Advertisements
Feeds:
Posts
Comments

Archive for the ‘NK Cell-Based Cancer Immunotherapy’ Category


Lectures by The 2017 Award Recipients of Warren Alpert Foundation Prize in Cancer Immunology, October 5, 2017, HMS, 77 Louis Paster, Boston

Top, from left: James Allison and Lieping Chen. Bottom, from left: Gordon Freeman, Tasuku Honjo, Arlene Sharpe.

The 2017 Warren Alpert Foundation Prize has been awarded to five scientists for transformative discoveries in the field of cancer immunology.

Collectively, their work has elucidated foundational mechanisms in cancer’s ability to evade immune recognition and, in doing so, has profoundly altered the understanding of disease development and treatment. Their discoveries have led to the development of effective immune therapies for several types of cancer.

The 2017 award recipients are:

  • James Allison, professor of immunology and chair of the Department of Immunology, The University of Texas MD Anderson Cancer Center
  • Lieping Chen, United Technologies Corporation Professor in Cancer Research and professor of immunobiology, of dermatology and of medicine, Yale University
  • Gordon Freeman, professor of medicine, Dana-Farber Cancer Institute, Harvard Medical School
  • Tasuku Honjo, professor of immunology and genomic medicine, Kyoto University
  • Arlene Sharpe, the George Fabyan Professor of Comparative Pathology, Harvard Medical School; senior scientist, department of pathology, Brigham and Women’s Hospital

The honorees will share a $500,000 prize and will be recognized at a day-long symposium on Oct. 5 at Harvard Medical School.

The Warren Alpert Foundation, in association with Harvard Medical School, honors trailblazing scientists whose work has led to the understanding, prevention, treatment or cure of human disease. The award recognizes seminal discoveries that hold the promise to change our understanding of disease or our ability to treat it.

“The discoveries honored by the Warren Alpert Foundation over the years are remarkable in their scope and potential,” said George Q. Daley, dean of Harvard Medical School. “The work of this year’s recipients is nothing short of breathtaking in its profound impact on medicine. These discoveries have reshaped our understanding of the body’s response to cancer and propelled our ability to treat several forms of this recalcitrant disease.”

The Warren Alpert Foundation Prize is given internationally. To date, the foundation has awarded nearly $4 million to 59 scientists. Since the award’s inception, eight honorees have also received a Nobel Prize.

“We commend these five scientists. Allison, Chen, Freeman, Honjoand Sharpe are indisputable standouts in the field of cancer immunology,” said Bevin Kaplan, director of the Warren Alpert Foundation. “Collectively, they are helping to turn the tide in the global fight against cancer. We couldn’t honor more worthy recipients for the Warren Alpert Foundation Prize.”

The 2017 award: Unraveling the mysterious interplay between cancer and immunity

Understanding how tumor cells sabotage the body’s immune defenses stems from the collective work of many scientists over many years and across multiple institutions.

Each of the five honorees identified key pieces of the puzzle.

The notion that cancer and immunity are closely connected and that a person’s immune defenses can be turned against cancer is at least a century old. However, the definitive proof and demonstration of the steps in this process were outlined through findings made by the five 2017 Warren Alpert prize recipients.

Under normal conditions, so-called checkpoint inhibitor molecules rein in the immune system to ensure that it does not attack the body’s own cells, tissues and organs. Building on each other’s work, the five award recipients demonstrated how this normal self-defense mechanism can be hijacked by tumors as a way to evade immune surveillance and dodge an attack. Subverting this mechanism allows cancer cells to survive and thrive.

A foundational discovery made in the 1980s elucidated the role of a molecule on the surface of T cells, the body’s elite assassins trained to seek, spot and destroy invaders.

A protein called CTLA-4 emerged as a key regulator of T cell behavior—one that signals to T cells the need to retreat from an attack. Experiments in mice lacking CTLA-4 and use of CTLA-4 antibodies demonstrated that absence of CTLA-4 or blocking its activity could lead to T cell activation and tumor destruction.

Subsequent work identified a different protein on the surface of T cells—PD-1—as another key regulator of T cell response. Mice lacking this protein developed an autoimmune disease as a result of aberrant T cell activity and over-inflammation.

Later on, scientists identified a molecule, B7-H1, subsequently renamed PD-L1, which binds to PD-1, clicking like a key in a lock. This was followed by the discovery of a second partner for PD-1—the molecule PD-L2—which also appeared to tame T-cell activity by binding to PD-1.

The identification of these molecules led to a set of studies showing that their presence on human and mouse tumors rendered the tumors resistant to immune eradication.

A series of experiments further elucidated just how tumors exploit the interaction between PD-1 and PD-L1 to survive. Specifically, some tumor cells appeared to express PD-L1, essentially “wrapping” themselves in it to avoid immune recognition and destruction.

Additional work demonstrated that using antibodies to block this interaction disarmed the tumors, rendering them vulnerable to immune destruction.

Collectively, the five scientists’ findings laid the foundation for antibody-based therapies that modulate the function of these molecules as a way to unleash the immune system against cancer cells.

Antibody therapy that targets CTLA-4 is currently approved by the FDA for the treatment of melanoma. PD-1/PD-L1 inhibitors have already shown efficacy in a broad range of cancers and have been approved by the FDA for the treatment of melanoma; kidney; lung; head and neck cancer; bladder cancer; some forms of colorectal cancer; Hodgkin lymphoma and Merkel cell carcinoma.

In their own words

“I am humbled to be included among the illustrious scientists who have been honored by the Warren Alpert Foundation for their contributions to the treatment and cure of human disease in its 30+ year history.  It is also recognition of the many investigators who have labored for decades to realize the promise of the immune system in treating cancer.”
        -James Allison


“The award is a great honor and a wonderful recognition of our work.”
         Lieping Chen



I am thrilled to have made a difference in the lives of cancer patients and to be recognized by fellow scientists for my part in the discovery of the PD-1/PD-L1 and PD-L2 pathway and its role in tumor immune evasion.  I am deeply honored to be a recipient of the Alpert Award and to be recognized for my part in the work that has led to effective cancer immunotherapy. The success of immunotherapy has unleashed the energies of a multitude of scientists to further advance this novel strategy.”
                                        -Gordon Freeman


I am extremely honored to receive the Warren Alpert Foundation Prize. I am very happy that our discovery of PD-1 in 1992 and subsequent 10-year basic research on PD-1 led to its clinical application as a novel cancer immunotherapy. I hope this development will encourage many scientists working in the basic biomedical field.”
-Tasuku Honjo


“I am truly honored to be a recipient of the Alpert Award. It is especially meaningful to be recognized by my colleagues for discoveries that helped define the biology of the CTLA-4 and PD-1 pathways. The clinical translation of our fundamental understanding of these pathways illustrates the value of basic science research, and I hope this inspires other scientists.”
-Arlene Sharpe

Previous winners

Last year’s award went to five scientists who were instrumental in the discovery and development of the CRISPR bacterial defense mechanism as a tool for gene editing. They were RodolpheBarrangou of North Carolina State University, Philippe Horvath of DuPont in Dangé-Saint-Romain, France, Jennifer Doudna of the University of California, Berkeley, Emmanuelle Charpentier of the Max Planck Institute for Infection Biology in Berlin and Umeå University in Sweden, and Virginijus Siksnys of the Institute of Biotechnology at Vilnius University in Lithuania.

Other past recipients include:

  • Tu Youyou of the China Academy of Chinese Medical Science, who went on to receive the 2015 Nobel Prize in Physiology or Medicine with two others, and Ruth and Victor Nussenzweig, of NYU Langone Medical Center, for their pioneering discoveries in chemistry and parasitology of malaria and the translation of their work into the development of drug therapies and an anti-malarial vaccine.
  • Oleh Hornykiewicz of the Medical University of Vienna and the University of Toronto; Roger Nicoll of the University of California, San Francisco; and Solomon Snyder of the Johns Hopkins University School of Medicine for research into neurotransmission and neurodegeneration.
  • David Botstein of Princeton University and Ronald Davis and David Hogness of Stanford University School of Medicine for contributions to the concepts and methods of creating a human genetic map.
  • Alain Carpentier of Hôpital Européen Georges-Pompidou in Paris and Robert Langer of MIT for innovations in bioengineering.
  • Harald zur Hausen and Lutz Gissmann of the German Cancer Research Center in Heidelberg for work on the human papillomavirus (HPV) and cancer of the cervix. Zur Hausenand others were honored with the Nobel Prize in Physiology or Medicine in 2008.

The Warren Alpert Foundation

Each year the Warren Alpert Foundation receives between 30 and 50 nominations from scientific leaders worldwide. Prize recipients are selected by the foundation’s scientific advisory board, which is composed of distinguished biomedical scientists and chaired by the dean of Harvard Medical School.

Warren Alpert (1920-2007), a native of Chelsea, Mass., established the prize in 1987 after reading about the development of a vaccine for hepatitis B. Alpert decided on the spot that he would like to reward such breakthroughs, so he picked up the phone and told the vaccine’s creator, Kenneth Murray of the University of Edinburgh, that he had won a prize. Alpert then set about creating the foundation.

To award subsequent prizes, Alpert asked Daniel Tosteson (1925-2009), then dean of Harvard Medical School, to convene a panel of experts to identify scientists from around the world whose research has had a direct impact on the treatment of disease.

SOURCE

https://hms.harvard.edu/news/warren-alpert-foundation-honors-pioneers-cancer-immunology

Advertisements

Read Full Post »


Koch Institute Immune Engineering Symposium on October 16 & 17, 2017, Kresge, MIT

Reporter: Aviva Lev-Ari, PhD, RN

 

Koch Institute Immune Engineering Symposium on October 16 & 17, 2017.

 

Summary: Biological, chemical, and materials engineers are engaged at the forefront of immunology research. At their disposal is an analytical toolkit honed to solve problems in the petrochemical and materials industries, which share the presence of complex reaction networks, and convective and diffusive molecular transport. Powerful synthetic capabilities have also been crafted: binding proteins can be engineered with effectively arbitrary specificity and affinity, and multifunctional nanoparticles and gels have been designed to interact in highly specific fashions with cells and tissues. Fearless pursuit of knowledge and solutions across disciplinary boundaries characterizes this nascent discipline of immune engineering, synergizing with immunologists and clinicians to put immunotherapy into practice.

SPEAKERS:

Michael Birnbaum – MIT, Koch Institute

Arup Chakraborty – MIT, Insititute for Medical Engineering & Sciences

Jianzhu Chen – MIT, Koch Institute

Jennifer R. Cochran – Stanford University

Jennifer Elisseeff – Johns Hopkins University

K. Christopher Garcia – Stanford University

George Georgiou – University of Texas at Austin

Darrell Irvine – MIT, Koch Institute

Tyler Jacks – MIT, Koch Institute

Doug Lauffenburger – MIT, Biological Engineering and Koch Institute

Wendell Lim – University of California, San Francisco

Harvey Lodish – Whitehead Institute and Koch Institute

Marcela Maus – Massachusetts General Hospital

Garry P. Nolan – Stanford University

Sai Reddy – ETH Zurich

Nicholas Restifo – National Cancer Institute

William Schief – The Scripps Research Institute

Stefani Spranger – MIT, Koch Institute

Susan Napier Thomas – Georgia Institute of Technology

Laura Walker – Adimab, LLC

Jennifer Wargo – MD Anderson Cancer Center

Dane Wittrup – MIT, Koch Institute

Kai Wucherpfennig – Dana-Farber Cancer Institute

Please contact ki-events@mit.edu with any questions.

SOURCE

From: Koch Institute Immune Engineering Symposium <ki-events@mit.edu>

Reply-To: <ki-events@mit.edu>

Date: Friday, September 8, 2017 at 9:06 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Reminder – Register Today

 

Read Full Post »


Pioneers of Cancer Cell Therapy:  Turbocharging the Immune System to Battle Cancer Cells — Success in Hematological Cancers vs. Solid Tumors

Curator: Aviva Lev-Ari, PhD, RN

Chimeric Antigen Receptor T-Cell Therapy: Players in Basic & Translational Research and Biotech/Pharma

The companies are teamed with academic pioneers:

  • Novartis with University of Pennsylvania;
  • Kite Pharma with the National Cancer Institute; 
  • Juno Therapeutics with Sloan Kettering,
  • the Fred Hutchinson Cancer Research Center in Seattle and Seattle Children’s Hospital.

cancer33

IMAGE SOURCE: National Cancer Institute

 

 “CAR-T cell immunotherapy” –  genetically modified T cells that are engineered to target specific tumor antigens and/or genes that are involved in survival, proliferation, and the enhancement of effector functions have been under intense research.

 

CAR technology was originally reported by Zelig Eshhar in 1993.

https://www.weizmann.ac.il/immunology/sci/EshharPage.html

Prof. Zelig Eshhar, Ph.D., served as Chairman of the Department of Immunology at the Weizmann Institute. Prof. Eshhar has been Chair of Scientific Advisory Board at TxCell S.A. since April 2016. Prof. Eshhar has been a Member of Scientific Advisory Board at Kite Pharma, Inc. since August 8, 2013. Prof. Eshhar served as a Member of Scientific Advisory Board at Intellect Neurosciences, Inc. since April 2006.

Prof. Eshhar pioneered the CAR approach (or T-Body as he termed it) to redirect T cells to recognize, engage and kill patient’s tumor cells by engineering them with a construct that combines the anti-target specificity of an antibody with T cell activation domains. Prof. Eshhar serves on several editorial boards, including Cancer Gene Therapy, Human Gene Therapy, Gene Therapy, Expert Opinion on Therapeutics, European Journal of Immunology and the Journal of Gene Medicine. He was a Research Fellow in the Department of Pathology at Harvard Medical School and in the Department of Chemical Immunology at the Weizmann Institute in Israel. His achievements were recognized by several international awards, most recently the CAR Pioneering award by the ATTACK European Consortium. Prof. Eshhar obtained his B.Sc. in Biochemistry and Microbiology and his M.Sc. in Biochemistry from the Hebrew University, and his Ph.D. in the Department of Immunology from the Weizmann Institute of Science.

http://www.bloomberg.com/research/stocks/people/person.asp?personId=32720993&privcapId=32390485

 

Zelig Eshhar and Carl H. June honored for research on T cell engineering for cancer immunotherapy

New Rochelle, NY, November 11, 2014–Zelig Eshhar, PhD, The Weizmann Institute of Science and Sourasky Medical Center, and Carl H. June, MD, PhD, Perelman School of Medicine, University of Pennsylvania, are co-recipients of the Pioneer Award, recognized for lentiviral gene therapy clinical trials and for their leadership and contributions in engineering T-cells capable of targeting tumors with antibody-like specificity through the development of chimeric antigen receptors (CARs). Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers, is commemorating its 25th anniversary by bestowing this honor on the leading Pioneers in the field of cell and gene therapy selected by a blue ribbon panel* and publishing a Pioneer Perspective by the award recipients. The Perspectives by Dr. Eshhar and Dr. June are available free on the Human Gene Therapy website at http://www.liebertpub.com/hgt until December 11, 2014.

In his Pioneer Perspective entitled “From the Mouse Cage to Human Therapy: A Personal Perspective of the Emergence of T-bodies/Chimeric Antigen Receptor T Cells” Professor Eshhar chronicles his team’s groundbreaking contributions to the development of the CAR T-cell immunotherapeutic approach to treating cancer. He describes the method’s conceptual development including initial proof-of-concept, and the years of experimentation in mouse models of cancer. They first tested the CAR T-cells on tumors transplanted into mice then progressed to spontaneously developing cancers in immune-competent mice, which Dr. Eshhar describes as “a more suitable model that faithfully mimics cancer patients.” He recounts successful antitumor effects in mice with CAR modified T-cells injected directly into tumors, with effects seen at the injection site and at sites of metastasis, and even the potential of the CAR T-cells to prevent tumor development.

Dr. Carl H. June has led one of the clinical groups that has taken the CAR therapeutic strategy from the laboratory to the patients’ bedside, pioneering the use of CD19-specific CAR T-cells to treat patients with leukemia. In his Pioneer Perspective, “Toward Synthetic Biology with Engineered T Cells: A Long Journey Just Begun” Dr. June looks back on his long, multi-faceted career and describes how he combined his knowledge and research on immunology, cancer, and HIV to develop successful T-cell based immunotherapies. Among the lessons Dr. June has embraced throughout his career are to follow one’s passions. He also says that “accidents can be good: embrace the unexpected results and follow up on these as they are often times more scientifically interesting than predictable responses from less imaginative experiments.”

“These two extraordinary scientists made seminal contributions at key steps of the journey from bench to bedside for CAR T-cells,” says James M. Wilson, MD, PhD, Editor-in-Chief of Human Gene Therapy, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia.

SOURCE

http://www.eurekalert.org/pub_releases/2014-11/mali-ze111114.php

The General procedure of CAR-T cell therapy involves the follwoing steps:

1) Separate T cells from patient;

2) Engineer these T cells to express an artificial receptor, which is called “CAR” that usually targets tumor-specific antigen;

3) Expand the CAR T cells to a sufficient amount;

4) Re-introduce the CAR T cells to patient.

There are two major components that are critical to the CAR-T cell immunotherapy:

  • the design of CAR itself and
  • the choice of the targeted tumor specific antigen.

SOURCE

http://www.ochis.org/node/209

 

First publication on Adoptive transfer of genetically modified T cells is an attractive approach for generating antitumor immune responses

Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19

James N. Kochenderfer, Wyndham H. Wilson, John E. Janik, Mark E. Dudley, Maryalice Stetler-Stevenson, Steven A. Feldman, Irina Maric, Mark Raffeld, Debbie-Ann N. Nathan, Brock J. Lanier, Richard A. Morgan, Steven A. Rosenberg

Abstract

Adoptive transfer of genetically modified T cells is an attractive approach for generating antitumor immune responses. We treated a patient with advanced follicular lymphoma by administering a preparative chemotherapy regimen followed by autologous T cells genetically engineered to express a chimeric antigen receptor (CAR) that recognized the B-cell antigen CD19. The patient’s lymphoma underwent a dramatic regression, and B-cell precursors were selectively eliminated from the patient’s bone marrow after infusion of anti–CD19-CAR-transduced T cells. Blood B cells were absent for at least 39 weeks after anti–CD19-CAR-transduced T-cell infusion despite prompt recovery of other blood cell counts. Consistent with eradication of B-lineage cells, serum immunoglobulins decreased to very low levels after treatment. The prolonged and selective elimination of B-lineage cells could not be attributed to the chemotherapy that the patient received and indicated antigen-specific eradication of B-lineage cells. Adoptive transfer of anti–CD19-CAR-expressing T cells is a promising new approach for treating B-cell malignancies. This study is registered at www.clinicaltrials.gov as #NCT00924326.

SOURCE

According to Setting the Body’s ‘Serial Killers’ Loose on Cancer

After a long, intense pursuit, researchers are close to bringing to market a daring new treatment: cell therapy that turbocharges the immune system to fight cancer.

By ANDREW POLLACK  AUG. 1, 2016

http://www.nytimes.com/2016/08/02/health/cancer-cell-therapy-immune-system.html?_r=0

Dr. June’s 2011 publications did not cite Dr. Rosenberg’s paper [Blood, 2010] from the previous year, prompting Dr. Rosenberg to write a letter to The New England Journal of Medicine. Dr. June’s publications also did not acknowledge that the genetic construct he had used was the one he had obtained from Dr. Campana of St. Jude.

From the Lab to the bedside to the Out Patient Clinic

Read Full Post »


New York Times Articles on Cancer Immunotherapy and Cancer Treatment Options

Curators: Aviva Lev-Ari, PhD, RN, Stephen J Williams, PhD and Tilda Barliya, PhD

The following articles, 

Here are some ways cancer can thwart the new immunotherapy drugs

Laurie McGinley July 13, 2016

https://www.washingtonpost.com/news/to-your-health/wp/2016/07/13/here-are-some-ways-cancer-can-thwart-the-new-immunotherapy-drugs/

and

The list of cancers that can be treated by immunotherapy keeps growing

By Laurie McGinley April 19

https://www.washingtonpost.com/news/to-your-health/wp/2016/04/19/breakthrough-cancer-therapy-shows-growing-promise/?tid=a_inl

were brought to my attention by Tilda Barliya, PhD, on our R&D Team, DrugDiscovery @LPBI Group, it stimulated the following curation in several Parts:

This article has three parts:

  • Part One: LPBI Group: A Key Opinion Leader (KOL) in Cancer and Genomics
  • Part Two: History of Cancer Immunotherapy
  • Part Three: New York Times Articles on Cancer Immunotherapy and Cancer Treatment Options

 

Part One:

LPBI Group: A Key Opinion Leader (KOL) in Cancer and Genomics

 

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Immune-Oncology Molecules In Development & Articles on Topic in @pharmaceuticalintelligence.com

Curators: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/11/articles-on-immune-oncology-molecules-in-development-pharmaceuticalintelligence-com/

Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

Genomics Orientations for Personalized Medicine, on Amazon since 11/23/2015

http://www.amazon.com/dp/B018DHBUO6

Genomics Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology

https://pharmaceuticalintelligence.com/biomed-e-books/genomics-orientations-for-personalized-medicine/volume-two-genomics-methodologies-ngs-bioinformatics-simulations-and-the-genome-ontology/

Cancer Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery

https://pharmaceuticalintelligence.com/biomed-e-books/series-c-e-books-on-cancer-oncology/volume-2-immunotherapy-in-oncology/

Part Two:

History of Cancer Immunotherapy

Pioneers of Cancer Cell Therapy:  Turbocharging the Immune System to Battle Cancer Cells — Success in Hematological Cancers vs. Solid Tumors

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/08/19/pioneers-of-cancer-cell-therapy-turbocharging-the-immune-system-to-battle-cancer-cells-success-in-hematological-cancers-vs-solid-tumors/

In 1987, researchers identified cytotoxic T-lymphocyte antigen 4, or CTLA-4. Allison found that CTLA-4 prevents T cells from attacking tumor cells. He wondered whether blocking CTLA-4 would allow the immune system to make those attacks. In 1996, Allison showed that antibodies against CTLA-4 allowed the immune system to destroy tumors in mice.[2] In 1999, biotech firm Medarex acquired rights to the antibody. In 2010, Medarex acquirer Bristol-Myers Squibb reported that patients with metastatic melanoma lived an average of 10 months on the antibody, versus 6 months without it. It was the first time any treatment had extended life in advanced melanoma in a randomized trial.[2]

In the early 1990s, a biologist discovered a molecule expressed in dying T cells, which he called programmed death 1, or PD-1 and which he recognized as another disabler of T cells. An antibody that targeted PD-1 was developed and by 2008 produced remission in multiple subjects across multiple cancer types. In 2013, clinicians reported that across 300 patients tumors shrunk by about half or more in 31% of those with melanoma, 29% with kidney cancer and 17% with lung cancer.[2]

In 1997 rituximab, the first antibody treatment for cancer, was approved by the FDA for treatment of follicular lymphoma. Since this approval, 11 other antibodies have been approved for cancer; alemtuzumab (2001), ofatumumab (2009) and ipilimumab (2011).

In 2003 cytokines such as interleukin were administered.[3] The adverse effects of intravenously administered cytokines[4] led to the extraction, in vitro expansion against a tumour antigen and reinjection of the cells[5] with appropriate stimulatory cytokines.

However, with both anti–CTLA-4 and anti–PD-1, some tumors continued to grow before vanishing months later. Some patients kept responding after the antibody had been discontinued. Some patients, developed side effects including inflammation of the colon or of the pituitary gland.[2]

The first cell-based immunotherapy cancer vaccine, sipuleucel-T, was approved in 2010 for the treatment of prostate cancer.[6][7]

After success harvesting T cells from tumors, expanding them in the lab and reinfusing them into patients reduced tumors, in 2010, Steven Rosenberg announced chimeric antigen receptor therapy, or CAR therapy. This technique is a personalized treatment that involves genetically modifying each patient’s T cells to target tumor cells. It produced complete remission in a majority of leukemia patients, although some later relapsed.[2]

By mid 2016 the FDA had approved one PD-L1 inhibitor (atezolizumab) and two PD-1 inhibitors (nivolumab and pembrolizumab).

SOURCE

https://en.wikipedia.org/wiki/Cancer_immunotherapy

Part Three:

New York Times Articles on Cancer Immunotherapy and Cancer Treatment Options

 

  1. What Is Immunotherapy? The Basics on These Cancer Treatments

    Some of the most promising advances in cancer research in recent years involve treatments known as immunotherapy. These advances are spurring billions of dollars in investment by drug companies, and are leading to hundreds of

  2. Immunotherapy Offers Hope to a Cancer Patient, but No Certainty

    declared him in remission. It was a result that put him at the vanguard of a new generation of cancer treatment called immunotherapy that casts into sharp relief the harshness of how we have long treated cancer and the less grueling

  3. Have You Received Immunotherapy Treatment for Cancer?

    The New York Times would like to hear from doctors and patients who have experience giving or receiving immunotherapy treatment for cancer.

  4. Immunotherapy Drug Fails Lung Cancer Trial

    The hot new field of immunotherapy got a shock on Friday when a best-selling new drug failed as an initial treatment for lung cancer in a clinical trial. Bristol-Myers Squibb said Friday that the drug, Opdivo, had not slowed the

  5. F.D.A. Approves Immunotherapy Drug for Treatment of Bladder Cancer

    The Food and Drug Administration on Wednesday approved a newimmunotherapy drug from Roche to treat bladder cancer, a form of cancer for which there have been no significant new medicines in years. The drug, called Tecentriq, is the

  6. Sean Parker, a Facebook and Napster Pioneer, to Start CancerImmunotherapy Effort

    media as the early president of Facebook. Now he wants to pioneer in a field that is already jumping with activity: cancer immunotherapy. Mr. Parker is announcing Wednesday that he is donating $250 million to a new effort that will

  7. Harnessing the Immune System to Fight Cancer

    Sloan Kettering Cancer Center in New York, recommended an experimental treatment: immunotherapy. Rather than attacking the cancer directly, as chemo does, immunotherapy tries to rally the patient’s own immune

  8. Cancer-Drug Ads vs. Cancer-Drug Reality

    She also took part in a clinical trial at Johns Hopkins for Opdivo, an immunotherapy drug made by the pharmaceutical company Bristol-Myers Squibb. Briefly stated, immunotherapy is a recently developed, highly

  9. Sean Parker on Cancer Research

    Sean Parker discusses his support of immunotherapy research.

  10. Paid Notice: Deaths SPRAYREGEN, NICHOLAS (NICK)

    family and many friends. Contributions in his memory may be made to Memorial Sloan Kettering Cancer Center, Melanoma and Immunotherapy Research under Dr. Jedd Wolchok. 1/3

    11. Paid Notice: Deaths SPRAYREGEN, NICHOLAS (NICK)

    St. and Amsterdam Ave. Contributions in his memory may be made to Memorial Sloan Kettering Cancer Center, Melanoma and Immunotherapy Research under Dr. Jedd Wolchok. 1/3

    12. Setting the Body’s ‘Serial Killers’ Loose on Cancer

    Sloan Kettering Cancer Center. This radical, science-fictionlike therapy differs sharply from the more established type of immunotherapy, developed by other researchers. Those off-the-shelf drugs, known as checkpoint inhibitors,

SOURCE

http://query.nytimes.com/search/sitesearch/?action=click&contentCollection&region=TopBar&WT.nav=searchWidget&module=SearchSubmit&pgtype=Homepage#/immunotherapy/since1851/allresults/2/

 Additional Readings:

More women with cancer in one breast are having double mastectomies

Medicare considers overhaul of doctors’ payments for cancer drugs

Paul Allen announces $100 million gift to expand “frontiers of bioscience”

Life sciences a priority for Sean Parker’s new $600 million foundation

Cornell study finds some people may be genetically programmed to be vegetarians

Mom’s and — surprise! — dad’s pre-pregnancy caffeine intake may affect miscarriage risk, NIH study warns

Read Full Post »


CHI’s NK Cell-Based Cancer Immunotherapy Symposium, September 19 in Boston

Reporter: Aviva Lev-Ari, PhD, RN

 

Announcement from LPBI Group: key code LPBI16 for Exclusive Discount to attend Boston’s Discovery on Target (September 2016)

https://pharmaceuticalintelligence.com/2016/05/13/announcement-from-lpbi-group-key-code-lpbi16-for-exclusive-discount-to-attend-bostons-discovery-on-target-september-2016/

DOT-150x150

DOT-NCT-700x150

FEATURED SESSION:

Natural killer (NK) cells have been known to have advantages over T cells, yet their therapeutic potential in the clinic has been largely unexplored.

Cambridge Healthtech Institute’s NK Cell-Based Cancer Immunotherapy Symposium, September 19 in Boston, is dedicated to the exploration of utilizing NK cells for new adoptive cell therapies, including updates from ongoing clinical studies.

NK CELL IMMUNO-ONCOLOGY AND CLINICAL STUDIES

Harnessing Adaptive NK Cells in Cancer Therapy

Karl-Johan Malmberg, M.D., Ph.D., Professor, Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital

  • We have recently completed a Phase I/II clinical trial with transfer of haploidentical NK cells to patients with high-risk myelodysplastic syndrome. Six of the 16 treated patients achieved morphological complete remission and five of these underwent allogeneic stem cell transplantation resulting in long-term survival in four patients. The quality and number of infused NK cells as well as their transient engraftment in the recipient correlated with decrease in mutational burden and clinical outcomes. These results suggest that adoptive transfer of allogeneic NK cells may hold utility as a bridge to transplant in patients who are refractory to induction therapy. Current efforts to selectively expand metabolically optimized adaptive NK cells for the next generation NK cell cancer immunotherapy will be discussed.

Update on Systemic and Locoregional Cancer Immunotherapy with IL-21-Expanded NK Cells

Dean Anthony Lee, M.D., Ph.D., Professor, Pediatrics; Director, Cellular Therapy and Cancer Immunotherapy Program, Nationwide Children’s Hospital; James Comprehensive Cancer Center/Solove Research Institute, The Ohio State University

  • The ability to generate clinical-grade NK cell products of sufficient purity, number, and function has enabled broader application of adoptive NK cell therapy in clinical trials. We translated our IL-21-based NK cell expansion platform to clinical grade and scale and initiated 7 clinical trials that administer NK cell immunotherapy with high cell doses or repeated dosing in transplant, adjuvant, or stand-alone settings. These trials have collectively delivered approximately 150 infusions to over 60 patients at doses of up to 10e8/kg. We will discuss the importance of STAT3 signaling in this setting, describe early outcome and correlative data from these studies, and present preclinical data supporting future clinical trials that build on this platform.

REGISTER

BY AUGUST 12 TO

SAVE UP TO $200

VISIT

WEBSITE

DOWNLOAD PDF AGENDA

Suggested Event Package

SYMPOSIUM

NK Cell-Based Cancer Immunotherapy

SEPT. 19

CONFERENCE

Antibodies Against Membrane Protein Targets (Part One)

SEPT. 20-21

CONFERENCE

Antibodies Against Membrane Protein Targets (Part Two)

SEPT. 21-22

The exhibit hall was sold out in 2015, so please contact us early to reserve your place. To customize your sponsorship or exhibit package for 2016, contact:

Jon Stroup

Sr. Business Development Manager

P: 781-972-5483

E: jstroup@healthtech.com

Sponsorship/Exhibitor Information >>

 

DiscoveryOnTarget.com | Register by August 12 to SAVE up to $200 | Download PDF Agenda

Cambridge Healthtech Institute | 250 First Avenue, Suite 300, Needham, MA 02494 | www.healthtech.com | 781-972-5400

SOURCE

From: NK Cell Symposium <heidio@healthtech.com>

Date: Tuesday, August 9, 2016 at 1:40 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: NK Cells for Adoptive Therapies: The Future of Cancer Immunotherapy?

Read Full Post »