Advertisements
Feeds:
Posts
Comments

Archive for the ‘Diagnostic Immunology’ Category


cell-free DNA (cfDNA) tests could become the ultimate “Molecular Stethoscope” that opens up a whole new way of practicing Medicine

 

Reporter: Aviva Lev-Ari, PhD, RN

The first commercial application of cfDNA sequencing debuted in 2011. New blood tests can identify Down’s syndrome and similar genetic conditions during the first months of pregnancy by checking the fetal DNA in the bloodstream of a pregnant woman. (Anywhere from 10 to 15 percent of the DNA in a pregnant woman’s blood comes from the placenta, which is genetically similar to the fetus.) These maternal blood tests are fast replacing less-accurate procedures, such as ultrasound plus blood analysis.

More recently, researchers have started looking at cfDNA to develop so-called liquid biopsies, which analyze a tumor’s genetic makeup or look for evidence of a cancer recurrence. Tumors often spill DNA into the blood as they grow and divide, and because they are usually riddled with mutations, their scrambled DNA is clearly different from that found in normal DNA fragments. The first liquid biopsy test was launched only three years ago; although they are not yet part of routine care, the field is growing quickly. One company says it will give liquid biopsy tests to one million people in the next five years, and another has raised nearly $1 billion for its studies.

A similar cfDNA method is being tested for newly transplanted organs, which are at risk of being rejected by the recipient’s immune system. Currently, transplant doctors check a transplanted organ’s health by performing repeated biopsies, which are expensive and invasive. After a transplant small amounts of donor DNA from the new heart or kidney, for example, circulate in the blood as part of the normal process of cell birth and death. If the host immune system attacks the foreign organ, the proportion of donor DNA increases as more and more foreign cells die. One company, CareDx, already sells a test that picks up on that change for people who have had kidney transplants.

The researchers invented a way to boost the signal by reducing human DNA in blood samples. Their spin-off company, Karius, launched a test earlier this year to identify bacteria, fungi, viruses or parasites in hospitalized patients. It can spot infections in organs that are too dangerous for biopsies, including the lung and the brain, Kertesz says—and it is most useful for people with mystery infections or who are too sick to endure a surgery.

cell-free DNA tests in the future include stroke, or autoimmune conditions such as lupus

 

SOURCE

One Test May Spot Cancer, Infections, Diabetes and More

Researchers are starting to diagnose more ailments using DNA fragments found in the blood

https://www.scientificamerican.com/article/one-test-may-spot-cancer-infections-diabetes-and-more/

Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.

References:

https://blogs.scientificamerican.com/guest-blog/shortchanging-a-babys-microbiome/

https://www.ncbi.nlm.nih.gov/pubmed/23926244

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/25290507

https://www.ncbi.nlm.nih.gov/pubmed/25974306

https://www.ncbi.nlm.nih.gov/pubmed/24637604

https://www.ncbi.nlm.nih.gov/pubmed/22911969

https://www.ncbi.nlm.nih.gov/pubmed/25650398

https://www.ncbi.nlm.nih.gov/pubmed/27362264

https://www.ncbi.nlm.nih.gov/pubmed/27306663

http://www.mdpi.com/1099-4300/14/11/2036

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665/

https://www.ncbi.nlm.nih.gov/pubmed/24848255

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/28112736

http://ndnr.com/gastrointestinal/the-infant-microbiome-how-environmental-maternal-factors-influence-its-development/

Read Full Post »


Multiple copies of the alpha tryptase gene drive Tryptase elevations may contribute to symptoms of dizziness and lightheadedness, skin flushing and itching, gastrointestinal complaints, chronic pain, and bone and joint problems

 

Reporter: Aviva Lev-Ari, PhD, RN

 

Monday, October 17, 2016

NIH scientists uncover genetic explanation for frustrating syndrome

Previously unexplained symptoms found associated with multiple copies of a single gene.

Other studies have indicated that four to six percent of the general public has high tryptase levels. While not all of these people experience symptoms, many do, raising the possibility that this mildly prevalent trait in some cases drives the symptoms, although how it does so remains unclear.

“This work suggests that multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people,” said NIAID Director Anthony S. Fauci, M.D. “Identifying one genetic cause for high tryptase opens the door for us to develop strategies for diagnosing and treating people carrying this genetic change.”

Previously,NIH’s National Institute of Allergy and Infectious Diseases (NIAID) researchers had observed that a combination of chronic and sometimes debilitating symptoms, such as hives, irritable bowel syndrome and overly flexible joints, runs in some families and is associated with high tryptase levels. Many affected family members with high tryptase also reported symptoms consistent with disorders of autonomic nervous system function (dysautonomia), including postural orthostatic tachycardia syndrome (POTS), which is characterized by dizziness, faintness and an elevated heartbeat when standing up.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-scientists-uncover-genetic-explanation-frustrating-syndrome

Read Full Post »

Milestones in Physiology & Discoveries in Medicine and Genomics: Request for Book Review Writing on Amazon.com


physiology-cover-seriese-vol-3individualsaddlebrown-page2

Milestones in Physiology

Discoveries in Medicine, Genomics and Therapeutics

Patient-centric Perspective 

http://www.amazon.com/dp/B019VH97LU 

2015

 

 

Author, Curator and Editor

Larry H Bernstein, MD, FCAP

Chief Scientific Officer

Leaders in Pharmaceutical Business Intelligence

Larry.bernstein@gmail.com

Preface

Introduction 

Chapter 1: Evolution of the Foundation for Diagnostics and Pharmaceuticals Industries

1.1  Outline of Medical Discoveries between 1880 and 1980

1.2 The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

1.3 The Classification of Microbiota

1.4 Selected Contributions to Chemistry from 1880 to 1980

1.5 The Evolution of Clinical Chemistry in the 20th Century

1.6 Milestones in the Evolution of Diagnostics in the US HealthCare System: 1920s to Pre-Genomics

 

Chapter 2. The search for the evolution of function of proteins, enzymes and metal catalysts in life processes

2.1 The life and work of Allan Wilson
2.2  The  evolution of myoglobin and hemoglobin
2.3  More complexity in proteins evolution
2.4  Life on earth is traced to oxygen binding
2.5  The colors of life function
2.6  The colors of respiration and electron transport
2.7  Highlights of a green evolution

 

Chapter 3. Evolution of New Relationships in Neuroendocrine States
3.1 Pituitary endocrine axis
3.2 Thyroid function
3.3 Sex hormones
3.4 Adrenal Cortex
3.5 Pancreatic Islets
3.6 Parathyroids
3.7 Gastointestinal hormones
3.8 Endocrine action on midbrain
3.9 Neural activity regulating endocrine response

3.10 Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

 

Chapter 4.  Problems of the Circulation, Altitude, and Immunity

4.1 Innervation of Heart and Heart Rate
4.2 Action of hormones on the circulation
4.3 Allogeneic Transfusion Reactions
4.4 Graft-versus Host reaction
4.5 Unique problems of perinatal period
4.6. High altitude sickness
4.7 Deep water adaptation
4.8 Heart-Lung-and Kidney
4.9 Acute Lung Injury

4.10 Reconstruction of Life Processes requires both Genomics and Metabolomics to explain Phenotypes and Phylogenetics

 

Chapter 5. Problems of Diets and Lifestyle Changes

5.1 Anorexia nervosa
5.2 Voluntary and Involuntary S-insufficiency
5.3 Diarrheas – bacterial and nonbacterial
5.4 Gluten-free diets
5.5 Diet and cholesterol
5.6 Diet and Type 2 diabetes mellitus
5.7 Diet and exercise
5.8 Anxiety and quality of Life
5.9 Nutritional Supplements

 

Chapter 6. Advances in Genomics, Therapeutics and Pharmacogenomics

6.1 Natural Products Chemistry

6.2 The Challenge of Antimicrobial Resistance

6.3 Viruses, Vaccines and immunotherapy

6.4 Genomics and Metabolomics Advances in Cancer

6.5 Proteomics – Protein Interaction

6.6 Pharmacogenomics

6.7 Biomarker Guided Therapy

6.8 The Emergence of a Pharmaceutical Industry in the 20th Century: Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present

6.09 The Union of Biomarkers and Drug Development

6.10 Proteomics and Biomarker Discovery

6.11 Epigenomics and Companion Diagnostics

 

Chapter  7

Integration of Physiology, Genomics and Pharmacotherapy

7.1 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

7.2 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

7.3 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs

7.4 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

7.5 Diagnosing Diseases & Gene Therapy: Precision Genome Editing and Cost-effective microRNA Profiling

7.6 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

7.7 Neuroprotective Therapies: Pharmacogenomics vs Psychotropic drugs and Cholinesterase Inhibitors

7.8 Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

7.9 Preserved vs Reduced Ejection Fraction: Available and Needed Therapies

7.10 Biosimilars: Intellectual Property Creation and Protection by Pioneer and by

7.11 Demonstrate Biosimilarity: New FDA Biosimilar Guidelines

 

Chapter 7.  Biopharma Today

8.1 A Great University engaged in Drug Discovery: University of Pittsburgh

8.2 Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

8.3 Predicting Tumor Response, Progression, and Time to Recurrence

8.4 Targeting Untargetable Proto-Oncogenes

8.5 Innovation: Drug Discovery, Medical Devices and Digital Health

8.6 Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

8.7 Nanotechnology and Ocular Drug Delivery: Part I

8.8 Transdermal drug delivery (TDD) system and nanotechnology: Part II

8.9 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

8.10 Natural Drug Target Discovery and Translational Medicine in Human Microbiome

8.11 From Genomics of Microorganisms to Translational Medicine

8.12 Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad

 

Chapter 9. BioPharma – Future Trends

9.1 Artificial Intelligence Versus the Scientist: Who Will Win?

9.2 The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

9.3 The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

9.4 Heroes in Medical Research: The Postdoctoral Fellow

9.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

9.6 1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

9.7 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

9.8 Heroes in Medical Research: Green Fluorescent Protein and the Rough Road in Science

9.9 Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

9.10 The SCID Pig II: Researchers Develop Another SCID Pig, And Another Great Model For Cancer Research

Epilogue

Read Full Post »


On its way for an IPO: mRNA platform, Moderna, Immune Oncology is recruiting 100 new Life Scientists in Cambridge, MA

Curator: Aviva Lev-Ari, PhD, RN

 

Deals:

Moderna has now raised $1.9 billion from investors like AstraZeneca – 9% stack [AstraZeneca’s Pascal Soriot helped get that all started with a whopping $240 million upfront in its 2013 deal, which was tied to $180 million in milestones.], with another $230 million on the table from grants. In addition to the financing announcement this morning, Moderna is also unveiling a pact to develop a new Zika vaccine, with BARDA putting up $8 million to get the program started while offering an option on $117 million more to get through a successful development program.

Novel Strategy in Biotech:

in biotech. Instead of grabbing one or two new drugs and setting out to gather proof-of-concept data to help establish its scientific credibility, the company has harvested a huge windfall of cash and built a large organization before even entering the clinic. And it did that without turning to an IPO.

Pipeline include:

  • The deal with AstraZeneca covers new drugs for cardiovascular, metabolic and renal diseases as well as cancer.
  • partners filed a European application to start a Phase I study of AZD8601, an investigational mRNA-based therapy that encodes for vascular endothelial growth factor-A (VEGF-A)
  • Moderna CEO spelled out plans to get the first 6 new drugs in the clinic by the end of 2016.
  • The first human study was arranged for the infectious disease drug mRNA 1440, which began an early stage study in 2015.
  • Moderna built up a range of big preclinical partnerships.
  • CEO Bancel says the number of drugs in development has swelled to 11, with the first set of data slated to be released in 2017.
  • Moderna also plans to add about 10 drugs to the clinic by next summer,

 

SOURCES

UPDATED: Booming Moderna is raising $600M while ramping up manufacturing and clinical studies

$1.9B in: Moderna blueprints $100M facility, plans to double the pipeline after a $474M megaround

http://endpts.com/moderna-blueprints-100m-facility-plans-to-double-the-pipeline-after-a-474m-megaround/?utm_source=Sailthru&utm_medium=email&utm_campaign=Issue:%202016-09-07%20BioPharma%20Dive%20%5Bissue:7155%5D&utm_term=BioPharma%20Dive

 

Moderna Therapeutics Deal with Merck: Are Personalized Vaccines here?

Curator & Reporter: Stephen J. Williams, PhD – August 11, 2016

https://pharmaceuticalintelligence.com/2016/08/11/moderna-therapeutics-deal-with-merck-are-personalized-vaccines-here/

 

at #JPM16 – Moderna Therapeutics turns away an extra $200 million: with AstraZeneca (collaboration) & with Merck ($100 million investment)

Reporter: Aviva Lev-Ari, PhD, RN – January 13, 2016

https://pharmaceuticalintelligence.com/2016/01/13/at-jpm16-moderna-therapeutics-turns-away-an-extra-200-million-with-astrazeneca-collaboration-with-merck-100-million-investment/

Read Full Post »


Inotuzumab Ozogamicin: Success in relapsed/refractory Acute Lymphoblastic Leukemia (ALL)

Reporter: Aviva Lev-Ari, PhD, RN

 

About Inotuzumab Ozogamicin

Inotuzumab ozogamicin is an investigational antibody-drug conjugate (ADC) comprised of a monoclonal antibody (mAb) targeting CD22,9 a cell surface antigen expressed on approximately 90 percent of B-cell malignancies,10 linked to a cytotoxic agent. When inotuzumab ozogamicin binds to the CD22 antigen on malignant B-cells, it is internalized into the cell, where the cytotoxic agent calicheamicin is released to destroy the cell.11

Inotuzumab ozogamicin originates from a collaboration between Pfizer and Celltech, now UCB. Pfizer has sole responsibility for all manufacturing, clinical development and commercialization activities for this molecule.

Acute lymphoblastic leukemia (ALL)

is an aggressive type of leukemia with high unmet need and a poor prognosis in adults.4The current standard treatment is intensive, long-term chemotherapy.5 In 2015, it is estimated that 6,250 cases of ALL will be diagnosed in the United States6, with about 1 in 3 cases in adults. Only approximately 20 to 40 percent of newly diagnosed adults with ALL are cured with current treatment regimens.7 For patients with relapsed or refractory adult ALL, the five-year overall survival rate is less than 10 percent.8

REFERENCES

1 Fielding A. et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2006; 944-950.

2 U.S. Food and Drug Administration Safety and Innovation Act. Available at: http://www.gpo.gov/fdsys/pkg/PLAW-112publ144/pdf/PLAW-112publ144.pdf(link is external).Accessed July 11, 2015.

3 U.S. Food and Drug Administration Frequently Asked Questions: Breakthrough Therapies. Available at:http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDASIA/ucm341027.htm(link is external). Accessed July 11, 2015.

4 National Cancer Institute: Adult Acute Lymphoblastic Leukemia Treatment (PDQ®) – General Information About Adult Acute Lymphoblastic Leukemia (ALL). Available at:http://www.cancer.gov/cancertopics/pdq/treatment/adultALL/HealthProfessional/page1(link is external). Accessed July 11, 2015.

5 American Cancer Society: Typical treatment of acute lymphocytic leukemia. Available at:http://www.cancer.org/cancer/leukemia-acutelymphocyticallinadults/detailedguide/leukemia-acute-lymphocytic-treating-typical-treatment(link is external). Accessed July 11, 2015.

6 American Cancer Society: What are the key statistics about acute lymphocytic leukemia? Available at:http://www.cancer.org/cancer/leukemia-acutelymphocyticallinadults/detailedguide/leukemia-acute-lymphocytic-key-statistics(link is external). Accessed February 18, 2015.

7 Manal Basyouni A. et al. Prognostic significance of survivin and tumor necrosis factor-alpha in adult acute lymphoblastic leukemia. doi:10.1016/j.clinbiochem.2011.08.1147.

8 Fielding A. et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2006; 944-950.

9 Clinicaltrials.gov. A Study of Inotuzumab Ozogamicin versus Investigator’s Choice of Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01564784?term=inotuzumab&rank=7(link is external). Accessed July 11, 2015.

10 Leonard J et al. Epratuzumab, a Humanized Anti-CD22 Antibody, in Aggressive Non-Hodgkin’s Lymphoma: a Phase I/II Clinical Trial Results. Clinical Cancer Research. 2004; 10: 5327-5334.

11 DiJoseph JF. Antitumor Efficacy of a Combination of CMC-544 (Inotuzumab Ozogamicin), a CD22-Targeted Cytotoxic Immunoconjugate of Calicheamicin, and Rituximab against Non-Hodgkin’s B-Cell Lymphoma. Clin Cancer Res. 2006; 12: 242-250.

SOURCE

http://www.pfizer.com/news/press-release/press-release-detail/pfizer_s_inotuzumab_ozogamicin_receives_fda_breakthrough_therapy_designation_for_acute_lymphoblastic_leukemia_all

Other related article Published on this Open Access Online Scientific Journal include the following:

STORY OF A LEUKEMIA FIGHTER

Nicole L. Gularte, MBA

https://pharmaceuticalintelligence.com/2016/08/21/cancer-the-future-immunotherapy/

https://pharmaceuticalintelligence.com/?s=Acute+Lymphoblastic+Leukemia+%28ALL%29+

Read Full Post »


Keystone Symposia on Molecular and Cellular Biology – 2016-2017 Forthcoming Conferences in Life Sciences

Reporter: Aviva Lev-Ari, PhD, RN

2016-2017 Forthcoming Conferences in Life Sciences by topic:

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

Immunology

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Infectious Diseases

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Metabolic Diseases

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Neurobiology

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

Plant Biology

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

Structural Biology

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Technologies

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

October 2016

Translational Vaccinology for Global Health (S1)
October 25 – 29, 2016 | London, United Kingdom
Scientific Organizers: Christopher L. Karp, Gagandeep Kang and Rino Rappuoli

November 2016

Phytobiomes: From Microbes to Plant Ecosystems (S2)
November 8 – 12, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Jan E. Leach, Kellye A. Eversole, Jonathan A. Eisen and Gwyn Beattie

December 2016

Hemorrhagic Fever Viruses (S3)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: William E. Dowling and Thomas W. Geisbert

Cellular Stress Responses and Infectious Agents (S4)
December 4 – 8, 2016 | Santa Fe, New Mexico, USA
Scientific Organizers: Margo A. Brinton, Sandra K. Weller and Beth Levine

January 2017

Cell Plasticity within the Tumor Microenvironment (A1)
January 8 – 12, 2017 | Big Sky, Montana, USA
Scientific Organizers: Sergei Grivennikov, Florian R. Greten and Mikala Egeblad

Precision Genome Engineering (A2)
January 8 – 12, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: J. Keith Joung, Emmanuelle Charpentier and Olivier Danos

Transcriptional and Epigenetic Control in Stem Cells (J1)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Konrad Hochedlinger, Kathrin Plath and Marius Wernig

Neurogenesis during Development and in the Adult Brain (J2)
January 8 – 12, 2017 | Olympic Valley, California, USA
Scientific Organizers: Alysson R. Muotri, Kinichi Nakashima and Xinyu Zhao

TGF-ß in Immunity, Inflammation and Cancer (A3)
January 9 – 13, 2017 | Taos, New Mexico, USA
Scientific Organizers: Wanjun Chen, Joanne E. Konkel and Richard A. Flavell

Mitochondria Communication (A4)
January 14 – 18, 2017 | Taos, New Mexico, USA
Scientific Organizers: Jared Rutter, Cole M. Haynes and Marcia C. Haigis

New Developments in Our Basic Understanding of Tuberculosis (A5)
January 14 – 18, 2017 | Vancouver, British Columbia, Canada
Scientific Organizers: Samuel M. Behar and Valerie Mizrahi

PI3K Pathways in Immunology, Growth Disorders and Cancer (A6)
January 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Leon O. Murphy, Klaus Okkenhaug and Sabina C. Cosulich

Biobetters and Next-Generation Biologics: Innovative Strategies for Optimally Effective Therapies (A7)
January 22 – 26, 2017 | Snowbird, Utah, USA
Scientific Organizers: Cherié L. Butts, Amy S. Rosenberg, Amy D. Klion and Sachdev S. Sidhu

Diabetes (J3)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Jiandie Lin, Clay F. Semenkovich and Rohit N. Kulkarni

Obesity and Adipose Tissue Biology (J4)
January 22 – 26, 2017 | Keystone, Colorado, USA
Scientific Organizers: Marc L. Reitman, Ruth E. Gimeno and Jan Nedergaard

Omics Strategies to Study the Proteome (A8)
January 29 – February 2, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Alan Saghatelian, Chuan He and Ileana M. Cristea

Epigenetics and Human Disease: Progress from Mechanisms to Therapeutics (A9)
January 29 – February 2, 2017 | Seattle, Washington, USA
Scientific Organizers: Johnathan R. Whetstine, Jessica K. Tyler and Rab K. Prinjha

Hematopoiesis (B1)
January 31 – February 4, 2017 | Banff, Alberta, Canada
Scientific Organizers: Catriona H.M. Jamieson, Andreas Trumpp and Paul S. Frenette

February 2017

Noncoding RNAs: From Disease to Targeted Therapeutics (J5)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Kevin V. Morris, Archa Fox and Paloma Hoban Giangrande

Protein-RNA Interactions: Scale, Mechanisms, Structure and Function of Coding and Noncoding RNPs (J6)
February 5 – 9, 2017 | Banff, Alberta, Canada
Scientific Organizers: Gene W. Yeo, Jernej Ule, Karla Neugebauer and Melissa J. Moore

Inflammation-Driven Cancer: Mechanisms to Therapy (J7)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Fiona M. Powrie, Michael Karin and Alberto Mantovani

Microbiome in Health and Disease (J8)
February 5 – 9, 2017 | Keystone, Colorado, USA
Scientific Organizers: Julie A. Segre, Ramnik Xavier and William Michael Dunne

Autophagy Network Integration in Health and Disease (B2)
February 12 – 16, 2017 | Copper Mountain, Colorado, USA
Scientific Organizers: Ivan Dikic, Katja Simon and J. Wade Harper

Asthma: From Pathway Biology to Precision Therapeutics (B3)
February 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Clare M. Lloyd, John V. Fahy and Sally Wenzel-Morganroth

Viral Immunity: Mechanisms and Consequences (B4)
February 19 – 23, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Akiko Iwasaki, Daniel B. Stetson and E. John Wherry

Malaria: From Innovation to Eradication (B5)
February 19 – 23, 2017 | Kampala, Uganda
Scientific Organizers: Marcel Tanner, Sarah K. Volkman, Marcus V.G. Lacerda and Salim Abdulla

Lipidomics and Bioactive Lipids in Metabolism and Disease (B6)
February 26 – March 2, 2017 | Tahoe City, California, USA
Scientific Organizers: Alfred H. Merrill, Walter Allen Shaw, Sarah Spiegel and Michael J.O.Wakelam

March 2017

Bile Acid Receptors as Signal Integrators in Liver and Metabolism (C1)
March 3 – 7, 2017 | Monterey, California, USA
Scientific Organizers: Luciano Adorini, Kristina Schoonjans and Scott L. Friedman

Rare and Undiagnosed Diseases: Discovery and Models of Precision Therapy (C2)
March 5 – 8, 2017 | Boston, Massachusetts, USA
Scientific Organizers: William A. Gahl and Christoph Klein

mRNA Processing and Human Disease (C3)
March 5 – 8, 2017 | Taos, New Mexico, USA
Scientific Organizers: James L. Manley, Siddhartha Mukherjee and Gideon Dreyfuss

Kinases: Next-Generation Insights and Approaches (C4)
March 5 – 9, 2017 | Breckenridge, Colorado, USA
Scientific Organizers: Reid M. Huber, John Kuriyan and Ruth H. Palmer

Synapses and Circuits: Formation, Function, and Dysfunction (X1)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Tony Koleske, Yimin Zou, Kristin Scott and A. Kimberley McAllister

Connectomics (X2)
March 5 – 8, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Olaf Sporns, Danielle Bassett and Jeremy Freeman

Tumor Metabolism: Mechanisms and Targets (X3)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Brendan D. Manning, Kathryn E. Wellen and Reuben J. Shaw

Adaptations to Hypoxia in Physiology and Disease (X4)
March 5 – 9, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: M. Celeste Simon, Amato J. Giaccia and Randall S. Johnson

Engineered Cells and Tissues as Platforms for Discovery and Therapy (K1)
March 9 – 12, 2017 | Boston, Massachusetts, USA
Scientific Organizers: Laura E. Niklason, Milica Radisic and Nenad Bursac

Frontiers of NMR in Life Sciences (C5)
March 12 – 16, 2017 | Keystone, Colorado, USA
Scientific Organizers: Kurt Wüthrich, Michael Sattler and Stephen W. Fesik

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (C6)
March 19 – 22, 2017 | Tahoe City, California, USA
Scientific Organizers: Franck Mauvais-Jarvis, Deborah Clegg and Arthur P. Arnold

Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7)
March 19 – 23, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Robert D. Schreiber, James P. Allison, Philip D. Greenberg and Glenn Dranoff

Pattern Recognition Signaling: From Innate Immunity to Inflammatory Disease (X5)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Thirumala-Devi Kanneganti, Vishva M. Dixit and Mohamed Lamkanfi

Type I Interferon: Friend and Foe Alike (X6)
March 19 – 23, 2017 | Banff, Alberta, Canada
Scientific Organizers: Alan Sher, Virginia Pascual, Adolfo García-Sastre and Anne O’Garra

Injury, Inflammation and Fibrosis (C8)
March 26 – 30, 2017 | Snowbird, Utah, USA
Scientific Organizers: Tatiana Kisseleva, Michael Karin and Andrew M. Tager

HIV Vaccines (C9)
March 26 – 30, 2017 | Steamboat Springs, Colorado, USA
Scientific Organizers: Andrew B. Ward, Penny L. Moore and Robin Shattock

Immune Regulation in Autoimmunity and Cancer (D1)
March 26 – 30, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: David A. Hafler, Vijay K. Kuchroo and Jane L. Grogan

Molecular Mechanisms of Heart Development (X7)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Benoit G. Bruneau, Brian L. Black and Margaret E. Buckingham

RNA-Based Approaches in Cardiovascular Disease (X8)
March 26 – 30, 2017 | Keystone, Colorado, USA
Scientific Organizers: Thomas Thum and Roger J. Hajjar

April 2017

Genomic Instability and DNA Repair (Z1)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Julia Promisel Cooper, Marco F. Foiani and Geneviève Almouzni

DNA Replication and Recombination (Z2)
April 2 – 6, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: John F.X. Diffley, Anja Groth and Scott Keeney

B Cells and T Follicular Helper Cells – Controlling Long-Lived Immunity (D2)
April 23 – 27, 2017 | Whistler, British Columbia, Canada
Scientific Organizers: Stuart G. Tangye, Ignacio Sanz and Hai Qi

Mononuclear Phagocytes in Health, Immune Defense and Disease (D3)
April 30 – May 4, 2017 | Austin, Texas, USA
Scientific Organizers: Steffen Jung and Miriam Merad

May 2017

Modeling Viral Infections and Immunity (E1)
May 1 – 4, 2017 | Estes Park, Colorado, USA
Scientific Organizers: Alan S. Perelson, Rob J. De Boer and Phillip D. Hodgkin

Angiogenesis and Vascular Disease (Z3)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: M. Luisa Iruela-Arispe, Timothy T. Hla and Courtney Griffin

Mitochondria, Metabolism and Heart (Z4)
May 8 – 12, 2017 | Santa Fe, New Mexico, USA
Scientific Organizers: Junichi Sadoshima, Toren Finkel and Åsa B. Gustafsson

Neuronal Control of Appetite, Metabolism and Weight (Z5)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Lora K. Heisler and Scott M. Sternson

Gastrointestinal Control of Metabolism (Z6)
May 9 – 13, 2017 | Copenhagen, Denmark
Scientific Organizers: Randy J. Seeley, Matthias H. Tschöp and Fiona M. Gribble

Aging and Mechanisms of Aging-Related Disease (E2)
May 15 – 19, 2017 | Yokohama, Japan
Scientific Organizers: Kazuo Tsubota, Shin-ichiro Imai, Matt Kaeberlein and Joan Mannick

Single Cell Omics (E3)
May 26 – 30, 2017 | Stockholm, Sweden
Scientific Organizers: Sarah Teichmann, Evan W. Newell and William J. Greenleaf

Integrating Metabolism and Immunity (E4)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Hongbo Chi, Erika L. Pearce, Richard A. Flavell and Luke A.J. O’Neill

Cell Death and Inflammation (K2)
May 29 – June 2, 2017 | Dublin, Ireland
Scientific Organizers: Seamus J. Martin and John Silke

June 2017

Neuroinflammation: Concepts, Characteristics, Consequences (E5)
June 19 – 23, 2017 | Keystone, Colorado, USA
Scientific Organizers: Richard M. Ransohoff, Christopher K. Glass and V. Hugh Perry

SOURCE

Read Full Post »

Older Posts »