Producing mSCs under rein Lean tissue/Obese tissue

  5. Martin LaFleur Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors PTpn2 deletion in the immune system enhanced tumor immunity CHIME enables in vivo screening

  6. Alex Shalek Identifying and rationally modulating cellular drivers of enhanced immunity T Cells, Clusters Expression of Peak and Memory Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers

  7.   Retweeted

    Onward: our own Michael Birnbaum, who assures us that if you feel like you’re an immunoengineer, then you ARE one!

  8. Glenn Dranoff Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Monotherapy (NIR178) combine with PD receptor blockage (PDR) show benefit A alone vs A+B in Clinical trial

  9. Glenn Dranoff PD-L1 blockade elicits responses in some patients: soft part sarcoma LAG-3 combined with PD-1 – human peripheral blood tumor TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB myeloid

  10. Glenn Dranoff Institute for Biomedical Research of Neurologic toxicities of CART t IL-6 activation AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody anti tumor effect

  11. of protective HLA-DR4 effects outside of “peptide anchor” residues Class I MHC – HLA-E down regulate T and NK cells Receptor Binding: Positional preferences noted for NKG2A

  12. Yvonne Chen Activation of t Cell use CAR t Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19 GFP MCAR responds to Dimeric GFP “Tumor microenvironment is a scary place”

  13. Yvonne Chen Do we need a ligand to be a dimers? Co-expressed second-generation TGF-beta signaling

  14. Yvonne Chen “Engineering smarter and stronger T cells for cancer immunotherapy” OR-Gate cause no relapse – Probing limits of modularity in CAR Design Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)

  15.   Retweeted

    Ending the 1st session is Cathy Wu of detailing some amazing work on vaccination strategies for melanoma and glioblastoma patients. They use long peptides engineered from tumor sequencing data.

  16.   Retweeted

    Some fancy imaging: Duggan gives a nice demo of how dSTORM imaging works using a micropatterend image of Kennedy Institute for Rheumatology! yay!

  17.   Retweeted

    Lots of interesting talks in the second session of the – effects of lymphoangiogenesis on anti-tumor immune responses, nanoparticle based strategies to improve bNAbs titers/affinity for HIV therapy, and IAPi cancer immunotherapy

  18.   Retweeted

    Looking forward to another day of the . One more highlight from yesterday – from our own lab showcased her work developing cytokine fusions that bind to collagen, boosting efficacy while drastically reducing toxicities

  19.   Retweeted

    Members of our cell therapy team were down the street today at neighboring for the presented by .

  20.   Retweeted

    He could have fooled me that he is, in fact, an immunologist!

  21.  
  22.   Retweeted

    Come and say Hi! ACIR will be back tomorrow at the Immune Engineering Symposium at MIT. Learn more at . . And stay tuned to read our summary of the talks on Feb 6.

  23. Facundo Batista @MGH # in BG18 Germline Heavy CHain (BG18-gH) High-mannose patch – mice exhibit normal B cell development B cells from naive human germline BG18-gH bind to GT2 immunogen

  24. Preeti Sharma, U Illinois T cell receptor and CAR-T engineering TCR engineering for Targeting glycosylated cancer antigens Nornal glycosylation vs Aberrant Engineering 237-CARs libraries with conjugated (Tn-OTS8) against Tn-antigend In vitro

  25. Bryan Bryson Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state functional spectrum of human microphages

  26. Bryan Bryson macrophage axis in Mycobacterium tuberculosis Building “libraries” – surface marker analysis of Microphages Polarized macrophages are functionally different quant and qual differences History of GM-CSF suppresses IL-10

  27. Jamie Spangler John Hopkins University “Reprogramming anti-cancer immunity RESPONSE through molecular engineering” De novo IL-2 potetiator in therapeutic superior to the natural cytokine by molecular engineering mimicking other cytokines

  28. Jamie Spangler JES6-1 Immunocytokine – inhibiting melanoma Engineering a Treg cell-biased immunocytokine double mutant immunocytokine shows enhanced IL-2Ralpha exchange Affinity De Novo design of a hyper-stable, effector biased IL-2

  29. , Volume Five: in of Cardiovascular Diseases. On com since 12/23/2018

  30. Michael Dustin ESCRT pathway associated with synaptic ectosomes Locatization, Microscopy Cytotoxic T cell granules CTLs release extracellular vescicles similar to T Helper with perforin and granzyme – CTL vesicles kill targets

  31. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Synaptic ectosome biogenisis Model: T cells: DOpamine cascade in germinal cell delivered to synaptic cleft – Effector CD40 – Transfer is cooperative

  32. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Laterally mobile ligands track receptor interaction ICAM-1 Signaling of synapse – Sustain signaling by transient in microclusters TCR related Invadipodia

  33. Mikael Pittet @MGH Myeloid Cells in Cancer Indirect mechanism AFTER a-PD-1 Treatment IFN-gamma Sensing Fosters IL-12 & therapeutic Responses aPD-1-Mediated Activation of Tumor Immunity – Direct activation and the ‘Licensing’ Model

  34. Stefani Spranger KI Response to checkpoint blockade Non-T cell-inflamed – is LACK OF T CELL INFILTRATION Tumor CD103 dendritic cells – Tumor-residing Batf3-drivenCD103 Tumor-intrinsic Beta-catenin mediates lack of T cell infiltration

  35. Max Krummel Gene expression association between two genes: and numbers are tightly linked to response to checkpoint blockage IMMUNE “ACCOMODATION” ARCHYTYPES: MYELOID TUNING OF ARCHITYPES Myeloid function and composition

  36. Noor Momin, MIT Lumican-cytokines improve control of distant lesions – Lumican-fusion potentiates systemic anti-tumor immunity

    Translate Tweet

  37. Noor Momin, MIT Lumican fusion to IL-2 improves treatment efficacy reduce toxicity – Anti-TAA mAb – TA99 vs IL-2 Best efficacy and least toxicity in Lumican-MSA-IL-2 vs MSA-IL2 Lumican synergy with CAR-T

  38.   Retweeted

    excited to attend the immune engineering symposium this week! find me there to chat about and whether your paper could be a good fit for us! 🦠🧬🔬🧫📖

  39.   Retweeted

    Bob Schreiber and Tyler Jacks kicked off the with 2 great talks on the role of Class I and Class II neo-Ag in tumor immunogenicity and how the tumor microenvironment alters T cell responsiveness to tumors in vivo

  40.   Retweeted

    Scott Wilson from gave a fantastic talk on glycopolymer conjugation to antigens to improve trafficking to HAPCs and enhanced tolerization in autoimmunity models. Excited to learn more about his work at his faculty talk!

  41. AMAZING Symposinm

  42.   Retweeted

    Immune Engineering Symposium at MIT is underway!

  43.   Retweeted

    ACIR is excited to be covering the Immune Engineering Symposium at MIT on January 28-29. Learn more at .

  44. Tyler Jacks talk was outstanding, Needs be delivered A@TED TALKs, needs become contents in the curriculum of Cell Biology graduate seminar as an Online class. BRAVO

  45.   Retweeted

    Here we go!! Today and tomorrow the tippity top immunologists converge at

  46.   Retweeted

    Exciting start to this year’s Immune Engineering Symposium put on by at . A few highlights from the first section…

  47. Stephanie Dougan (Dana-Farber Cancer Institute) Dept. Virology IAPi outperforms checkpoint blockade in T cell cold tumors reduction of tumor burden gencitabine cross-presenting DCs and CD8 T cells – T cell low 6694c2

  48. Darrell Irvine (MIT, Koch Institute; HHMI) Engineering follicle delivery through synthetic glycans: eOD-60mer nanoparticles vs Ferritin-trimer 8-mer (density dependent)

  49. Darrell Irvine (MIT, Koch Institute; HHMI) GC targeting is dependent on complement component CIQ – activation: Mannose-binding lectins recognize eOD-60mer but not eOD monomer or trimers

  50. Melody Swartz (University of Chicago) Lymphangiogenesis attractive to Native T cells, in VEGF-C tumors T cell homing inhibitors vs block T cell egress inhibitors – Immunotherapy induces T cell killing

  51. Cathy Wu @MGH breakthrough for Brain Tumor based neoantigen-specific T cell at intracranial site Single cells brain tissue vs single cells from neoantigen specific T cells – intratumoral neoantigen-specific T cells: mutARGAP35-spacific

  52. Cathy Wu (Massachusetts General Hospital) – CoFounder of NEON Enduring complete radiographic responses after + alpha-PD-1 treatment (anti-PD-1) NeoVax vs IVAC Mutanome for melanoma and Glioblastoma clinical trials

  53. , U of Chicago IV INJECTION: OVAALBUMIN OVA-P(GALINAC), P(GLCNAC), SUPRESS T CELL RESPONSE Abate T cells response – Reduced cytokine production & increased -regs

  54. Interrogating markers of T cell dysfunction – chance biology of cells by CRISPR – EGR2 at 2 weeks dysfuntioning is reduced presence of EDR2 mutant class plays role in cell metabolism cell becomes functional regulator CD8 T cell

  55. Bob Schreiber (Wash University of St. Louis) Optimal CD8+ T cells mediated to T3 require CD4+ T help

Read Full Post »

LIVE – OCTOBER 17 – DAY 2- Koch Institute Immune Engineering Symposium 2017, MIT, Kresge Auditorium

Reporter: Aviva Lev-Ari, PhD, RN

 

 

Image Source:Koch Institute

Koch Institute

Immune Engineering Symposium 2017

http://kochinstituteevents.cvent.com/events/koch-institute-immune-engineering-symposium-2017/agenda-64e5d3f55b964ff2a0643bd320b8e60d.aspx

Image Source: Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Aviva Lev-Ari, PhD, RN will be in attendance covering the event in REAL TIME

@pharma_BI

@AVIVA1950

#IESYMPOSIUM

@KOCHINSTITUTE

  • The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since September 4, 2017

https://www.amazon.com/dp/B075CXHY1B

SYMPOSIUM SCHEDULE

OCTOBER 17 – DAY 2

8:30 – 9:45 Session V
Moderator: Stefani Spranger | MIT, Koch Institute

K. Christopher Garcia – Stanford University
Exploiting T Cell and Cytokine Receptor Structure and Mechanism to Develop New Immunotherapeutic Strategies

  • T Cell Receptor, peptide-MHC, 10 to the power of 10 is combinatorics – Library for selection to determine enrichment possibilities
  • Ligand identification for orphan TCRs
  1. Industrializing process
  2. use pMHC
  • IL-2 – Receptor Signaling Complex
  • Effector cells (NK, T)
  • Engineered  T Cell – Tunable expansion, ligand-Receptor interface
  • Randomize IL-2RBeta interface: Orthogonal receptor vs wild type
  • In Vivo adoptive transfer model: to quantify orthogonality ratio
  • CD4, CD8, Treg,C57BL/6J
  • Ligand discovery
  • Orthogonal IL-2

Stefani Spranger – MIT, Koch Institute
Batf3-DC as Mediators of the T Cell-Inflamed Tumor Microenvironment

  • Melanoma – solid cancer and other types, Immune inhibitory regulatory pathway patient with Immune response present
  • T cell-inflamed Tumor vs Non-T cell-inflamed Tumor
  • identify oncogenic pathways differentially activated between T cell-inflamed and non-Tcell-inflamed infiltration
  • If on Tumor:
  1. Braf/PTEN
  2. Braf/CAT
  3. Braf/PTEN/CAT
  • The role of T cell priming – lack of initial
  • Beta-catenin-expressing tumors fail to prime 2C TCR-transgenic T cells
  • Deficiency in number of CD8+ and CD103+ dendritic cells
  • CD103+ DC are essential for T cell Priming and T cell-inflammation #StefaniSpranger
  • Adoptive transfer of effector 2C T cells fails to control Beta-catenin+ tumors
  • Vaccination induced anti-gen specific T cell memory fails to control Beta-catenin+ tumors
  • What cell type in tumor microenvironment effect monilization of T cell
  • CD103+ Dendritic cellsare source chymokine
  • Recruitment of effector T cells: Reconstitution od Beta-catenin-expressing SIY+
  • Are Batf3-DC within the tumor required for the recruitment of effector T cells?
  • Tumor-residing Batf3-drive CD103+ DC are required for the recruitment of effector T cells
  • Gene spore for correlation with recturment of effector cells
  • T cell Priming – CD103+ DC are essential for effector T cells

George Georgiou – University of Texas at Austin
The Human Circulating Antibody Repertoire in Infection, Vaccination or Cancer

  • Serological Antibody Repertoire: in blood or in secretions
  • Antibody in serum – is difficult sequence identity
  • Serum IgG – 7-17 mg/ml if less immune deficient if more hyper globular
  • antibodies produced in long lived plasma cells in the bone marrow — experimentally inaccessible
  • Discovery of antibodies from the serological repertoire – not B cells
  • BM-PCs
  • Serum antibodies function via Fc effector mechanism – complement activation
  • Ig-SEQ – BCR-SEQ
  • Repertoire-wide computational modelling of antibody structures
  • En masse analysis & Mining of the Human Native Antibody Repertoire
  • hypervariable – High-Throughput Single B Cell VH:VL (or TCRalpha, beta) sequencing
  • EBOV Vaccinee Peak ASCs (day 8) mining: Neutralization
  • Features of the Serum Antibody Repertoire to Vaccine ANtigens:The Serum IgG Repertoire is Highly Polarized
  • Each bar represents a distinct antibody lineage
  • Serum IgG Repertoire becomes increasingly polarized with AGE >50 – may be predictive of tumor development process
  • Human Norovirus – explosive Diarreha, chromically infected – HuNoV BNAb Discovery – Takeda 214 bivalent Vaccine – Binding antibodies binding to avccine antigen VLP
  • HuNoV causes 800 death in the US per year of immune deficient
  • Influenza Trivalent Vaccine: Antibodies to hemaggiutinin: H1, H3, and B COmponenet
  • Abundant H1 +H3 Serum IgGs do not neutralize but confer Protection toInfluenza challenge with Live Virus #GeorgeGeorgiou
  • Non-Neutralizing Antibodies: The role of Complement in Protection

9:45 – 10:15 Break

10:15 – 11:30 Session VI
Moderator: K. Dane Wittrup | MIT, Koch Institute

Harvey Lodish – Whitehead Institute and Koch Institute
Engineered Erythrocytes Covalently Linked to Antigenic Peptides Can Protect Against Autoimmune Disease

  • Modified Red blood cells are microparticles for introducing therapeutics & diagnostics into the human body
  • Bool transfusion is widely used therapeutics
  • Covalently linking unique functional modalities to mouse or human red cells produced in cell culture:
  • PRODUCTION OF HUMAN RED BLOD CELLS EXPRESSING A FOREIN PROTEIN: CD34+ stem/progenitor cells that generates normal enucleated RBC.
  • PPAR-alpha and glucocorticoticoid receptor
  • Norman morphology: Sortase A is a bactrial transpeptidase that covalently links a “donor”
  • Engineering Normal Human RBC biotin-LPETG
  • Covelantely – Glycophorin A with camelid VHHs specific for Botulinum toxin A or B
  • Generation of immuno tolerance: SOruggable Mature RBCs: CRISPR mice expressing Kell-LPETG
  • Ovalbumin as Model Antigens:
  1. OBI B,
  2. OTI CD8 T cells
  3. OTII CD4 T cells
  4. OT-1
  5. OT-2
  • RBC induced peptides challenged and experiences apoptosis
  • Type I Diabetes in NOD mice
  • RBCs bearing InsB9-23 – prevented development of diabetes

Multiple sclerosis

  • MOG – Myelin Oligodend

Sai Reddy – ETH Zurich
Molecular Convergence Patterns in Antibody Responses Predict Antigen Exposure

  • Clonal diversity – estimating the size of antibody repertoire: 10 to power of 18 or 10 to 13
  • Clonal selection in antibody repertoire
  • Convergent selection in antibody repertoire
  • Convergent selection in TCR repertoire complex have restriction with MCH interactions
  • How molecular abundance of convergence predicts antigen exposure identify antigen-associated clusters #SaiReddy
  • molecular convergence 0 gene expression analysis, immunization scheme molecular bar coding to correct errors
  • Recoding antibody repertoire sequence space: Cross correlation reveals different clusters
  • Building a classifier model based on cluster frequency: Clones from immunized mice
  • epitope specificity is driving antibody repertoire response
  • deep learning,

K. Dane Wittrup – MIT, Koch Institute
Temporal Programming of Synergistic Innate and Adaptive Immunotherapy

  • Innate effector functions of anti-tumor antibodies
  • Innate & adaptive Immunotherapy
  • Innate mAb –>> tumor cell; adaptive CD8+ T cells
  • Chemokines Antigens
  • Cytokines Chemokines – back and forth innate Adaptive –> <— neutrophils impact
  • AIPV vaccine:
  • How anti-TAA mAbs helping T cell Immune response
  • Anti-TAA mAbs drive vaccinal T cell responses: NK cells
  • antibody drives T cells responses: alpha-TAA mAbs potentiate T cell therapies: ACT +MSA-IL-2 vs alphaPD-1 + vaccine
  • CD8+ T cells required for alpha TAA mAb efficacy- In absence of T cells Treatment does not work
  • Anti-TAA mAb +Fc/IL-2 induces intramural cytokine storm #KDaneWittrup
  • How to simplify and improve AIPV? Hypothesis: ALign dose schedule
  • Immune response to infection follwos a temporal progression: Innate … Adaptive
  • Antigenic material kill cells: Chemo, cell death Antigen presentation, T cell priming, T cell recirculation, Lymphocyte tumor infiltrate, TCR
  • IFN alpha 2 dys after mAb +Il-2: Curative: days post tumor injection
  • Necessary components: CD8+ T cells & DC, Macrophages,
  • Optimal IFNalpha coincides with max innate response vs Mature DCs after antigen loading #KDaneWittrup
  • Optimal timing od agent administration effect on Therapy Outcome: IL-2, IFNalpha, TAAmAb
  • Cytkine timing can be better than protein engineering #KDaneWittrup

11:30 – 1:00 Lunch Break

1:00 – 2:15 Session VII
Moderator: Michael Birnbaum | MIT, Koch Institute

Kai Wucherpfennig – Dana-Farber Cancer Institute
Discovery of Novel Targets for Cancer Immunotherapy

  • POSITIVE STRESS SIGNAL during malignant Transformation
  • NKG2G=D Receptor: MICA/B Results in Immune escape – Proteolytic cleavage  shedding of MICA/B present in serum, indication of tumor progression
  • Shed MICA vs Surface MICA/B – restore NK cell cytotoxicity and IFNgamma Production
  • Human NK cells express NKG2D and Fc Receptors
  • Synergistic NKG2D and CD16 signaling enhances NK cell cytootxicity: Control IgG vs Anti NKG2D
  • MICA Antibody induces Immunity Against Lung Metastases
  • NK cells are required to inhibit Growth of metastases: Anti-CD8beta,
  • Contribution to Therapeutic Efficacy: NKG2D and CD16 Receptors #KaiWucherpfennig
  • Strategy to analyze Pulmonary NK cells: Activation and expression
  • Single cell RNA-seq of lung NK cells Revealed higher infiltration of activated NK cells: Isotype vs 7C6-migG2a
  • Cytokines and Chemokines produce NK cells
  • MICA/B increaces NK
  •  Induction of Tumor cell Apoptosis
  • Xenotransplant Model with Human Melanoma Cel Line A2058
  • Lung metastasis, liver metastasis
  • Inhibition of human melanoma Metastases in NSG Mice Reconstitute with Human NK
  • Liver metastases are controlled by Myeloid Cells that include Kupffer cells

Michael Birnbaum – MIT, Koch Institute
An Unbiased Determination of pMHC Repertoires for Better Antigen Prediction

  • Vaccines TCR gene therapy adoptive T cel therapy
  • Tumor genone – Tumor pMHC repertoire = Tumor TCR repertoire T cell repertoire
  • Neoantigen vaccines as a personalized anti-cancer therapy
  • Tumor procurement – Target selection – personal vaccine production – vaccine administration
  • Prediction of neoantigen-MHC Binding due to polimorphism affecting recognition, rare in MHC Allells #Michael Birnbaum
  • Antigenicity – Chaperones HLA-DM sculp the peptide binding repertoire of MHC
  • Identification of loaded peptide ligands: pMHC mass spectroscopy of tissue
  • TCR recognition, pMHC yeast display: Cleave peptide-MHC linker, catalyze peptide exchange
  • HLA-DR4 library design and selection to enrich HLA-DM: Amino Acid vs Peptide position: Depleted vs Enriched – relative to expected for NNK codon
  •  6852 _ predicted to bind vs 220 Non-binding peptides
  • HLA polymorphism: repertoire differences caused by
  • Antigen – T cell-driven antigen discovery: engaging Innate and Adaptive Immune response
  • Sorting TIL and select: FOcus of T cell-driven antigen discovery
  • T cell-driven antigen discovery: TCR

Jennifer R. Cochran – Stanford University
Innate and Adaptive Integrin-targeted Combination Immunotherapy

  • alpa-TAA
  • Targeting Integrin = universal target involved in binding to several receptors: brest, lung, pancreatic, brain tumors arising by mutations – used as a handle for binding to agents
  • NOD201 Peptide-Fc Fusion: A Psudo Ab
  • Handle the therapeutics: NOD201 + alphaPD1
  • NOD201 effectively combines with alphaPD-L1, alphaCTLA-4, and alpha4-1BB/CD137
  • Corresponding monotherapies vs ComboTherapy invoking Innate and Adaptive Immune System
  • Microphages, CD8+ are critical vs CD4+ Neutrophils, NK cells, B cells #JenniferR. Cochran
  • Macrophages activation is critical – Day 4, 4 and 5
  • NOD201 + alphaPD1 combo increases M1 macrophages
  • Who are the best responders to PD1 – genes that are differentially expressed
  • NOD201 deives T cells reaponses through a “vaccinal” effect
  • CAncer Immune CYcle
  • Integrin – localization
  • Prelim NOD201 toxicity studies: no significant effects
  • Targeting multiple integrins vs antibodies RJ9 – minimal effect
  • NOD201 – manufacturability – NEW AGENT in Preclinical stage

2:15 – 2:45 Break

2:45 – 3:35 Session VIII
Moderator: Jianzhu Chen | MIT, Koch Institute

Jennifer Wargo – MD Anderson Cancer Center
Understanding Responses to Cancer Therapy: The Tissue is the Issue, but the Scoop is in the Poop

  • Optimize Targeted Treatment response
  • Translational research in patients on targeted therapy revealed molecular and immune mechanisms of response and resistance
  • Molecular mechanisms – T cell infiltrate after one week of therapy
  • Role of tumor stroma in mediating resistance to targeted therapy
  • Tumor microenvironment
  • Intra-tumoral bacteria identified in patients with Pancreatic Cancer
  • Translational research in patients on immune checkpoint blockade revealed molecualr and immune mechanism of response and resistance
  • Biomarkers not found
  • SYstemic Immunity and environment (temperature) on response to checkpoint blockade – what is the role?
  • Role of mIcrobiome in shaping response to checkpoint blockade in Melanoma
  • Microbime and GI Cancer
  • Diversity of the gut microbiome is associated with differential outcomes in the setting of stem cell transplant in AML
  • Oral and gut fecal microbiome in large cohort patient with metastatic melanoma undergoing systemic therapy
  • Repeat oral & gut AFTER chemo
  • WGSeq – Diversity of microbiome and response (responders vs non-responders to anti PD-1 – High diversity of microbiome have prolonged survival to PD-1 blockade
  • Anti tumor Immunity and composition of gut microbiome in patient on anti-PD-1 favorable AND higher survival #JenniferWargo
  • Enhance therapeutic responses in lang and renal carcinoma: If on antibiotic – poorer survival
  • sharing data important across institutions

Jianzhu Chen – MIT, Koch Institute
Modulating Macrophages in Cancer Immunotherapy

  • Humanized mouth vs de novo human cancer
  • B cell hyperplasia
  • double hit lymphoma
  • AML
  • Overexpression of Bcl-2 & Myc in B cells leads to double-hit lymphoma
  • antiCD52 – CLL
  • Spleen, Bone marrow, Brain
  • Microphages are required to kill Ab-bound lymphoma cells in vivo #JianzhuChen
  • COmbinatorial chemo-Immunotherapy works for solid tumors: treating breast cancer in humanized mice
  • Infiltration of monocytic cells in the bone marrow
  • Cyclophosphophamide-antibody synergy extending to solid tumor and different antibodies #JianzhuChen
  • Polarization of macrophages it is dosage-dependent M1 and M2
  • Antibiotic induces expression of M1 polarizing supresses development and function of tumor-associated macrophages (TAM)
  • Antibiotic inhibits melanoma growth by activating macrophages in vivo #JianzhuChen

 

Read Full Post »

%d bloggers like this: