Advertisements
Feeds:
Posts
Comments

Archive for the ‘NK Cell-Based Cancer Immunotherapy’ Category


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Gender of a person can affect the kinds of cancer-causing mutations they develop, according to a genomic analysis spanning nearly 2,000 tumours and 28 types of cancer. The results show striking differences in the cancer-causing mutations found in people who are biologically male versus those who are biologically female — not only in the number of mutations lurking in their tumours, but also in the kinds of mutations found there.

 

Liver tumours from women were more likely to carry mutations caused by a faulty system of DNA mending called mismatch repair, for instance. And men with any type of cancer were more likely to exhibit DNA changes thought to be linked to a process that the body uses to repair DNA with two broken strands. These biases could point researchers to key biological differences in how tumours develop and evolve across sexes.

 

The data add to a growing realization that sex is important in cancer, and not only because of lifestyle differences. Lung and liver cancer, for example, are more common in men than in women — even after researchers control for disparities in smoking or alcohol consumption. The source of that bias, however, has remained unclear.

In 2014, the US National Institutes of Health began encouraging researchers to consider sex differences in preclinical research by, for example, including female animals and cell lines from women in their studies. And some studies have since found sex-linked biases in the frequency of mutations in protein-coding genes in certain cancer types, including some brain cancers and advanced melanoma.

 

But the present study is the most comprehensive study of sex differences in tumour genomes so far. It looks at mutations not only in genes that code for proteins, but also in the vast expanses of DNA that have other functions, such as controlling when genes are turned on or off. The study also compares male and female genomes across many different cancers, which can allow researchers to pick up on additional patterns of DNA mutations, in part by increasing the sample sizes.

 

Researchers analysed full genome sequences gathered by the International Cancer Genome Consortium. They looked at differences in the frequency of 174 mutations known to drive cancer, and found that some of these mutations occurred more frequently in men than in women, and vice versa. When they looked more broadly at the loss or duplication of DNA segments in the genome, they found 4,285 sex-biased genes spread across 15 chromosomes.

 

There were also differences found when some mutations seemed to arise during tumour development, suggesting that some cancers follow different evolutionary paths in men and women. Researchers also looked at particular patterns of DNA changes. Such patterns can, in some cases, reflect the source of the mutation. Tobacco smoke, for example, leaves behind a particular signature in the DNA.

 

Taken together, the results highlight the importance of accounting for sex, not only in clinical trials but also in preclinical studies. This could eventually allow researchers to pin down the sources of many of the differences found in this study. Liver cancer is roughly three times as common in men as in women in some populations, and its incidence is increasing in some countries. A better understanding of its aetiology may turn out to be really important for prevention strategies and treatments.

 

References:

 

https://www.nature.com/articles/d41586-019-00562-7?utm_source=Nature+Briefing

 

https://www.nature.com/news/policy-nih-to-balance-sex-in-cell-and-animal-studies-1.15195

 

https://www.ncbi.nlm.nih.gov/pubmed/26296643

 

https://www.biorxiv.org/content/10.1101/507939v1

 

https://www.ncbi.nlm.nih.gov/pubmed/25985759

 

Advertisements

Read Full Post »

Immunoediting can be a constant defense in the cancer landscape


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.

 

When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.

 

Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.

References:

 

https://www.linkedin.com/pulse/immunoediting-cancer-landscape-john-catanzaro/

 

https://www.cell.com/cell/fulltext/S0092-8674(16)31609-9

 

https://www.researchgate.net/publication/309432057_Circulating_tumor_cell_clusters_What_we_know_and_what_we_expect_Review

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840207/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00414/full

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388310/

 

https://www.linkedin.com/pulse/cancer-hallmark-analytics-omics-data-pathway-studio-review-catanzaro/

 

Read Full Post »

Immunotherapy may help in glioblastoma survival


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. But, in a glimmer of hope, a recent study found that a drug designed to unleash the immune system helped some patients live longer. Glioblastoma powerfully suppresses the immune system, both at the site of the cancer and throughout the body, which has made it difficult to find effective treatments. Such tumors are complex and differ widely in their behavior and characteristics.

 

A small randomized, multi-institution clinical trial was conducted and led by researchers at the University of California at Los Angeles involved patients who had a recurrence of glioblastoma, the most common central nervous system cancer. The aim was to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab (checkpoint inhibitor) in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone.

 

Neoadjuvant PD-1 blockade was associated with upregulation of T cell– and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhanced both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.

 

Immunotherapy has not proved to be effective against glioblastoma. This small clinical trial explored the effect of PD-1 blockade on recurrent glioblastoma in relation to the timing of administration. A total of 35 patients undergoing resection of recurrent disease were randomized to either neoadjuvant or adjuvant pembrolizumab, and surgical specimens were compared between the two groups. Interestingly, the tumoral gene expression signature varied between the two groups, such that those who received neoadjuvant pembrolizumab displayed an INF-γ gene signature suggestive of T-cell activation as well as suppression of cell-cycle signaling, possibly consistent with growth arrest. Although the study was not powered for efficacy, the group found an increase in overall survival in patients receiving neoadjuvant pembrolizumab compared with adjuvant pembrolizumab of 13.7 months versus 7.5 months, respectively.

 

In this small pilot study, neoadjuvant PD-1 blockade followed by surgical resection was associated with intratumoral T-cell activation and inhibition of tumor growth as well as longer survival. How the drug works in glioblastoma has not been totally established. The researchers speculated that giving the drug before surgery prompted T-cells within the tumor, which had been impaired, to attack the cancer and extend lives. The drug didn’t spur such anti-cancer activity after the surgery because those T-cells were removed along with the tumor. The results are very important and very promising but would need to be validated in much larger trials.

 

References:

 

https://www.washingtonpost.com/health/2019/02/11/immunotherapy-may-help-patients-with-kind-cancer-that-killed-john-mccain/?noredirect=on&utm_term=.e1b2e6fffccc

 

https://www.ncbi.nlm.nih.gov/pubmed/30742122

 

https://www.practiceupdate.com/content/neoadjuvant-anti-pd-1-immunotherapy-promotes-immune-responses-in-recurrent-gbm/79742/37/12/1

 

https://www.esmo.org/Oncology-News/Neoadjuvant-PD-1-Blockade-in-Glioblastoma

 

https://neurosciencenews.com/immunotherapy-glioblastoma-cancer-10722/

 

Read Full Post »


TWEETS by @pharma_BI and @AVIVA1950 at #IESYMPOSIUM – @kochinstitute 2019 #Immune #Engineering #Symposium, 1/28/2019 – 1/29/2019

 

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

 

eProceedings for Day 1 and Day 2

LIVE Day One – Koch Institute 2019 Immune Engineering Symposium, January 28, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/28/live-day-one-koch-institute-2019-immune-engineering-symposium-january-28-2019-kresge-auditorium-mit/

 

LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

https://pharmaceuticalintelligence.com/2019/01/29/live-day-two-koch-institute-2019-immune-engineering-symposium-january-29-2019-kresge-auditorium-mit/

 

 

  1. AMAZING Conference I covered in Real Time

  2. Aviv Regev Melanoma: malignant cells with resistance in cold niches in situ cells express the resistance program pre-treatment: resistance UP – cold Predict checkpoint immunotherapy outcomes CDK4/6 abemaciclib in cell lines

  3. Aviv Regev, a cell-cell interactions from variations across individuals Most UC-risk genes are cell type specificVariation – epithelial cell signature – organize US GWAS into cell type spec

  4. Diane Mathis Age-dependent Treg and mSC changes – Linear with increase in age Sex-dependent Treg and mSC changes – Female Treg loss in cases of Obesity leading to fibrosis Treg keep IL-33-Producing mSCs under rein Lean tissue/Obese tissue

  5. Martin LaFleur Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors PTpn2 deletion in the immune system enhanced tumor immunity CHIME enables in vivo screening

  6. Alex Shalek Identifying and rationally modulating cellular drivers of enhanced immunity T Cells, Clusters Expression of Peak and Memory Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers

  7.   Retweeted

    Onward: our own Michael Birnbaum, who assures us that if you feel like you’re an immunoengineer, then you ARE one!

  8. Glenn Dranoff Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Monotherapy (NIR178) combine with PD receptor blockage (PDR) show benefit A alone vs A+B in Clinical trial

  9. Glenn Dranoff PD-L1 blockade elicits responses in some patients: soft part sarcoma LAG-3 combined with PD-1 – human peripheral blood tumor TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB myeloid

  10. Glenn Dranoff Institute for Biomedical Research of Neurologic toxicities of CART t IL-6 activation AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody anti tumor effect

  11. of protective HLA-DR4 effects outside of “peptide anchor” residues Class I MHC – HLA-E down regulate T and NK cells Receptor Binding: Positional preferences noted for NKG2A

  12. Yvonne Chen Activation of t Cell use CAR t Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19 GFP MCAR responds to Dimeric GFP “Tumor microenvironment is a scary place”

  13. Yvonne Chen Do we need a ligand to be a dimers? Co-expressed second-generation TGF-beta signaling

  14. Yvonne Chen “Engineering smarter and stronger T cells for cancer immunotherapy” OR-Gate cause no relapse – Probing limits of modularity in CAR Design Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)

  15.   Retweeted

    Ending the 1st session is Cathy Wu of detailing some amazing work on vaccination strategies for melanoma and glioblastoma patients. They use long peptides engineered from tumor sequencing data.

  16.   Retweeted

    Some fancy imaging: Duggan gives a nice demo of how dSTORM imaging works using a micropatterend image of Kennedy Institute for Rheumatology! yay!

  17.   Retweeted

    Lots of interesting talks in the second session of the – effects of lymphoangiogenesis on anti-tumor immune responses, nanoparticle based strategies to improve bNAbs titers/affinity for HIV therapy, and IAPi cancer immunotherapy

  18.   Retweeted

    Looking forward to another day of the . One more highlight from yesterday – from our own lab showcased her work developing cytokine fusions that bind to collagen, boosting efficacy while drastically reducing toxicities

  19.   Retweeted

    Members of our cell therapy team were down the street today at neighboring for the presented by .

  20.   Retweeted

    He could have fooled me that he is, in fact, an immunologist!

  21.  
  22.   Retweeted

    Come and say Hi! ACIR will be back tomorrow at the Immune Engineering Symposium at MIT. Learn more at . . And stay tuned to read our summary of the talks on Feb 6.

  23. Facundo Batista @MGH # in BG18 Germline Heavy CHain (BG18-gH) High-mannose patch – mice exhibit normal B cell development B cells from naive human germline BG18-gH bind to GT2 immunogen

  24. Preeti Sharma, U Illinois T cell receptor and CAR-T engineering TCR engineering for Targeting glycosylated cancer antigens Nornal glycosylation vs Aberrant Engineering 237-CARs libraries with conjugated (Tn-OTS8) against Tn-antigend In vitro

  25. Bryan Bryson Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state functional spectrum of human microphages

  26. Bryan Bryson macrophage axis in Mycobacterium tuberculosis Building “libraries” – surface marker analysis of Microphages Polarized macrophages are functionally different quant and qual differences History of GM-CSF suppresses IL-10

  27. Jamie Spangler John Hopkins University “Reprogramming anti-cancer immunity RESPONSE through molecular engineering” De novo IL-2 potetiator in therapeutic superior to the natural cytokine by molecular engineering mimicking other cytokines

  28. Jamie Spangler JES6-1 Immunocytokine – inhibiting melanoma Engineering a Treg cell-biased immunocytokine double mutant immunocytokine shows enhanced IL-2Ralpha exchange Affinity De Novo design of a hyper-stable, effector biased IL-2

  29. , Volume Five: in of Cardiovascular Diseases. On com since 12/23/2018

  30. Michael Dustin ESCRT pathway associated with synaptic ectosomes Locatization, Microscopy Cytotoxic T cell granules CTLs release extracellular vescicles similar to T Helper with perforin and granzyme – CTL vesicles kill targets

  31. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Synaptic ectosome biogenisis Model: T cells: DOpamine cascade in germinal cell delivered to synaptic cleft – Effector CD40 – Transfer is cooperative

  32. Michael Dustin Delivery of T cell Effector function through extracellular vesicles Laterally mobile ligands track receptor interaction ICAM-1 Signaling of synapse – Sustain signaling by transient in microclusters TCR related Invadipodia

  33. Mikael Pittet @MGH Myeloid Cells in Cancer Indirect mechanism AFTER a-PD-1 Treatment IFN-gamma Sensing Fosters IL-12 & therapeutic Responses aPD-1-Mediated Activation of Tumor Immunity – Direct activation and the ‘Licensing’ Model

  34. Stefani Spranger KI Response to checkpoint blockade Non-T cell-inflamed – is LACK OF T CELL INFILTRATION Tumor CD103 dendritic cells – Tumor-residing Batf3-drivenCD103 Tumor-intrinsic Beta-catenin mediates lack of T cell infiltration

  35. Max Krummel Gene expression association between two genes: and numbers are tightly linked to response to checkpoint blockage IMMUNE “ACCOMODATION” ARCHYTYPES: MYELOID TUNING OF ARCHITYPES Myeloid function and composition

  36. Noor Momin, MIT Lumican-cytokines improve control of distant lesions – Lumican-fusion potentiates systemic anti-tumor immunity

    Translate Tweet

  37. Noor Momin, MIT Lumican fusion to IL-2 improves treatment efficacy reduce toxicity – Anti-TAA mAb – TA99 vs IL-2 Best efficacy and least toxicity in Lumican-MSA-IL-2 vs MSA-IL2 Lumican synergy with CAR-T

  38.   Retweeted

    excited to attend the immune engineering symposium this week! find me there to chat about and whether your paper could be a good fit for us! 🦠🧬🔬🧫📖

  39.   Retweeted

    Bob Schreiber and Tyler Jacks kicked off the with 2 great talks on the role of Class I and Class II neo-Ag in tumor immunogenicity and how the tumor microenvironment alters T cell responsiveness to tumors in vivo

  40.   Retweeted

    Scott Wilson from gave a fantastic talk on glycopolymer conjugation to antigens to improve trafficking to HAPCs and enhanced tolerization in autoimmunity models. Excited to learn more about his work at his faculty talk!

  41. AMAZING Symposinm

  42.   Retweeted

    Immune Engineering Symposium at MIT is underway!

  43.   Retweeted

    ACIR is excited to be covering the Immune Engineering Symposium at MIT on January 28-29. Learn more at .

  44. Tyler Jacks talk was outstanding, Needs be delivered A@TED TALKs, needs become contents in the curriculum of Cell Biology graduate seminar as an Online class. BRAVO

  45.   Retweeted

    Here we go!! Today and tomorrow the tippity top immunologists converge at

  46.   Retweeted

    Exciting start to this year’s Immune Engineering Symposium put on by at . A few highlights from the first section…

  47. Stephanie Dougan (Dana-Farber Cancer Institute) Dept. Virology IAPi outperforms checkpoint blockade in T cell cold tumors reduction of tumor burden gencitabine cross-presenting DCs and CD8 T cells – T cell low 6694c2

  48. Darrell Irvine (MIT, Koch Institute; HHMI) Engineering follicle delivery through synthetic glycans: eOD-60mer nanoparticles vs Ferritin-trimer 8-mer (density dependent)

  49. Darrell Irvine (MIT, Koch Institute; HHMI) GC targeting is dependent on complement component CIQ – activation: Mannose-binding lectins recognize eOD-60mer but not eOD monomer or trimers

  50. Melody Swartz (University of Chicago) Lymphangiogenesis attractive to Native T cells, in VEGF-C tumors T cell homing inhibitors vs block T cell egress inhibitors – Immunotherapy induces T cell killing

  51. Cathy Wu @MGH breakthrough for Brain Tumor based neoantigen-specific T cell at intracranial site Single cells brain tissue vs single cells from neoantigen specific T cells – intratumoral neoantigen-specific T cells: mutARGAP35-spacific

  52. Cathy Wu (Massachusetts General Hospital) – CoFounder of NEON Enduring complete radiographic responses after + alpha-PD-1 treatment (anti-PD-1) NeoVax vs IVAC Mutanome for melanoma and Glioblastoma clinical trials

  53. , U of Chicago IV INJECTION: OVAALBUMIN OVA-P(GALINAC), P(GLCNAC), SUPRESS T CELL RESPONSE Abate T cells response – Reduced cytokine production & increased -regs

  54. Interrogating markers of T cell dysfunction – chance biology of cells by CRISPR – EGR2 at 2 weeks dysfuntioning is reduced presence of EDR2 mutant class plays role in cell metabolism cell becomes functional regulator CD8 T cell

  55. Bob Schreiber (Wash University of St. Louis) Optimal CD8+ T cells mediated to T3 require CD4+ T help

Read Full Post »


LIVE Day Two – Koch Institute 2019 Immune Engineering Symposium, January 29, 2019, Kresge Auditorium, MIT

 

Real Time Press Coverage: Aviva Lev-Ari, PhD, RN

#IESYMPOSIUM @pharma_BI @AVIVA1950

 

MISSION The mission of the Koch Institute (KI) is to apply the tools of science and technology to improve the way cancer is detected, monitored, treated and prevented.

APPROACH We bring together scientists and engineers – in collaboration with clinicians and industry partners – to solve the most intractable problems in cancer. Leveraging MIT’s strengths in technology, the life sciences and interdisciplinary research, the KI is pursuing scientific excellence while also directly promoting innovative ways to diagnose, monitor, and treat cancer through advanced technology.

HISTORY The Koch Institute facility was made possible through a $100 million gift from MIT alumnus David H. Koch. Our new building opened in March 2011, coinciding with MIT’s 150th anniversary. Our community has grown out of the MIT Center for Cancer Research (CCR), which was founded in 1974 by Nobel Laureate and MIT Professor Salvador Luria, and is one of seven National Cancer Institute-designated basic (non-clinical) research centers in the U.S.

https://ki.mit.edu/files/ki/cfile/news/presskit/KI_Fact_Sheet_-_February_2018.pdf

January 28-29, 2019
Kresge Auditorium, MIT

Biological, chemical, and materials engineers are engaged at the forefront of immunology research. At their disposal is an analytical toolkit honed to solve problems in the petrochemical and materials industries, which share the presence of complex reaction networks, and convective and diffusive molecular transport. Powerful synthetic capabilities have also been crafted: binding proteins can be engineered with effectively arbitrary specificity and affinity, and multifunctional nanoparticles and gels have been designed to interact in highly specific fashions with cells and tissues. Fearless pursuit of knowledge and solutions across disciplinary boundaries characterizes this nascent discipline of immune engineering, synergizing with immunologists and clinicians to put immunotherapy into practice.

The 2019 symposium will include two poster sessions and four abstract-selected talks. Abstracts should be uploaded on the registration page. Abstract submission deadline is November 15, 2018. Registration closes December 14.

Featuring on Day 2, 1/29, 2019:

Session IV

Moderator: Michael Birnbaum, Koch Institute, MIT

 

Jamie Spangler (John Hopkins University)

“Reprogramming anti-cancer immunity through molecular engineering”

  • Reprogramming anti-cancer immunity response through molecular engineering”
  • Cytokines induce receptor dimerization
  • Clinical Use of cytokines: Pleiotropy, expression and stability isssues
  • poor pharmacological properties
  • cytokine therapy: New de novo protein using computational methods
  • IL-2 signals through a dimeric nad a trimeric receptor complex
  • IL-2 pleiotropy hinders its therapeutic efficacy
  • IL-2 activate immunosuppression
  • potentiation of cytokine activity by anti-IL-2 antibody selectivity
  • Cytokine binding – Antibodies compete with IL-2 receptor subunits
  • IL-2Ralpha, IL-2 Rbeta: S4B6 mimickry of alpha allosterically enhances beta
  • stimulates both Effectors and T-regs
  • JES6-1 immunocomplex selectively stimulates IL-2Ralpha cells
  • Engineering translational single-chain cytokine/antibody fusion
  • Engineering an EFFECTOR cell-based immunocytokine (602)
  • JES6-1 Immunocytokine – inhibiting melanoma
  • Engineering a Treg cell-biased immunocytokine
  • double mutant immunocytokine shows enhanced IL-2Ralpha exchange
  • Affinity  – molecular eng De Novo design of a hyper-stable, effector biased IL-2
  • De novo IL-2 poteniator in therapeutic superior to the natural cytokine by molecular engineering

 

Bryan Bryson (MIT, Department of Biological Engineering)

“Exploiting the macrophage axis in Mycobacterium tuberculosis (Mtb) infection”

  • TB  – who develop Active and why?
  • Immunological life cycle of Mtb
  • Global disease Mtb infection outcome varies within individual host
  • lesion are found by single bacteria
  • What are the cellular players in immune success
  • MACROPHAGES – molecular signals enhancing Mtb control of macrophages
  • modeling the host- macrophages are plastic and polarize
  • Building “libraries” – surface marker analysis of Microphages
  • Polarized macrophages are functionally different
  • quant and qual differences
  • History of GM-CSF suppresses IL-10
  • Loss of polarization potential: scRNAseq reveals transcriptional differences Thioredoxin facilitates immune response to Mtb is a marker of an inflammatory macrophage state
  • functional spectrum of human microphages

 

Facundo Batista (Ragon Institute (HIV Research) @MGH, MIT and Harvard)

“Vaccine evaluation in rapidly produced custom humanized mouse models”

  • Effective B cell activation requires 2 signals Antigen and binding to T cell
  • VDJ UCA (Unmutated common Ancestor)
  • B Cell Receptor (BCR) co-receptors and cytoskeleton
  • 44% in Women age 24-44
  • Prototype HIV broadly neutralizing Antibodies (bnAb) do not bind to Env protein – Immunogen design and validation
  • Target Identification –>> Immunogen Design –>>> Immunogen Validation
  • Human Ig Knock-ins [Light variable 5′ chain length vs 7′ length] decisive to inform immunogenicity – One-Step CRISPR approach does not require ES cell work
  • Proof of principle with BG18 Germline Heavy Chain (BG18-gH) High-mannose patch – mice exhibit normal B cell development
  • B cells from naive human germline BG18-gH bind to GT2 immunogen
  • GT2-nanoparticle 9NP) induces robust BG18-gH-500 cells: CD45.2 GL7 IgD
  • Interrogate immune response for HIV, Malaria, Zika, Flu

 

Session V

Moderator: Dane Wittrup, Koch Institute, MIT

 

Yvonne Chen (University of California, Los Angeles)

“Engineering smarter and stronger T cells for cancer immunotherapy”

  • Adoptive T-Cell Therapy
  • Tx for Leukemia – Tumor Antigen escape fro CAR T-cell therapy, CD19/CD20 OR-Gate CARs for prevention of antigen escape – 15 month of development
  • reduce probability of antigen escape due to two antigen CD19/CD20: Probing limits of modularity in CAR design
  • In vivo model: 75% wild type & 25% CD19 – relapse occur in the long term, early vs late vs no relapse: Tx with CAR t had no relapse
  • OR-Gate cause no relapse – Probing limits of modularity in CAR Design
  • Bispecific CARs are superior to DualCAR: One vs DualCAR (some remained single CAR)
  • Bispecific CARs exhibit superior antigen-stimulation capacity – OR-Gate CAR Outperforms Single-Input CARs
  • Lymphoma and Leukemia are 10% of all Cancers
  • TGF-gamma Rewiring T Cell Response
  • Activation of t Cell use CAR t
  • Engineer CAR-T to respond to soluble form of antigens: CD19 CAR Responds to soluble CD19
  • GFP MCAR responds to Dimeric GFP
  • “Tumor microenvironment is a scary place”

 

Michael Birnbaum, MIT, Koch Institute

“A repertoire of protective tumor immunity”

  • Decoding T and NK cell recognition – understanding immune recognition and signaling function for reprogramming the Immune system – Neoantigen vaccine pipeline
  • Personal neoantigen vax improve immunotherapy
  • CLASS I and CLASS II epitomes: MHC prediction performance – more accurate for CLASS I HLA polymorphisms
  • Immune Epitope DB and Analysis Resources 448,630 Peptide Epitomes
  • B cell assay: 413,000
  • T cell assays: 313,000
  • peptide sequence relationships – naturally occurring antigen predictions
  • Cleavable pMHC yeast display to determine peptide loading
  • HLA-DR4 libraries enrich a large collection of peptides: 96000 1/5 of entire peptide DB: Enriched motif, prediction algorithms
  • Algorithmic false negatives vs peptide concentration(nM)
  • HLA-DR4 effects outside of “peptide anchor” residues
  • Class I MHC – HLA-E down regulate T and NK cells
  • Receptor Binding: Positional preferences noted for NKG2A
  • Training data vs Algorithmic approach
  • Globally oriented –
  • TCR sequencing – TCR pairings – Multicell-per-well sequencing
  • MAD-HYPE algorithm

 

Glenn Dranoff, Novartis Institute for Biomedical Research

“Mechnism of protective tumor immunity”

  • Immune checkpoint blockade elicit 10 years survival in melanoma
  • PD-1 blockage esophageal carcinoma effective showing survival
  • renal cells, bladder
  • 20% benefit from Immuno therapy – CTLA-4 toxicity is high small % patient benefit
  • PD-1/PD-L1 anti CLTA-4 mAbs
  • solid tumors challenging
  • Requirement for effective IO – Tumor receptivity to immune infiltration
  • modulation
  • Novartis IO in the clinic: multiple tumor immune escape – complexity
  • Approach: focus trials aimed to learn immune response complementation groups manipulate into response
  • work with Engineering for delivery nimble to generate new data
  • Translational research in the clinic
  • CAR T cells
  • B cell malignancies are ideal targets for CAR T cells
  • Relapsed/Refractory – pediatric ALL refractory advanced to no relapse – complete response 80% – 6 years response
  • Antigen loss CD19 – targeting with combinatorial approach to avoid relapse
  • Large B cell lymphoma
  • Neurologic toxicities of CART t IL-6 activation
  • AML – complete response – weekly dose of XmAb CD123X CD3 bispecific antibody – protein engineering – anti tumor effect in refractory Leukemia
  • anaplastic thyroid carcinoma
  • PD-L1 blockade elicits responses in some patients: soft part sarcoma
  • LAG-3 combined with PD-1 – human peripheral blood tumor
  • TIM-3 key regulator of T cell and Myeloid cell function: correlates in the TCGA DB with myeloid
  • Adenosine level in blood or tissue very difficult to measure in blood even more than in tissue – NIR178 + PDR 001 Mono-therapy (NIR178) combine with PD receptor blockage (PDR) – shows benefit
  • A alone vs A+B in Clinical trial

 

Session VI

Moderator: Stefani Spranger, Koch Institute, MIT

 

Tim Springer, Boston Children’s Hospital, HMS

The Milieu Model for TGF-Betta Activation”

  • Protein Science – Genomics with Protein
  • Antibody Initiative – new type of antibodies not a monoclonal antibody – a different type
  • Pro TGF-beta
  • TGF-beta – not a typical cytokine it is a prodamine for Mature growth factor — 33 genes mono and heterogeneous dimers
  • Latent TGF-Beta1 crystal structure: prodomaine shields the Growth Factor
  • Mechanism od activation of pro-TGF-beta – integrin alphaVBeta 6: pro-beta1:2
  • Simulation in vivo: actin cytoskeleton cytoplasmic domain
  • LIFE CYCLE OF PROTGF-BETA
  • LRRC33 – GARP class relative
  • microglia and macrophage – link TGF-beta phenotype knock outs
  • TGF compartments of microglia separated myelination loss
  • Inhibition of TGF-beta enhances immune checkpoint
  • Loss of LRRC33-dependent TGF-beta signaling would counteract immune suppression in tumor and in slow tumor growth
  • lung metastasis of B16 in melanoma
  • immuno-histo-chemistry: LRRC33 tumor-associated myeloid cell lack cell surface proTGF-beta1
  • blocking antibodies LRRC33 mitigate toxicity on PD-L1 treatment

 

Alex Shalek, MIT, Department of Chemistry, Koch Institute

“Identifying and rationally modulating cellular drivers of enhanced immunity”

  • Balance in the Immune system
  • Profiling Granulomas  using Seq-Well 2.0
  • lung tissue in South Africa of TB patients
  • Granulomas, linking cell type abundance with burden
  • Exploring T cells Phenotypes
  • Cytotoxic & Effector ST@+ Regulatory
  • Vaccine against TB – 19% effective, only 0 IV BCG vaccination can elicit sterilizing Immunity
  • Profiling cellular response to vaccination
  • T cell gene modules across vaccine routes
  • T Cells, Clusters
  • Expression of Peak and Memory
  • Immunotherapy- Identifying Dendritic cells enhanced in HIV-1 Elite Controllers
  • moving from Observing to Engineering
  • Cellular signature: NK-kB Signaling
  • Identifying and testing Cellular Correlates of TB Protection
  • Beyond Biology: Translation research: Data sets: dosen

 

Session VII

Moderator: Stefani Spranger, Koch Institute, MIT

 

Diane Mathis, Harvard Medical School

“Tissue T-regs”

  • T reg populations in Lymphoid Non–lymphoid Tissues
  • 2009 – Treg tissue homeostasis status – sensitivity to insulin, 5-15% CD4+ T compartment
  •  transcriptome
  • expanded repertoires TCRs
  • viceral adipose tissue (VAT) –  Insulin
  • Dependencies: Taget IL-33 its I/1r/1 – encoded Receptor ST2
  • VAT up-regulate I/1r/1:ST2 Signaling
  • IL-33 – CD45 negative CD31 negative
  • mSC Production of IL-33 is Important to Treg
  • The mesenchyme develops into the tissues of the lymphatic and circulatory systems, as well as the musculoskeletal system. This latter system is characterized as connective tissues throughout the body, such as bone, muscle and cartilage. A malignant cancer of mesenchymal cells is a type of sarcoma.
  • mesenchymal Stromal Cells – mSC – some not all, VAT mSCs express IL-33
  • development of a mAb Panel for sorting the mSC Subtypes
  • Deeper transcriptome for Phenotyping of VAT mSCs
  • physiologic & pathologic perturbation
  1. Age-dependent Treg and mSC changes – Linear with increase in age
  2. Sex-dependent Treg and mSC changes – Female
  • Treg loss in cases of Obesity leading to fibrosis
  • Treg keep IL-33-Producing mSCs under rein
  • Lean tissue vs Obese tissue
  • Aged mice show poor skeletal muscle repair – it is reverses by IL-33 Injection
  • Immuno-response: target tissues systemic T reg
  • Treg and mSC

 

Aviv Regev, Broad Institute; Koch Institute

“Cell atlases as roadmaps to understand Cancer”

  • Colon disease UC – genetic underlining risk, – A single cell atlas of healthy and UC colonic mucosa inflammed and non-inflammed: Epithelial, stromal, Immune – fibroblast not observed in UC colon IAFs; IL13RA2 + IL11
  • Anti TNF responders – epithelial cells
  • Anti TNF non-responders – inflammatory monocytes fibroblasts
  • RESISTANCE to anti-cancer therapy: OSM (Inflammatory monocytes-OSMR (IAF)
  • cell-cell interactions from variations across individuals
  • Most UC-risk genes are cell type specific
  • Variation within a cell type helps predict GWAS gene functions – epithelial cell signature – organize US GWAS into cell type specific – genes in associated regions: UC and IBD

 

  • Melanoma
  • malignant cells with resistance in cold niches in situ
  • cells express the resistance program pre-treatment: resistance UP – cold
  • Predict checkpoint immunotherapy outcomes
  • CDK4/6 – computational search predict as program regulators: abemaciclib in cell lines

 

 

 

Poster Presenters

Preeti Sharma, University of Illinois

T cell receptor and CAR-T engineering – T cell therapy

  • TCR Complex: Vbeta Cbeta P2A Valpha Calpha
  • CAR-T Aga2 HA scTCR/scFv c-myc
  • Directed elovution to isolate optimal TCR or CAR
  • Eng TCR and CARt cell therapy
  • Use of TCRs against pep/MHC allows targeting a n array of cancer antigens
  • TCRs are isolated from T cell clones
  • Conventional TCR identification method vs In Vitro TCR Eng directed evolution
  • T1 and RD1 TCRs drive activity against MART-1 in CD4+ T cells
  • CD8+
  • TCR engineering for Targeting glycosylated cancer antigens
  • Normal glycosylation vs Aberrant glycosylation
  • Engineering 237-CARs  libraries with conjugated (Tn-OTS8) against multiple human Tn-antigend
  • In vitro engineering: broaden specificity to multiple peptide backbone
  • CAR engineering collaborations with U Chicago, U Wash, UPenn, Copenhagen, Germany

 

Martin LaFleur, HMS

CRISPR- Cas9 Bone marrow stem cells for Cancer Immunotherapy

  • CHIME: CHimeric IMmune Editing system
  • sgRNA-Vex
  • CHIME can be used to KO genes in multiple immune lineages
  • identify T cell intrinsic effects in the LCMV model Spleen-depleted, Spleen enhanced
  • Loss of Ptpn2 enhances CD8+ T cell responses to LCMV and Tumors
  • Ptpn2 deletion in the immune system enhanced tumor immunity
  • CHIME enables in vivo screening

 

 

Read Full Post »


2018 Nobel Prize in Physiology or Medicine for contributions to Cancer Immunotherapy to James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan

Reporter: Aviva Lev-Ari, PhD, RN

 

See

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/01/immune-system-stimulants-articles-of-note-pharmaceuticalintelligence-com/

 

Immune-Oncology Molecules In Development & Articles on Topic in @pharmaceuticalintelligence.com

Curators: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/11/articles-on-immune-oncology-molecules-in-development-pharmaceuticalintelligence-com/

 

 

Monday, October 1, 2018

NIH grantees win 2018 Nobel Prize in Physiology or Medicine.

The 2018 Nobel Prize in Physiology or Medicine has been awarded to National Institutes of Health grantee James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan, for their discovery of cancer therapy by inhibition of negative immune regulation.

The Royal Swedish Academy of Sciences said, “by stimulating the inherent ability of our immune system to attack tumor cells this year’s Nobel Laureates have established an entirely new principle for cancer therapy.”

Dr. Allison discovered that a particular protein (CTLA-4) acts as a braking system, preventing full activation of the immune system when a cancer is emerging. By delivering an antibody that blocks that protein, Allison showed the brakes could be released. The discovery has led to important developments in cancer drugs called checkpoint inhibitors and dramatic responses to previously untreatable cancers. Dr. Honjo discovered a protein on immune cells and revealed that it also operates as a brake, but with a different mechanism of action.

“Jim’s work was pivotal for cancer therapy by enlisting our own immune systems to launch an attack on cancer and arrest its development,” said NIH Director Francis S. Collins, M.D., Ph.D. “NIH is proud to have supported this groundbreaking research.”

Dr. Allison has received continuous funding from NIH since 1979, receiving more than $13.7 million primarily from NIH’s National Cancer Institute (NCI) and National Institute of Allergy and Infectious Diseases (NIAID).

“This work has led to remarkably effective, sometime curative, therapy for patients with advanced cancer, who we were previously unable to help,” said NCI Director Ned Sharpless, M.D. “Their findings have ushered in the era of cancer immunotherapy, which along with surgery, radiation and cytotoxic chemotherapy, represents a ‘fourth modality’ for treating cancer. A further understanding of the biology underlying the immune system and cancer has the potential to help many more patients.”

“Dr. Allison’s elegant and groundbreaking work in basic immunology over four decades and its important applicability to cancer is a vivid demonstration of the critical nature of interdisciplinary biomedical research supported by NIH,” says NIAID Director Anthony S. Fauci, M.D.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-grantees-win-2018-nobel-prize-physiology-or-medicine

 

Dr. Lev-Ari covered in person the following curated articles about James Allison, PhD since his days at University of California, Berkeley, including the prizes awarded prior to the 2018 Nobel Prize in Physiology.

 

2018 Albany Medical Center Prize in Medicine and Biomedical Research goes to NIH’s Dr. Rosenberg and fellow immunotherapy researchers James P. Allison, Ph.D., and Carl H. June, M.D.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/08/15/2018-albany-medical-center-prize-in-medicine-and-biomedical-research-goes-to-nihs-dr-rosenberg-and-fellow-immunotherapy-researchers-james-p-allison-ph-d-and-carl-h-june-m-d/

 

Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

REAL TIME Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/09/08/lectures-by-the-2017-award-recipients-of-warren-alpert-foundation-prize-in-cancer-immunology-october-5-2017-hms-77-louis-paster-boston/

 

Cancer-free after immunotherapy treatment: Treating advanced colon cancer – targeting KRAS gene mutation by tumor-infiltrating lymphocytes (TILs) and Killer T-cells (NK)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/08/cancer-free-after-immunotherapy-treatment-treating-advanced-colon-cancer-targeting-kras-gene-mutation-by-tumor-infiltrating-lymphocytes-tils-and-killer-t-cells-nk/

 

New Class of Immune System Stimulants: Cyclic Di-Nucleotides (CDN): Shrink Tumors and bolster Vaccines, re-arm the Immune System’s Natural Killer Cells, which attack Cancer Cells and Virus-infected Cells

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/24/new-class-of-immune-system-stimulants-cyclic-di-nucleotides-cdn-shrink-tumors-and-bolster-vaccines-re-arm-the-immune-systems-natural-killer-cells-which-attack-cancer-cells-and-virus-inf/

 

UC Berkeley research led to Nobel Prize-winning immunotherapy

Immunologist James P. Allison today shared the 2018 Nobel Prize in Physiology or Medicine for groundbreaking work he conducted on cancer immunotherapy at UC Berkeley during his 20 years as director of the campus’s Cancer Research Laboratory.

James Allison

James Allison, who for 20 years was a UC Berkeley immunologist conducting fundamental research on cancer, is now at the M.D. Anderson Cancer Center in Houston, Texas.

Now at the University of Texas M.D. Anderson Cancer Center in Houston, Allison shared the award with Tasuku Honjo of Kyoto University in Japan “for their discovery of cancer therapy by inhibition of negative immune regulation.”

Allison, 70, conducted basic research on how the immune system – in particular, a cell called a T cell – fights infection. His discoveries led to a fundamentally new strategy for treating malignancies that unleashes the immune system to kill cancer cells. A monoclonal antibody therapy he pioneered was approved by the Food and Drug Administration in 2011 to treat malignant melanoma, and spawned several related therapies now being used against lung, prostate and other cancers.

“Because this approach targets immune cells rather than specific tumors, it holds great promise to thwart diverse cancers,” the Lasker Foundation wrote when it awarded Allison its 2015 Lasker-DeBakey Clinical Medical Research Award.

Allison’s work has already benefited thousands of people with advanced melanoma, a disease that used to be invariably fatal within a year or so of diagnosis. The therapy he conceived has resulted in elimination of cancer in a significant fraction of patients for a decade and counting, and it appears likely that many of these people are cured.

“Targeted therapies don’t cure cancer, but immunotherapy is curative, which is why many consider it the biggest advance in a generation,” Allison said in a 2015 interview. “Clearly, immunotherapy now has taken its place along with surgery, chemotherapy and radiation as a reliable and objective way to treat cancer.”

“We are thrilled to see Jim’s work recognized by the Nobel Committee,” said Russell Vance, the current director of the Cancer Research Laboratory and a UC Berkeley professor of molecular and cell biology. “We congratulate him on this highly deserved honor. This award is a testament to the incredible impact that the fundamental research Jim conducted at Berkeley has had on the lives of cancer patients”

“I don’t know if I could have accomplished this work anywhere else than Berkeley,” Allison said. “There were a lot of smart people to work with, and it felt like we could do almost anything. I always tell people that it was one of the happiest times of my life, with the academic environment, the enthusiasm, the students, the faculty.”

In this video about UC Berkeley’s new Immunotherapeutics and Vaccine Research Initiative (IVRI), Allison discusses his groundbreaking work on cancer immunotherapy.

In fact, Allison was instrumental in creating the research environment of the current Department of Molecular and Cell Biology at UC Berkeley as well as the department’s division of immunology, in which he served stints as chair and division head during his time at Berkeley, said David Raulet, director of Berkeley’s Immunotherapeutics and Vaccine Research Initiative (IVRI).

“His actions helped create the superb research environment here, which is so conducive to making the fundamental discoveries that will be the basis of the next generation of medical breakthroughs,” Raulet said.

Self vs. non-self

Allison joined the UC Berkeley faculty as a professor of molecular and cell biology and director of the Cancer Research Laboratory in 1985. An immunologist with a Ph.D. from the University of Texas, Austin, he focused on a type of immune system cell called the T cell or T lymphocyte, which plays a key role in fighting off bacterial and viral infections as well as cancer.

Supercharging the immune system to cure disease: immunotherapy research at UC Berkeley. (UC Berkeley video by Roxanne Makasdjian and Stephen McNally)

At the time, most doctors and scientists believed that the immune system could not be exploited to fight cancer, because cancer cells look too much like the body’s own cells, and any attack against cancer cells would risk killing normal cells and creating serious side effects.

“The community of cancer biologists was not convinced that you could even use the immune system to alter cancer’s outcome, because cancer was too much like self,” said Matthew “Max” Krummel, who was a graduate student and postdoctoral fellow with Allison in the 1990s and is now a professor of pathology and a member of the joint immunology group at UCSF. “The dogma at the time was, ‘Don’t even bother.’ ”

“What was heady about the moment was that we didn’t really listen to the dogma, we just did it,” Krummel added. Allison, in particular, was a bit “irreverent, but in a productive way. He didn’t suffer fools easily.” This attitude rubbed off on the team.

Trying everything they could in mice to tweak the immune system, Krummel and Allison soon found that a protein receptor called CTLA-4 seemed to be holding T cells back, like a brake in a car.

Postdoctoral fellow Dana Leach then stepped in to see if blocking the receptor would unleash the immune system to actually attack a cancerous tumor. In a landmark paper published in Science in 1996, Allison, Leach and Krummel showed not only that antibodies against CTLA-4 released the brake and allowed the immune system to attack the tumors, but that the technique was effective enough to result in long-term disappearance of the tumors.

“When Dana showed me the results, I was really surprised,” Allison said. “It wasn’t that the anti-CTLA-4 antibodies slowed the tumors down. The tumors went away.”

After Allison himself replicated the experiment, “that’s when I said, OK, we’ve got something here.”

Checkpoint blockade

The discovery led to a concept called “checkpoint blockade.” This holds that the immune system has many checkpoints designed to prevent it from attacking the body’s own cells, which can lead to autoimmune disease. As a result, while attempts to rev up the immune system are like stepping on the gas, they won’t be effective unless you also release the brakes.

Allison in 1993

James Allison in 1993, when he was conducting research at UC Berkeley on a promising immunotherapy now reaching fruition. (Jane Scherr photo)

“The temporary activation of the immune system though ‘checkpoint blockade’ provides a window of opportunity during which the immune system is mobilized to attack and eliminate tumors,” Vance said.

Allison spent the next few years amassing data in mice to show that anti-CTLA-4 antibodies work, and then, in collaboration with a biotech firm called Medarex, developed human antibodies that showed promise in early clinical trials against melanoma and other cancers. The therapy was acquired by Bristol-Myers Squibb in 2011 and approved by the FDA as ipilimumab (trade name Yervoy), which is now used to treat skin cancers that have metastasized or that cannot be removed surgically.

Meanwhile, Allison left UC Berkeley in 2004 for Memorial Sloan Kettering research center in New York to be closer to the drug companies shepherding his therapy through clinical trials, and to explore in more detail how checkpoint blockade works.

“Berkeley was my favorite place, and if I could have stayed there, I would have,” he said. “But my research got to the point where all the animal work showed that checkpoint blockade had a lot of potential in people, and working with patients at Berkeley wasn’t possible. There’s no hospital, no patients.”

Thanks to Allison’s doggedness, anti-CTLA-4 therapy is now an accepted therapy for cancer and it opened the floodgates for a slew of new immunotherapies, Krummel said. There now are several hundred ongoing clinical trials involving monoclonal antibodies to one or more receptors that inhibit T cell activity, sometimes combined with lower doses of standard chemotherapy.

Antibodies against one such receptor, PD-1, which Honjo discovered in 1992, have given especially impressive results. Allison’s initial findings can be credited for prompting researchers, including Allison himself, to carry out the studies that have demonstrated the potent anti-cancer effects of PD-1 antibodies. In 2015, the FDA approved anti-PD-1 therapy for malignant melanoma, and has since approved it for non-small-cell lung, gastric and several other cancers.

Science magazine named cancer immunotherapy its breakthrough of 2013 because that year, “clinical trials … cemented its potential in patients and swayed even the skeptics. The field hums with stories of lives extended: the woman with a grapefruit-size tumor in her lung from melanoma, alive and healthy 13 years later; the 6-year-old near death from leukemia, now in third grade and in remission; the man with metastatic kidney cancer whose disease continued fading away even after treatment stopped.”

Allison pursued more clinical trials for immunotherapy at Sloan-Kettering and then in 2012 returned to his native Texas.

Born in Alice, Texas, on Aug. 7, 1948, Allison earned a B.S. in microbiology in 1969 and a Ph.D. in biological science in 1973 from the University of Texas, Austin.

RELATED INFORMATION

SOURCE

http://news.berkeley.edu/2018/10/01/uc-berkeley-research-led-to-nobel-prize-winning-immunotherapy/

Read Full Post »


Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

Reporter: Aviva Lev-Ari, PhD, RN

Top, from left: James Allison and Lieping Chen. Bottom, from left: Gordon Freeman, Tasuku Honjo (NOT ATTENDED), Arlene Sharpe.

Aviva Lev-Ari, PhD, RN was in attendance and covered this event LIVE

 

The 2017 Warren Alpert Foundation Prize has been awarded to five scientists for transformative discoveries in the field of cancer immunology.

Collectively, their work has elucidated foundational mechanisms in cancer’s ability to evade immune recognition and, in doing so, has profoundly altered the understanding of disease development and treatment. Their discoveries have led to the development of effective immune therapies for several types of cancer.

The 2017 award recipients are:

  • James Allison, professor of immunology and chair of the Department of Immunology, The University of Texas MD Anderson Cancer Center – Immune checkpoint blockage in Cancer Therapy strictly Genomics based drug
  1. 2017 FDA approved a genomics based drug
  2. and co-stimulatory signals
  3. CTLA-4 blockade, CD28, AntiCTLA-4 induces regression of Transplantable Murine tumor
  4. enhance tumor-specific immune response
  5. Fully antibody human immune response in 10,000 patients – FDA approved 2011
  6. Metastatic melanoma – 3 years survival, programmed tumor death, PD-1, MHC-A1
  7. Ipi/Nivo vs. Ipi – combination – 60% survival vs Ipi alone
  8. Anti CTA4 vs Anti-PD-1
  9. responsive T cell population – MC38 TILs
  10. MC38 Infiltrating T cell populations: T-reg, CD4, Effector, CD8, NKT/gamma-delta
  11. Checkpoint blockage modulates infiltrating T cell population frequencies
  12. T reg correlated with Tumor growth
  13. Combination therapy lead to CURE survival at 80% rate vs CTAL-4 40% positive outcome

Not Attended — Tasuku Honjo, professor of immunology and genomic medicine, Kyoto University – Immune regulation of Cancer Therapy by PD-1 Blockade

 

  • Lieping Chen, United Technologies Corporation Professor in Cancer Research and Professor of immunobiology, of dermatology and of medicine, Yale University – Adoptive Resistance: Molecular Pathway t Cancer Therapy – focus on solid tumors
  1. Enhancement – Enhance normal immune system – Co-stimulation/Co-inhibition Treg, and Cytokines, adoptive cell therapy, Lymphoid organs stores
  2. Normalization – to correct defective immune system – normalizing tumor immunity, diverse tumor escape mechanisms
  3. Anti-PD therapy: regression of large solid tumors: normalizing tumor immunity targeting tumor microenvironment: Heterogeneity, functional modulation, cellular and molecular components – classification by LACK of inflamation, adaptive resistance, other inhibitory pathways, intrinsic induction
  4. avoid autoimmune toxicity,
  5. Resetting immune response (melanoma)
  6. Understad Resistance: Target missing resistance or Adaptive resistance Type II= acquired immunity
  • Gordon Freeman, professor of medicine, Dana-Farber Cancer Institute, Harvard Medical School – PD-L1/PD-1 Cancer Immunotherapy
  1. B7 antibody
  2. block pathway – checkpoint blockage, Expand the T cells after recognition of the disease. T cell receptor signal, activation, co -stimulatory: B71 molecule, B72 – survival signals and cytokine production,.Increased T cell proliferation,
  3. PDL-1 is a ligand of PD 1. How T cell die? genes – PD1 Gene was highly expressed,
  4. Interferon gamma upregulate PD-L1 expression
  5. Feedback loop Tumor – stimulating immune response, interferon turn off PD1
  6. PD-L1 and PD-L2 Expression: Interferom
  7. Trancefuctor MHC, B7-2
  8. PD-L! sisgnat inhibit T-cell activation: turn off Proliferation and cytokine production — Decreasing the immune response
  9. T cell DNA Content: No S-phase devided cell
  10. PD-L1 engagement of PD-1 results in activation : Pd-1 Pathway inhibits T Cell Actiivation – lyposite motility,
  11. Pd-L2 is a second ligand for PD-1 and inhibits T cell activation
  12. PDl-1 expression: BR CA, Ovarian, Colonol-rectal, tymus, endothelial
  13. Blockage of the Pathway – Immune response enhanced
  14. Dendritic cells express PD-L1, PD-L2 and combination of Two, Combination was best of all by increase of cytokine production, increasing the immune response.
  15. PD-L1 blockade enhanced the immune response , increase killing and increased production of cytokines,
  16. anti-tumor efficacy of anti-PD-1/Pd-L1
  17. Pancreatic and colono-rector — PD-L, PDL1, PDL2 — does not owrkd.
  18. In menaloma: PD-1 works better than CYLA-4
  19. Comparison of Targeted Therapy: BRAF TKI vs Chemo high % but short term
  20. Immunotherapy – applies several mechanism: pre-existing anti-therapy
  21. Immune desert: PD=L does not work for them
  22. COMBINATION THERAPY: BLOCK TUMOR INVASION THEN STIMULATE IMMUNE RESPONSE — IT WILL WORK
  23. PD blockage + nutrients and probiotic
  24. Tumor Genome Therapy
  25. Tumore Immuno-evasion Score
  26. Antigens for immune response – choose the ones
  27. 20PD-1 or PD-L1 drugs in development
  28. WHO WILL THE DRUG WORK FOR?

 

  • Arlene Sharpe, the George Fabyan Professor of Comparative Pathology, Harvard Medical School; senior scientist, department of pathology, Brigham and Women’s Hospital – Multi-faceted Functionsof the PD-1 Pathway
  1. function of the pathway: control T cell activation and function of maintain immune tolerance
  2. protect tissues from damage by immune response
  3. T cell dysfunction during cancer anf viral infection
  4. protection from autoimmunity, inflammation,
  5. Mechanism by which PD-1 pathway inhibits anti-tumor immunity
  6. regulation of memoryT cell responce of PD-1
  7. PD-1 signaling inhibit anti-tumor immunity
  8. Compare: Mice lacking CD8-Cre- (0/5) cleared vs PD-1-/-5/5 – PD-1 DELETION: PARTIAL AND TIMED: DELETION OF PD-1 ON HALF OG TILS STARTING AT DAY 7 POSTTUMOR IMPLANTATION OF BOTH PD-1 AND PD-1 TILS: – Tamoxifen days 7-11
  9. Transcription profile: analysis of CD8+ TILs reveal altered metabolism: Fatty Acid Metabolism vs Oxidative Phosphorylation
  10. DOes metabolic shift: WIld type mouth vs PD-1-/_ P14: analyze Tumor cell killingPD-1-/- enhanced FAO increases CD8+ T cell tocicity
  11. Summary: T cell memory development and PD-1: T effectors vs T cell memory: Primary vs Secondary infection: In the absent of PD-1, CD8+ T cels show increase expansion of T cells
  12. INFLUENZA INFECTION: PRIMARY more virus in lung in PD-1 is lacking
  13. Acute infection: PD-1 controls memory T cell differentiation vs PD-1 increase expansion during effector phase BUT impaired persistence during memory phase: impaired cytokine production post re-challenge
  14. PD-1 immunotherapy work for patients with tumor: Recall Response and Primary response
  15. TIL density Primary vs Long term survivor – 5 days post tumor implantation – rechallenged long term survival
  16. Hot tumor vs Cold tumor – Deletion of PD-1 impairs T memory cell development

 

Opening Remarks: George Q. Daley, MD, PhD, DEAN, HMS

  • Scientific collaboration check point – avoid the body attacking itself, sabotaging the immune system
  • 1987 – Vaccine for HepB
  • Eight of the awardees got the Nobel Prize

 

Moderated by Joan Brugge, PhD, HMS, Prof. of Cell Biology

  • Evolution of concepts of Immunotherapy: William Coley’s Toxin streptoccocus skin infection.
  • 20th century: Immuno-surveilence, Immune response – field was dead in 1978 replaced by Immunotherapy
  • Rosenberg at NIH, high dose of costimulatory molecule prevented tumor reappearanceantbody induce tumor immunity–>> immune theraphy by check point receptor blockade – incidence of tumor in immune compromised mice – transfer T cell
  • T cell defficient, not completely defficient, self recognition of tumor,
  • suppress immmune – immune evasion
  • Michael Atkins, MD, Detupy Director, Georgetown-Lombardi, Comprehensive Cancer Center Clinical applications of Checkpoint inhibitors: Progress and Promise
  1. Overwhelm the Immune system, hide, subvert, Shield, defend-deactivating tumor trgeting T cells that ATTACK the immune system
  2. Immune system to TREAT the cancer
  3. Monotherapy – anti PD1/PD-L1: Antagonist activity
  4. Evading immune response: prostate, colcn
  5. MMR deficiency
  6. Nivolumab in relaped/Refractory HODGKIN LYMPHOMAS – over expression of PD-L1 and PDL2in Lymphomas
  7. 18 month survival better with Duv in Lung cancer stage 3 – anti PD-1- adjuvant therapy with broad effectiveness
  8. Biomarkers for pD-L1 Blockage
  9. ORR higher in PD-L1
  10. Improve Biomarkers: Clonality of T cells in Tumors
  11. T-effector Myeloid Inflammation Low – vs Hogh:
  12. Biomarker Model: Neoantigen burden vs Gene expression vs CD8+
  13. Tissue DIagnostic Labs: Tumor microenveironmenr
  14. Microbiome
  15. Combination: Nivo vs Nivo+Ipi is superior: DETERMINE WHEN TO STOP TREATMENT
  16. 15/16 stopped treatment – Treatment FREE SURVIVAL
  17. Sequencing with Standard Therapies
  18. Brain metastasis – Immune Oncology Therapy – crosses the BBB
  19. Less Toxic regimen, better toxicity management,
  20. Use Immuno therapy TFS
  21. combination – survival must be justified
  22. Goal: to make Cancer a curable disease vs cancer becoming a CHronic disease

 

Closing Remarks: George Q. Daley, MD, PhD, DEAN, HMS

 

The honorees will share a $500,000 prize and will be recognized at a day-long symposium on Oct. 5 at Harvard Medical School.

The Warren Alpert Foundation, in association with Harvard Medical School, honors trailblazing scientists whose work has led to the understanding, prevention, treatment or cure of human disease. The award recognizes seminal discoveries that hold the promise to change our understanding of disease or our ability to treat it.

“The discoveries honored by the Warren Alpert Foundation over the years are remarkable in their scope and potential,” said George Q. Daley, dean of Harvard Medical School. “The work of this year’s recipients is nothing short of breathtaking in its profound impact on medicine. These discoveries have reshaped our understanding of the body’s response to cancer and propelled our ability to treat several forms of this recalcitrant disease.”

The Warren Alpert Foundation Prize is given internationally. To date, the foundation has awarded nearly $4 million to 59 scientists. Since the award’s inception, eight honorees have also received a Nobel Prize.

“We commend these five scientists. Allison, Chen, Freeman, Honjoand Sharpe are indisputable standouts in the field of cancer immunology,” said Bevin Kaplan, director of the Warren Alpert Foundation. “Collectively, they are helping to turn the tide in the global fight against cancer. We couldn’t honor more worthy recipients for the Warren Alpert Foundation Prize.”

The 2017 award: Unraveling the mysterious interplay between cancer and immunity

Understanding how tumor cells sabotage the body’s immune defenses stems from the collective work of many scientists over many years and across multiple institutions.

Each of the five honorees identified key pieces of the puzzle.

The notion that cancer and immunity are closely connected and that a person’s immune defenses can be turned against cancer is at least a century old. However, the definitive proof and demonstration of the steps in this process were outlined through findings made by the five 2017 Warren Alpert prize recipients.

Under normal conditions, so-called checkpoint inhibitor molecules rein in the immune system to ensure that it does not attack the body’s own cells, tissues and organs. Building on each other’s work, the five award recipients demonstrated how this normal self-defense mechanism can be hijacked by tumors as a way to evade immune surveillance and dodge an attack. Subverting this mechanism allows cancer cells to survive and thrive.

A foundational discovery made in the 1980s elucidated the role of a molecule on the surface of T cells, the body’s elite assassins trained to seek, spot and destroy invaders.

A protein called CTLA-4 emerged as a key regulator of T cell behavior—one that signals to T cells the need to retreat from an attack. Experiments in mice lacking CTLA-4 and use of CTLA-4 antibodies demonstrated that absence of CTLA-4 or blocking its activity could lead to T cell activation and tumor destruction.

Subsequent work identified a different protein on the surface of T cells—PD-1—as another key regulator of T cell response. Mice lacking this protein developed an autoimmune disease as a result of aberrant T cell activity and over-inflammation.

Later on, scientists identified a molecule, B7-H1, subsequently renamed PD-L1, which binds to PD-1, clicking like a key in a lock. This was followed by the discovery of a second partner for PD-1—the molecule PD-L2—which also appeared to tame T-cell activity by binding to PD-1.

The identification of these molecules led to a set of studies showing that their presence on human and mouse tumors rendered the tumors resistant to immune eradication.

A series of experiments further elucidated just how tumors exploit the interaction between PD-1 and PD-L1 to survive. Specifically, some tumor cells appeared to express PD-L1, essentially “wrapping” themselves in it to avoid immune recognition and destruction.

Additional work demonstrated that using antibodies to block this interaction disarmed the tumors, rendering them vulnerable to immune destruction.

Collectively, the five scientists’ findings laid the foundation for antibody-based therapies that modulate the function of these molecules as a way to unleash the immune system against cancer cells.

Antibody therapy that targets CTLA-4 is currently approved by the FDA for the treatment of melanoma. PD-1/PD-L1 inhibitors have already shown efficacy in a broad range of cancers and have been approved by the FDA for the treatment of melanoma; kidney; lung; head and neck cancer; bladder cancer; some forms of colorectal cancer; Hodgkin lymphoma and Merkel cell carcinoma.

In their own words

“I am humbled to be included among the illustrious scientists who have been honored by the Warren Alpert Foundation for their contributions to the treatment and cure of human disease in its 30+ year history.  It is also recognition of the many investigators who have labored for decades to realize the promise of the immune system in treating cancer.”
        -James Allison


“The award is a great honor and a wonderful recognition of our work.”
         Lieping Chen



I am thrilled to have made a difference in the lives of cancer patients and to be recognized by fellow scientists for my part in the discovery of the PD-1/PD-L1 and PD-L2 pathway and its role in tumor immune evasion.  I am deeply honored to be a recipient of the Alpert Award and to be recognized for my part in the work that has led to effective cancer immunotherapy. The success of immunotherapy has unleashed the energies of a multitude of scientists to further advance this novel strategy.”
                                        -Gordon Freeman


I am extremely honored to receive the Warren Alpert Foundation Prize. I am very happy that our discovery of PD-1 in 1992 and subsequent 10-year basic research on PD-1 led to its clinical application as a novel cancer immunotherapy. I hope this development will encourage many scientists working in the basic biomedical field.”
-Tasuku Honjo


“I am truly honored to be a recipient of the Alpert Award. It is especially meaningful to be recognized by my colleagues for discoveries that helped define the biology of the CTLA-4 and PD-1 pathways. The clinical translation of our fundamental understanding of these pathways illustrates the value of basic science research, and I hope this inspires other scientists.”
-Arlene Sharpe

Previous winners

Last year’s award went to five scientists who were instrumental in the discovery and development of the CRISPR bacterial defense mechanism as a tool for gene editing. They were RodolpheBarrangou of North Carolina State University, Philippe Horvath of DuPont in Dangé-Saint-Romain, France, Jennifer Doudna of the University of California, Berkeley, Emmanuelle Charpentier of the Max Planck Institute for Infection Biology in Berlin and Umeå University in Sweden, and Virginijus Siksnys of the Institute of Biotechnology at Vilnius University in Lithuania.

Other past recipients include:

  • Tu Youyou of the China Academy of Chinese Medical Science, who went on to receive the 2015 Nobel Prize in Physiology or Medicine with two others, and Ruth and Victor Nussenzweig, of NYU Langone Medical Center, for their pioneering discoveries in chemistry and parasitology of malaria and the translation of their work into the development of drug therapies and an anti-malarial vaccine.
  • Oleh Hornykiewicz of the Medical University of Vienna and the University of Toronto; Roger Nicoll of the University of California, San Francisco; and Solomon Snyder of the Johns Hopkins University School of Medicine for research into neurotransmission and neurodegeneration.
  • David Botstein of Princeton University and Ronald Davis and David Hogness of Stanford University School of Medicine for contributions to the concepts and methods of creating a human genetic map.
  • Alain Carpentier of Hôpital Européen Georges-Pompidou in Paris and Robert Langer of MIT for innovations in bioengineering.
  • Harald zur Hausen and Lutz Gissmann of the German Cancer Research Center in Heidelberg for work on the human papillomavirus (HPV) and cancer of the cervix. Zur Hausenand others were honored with the Nobel Prize in Physiology or Medicine in 2008.

The Warren Alpert Foundation

Each year the Warren Alpert Foundation receives between 30 and 50 nominations from scientific leaders worldwide. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School.

Warren Alpert (1920-2007), a native of Chelsea, Mass., established the prize in 1987 after reading about the development of a vaccine for hepatitis B. Alpert decided on the spot that he would like to reward such breakthroughs, so he picked up the phone and told the vaccine’s creator, Kenneth Murray of the University of Edinburgh, that he had won a prize. Alpert then set about creating the foundation.

To award subsequent prizes, Alpert asked Daniel Tosteson (1925-2009), then dean of Harvard Medical School, to convene a panel of experts to identify scientists from around the world whose research has had a direct impact on the treatment of disease.

SOURCE

https://hms.harvard.edu/news/warren-alpert-foundation-honors-pioneers-cancer-immunology

Read Full Post »

Older Posts »