Posts Tagged ‘DNA damage’

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Gender of a person can affect the kinds of cancer-causing mutations they develop, according to a genomic analysis spanning nearly 2,000 tumours and 28 types of cancer. The results show striking differences in the cancer-causing mutations found in people who are biologically male versus those who are biologically female — not only in the number of mutations lurking in their tumours, but also in the kinds of mutations found there.


Liver tumours from women were more likely to carry mutations caused by a faulty system of DNA mending called mismatch repair, for instance. And men with any type of cancer were more likely to exhibit DNA changes thought to be linked to a process that the body uses to repair DNA with two broken strands. These biases could point researchers to key biological differences in how tumours develop and evolve across sexes.


The data add to a growing realization that sex is important in cancer, and not only because of lifestyle differences. Lung and liver cancer, for example, are more common in men than in women — even after researchers control for disparities in smoking or alcohol consumption. The source of that bias, however, has remained unclear.

In 2014, the US National Institutes of Health began encouraging researchers to consider sex differences in preclinical research by, for example, including female animals and cell lines from women in their studies. And some studies have since found sex-linked biases in the frequency of mutations in protein-coding genes in certain cancer types, including some brain cancers and advanced melanoma.


But the present study is the most comprehensive study of sex differences in tumour genomes so far. It looks at mutations not only in genes that code for proteins, but also in the vast expanses of DNA that have other functions, such as controlling when genes are turned on or off. The study also compares male and female genomes across many different cancers, which can allow researchers to pick up on additional patterns of DNA mutations, in part by increasing the sample sizes.


Researchers analysed full genome sequences gathered by the International Cancer Genome Consortium. They looked at differences in the frequency of 174 mutations known to drive cancer, and found that some of these mutations occurred more frequently in men than in women, and vice versa. When they looked more broadly at the loss or duplication of DNA segments in the genome, they found 4,285 sex-biased genes spread across 15 chromosomes.


There were also differences found when some mutations seemed to arise during tumour development, suggesting that some cancers follow different evolutionary paths in men and women. Researchers also looked at particular patterns of DNA changes. Such patterns can, in some cases, reflect the source of the mutation. Tobacco smoke, for example, leaves behind a particular signature in the DNA.


Taken together, the results highlight the importance of accounting for sex, not only in clinical trials but also in preclinical studies. This could eventually allow researchers to pin down the sources of many of the differences found in this study. Liver cancer is roughly three times as common in men as in women in some populations, and its incidence is increasing in some countries. A better understanding of its aetiology may turn out to be really important for prevention strategies and treatments.














Read Full Post »

Targeting PARP in Various Endocrine Cancers: Prostate, Cervical, Endometrial

Curator: Larry H. Bernstein, MD, FCAP


UPDATED 12/05/2020

Targeting PARP in Prostate Cancer: Novelty, Pitfalls, and Promise    
Review ArticleMay 15, 2016Oncology Journal, Prostate Cancer




© 2016 Steve Oh and Myriam Kirkman-Oh, KO Studios

Metastatic prostate cancer remains a highly lethal disease with no curative therapeutic options. A significant subset of patients with prostate cancer harbor either germline or somatic mutations in DNA repair enzyme genes such as BRCA1, BRCA2, or ATM. Emerging data suggest that drugs that target poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP) enzymes may represent a novel and effective means of treating tumors with these DNA repair defects, including prostate cancers. Here we will review the molecular mechanism of action of PARP inhibitors and discuss how they target tumor cells with faulty DNA repair functions and transcriptional controls. We will review emerging data for the utility of PARP inhibition in the management of metastatic prostate cancer. Finally, we will place PARP inhibitors within the framework of precision medicine–based care of patients with prostate cancer.

In 2016, prostate cancer is expected to be diagnosed in 180,890 men, and 26,120 will die of metastatic disease.[1] While the majority of localized prostate cancers can be controlled with surgery and/or radiation, metastatic disease remains a lethal disease with no curative options. Moreover, prostate cancer is a heterogeneous disease that can be highly lethal but also slow and indolent, as reflected by a 10-year estimated survival of 17% (S9346 trial, unpublished data). The advent of affordable and efficient techniques for profiling tumors molecularly represents an unprecedented opportunity to better characterize the molecular factors that result in indolent and/or lethal disease and to tailor therapy accordingly. Many clinical trials are already underway to examine whether molecularly targeted therapies can improve outcomes.[2] In this review, we will specifically examine the molecular rationale for one of these targeted approaches, poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP) inhibition, in prostate cancer. We will review how PARP inhibitors function as a class, review the molecular features that sensitize cancer cells to this therapy, and discuss the data supporting its potential for patients with prostate cancer. We will then outline a strategy for further development of PARP inhibitors in the prostate cancer field.
Metastatic prostate cancer is typically categorized as hormone-sensitive prostate cancer (HSPC), which responds to androgen ablation, or castration-resistant prostate cancer (CRPC), which develops resistance to gonadal suppression. Although bilateral orchiectomy is the historic gold-standard treatment for metastatic HSPC, gonadal suppression is currently accomplished with gonadotropin-releasing hormone agonists or antagonists with or without androgen receptor blockade. This approach remains the cornerstone of therapy for men with metastatic HSPC.[3] Emerging data from large phase III trials (CHAARTED and Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy [STAMPEDE]) have also revealed a large survival benefit for the combination of docetaxel and androgen deprivation in metastatic HSPC.[4,5]

Despite these initially effective treatments, the vast majority of men with metastatic HSPC will progress to CRPC, which is the lethal stage of the disease. For these patients, several additional therapies provide benefit by further suppression of androgen signaling (enzalutamide, abiraterone), disruption of the cell cycle in replicating cells (docetaxel, cabazitaxel), targeting of bone metastases (radium-223), or activation of antitumor immunologic response (sipuleucel-T).[6] While these therapies have undoubtedly extended the median survival of patients with metastatic CRPC, their impact on survival is modest and they clearly do not work for all men. In addition, we lack validated genomic markers that would allow better selection of patients for these therapies. Therefore, a better approach that leverages the individual and unique aspects of a patient’s cancer and utilizes therapy based on these factors may allow us to improve patient outcomes.

The development of high-throughput sequencing technology has made it feasible to comprehensively analyze the genetic mutations and gene expression changes in individual prostate cancers with a high degree of resolution in real time. Many institutions now routinely perform these analyses in the hope that they might uncover molecular features that predict response to certain therapies or provide guidance for clinical trial selection.[7] This approach, colloquially termed “precision” medicine, offers the potential promise of providing the right therapy for the right patient at the right time. In the context of prostate cancer, it means molecularly characterizing a tumor and then offering patients drugs that may specifically promote tumor lethality based on these molecular features. The limitation of this approach is that it requires that the target be truly biologically relevant and that there are drugs that can effectively target these molecular changes. The discovery of both somatic and germline DNA repair deficiencies in prostate cancer, together with the development of PARP inhibitors that can kill cancer cells with these defects, is a potent example of targeting therapy to molecularly defined tumor subtypes. While much early work validating this approach has occurred in breast and ovarian cancer populations, emerging data suggest that PARP inhibition is a potentially important strategy for managing a significant subset of prostate cancer patients.


PARP Inhibition: Targeting DNA Repair Deficiency

Molecular mechanism

PARP1 catalyzes the addition of poly(ADP)-ribose (PAR) groups to target proteins in a process termed PARylation.[8] PARP1 is part of a superfamily of proteins that consists of 18 members (including the related tankyrase enzymes), which have many functions within normal and cancer cells. PARP1, the founding member of this family, is responsible for the majority of PARylation of protein targets within cells. It is primarily present in the nucleus in association with chromatin, where it participates in DNA repair and regulation of gene expression by modulating protein localization and activity.[9]

DNA damage occurs continuously in all living cells as a result of oxidative damage or DNA replicative stress.[10] When DNA damage occurs on one strand of the DNA double helix, a single-strand break (SSB) results, but if two SSBs occur in close proximity and on opposite strands, the result is a double-strand break (DSB) and discontinuity of the chromosome (Figures 1 and 2). Even a single DSB is lethal to a human cell if unrepaired because of the risk of large-scale loss of genetic information.

PARP1 plays a critical role in restoration of genomic integrity by facilitating efficient repair of DNA SSBs and DSBs. PARP1 senses DNA damage by binding to the site of SSBs and DSBs and inducing auto-PARylation, which in turn promotes recruitment of DNA repair factors (such as DNA ligase III, polymerase β, and x-ray repair cross-complementing protein 1[XRCC1]).[11] Loss of PARP1 function by means of pharmacologic or genetic mechanisms results in impaired SSB repair and, following initiation of DNA replication, creation of a DNA DSB (see Figure 1). PARP may also play an important role in DSB repair and is known to recruit the MRE11-RAD50-NBS1 complex and to promote PARylation of BRCA1, factors required for the homologous recombination (HR) pathway of DNA DSB repair. Therefore, pharmacologic inhibition of PARP1/2 in DNA repair–defective (DRD) cells that lack efficient HR repair capabilities (such as those harboring BRCA1, BRCA2, or ATM mutations) results in failure to resolve SSBs, which are then converted to DSBs that promote cellular death.

The activity of PARP1 is not limited to DNA damage response. PARP1 is also known to regulate gene expression by modulation of transcription factor activity and regulation of chromatin.[12] PARP1 binds to RNA polymerase II, regulating gene expression, and may also affect tumor suppressor and oncogenic gene expression. PARP1 can also modulate hormone-dependent gene transcription from hormone-responsive nuclear receptors, such as estrogen receptors α and β, progesterone receptor, and androgen receptor.[9]

Furthermore, PARP1 can modulate the transcriptional activity of ETS transcription factors, which suggests that pharmacologic targeting of PARP1 may be useful in TMPRSS2:ERG fusion–positive prostate cancer cells (~50% of prostate cancers).[13] PARP1 physically interacts with the TMPRSS2:ERG gene fusion and the DNA–protein kinase complex, and these interactions are required for ERG-related gene transcription. Interestingly, PARP inhibition with olaparib inhibited prostate cancer xenograft growth if tumors harbored a TMPRSS2:ERG fusion, which suggests that PARP might represent a therapeutic option for prostate cancer patients withTMPRSS2:ERG fusions.[13] This concept is being evaluated in a recently completed clinical trial (National Cancer Institute [NCI] 9012).

PARP inhibitors

Given the biologic importance of PARP1 in the context of cancer, several pharmacologic agents that target this enzyme are currently under development (Table). Most PARP inhibitors mimic the NAD+ substrate of PARP1, competitively bind to the catalytic domain, and inhibit PAR synthesis.[14] PARP inhibitors require the expression of PARP1 and PARP2, and cells that lack expression of both genes are not sensitive to these agents. PARP inhibitors all appear to block catalytic activity and PAR synthesis in a roughly equivalent manner but may show differential ability to trap PARP1/2 at the site of DNA damage (niraparib > olaparib > veliparib), an event that blocks repair and promotes cellular lethality.[15,16] Whether these effects observed in vitro translate into clinically meaningful differences in efficacy is less clear. Furthermore, it is also now clear that the putative PARP inhibitor iniparib may not promote cytotoxicity via PARP inhibition. Several initial studies focused on iniparib, but when phase III trials failed to demonstrate the efficacy of this compound, additional mechanistic work demonstrated that iniparib may not truly be an effective PARP inhibitor.[17,18] These data illustrate the necessity of careful mechanistic characterization of any targeted agent prior to large-scale and expensive studies.

Germline DNA repair deficiency

Inherited defects in DNA repair pathways result in increased susceptibility to the development of malignancy.[19] Defects in mismatch repair proteins promote the development of tumors, including colon and uterine,[20] whereas inherited inactivating mutations in BRCA1 and BRCA2, which are required for efficient HR-based DNA DSB repair, significantly increase the risk of breast, ovarian, prostate, and other cancers.[21] Patients with these tumor types typically demonstrate homozygous inactivation of these genes, the first event occurring in the germline, with subsequent clonal somatic inactivation of the remaining allele.[21] These events presumably occur early in tumorigenesis and, by loss of robust DNA DSB repair, induce genomic instability, which causes loss of tumor suppressors, activation of oncogenes, and acceleration of tumorigenesis.

A germline mutation in BRCA1 or BRCA2 increases the risk of prostate cancer and thus may be found in 2% to 5% of prostate cancers.[22,23] The relative risk of development of prostate cancer for men ≤ age 65 with BRCA1 mutations is 1.8, but BRCA2 mutations in particular seem to increase the risk of prostate cancer formation by age 65 by about 8.6-fold. Mutations of BRCA1, BRCA2, and ATM (and perhaps other DNA repair genes) may also play a role in progression to the lethal castration-resistant state.[22,24-26] The frequency of BRCA2 germline mutations in prostate cancer alone may be as high as 2%.[22] Therefore, the development of therapies to target DNA repair is likely to benefit a relatively large and relatively young population.

Somatic DNA repair deficiency

In addition to germline defects, tumors can acquire defective DNA repair processes through somatic loss of DNA damage response genes, and these somatic mutations can also confer sensitivity to PARP inhibition.[27] This has led to the concept of “BRCAness,” which refers to somatically acquired defects in HR that, as a group, could predict tumor response to PARP inhibitors and cisplatin.[21] Somatic alterations can include either acquired mutations or epigenetic events that silence genes such as ATM; ATR; BRCA1 or –2; CHEK1 or -2; FANCA, -C, -D2, -E, -F; PALB2; MRE11 complex; or RAD51, which prevent efficient HR repair of DNA DSBs.

It is likely that a substantial proportion of men with prostate cancer may demonstrate aspects of BRCAness that could predict sensitivity to PARP inhibitors. Beltran et al performed targeted next-generation sequencing of tumors from men with advanced prostate cancer and found that 12% demonstrated BRCA2 loss and that 8% harbored ATM loss.[28] Furthermore, up to 19.3% of CRPCs demonstrate aberrations in BRCA1, BRCA2, or ATM; these events become more frequent as the disease progresses from hormone-sensitive to castration-resistant.[29] Together these data suggest that BRCAness is a reasonably frequent event in patients with advanced prostate cancer, which makes PARP inhibition an attractive target in this disease.

Synthetic lethality

The concept of promoting the killing of cancer cells by simultaneously blocking SSB repair using PARP inhibition in cells that lack efficient DSB repair is called “synthetic lethality.” In this scenario, tumor cells may harbor either germline or somatically acquired homozygous inactivation of HR. Germline defects (when present) typically affect only one allele in normal cells, and therefore normal tissues retain HR function. This difference between the DNA repair capacity of normal and cancer cells can be leveraged to produce selective cell killing of tumor cells by PARP inhibitors. Treatment of patients with PARP inhibitors will then block normal SSB repair in all cells, and these SSBs are subsequently converted to DSBs by DNA replication. In normal cells, HR restores the genome and allows survival, but in DRD cancer cells, DSBs persist, inducing cellular death selectively in the tumor cell population (see Figure 2).


Early-phase studies

Ample data indicate that PARP inhibitors possess antitumor activity within diverse patient populations, particularly those with BRCA1 or BRCA2 mutations.[14] One of the first studies to validate the concept of clinical benefit in patients with BRCA mutations was a phase I trial that looked at pharmacokinetic and pharmacodynamic aspects of olaparib treatment.[24] In this study, 60 patients with solid tumors were treated with various doses of olaparib (10 mg daily to 600 mg twice daily) to determine maximum tolerated dose (MTD). The study population was intentionally enriched for BRCA mutation carriers, and 22 patients of the cohort harbored BRCA1 or BRCA2 mutations. Objective tumor activity was observed in the mutation carrier population in patients with breast, ovarian, and prostate cancers. Three patients with advanced prostate cancer were included in this study cohort; the one with a BRCA2 mutation had a greater than 50% response in prostate-specific antigen (PSA) level, resolution of bone metastases, and an extended treatment course. This study suggested that there was a benefit of olaparib therapy in BRCA mutation carriers and the potential for benefit in prostate cancer patients. Further validation of olaparib efficacy in patients with BRCA mutations came from parallel proof-of-concept studies demonstrating the activity of this agent in women with breast and ovarian cancers and BRCA1 or BRCA2 mutations.[30,31] These data ultimately led to US Food and Drug Administration (FDA) approval of olaparib for women with a BRCA mutation and metastatic ovarian cancer after chemotherapy.
Additional data that demonstrate a similar spectrum of activity are available for other PARP inhibitors. Phase I data on the safety and pharmacodynamics of single-agent veliparib have been reported as an abstract,[32] and additional studies of veliparib in combination with mitomycin,[33] irinotecan,[34] and other agents have been reported.[35] VanderWeele et al published a case report of a patient with metastatic CRPC and BRCA2 mutation who had a sustained complete response to veliparib and carboplatin/gemcitabine.[36] It seems likely that many of the available PARP inhibitors may have overlapping activities, and further data will be needed to clarify which agent to use in which tumor type and the relative toxicities of each agent.

emozolomide and veliparib in metastatic CRPC

Compelling data implicate PARP1 in the mediation of DNA repair responses to alkylating agents,[37] cellular survival in BRCA-deficient cells,[24,38] and androgen receptor–mediated prostate cancer cellular proliferation.[9,39] Furthermore, data suggest that prostate cancers that harbor the TMPRSS2:ERG fusion (present in up to 50% of prostate cancers) may be more sensitive to PARP inhibition.[13] Therefore, Hussain et al carried out a single-arm pilot study to assess the safety and efficacy of veliparib with the alkylator temozolomide (TMZ) in patients with metastatic CRPC following docetaxel therapy.[40] In this study, patients with a PSA level of ≥ 2 ng/mL were treated with veliparib, 40 mg twice daily, on days 1 to 7 and TMZ, 150 to 200 mg/m2, on days 1 to 5 on a 28-day cycle, based on tolerance data from a phase I study (ClinicalTrials.gov identifier: NCT00526617). The primary endpoint was PSA response rate (30% decline). Of the 25 patients who were evaluable for response, 2 had a confirmed response, 13 had stable PSA, and 10 had progression. The most frequent toxicities were thrombocytopenia, anemia, fatigue, neutropenia, nausea, and constipation. The investigators did assess frequency of TMPRSS2:ERG fusion but found it in only one of eight evaluable patients. Although this patient had stable disease, no conclusions could be drawn regarding the contribution of the fusion product to veliparib sensitivity. Overall, while the combination was considered tolerable, it had only modest activity. No preselection was done in the study, and because BRCAness exists in 20% of patients, it is perhaps not surprising that activity was modest. The lower dose of PARP inhibitor and the lack of established benefit for TMZ may also have contributed to less than robust clinical activity for this combination. Given the emerging molecular data, it seems that future studies will be more likely to identify activity if done in preselected patient populations.


The Trial of PARP Inhibition in Prostate Cancer (TOPARP-A) sought to determine whether patients with prostate cancers with molecularly identified defects in DNA repair benefited from full-dose olaparib therapy.[25] In this phase II study, 50 men with CRPC underwent biopsy of metastatic disease and targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase chain reaction. The primary endpoint was response rate (either objective response or reduction of 50% in PSA level or reduction in circulating tumor cells). All had previously received docetaxel, and most had been treated with abiraterone or enzalutamide (98%) and cabazitaxel (58%). Patients were grouped according to the presence or absence of a homozygous deletion of or deleterious mutation in DNA damage response genes, which predict sensitivity to PARP inhibition. Overall, 16 of 49 evaluable patients (33%) were biomarker positive (indicative of homozygous deleterious changes in BRCA1/2, ATM, Fanconi anemia genes, or CHEK2). Of these, five patients had germline and somatic events (three patients with germline BRCA2 and three patients with germline ATM deletions or mutations). Of the 16 patients with deleterious changes in DNA repair genes, 14 (88%) responded to olaparib. The median overall survival for patients with biomarker-positive DRD tumors who received olaparib was 13.8 months, compared with 7.5 months for those with biomarker-negative tumors (P = .05). Interestingly, two biomarker-negative patients also met criteria for response to olaparib. Although one was a longer-term responder still on therapy at the time of publication, this particular patient did harbor monoallelic deletions of both BRCA2 and PALB2 that did not meet criteria for the prespecified biomarker-positive category but that may have contributed to tumor sensitivity. Toxicity was as expected, with patients displaying grade 3 or 4 anemia (10/50), fatigue (6/50), leukopenia (3/50), thrombocytopenia (2/50), and neutropenia (2/50). These results illustrate the feasibility of using molecular profiling to identify prostate cancers that display molecular features suggestive of sensitivity to PARP inhibition (BRCAness).

NCI 9012

ETS gene fusions—which result from gene rearrangement and juxtaposition of an androgen-responsive gene, such as TMPRSS2, to an ETS transcription factor gene, such as ERG or ETV1—occur in 50% to 60% of prostate cancers.[41,42] ETS transcription factors may also physically interact with PARP1, and PARP1 activity may be required for ETS-mediated invasion, transcription, and metastasis.[13] Androgen receptor–mediated transcription may also promote DNA DSBs and requires PARP activity for efficient repair.[43-45] Therefore, therapeutic targeting of androgen receptor signaling and PARP1 activity using abiraterone and veliparib is an attractive strategy in the management of metastatic prostate cancer.

A randomized phase II clinical trial in patients with metastatic CRPC was recently completed; it examined whether ETS fusion is a biomarker of response to abiraterone or abiraterone plus veliparib. In this study, 148 patients with metastatic CRPC underwent biopsy followed by assessment of ETS fusion status and then random assignment to either abiraterone alone or abiraterone plus veliparib. The primary endpoint was confirmed PSA response in patients receiving either abiraterone alone or combination therapy, stratified by ETS status. Secondary endpoints included safety, objective response rate, progression-free survival, and whether DNA repair gene deficiency (homozygous deletions of or deleterious mutations in: BRCA1, BRCA2, ATM, FANCA, PALB2, RAD51B, RAD51C) predicts response. This trial has now completed enrollment, and preliminary results will be presented at the American Society of Clinical Oncology 2016 Annual Meeting. Although final results are pending, the study does illustrate the feasibility of a large-scale metastatic tissue–based, biomarker-driven trial involving PARP inhibition in patients with metastatic CRPC. This study will also begin to ascertain the role of ETS fusions in determining response to PARP inhibitor therapy and will further explore the contribution of DRD to patient outcomes in those treated with standard therapy (abiraterone arm) and those treated with PARP inhibition (abiraterone plus veliparib arm).

Future studies

Given the data from the studies discussed previously and the enthusiasm for molecularly targeted trials in oncology, there is interest in further testing of PARP inhibition in prostate cancer patients. Multiple trials have recently been completed, are actively enrolling, or are nearing activation within this space (see Table, ClinicalTrials.gov).

Olaparib. Olaparib is the agent that is farthest along in clinical development and has an FDA indication in ovarian cancer. Olaparib also has the most active or pending studies in prostate cancer patients. TOPARP continues to enroll patients with metastatic CRPC, with a target accrual of 98 patients (ClinicalTrials.gov identifier: NCT01682772). There is a randomized double-blind, placebo-controlled phase II study of abiraterone plus olaparib or placebo for patients with metastatic CRPC who received prior docetaxel therapy (ClinicalTrials.gov identifier: NCT01972217). This trial, which is similar to the NCI 9012 study, has completed enrollment, but results are pending. Another trial is examining the biologic effect of olaparib on prostate cancer specimens when given alone or in combination with degarelix prior to prostatectomy (ClinicalTrials.gov identifier: NCT02324998). Furthermore, there is an open-label phase II study to assess the efficacy and safety of olaparib in patients with BRCA1 or BRCA2 mutations (regardless of tumor type), which is ongoing but no longer enrolling patients (ClinicalTrials.gov identifier: NCT01078662).

Veliparib. NCI 9012 (discussed previously) will help determine whether veliparib has potential therapeutic activity in metastatic CRPC and may identify molecularly determined subsets of disease (ie, ETS fusion–positive, DRD-positive) that might be expected to show the most benefit. The results of this study may help determine whether additional studies of this agent within the prostate cancer space are warranted.

Niraparib. The Hoosier Cancer Research Network has a planned phase I study of the combination of enzalutamide and niraparib for patients with metastatic CRPC (ClinicalTrials.gov identifier: NCT02500901), which has not yet begun enrollment. The primary endpoint of this study will be determination of MTD and dose-limiting toxicity.

Talazoparib. Although no prostate cancer–specific trials using other PARP inhibitors are currently active, several trials for molecularly targeted patient populations or phase I trials for toxicity assessment in combination with chemotherapy are ongoing; these provide some information on prostate cancer populations, depending on the types of solid tumors enrolled. There is a phase I trial of talazoparib in combination with carboplatin and paclitaxel (ClinicalTrials.gov identifier: NCT02317874) and another for patients with solid tumors and hepatic and renal dysfunction (ClinicalTrials.gov identifier: NCT02567396).

Precision Targeting of the PARP Pathway in Prostate Cancer

PARP inhibitors are a promising therapeutic option for men with prostate cancer. There is good evidence that men with either germline or somatic mutations in DNA repair pathways can derive therapeutic benefit from inhibition of PARP1/2, which blocks repair of SSB, driving persistent DSBs that lead to cancer cell lethality. Preclinical data also suggest that PARP inhibition may produce benefits by targeting chromatin and gene transcription, which implies that clinical benefits may extend beyond patients with DRD tumors.[12] To continue to develop PARP inhibitors within the prostate cancer field, we will need to develop and refine a set of biomarkers for use in selecting the right patient populations for these agents and then incorporate these biomarkers into prospective studies. As part of a precision therapy strategy, PARP inhibitors will likely play an important role in the management of prostate cancer in the near future.

It is now feasible to comprehensively profile the mutational, epigenetic, and gene expression changes in men with prostate cancer, and we are beginning to use this information to guide treatment choices.[7] Unfortunately, the functional relevance of many of the molecular features uncovered in these profiles is not completely understood. DNA repair processes are complex and require many genes for efficient repair of various types of DNA damage. Most past and ongoing studies focused on patients with specific molecular features, such as BRCA1, BRCA2, ATM, FANCA, PALB2, RAD51B, and RAD51C mutations. While mutations of these genes are likely to affect sensitivity to PARP inhibitors, mutations in other DNA repair or transcription factor genes may as well, and identification of those genes could expand the patient population that could benefit from therapy. Determination of whether other genes are susceptible to PARP inhibitor therapy will require robust preclinical models with a wide selection of genetic changes that reflect human disease; such models can be used to determine whether additional mutations and epigenetic or gene expression changes also result in PARP inhibitor sensitivity. Given the potential infrequency of many of the individual mutations that might sensitize to PARP inhibitors, large-scale registries that catalog mutations and their responsiveness to therapies may be needed.

As we define the molecular features that suggest sensitivity to PARP inhibition, the challenge will then become understanding the best strategy for incorporating these targeted agents into our standard treatment algorithms. In the context of prostate cancer, PARP inhibitors could be considered in high-risk patient populations in an adjuvant manner, before or with androgen deprivation therapy (ADT) in patients with newly metastatic disease, or in the setting of castration-resistant disease before or after the many other therapeutic options. To date, most trials in the prostate cancer space have been in the castration-resistant setting, perhaps because mutations in DNA damage genes may become more common as the disease progresses.[25] Nonetheless, there is no reason to assume that patients who harbor mutations may not benefit earlier in the disease course. Adjuvant use of PARP inhibitors in those with high-risk or micrometastatic disease could conceivably render patients disease free. Similarly, the combination of ADT and PARP inhibitors in early metastatic disease may provoke prolonged progression-free intervals similar to the situation with early docetaxel therapy but with less toxicity.[4,5] In the context of castration-resistant disease, it is reasonable to hypothesize that the combination of PARP inhibitors with hormonal agents such as abiraterone or enzalutamide or with chemotherapies might act synergistically to promote disease control.

The trials to examine these questions may be more challenging to design and execute because patients with sensitizing molecular changes represent a limited subset of total patients with prostate cancer. This means that in order to identify the subset that will benefit, many will need to be screened.[25] Because most molecular analyses are done using biopsy tissue, screening and cost may be challenging factors. In addition, the natural history of patients with DNA damage pathway mutations may also be distinct from those without such mutations. It is conceivable that mutations in DNA damage response genes may modulate patient response to standard hormonal agents, chemotherapy, or radium because all three of these therapeutic modalities have the potential to induce DNA damage in prostate cancer cells. Given these caveats, it will be essential to design an efficient precision medicine clinical trial pipeline that can rapidly molecularly profile patient tumors, assign to a therapeutic intervention, and then assess the complex resulting data and analyze results according to molecular categories.

PARP inhibitors have the potential to be a promising addition to the therapeutic arsenal used to treat prostate cancer and other solid tumors that harbor the appropriate molecular features. The transition from a standard, one-size-fits-all approach to a targeted, precision medicine strategy in which an individual prostate cancer patient’s tumor biology will guide choice of therapy will require careful planning and thought. The inclusion of PARP-targeted therapies before, after, with, or in place of standard hormonal therapies and chemotherapies will need to be defined so as to maximize antitumor effect and patient survival. Hopefully, application of these novel combinations in those most likely to benefit will ultimately lead to longer and better lives for patients with prostate cancer.

Financial Disclosure: Dr. Hussain is the principal investigator for a clinical trial of veliparib through the Cancer Therapy Evaluation Program (for AbbVie), and is collaborating on a clinical trial of olaparib for AstraZeneca.

David B. Solit, MD
Philip W. Kantoff, MD
Memorial Sloan Kettering Cancer Center, New York, New York

How an Ovarian Cancer Drug Came to Have ‘Breakthrough Therapy Designation’ for Prostate Cancer

With the emergence of precision medicine, clinicians can now take advantage of high-throughput tumor sequencing to identify driver mutations in individuals with cancer, with the goal of matching these with effective therapies. Since driver mutations can be shared across cancer types, precision medicine has also challenged the notion that cancer types, as defined by site of origin, are completely separate entities. One such example is the use of vemurafenib in multiple BRAF V600–mutant cancers. Another example is that of poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP) inhibitors and prostate cancer. It is now recognized that DNA repair abnormalities, including and most notably BRCA2 mutations, are found frequently in the germline and as somatic mutations in the tumors in men with metastatic prostate cancer. Moreover, recent studies have demonstrated promising activity for olaparib—a drug approved for use in BRCA-mutated ovarian cancer—in men with castration-resistant disease and germline or somatic DNA repair abnormalities. This has led the US Food and Drug Administration to confer “breakthrough therapy designation” on olaparib, based on the strong belief that the drug will ultimately be approved for this indication.

What Questions Should Future Research on PARP Inhibitors for Prostate Cancer Focus on?

Many questions still remain unanswered. These include:

1) Given the pleiotropic effects of PARP inhibitors, which activities are the most critical and which PARP inhibitors are best for each disease/mutation scenario?

2) Have we identified the full gamut of DNA repair abnormalities that might respond to PARP inhibition?

3) Can we extend the spectrum of patients eligible for PARP inhibitors to those who are homologous recombination–proficient, by combining PARP inhibitors with therapies such as alkylating agents or antiangiogenic agents like cediranib?

4) Can we identify patients early on in their disease course in whom PARP inhibition may contribute to a curative strategy?

UPDATED 12/05/2020

Targeting PARP in Cervical Cancer


Associated Data

Supplementary Materials



Cervical cancer (CC) remains a major health problem worldwide. Poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) have emerged as a promising class of chemotherapeutics in ovarian cancer. We explored the preclinical in vitro and in vivo activity of olaparib against multiple primary whole exome sequenced (WES) CC cells lines and xenografts.


Olaparib cell-cycle, apoptosis, homologous-recombination-deficiency (HRD), PARP trapping and cytotoxicity activity was evaluated against 9 primary CC cell lines in vitro. PARP and PAR expression were analyzed by western blot assays. Finally, olaparib in vivo antitumor activity was tested against CC xenografts.


While none of the cell lines demonstrated HRD, three out of 9 (33.3%) primary CC cell lines showed strong PARylation activity and demonstrated high sensitivity to olaparib in vitro treatment (cutoff IC50 values < 2μM, p=0.0012). Olaparib suppressed CC cell growth through cell cycle arrest in the G2/M phase and caused apoptosis (p<0.0001). Olaparib activity in CC involved both PARP enzyme inhibition and trapping. In vivo, olaparib significantly impaired CC xenografts tumor growth (p=0.0017) and increased overall animal survival (p=0.008).


A subset of CC primary cell lines is highly responsive to olaparib treatment in vitro and in vivo. High level of PARylation correlated with olaparib preclinical activity and may represent a useful biomarker for the identification of CC patients benefitting the most from PARPi.


Despite the implementation of prophylactic vaccination strategies against Human Papillomavirus (HPV) infection and advances in chemoradiation and immunotherapy, cervical cancer (CC) remains a major health problem in the United States with 13,240 new cases and 4,170 related deaths in 2018 []. Chemoradiation represents the standard of care for patients with locally advanced disease not suitable for curative surgery [] while the usual treatment for recurrent/metastatic CC is a combination of paclitaxel and cisplatin or paclitaxel, cisplatin and bevacizumab. These chemotherapy treatments, although not curative, result in median survival times of approximately one to 1.5 years []. Once patients progress after this initial therapy for recurrent or metastatic disease, options are limited (there are no FDA approved or NCCN level 1 or 2A therapies available). Identification of novel, effective therapies for CC patients with disease resistant to standard treatment modalities remains an unmet medical need.

In recent years, Poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) have emerged as a promising class of chemotherapeutic agents for ovarian cancer associated with defects in homologous recombination DNA repair (HRR) system []. PARP1 is one of the most abundant proteins among several members of the PARP family and multiple studies implicated PARP1 as having pleiotropic cellular functions, such as maintenance of genomic integrity, DNA repair and regulation of apoptotic and survival balance in cells []. Furthermore, the enzyme is involved in the PARylation of nuclear proteins (i.e., the post-translational modification process by which polymers of ADP-ribose (poly(adenosine diphosphate-ribose)) are covalently attached to proteins by PAR polymerase enzymes), recruitment of DNA repair factors and stabilization of chromatin for transcriptional regulation []. Importantly, since PARPi prevents repair of single strand breaks, causing DNA destabilization and eventual double strand breaks, cancer cells with deficient double strand repair (HRR) are particularly sensitive to PARPi []. Accordingly, based on preclinical and clinical results, in 2014 the US Food and Drug Administration (FDA) approved the first PARPi (i.e., olaparib) for treatment of patients with germline BRCA-mutated advanced ovarian cancer, who have been treated with three or more prior lines of chemotherapy. Since 2017, three PARP inhibitors (i.e., olaparib, rucaparib and niraparib), have received FDA approval in the ovarian cancer recurrent setting as maintenance therapy following platinum-based therapy [].

Although several clinical trials are currently underway investigating the clinical efficacy and safety of PARPi for various human malignancies, limited preclinical and clinical information is currently available on the potential activity of olaparib in CC patients []. Accordingly, in this study, we evaluated the preclinical activity of olaparib against multiple homologous recombination competent (HRD) primary CC cell lines (i.e., both squamous and adenocarcinoma) and xenografts. Furthermore, we also investigated possible mechanisms behind CC sensitivity to PARPi and elucidated the correlation between sensitivity to olaparib and PARylation activity.


Establishment of CC cell lines

Study approval was obtained from the Institutional Review Board (IRB), and all patients signed consent prior to tissue collection according to the institutional guidelines. Nine primary CC cell lines (Table 1) were established from fresh tumor biopsy samples and maintained at 37 °C, 5% CO2 in Keratinocytes-SFM (Gibco®, Life Technologies™), supplemented with prequalified human recombinant Epidermal Growth Factor 1–53 (EGF 1–53), Bovine Pituitary Extract (BPE), 10%, 1% penicillin/streptomycin (Mediatech, Manassas, VA), and 1% Fungizone (Life Technologies, Carlsbad, CA). Briefly, cervical tumor biopsies were obtained from all patients and viable tumor tissue was mechanically minced under sterile conditions in enzyme solution [0.14% Collagenase Type I (Sigma St. Louis, MO) and 0.01% DNAse (Sigma, 2000 KU/mg)] in RPMI 1640, and incubated on a magnetic stirring apparatus 40’ at room temperature. The resultant cell suspension was washed in RPMI 1640 plus 10% FBS and then washed in PBS. Tumors were staged according to the International Federation of Gynecology and Obstetrics (FIGO) staging system. Patient characteristics are noted in Table 1

Table 1

Characteristics and demographic data of cervical cancer cell lines.

Cell line Age RACE FIGO stage Histology HPV
CVX3 35 B IB2 SCC 16
CVX4 40 W IIA SCC 16
CVX5 42 W IB2 SCC 18
CVX7 22 H IB2 SCC 16
CVX8 29 W IB1 SCC 16
ADX1 33 W IB ADSQ 18
ADX2 33 B IB ACA 18
ADX3 25 W IB ACA 18
ADX4 47 B IB SCC 45

Homologous recombination deficiency (HRD) evaluation in CC cell lines

Log2-ratios of read counts in exonic intervals in whole exome sequenced (WES) tumor and normal samples [], were tabulated (Figure 1S). Intervals were determined from high coverage regions in the normal samples, and intervals that did not overlap with RefSeq annotations were removed, to ensure remaining intervals corresponded to known genic loci. SNP allele frequencies were calculated in these exonic intervals, using SNPs defined in the phase 3 1000 Genomes dataset (Figure 2S). The log2-ratios and allele frequencies were used to assess HRD status for each sample using an ad hoc scoring algorithm, similar to the one used in the ARIEL2 trial [].

Immunoblotting and antibodies

Cells were washed twice in ice-cold PBS and harvested with radioimmunoprecipitation assay buffer (RIPA) (50 mmol/L Tris–HCl, pH 8, 150 mmol/L NaCl, Triton X-100 1%, Na deoxycholate 0.5%, SDS 0.1%, MgCl 5 mmol/L in H2O) supplemented with Protease and Phosphatase Inhibitor (cat#78430, Thermo Fisher Scientific). Protein concentrations were measured by BCA Protein Assay Kit (Pierce™ #23225) to ensure equal loading. Proteins were denatured at 95°C for 5 minutes in Laemmli sample buffer (S3401; Sigma-Aldrich) and then resolved in SDS-PAGE electrophoresis, transferred on nitrocellulose, and blotted with corresponding antibodies. The antibodies used for western blotting were as follows: PAR (#4336, Trevigen), PARP (#9532, Cell Signaling Technology, Inc.), and GAPDH (#2118, Cell Signaling Technology, Inc.).

Cell viability assay

CC cell lines were plated at log phase of growth in 6-well tissue culture plates at a density of 80,000–100,000 cells/well. After 24 hours of incubation, cells were treated with Olaparib (AZD2281, LYNPARZA™, AstraZeneca) at a concentration of 0, 0.15, 1.5, 3, 12 μM. 72 hours after drug treatment, cells were harvested in their entirety, centrifuged and stained with propidium iodide (2 μl of 500 μg/ml stock solution in PBS). Count was performed using a flow-cytometry based assay to quantify percent viable cells as a mean ± SEM relative to untreated cells as 100% viable control. A minimum of three independent experiments per cell line was performed.

Cell-cycle analysis

After 48h incubation at the conditions described in Figure 4, cells were harvested and washed with ice-cold PBS, fixed in ice-cold 70% ethanol at −20°C for a minimum of 30 minutes to overnight. Subsequently, cells were washed in PBS, incubated with ribonuclease A (100 μg/ml) for 5 minutes at room temperature and stained with propidium iodide (20 μg/ml) in PBS. Cell-cycle phase distributions were analyzed with Flow-Jo software program (v. 8.7).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0004.jpg

A) Cell cycle assay on CVX5 after 48h Olaparib treatment at the following concentrations: 0.15, 1.5, 3 μM (p=0.00005) B) Cell cycle assay on CVX8 (representative resistant cell line) after 48h Olaparib treatment at the following concentrations: 0.15, 1.5, 3 μM (p>0.05).

Annexin V-FITC/PI double staining

Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) double staining was used to quantify apoptosis. Adherent cells were incubated with 0, 0.15, 1.5, 3 μM of olaparib for 72 hours, then harvested and collected. Cells were washed twice with ice-cold PBS and resuspended in 1× Binding Buffer at a concentration of 1×106 cells/ml. 5 μl of Annexin V-FITC and 5 μl of propidium iodide were added to 100 μl of the cell suspension. After 15 minutes of incubation, 400 μl of Binding Buffer were added to each cell suspension. Cells were analyzed by flow cytometry within 1 hour.

siRNA transfection

Cells were plated in 6 well plate in Keratinocytes-SFM (Gibco®, Life Technologies™), supplemented with prequalified human recombinant Epidermal Growth Factor 1–53 (EGF 1–53), Bovine Pituitary Extract (BPE), 1% penicillin/streptomycin (Mediatech, Manassas, VA), and 1% Fungizone (Life Technologies, Carlsbad, CA). 70–80% confluent cells were subjected to transfection. PARP1 siRNA and negative control siRNA were purchased from Ambion®, Life Technologies™. Briefly, the siRNA was incubated with Lipofectamine RNAiMAX reagent (Invitrogen, CA, USA) in OptiMEM medium for 20 minutes, then added to a monolayer of cells in Keratinocytes-SFM without antibiotics. Twenty-four hours after the transfection, cells were treated with scalar amounts of olaparib ranging from 1.5 μM to 400 μM. Cells were then counted by flow cytometry.

Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)

RNA was obtained from cells after 48 hours of incubation with olaparib (Table 1S) using AllPrep DNA/RNA/Protein Mini Kit (Qiagen) according to the manufacturer’s instructions. Total RNA (5 μg) was reverse-transcribed using Superscript III (Invitrogen). Quantitative PCR was carried out to evaluate the expression level of PARP-1 (PARP-1, Assay ID: Hs00242302_m1, Applied Biosystems) in all samples with a 7500 Real-Time PCR System (Applied Biosystems) following the manufacturer’s protocol. Each reaction was run in duplicate. The internal control GAPDH (Assay ID: Hs99999905_ml, Applied Biosystems) was used to normalize variations in cDNA quantities from different samples. The comparative threshold cycle (Ct) method was used for the calculation of amplification fold as specified by the manufacturer. Analyses were performed using SDS software 2.2.2 (Applied Biosystems/Life Technologies).

In vivo treatment

The in vivo antitumor activity of olaparib was tested in xenograft models. Briefly, four to six-week-old CB17/SCID mice were given a single subcutaneous injection in the abdominal region of 7 × 106 CVX5 cells in approximately 300 μl of a 1:1 suspension of sterile PBS containing cells and Matrigel® (BD Biosciences). Xenografted mice were randomized into treatment groups (6 mice each group) when mean tumor burden was 0.15–0.25 cm3, and dosing (vehicle PO or olaparib 10 mg/kg BID, PO) was delivered to the CVX5 xenografts for 4 weeks (7 days/week). Drug dosage was chosen according to previous studies []. Tumor and weight measurements of each mouse were recorded twice weekly. Mice were humanely euthanized when tumor volume reached 1.5 cm3 using the formula (width2 × height)/2. Animal care and euthanasia were carried out according to the rules and regulations as set forth by the Institutional Animal Care and Use Committee (IACUC).

Statistical analysis

Statistical analysis was performed using Graph Pad Prism version 8 (Graph Pad Software, Inc. San Diego, CA). The inhibition of proliferation in the CC cell lines after exposure to olaparib was evaluated by the two-tailed unpaired student t-test. Unpaired t-test was used to evaluate significant differences in the tumor volumes at specific time points in the in vivo experiments. Overall survival data was analyzed and plotted using the Kaplan-Meier method. Survival curves were compared using the log-rank test. Differences in all comparisons were considered statistically significant at p-values < 0.05.

Olaparib suppresses CC cell lines growth

To evaluate the potential of PARP inhibitors on CC, we investigated the in vitro effects of olaparib on the growth of 9 primary CC cell lines using flow cytometric-based assay as described in the methods. As shown in Figure 1A,1B,1B, after 72 hours of incubation with increasing concentrations of olaparib, we found a progressive, dose-response decrease in cell proliferation in 33% of CC lines tested, with a significant difference in IC50 values between the sensitive and resistant group (p= 0.0012).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0001.jpg

A) In vitro proliferation assay overview of the established primary CC cell lines (n=9) B) Violin scatter dot plot representing grouped sensitive cell lines and resistant cell lines (p=0.0012) C) Western blot analysis displaying basal expression of PARP, PAR, and GAPDH in all nine CC cell lines.

Sensitivity to olaparib is strongly correlated to PARP activity

To better understand the mechanisms behind the sensitivity to olaparib in a subset of primary CC, we analyzed PARP and PAR basal expression in all nine CC cell lines as well as their mutation spectrum (i.e., HRD), as defined in the methods section. None of the tested CC cell lines demonstrated HRD. Indeed, within the nine CC cell lines, genomic loss of heterozygosity (LOH) results ranged from 0–12.3% (Table 2S), which falls short of the initial ARIEL2 cutoff of 14% (and the current revised cutoff of 16%) used to classify a tumor as HRD []. In contrast, as demonstrated in Figure 1C, using immunoblot (i.e., cells lysates were loaded in order from the most sensitive to the most resistant CC based on IC50 values previously obtained by flow cytometric-based assay) we found a direct correlation between basal expression level of PARP activity (PAR) and sensitivity to olaparib treatment. Indeed, CVX5, CVX1 and CVX3 (i.e., the 3 CC primary cell lines with the higher PARP expression of both PARP isoforms 116 and 89 kDa), consistently demonstrated the higher sensitivity to olaparib exposure in the in vitro experiments.

Silencing of PARP-1 elicits resistance to olaparib

To evaluate further the correlation between PARP-1 activity and sensitivity of CC to olaparib we transiently transfected CVX5 cells with PARP-1 siRNA and negative siRNA control as described in materials and methods section. After 72 hours of olaparib treatment, IC50 values of either PARP-1 siRNA and negative control siRNA transfected CVX5 cells were evaluated through flow cytometric-based assay as described in Methods. Validation of PARP-1 mRNA silencing in tumor cells was confirmed with q-real time PCR (Table S1). As shown in Figure 2, CVX5 cells transfected with PARP-1 siRNA from sensitive become highly resistant (i.e., IC50 from 8.69 μM to 513.2 μM) to olaparib treatment (p=0.0063).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0002.jpg

In vitro proliferation assay in PARP-1 silenced CVX5 cell line versus non-silenced control (p=0.0063).

Olaparib triggers apoptosis of CC in a dose-dependent manner

To gain better insight into the mechanism of PARPi activity, CVX5 was exposed to increasing concentration of olaparib (0.15, 1.5, 3 μM) for 48 hours before being harvested for Annexin V/PI staining. As shown in Figure 3, we demonstrated that olaparib at the dose of 1.5 μM and 3 μM induced apoptosis in 18% to 20% of cells, respectively, and tardive apoptosis in an additional 27.5% of cells (p<0.0001).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0003.jpg

Up Left (UL) and Up Right (UR) quadrants show single positive events for FL1-H (ANNEXIN V-FITC) and double positive events for FL1-H and FL2-H, respectively. Double positive events stand for tardive apoptosis, corroborated by the absence of events in Down Right (DR) quadrant (single positive for FL2-H representing cell necrosis) (p<0.0001).

Olaparib sensitivity is associated with G2/M cell cycle arrest

We next examined the cell cycle profiles of CVX5 (i.e., a representative olaparib-sensitive CC cell lines) and CVX8 (a representative olaparib-resistant CC cell line) after 24 hours of olaparib treatment. As shown in Figure 4A, starting at 1.5 μM of olaparib, 67.7% of CVX5 cells demonstrated a G2/M cell cycle arrest (in comparison to non-treated cells (i.e., 22.3%) (p=0.000061). This percentage increased at the dose of 3 μM olaparib (78.3%) (p=0.00005). In contrast, as demonstrated in Figure 4B, CVX8 cell cycle was not affected by olaparib treatment at any dose tested (16.2% cells in G2-M non-treated cells vs 13.5% cells in G2-M after 3 μM olaparib treatment) (p>0.05).

Olaparib PARP inhibition and PARP trapping on sensitive CC

Next, we analyzed PARP-1 and PAR expression in CVX5 cells by immunoblotting assay after exposure to different doses of olaparib (0.15 μM – 1.5 μM) at two different time points (24–48 hours). As shown in Figure 5, PARP expression increased after exposure to 1.5 μM olaparib at both time points while no significant variation was detected in PARP-1 mRNA expression level at 24 or 48 hours (Table S1). A dramatic reduction in PAR levels was detected at both doses of olaparib (0.15 and 1.5 μM) (Figure 5).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0005.jpg

Western blot analysis displaying expression of PARP, PAR, and GAPDH in CVX5 cells after 24–48 hours of treatment with 0.15 and 1.5 μM Olaparib.

Olaparib impairs CVX5 xenograft tumor growth in vivo

The in vivo effects of olaparib was determined by establishing xenografts from the primary CVX5 CC cell line. Briefly, after the tumors had reached the goal size, animals were randomized into treatment groups and treated as described in Materials and Methods. Tumor size was assessed weekly and mice were sacrificed if tumors became necrotic, reached a volume of 1.5 cm3, or mice appeared to be in poor health. Twice daily oral dose of olaparib 50 mg/kg was well tolerated with no clear impact on body weight compared with vehicle control (data not shown). As shown in Figure 6, mice undergoing olaparib treatment exhibited a significantly slower rate of tumor growth, compared to vehicle control starting at day 12 (p=0.0017). Furthermore, the overall survival was significantly prolonged in the treated group (Log Rank Mantel-Cox test p=0.008).


An external file that holds a picture, illustration, etc.
Object name is nihms-1537725-f0006.jpg

A) In vivo tumor growth inhibition following 19 days dosing olaparib or vehicle of CVX5 injected xenografts (p=0.0017) B) overall survival (p=0.008).


The inhibition of PARP was initially demonstrated to determine ‘synthetic lethality’ in cancer patients harboring specific DNA repair defects, (i.e., BRCA1 or BRCA2 (BRCA1/2) mutations) causing deficiency in the cell homologous recombination (HR) repair system []. Accordingly, initial FDA approval was restricted to the treatment of patients harboring deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy. More recently, however, PARPi approval was expanded to maintenance therapy for patients with platinum-sensitive relapsed ovarian cancer, who responded to their second line regimen, regardless of BRCA1 or BRCA2 (BRCA1/2) mutation status [] []. This broader use of PARPi stems from the evidence that tumors that share molecular features with BRCA-mutant tumors (i.e., BRCAness) also exhibit different levels of defective homologous recombination DNA repair, and therefore will respond to PARP inhibition []. Importantly however, recent results from large prospective randomized clinical trials have demonstrated significant PARPi clinical activity also against patients harboring HR-competent/BRCA wild-type tumors [].

Unfortunately, while olaparib, rucaparib and niraparib are currently FDA-approved in ovarian cancer and multiple clinical trials are currently evaluating PARPi as single agents or in combination against multiple human tumors, limited information is currently available on the role of olaparib in CC patients. Accordingly, in this study, we thoroughly investigated the preclinically activity of olaparib against multiple primary CC cell lines in vitro and in vivo.

We found three of the nine primary CC cell lines to be highly sensitive to olaparib exposure with a cutoff IC50 value < 2μM []. To gain further insight into the molecular characteristics making these CC cell lines sensitive to olaparib treatment we evaluated their mutation spectrum (i.e., HRD), as well as their level of PARP1 expression [], and the potential role played by PARylation. Using the ARIEL2 study cutoff of 14% (and the current revised cutoff of 16%) used to classify a tumor as HRD [], we found none of the tested CC cell lines to demonstrate HRD. Importantly, we found the level of PARylation but not PARP1 expression in the tumors to consistently correlate with CC cell line sensitivity to olaparib. To prove the correlation between PARylation overexpression and olaparib sensitivity was causative, we downregulated PARP1 mRNA through PARP1 siRNA transfection in a representative cell line (i.e., CVX5 cell line) and analyzed the IC50 values in comparison to transfected CVX5 with a universal negative control siRNA. We found CVX5 transfected with PARP1 siRNA to gain high resistance to olaparib treatment (p=0.0063), confirming that PARP activity (PAR) is of utmost importance in determining olaparib sensitivity in CC cell lines. These results are similar to the results obtained by Michels et al., who also found a positive correlation between cellular PARylation levels and sensitivity to PARP inhibitors in non-small cell lung carcinoma cell lines []. Moreover, in agreement with our results, other groups demonstrated that in the absence of functional HR, PARP1 or PARP2 knockout cells are resistant to PARP inhibitors []. Taken together, these data combined with our findings in CC strongly suggest that determination of the level of PARP1 protein activity (i.e., PAR expression), may represent a biomarker potentially able to identify the most sensitive CC patients for treatment with PARPi. Accordingly, testing the possible link between PARP expression/activity and sensitivity to PARP inhibitors in the clinical setting may be warranted in future CC studies.

To better understand the functional mechanisms of olaparib in inhibiting CC cell growth, we performed cell cycle analysis experiments. We found olaparib, in a dose-dependent manner, to consistently arrest cell cycle in G2/M phase in all sensitive cell lines, ultimately preventing cells to going through the G1 phase. In contrast, no detectable alteration was found in the cell cycle of olaparib-resistant CC cell lines (i.e., CVX8). This effect of olaparib, as previously demonstrated in ovarian cancer, is explained by the PARP trapping mechanism, by which PARP inhibitors induce the formation of cytotoxic PARP–DNA complexes, preventing DNA replication []. When we investigated the mechanism of cell death in the CC cell lines exposed to olaparib, we found that only less than 1% of total cells demonstrated necrosis, corroborating the result that olaparib triggers and induces apoptosis in olaparib-sensitive CC cell lines.

To further elucidate the mechanism of action of olaparib against PARP, we analyzed PARP-1 and PAR protein expression in a representative cell line (i.e., CVX5) during olaparib treatment. Our immunoblot experiments clearly demonstrated a dose dependent increase of PARP1, as main consequence to olaparib exposure, further supporting an olaparib-induced PARP trapping phenomenon. In agreement with this interpretation, PARP-1 mRNA levels were not increased in any of the condition tested in any CC cell line. Taken together, our results support the notion of PARP-1 accumulation in cells treated with increasing concentrations of olaparib as main mechanism of action in CC. Importantly, when we evaluated the activity of olaparib in vivo in xenografted animals injected with CVX5, our result were confirmatory of the in vitro results with significant impairment of CVX5 tumor growth, and a significant increase in animal overall survival (p=0.008).

In conclusion, we demonstrated in vitro and in vivo activity of olaparib in a significant subset of CC primary cell lines and suggest that PAR expression may represent a novel biomarker for the potential prediction of PARPi response in patients with CC. Future studies with PARPi used alone or in combination with other targeted agents in patients with CC resistant to standard treatment modalities are warranted.

  • A subset of primary CC cell lines is highly sensitive to olaparib in vitro and in vivo

  • High PARylation activity correlates with sensitivity to olaparib in CC cell lines

  • Silencing of PARP-1 reverses CC cell line sensitivity to olaparib and induce resistance


Supplementary Material



A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: an NRG Oncology Study (NCT#01281852)

P. H. Thaker,1R. Salani,2W. E. Brady,3H. A. Lankes,3D. E. Cohn,2D. G. Mutch,1R. S. Mannel,4K. M. Bell-McGuinn,5P. A. Di Silvestro,6D. Jelovac,7J. S. Carter,8W. Duan,9K. E. Resnick,10D. S. Dizon,11C. Aghajanian,5 and P. M. Fracasso12Author informationCopyright and License informationDisclaimerThis article has been cited by other articles in PMC.Go to:


Preclinical studies demonstrate poly(ADP-ribose) polymerase (PARP) inhibition augments apoptotic response and sensitizes cervical cancer cells to the effects of cisplatin. Given the use of cisplatin and paclitaxel as first-line treatment for persistent or recurrent cervical cancer, we aimed to estimate the maximum tolerated dose (MTD) of the PARP inhibitor veliparib when added to chemotherapy.

Patients and methods

Women with persistent or recurrent cervical carcinoma not amenable to curative therapy were enrolled. Patients had to have received concurrent chemotherapy and radiation as well as possible consolidation chemotherapy; have adequate organ function. The trial utilized a standard 3 + 3 phase I dose escalation with patients receiving paclitaxel 175 mg/m2 on day 1, cisplatin 50 mg/m2 on day 2, and escalating doses of veliparib ranging from 50 to 400 mg orally two times daily on days 1–7. Cycles occurred every 21 days until progression. Dose-limiting toxicities (DLTs) were assessed at first cycle. Fanconi anemia complementation group D2 (FANCD2) foci was evaluated in tissue specimens as a biomarker of response.


Thirty-four patients received treatment. DLTs (n =1) were a grade 4 dyspnea, a grade 3 neutropenia lasting ≥3 weeks, and febrile neutropenia. At 400 mg dose level (DL), one of the six patients had a DLT, so the MTD was not reached. Across DLs, the objective response rate (RR) for 29 patients with measurable disease was 34% [95% confidence interval (CI), 20%–53%]; at 400 mg DL, the RR was 60% (n =3/5; 95% CI, 23%–88%). Median progression-free survival was 6.2 months (95% CI, 2.9–10.1), and overall survival was 14.5 months (95% CI, 8.2–19.4). FANCD2 foci was negative or heterogeneous in 31% of patients and present in 69%. Objective RR were not associated with FANCD2 foci (P =0.53).


Combining veliparib with paclitaxel and cisplatin as first-line treatment for persistent or recurrent cervical cancer patients is safe and feasible.

Clinical trial information


Targeting PARP in Endometrial Cancer

PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies

J-m. Lee,1,*J. A. Ledermann,2 and E. C. Kohn1Author informationArticle notesCopyright and License informationDisclaimerThis article has been cited by other articles in PMC.Go to:


Poly(ADP-ribose)polymerase inhibitors (PARPis) have shown promising activity in patients with BRCA1/2 mutation-associated (BRCA1/2MUT+) ovarian and breast cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of sporadic high-grade serous ovarian cancer, and cancers defective in DNA repair pathways, such as prostate, endometrial, and pancreatic cancers. Several PARPis are currently in phase 1/2 clinical investigation, with registration trials now being designed. Olaparib, one of the most studied PARPis, has demonstrated activity in BRCA1/2MUT+ and BRCA-like sporadic ovarian and breast cancers, and looks promising in prostate and pancreatic cancers. Understanding more about the molecular abnormalities involved in BRCA-like tumors, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers, is critical to rapidly advancing the field of PARPi therapy and improve clinical outcomes.Keywords: parp inhibitor, brca-like cancers, brca1/2 mutation, brca1/2 mutation-associated cancersGo to:


Progress has been made over the past two decades in the diagnosis, treatment, and prevention of cancer. A key component of progress in women’s cancers was the cloning of the BRCA1 and BRCA2 genes [12] and reporting of The Cancer Genome Atlas’ (TCGA) comprehensive molecular analyses of high-grade serous ovarian cancer (HGSOC) and breast cancers [34]. This knowledge is being translated into clinical opportunities through application of these new molecular definitions to tailor therapeutics uniquely to the individual patient.

Knowledge of BRCA1/2 mutation status in a patient has gone from a research question to demonstrated clinical utility directly affecting patient care. Dissection of their normal roles, both critical in normal DNA damage and repair, has led to better understanding of how their loss may cause or alter the course of cancer. Interestingly, neither knock-out nor knock-in models have demonstrated BRCA-1 or -2 to be independently causative in cancer development. They are embryonically lethal in knock-out settings, like many other tumor-suppressor genes [5]; selected knock-out is complementary to second genomic hits. The data for causality come from epidemiologic studies that define a tight relationship between deleterious BRCA-1 and -2 mutations (BRCA1/2MUT+) and development of breast and ovarian cancers [6], and increasingly with other cancers [7]. The seminal advance since the cloning and recognition of the relationship between loss-of-function mutations and breast and ovarian cancers is the identification, validation, and application of new biologically important molecular targets, poly-ADP ribose polymerase (PARP)-1 and PARP family members, and other proteins involved in homologous recombination (HR) repair of DNA damage.

DNA damage repair pathways

Six primary pathways of DNA repair have been identified [8]. They are variably used to address single- and double-stranded DNA break damage (SSB; DSB) from a variety of mechanisms of injury (Figure ​(Figure1);1); current results suggest pathway interaction and interdependence. Normal functions, such as cellular metabolism with associated generation of free oxygen radicals and reactive intermediates, ultraviolet light, therapeutic and ambient radiation, chemicals, and day-to-day replication errors, are common factors in the generation of DNA errors [9]. The function of the primary DNA repair pathways begins with sensing DNA damage, followed by recruitment of proteins involved in building the repair complexes [9]. Absence, reduction, or dysfunction of proteins in these pathways can be associated with loss of function of proper DNA repair. Four of the six repair pathways sense single-strand damage. HR, a high fidelity system, and nonhomologous end-joining (NHEJ), lower fidelity, are the two DSB repair programs [8]. BRCA1/2 mediate potentially rate-limiting events in HR [10]. It is now estimated that at least 15% of HGSOC occur in women with germline BRCA1/2MUT+, and another nearly 35% may have acquired defects in the HR pathway, including silencing by methylation, mutation in other repair genes, and activation of pathway inhibitors [311].

An external file that holds a picture, illustration, etc.
Object name is mdt38401.jpg

Figure 1.

Double-strand break repair and single-strand break repair with poly(ADP-ribose)polymerase inhibitors (PARPis).

Multiple studies suggest that the loss of p53 function cooperates with the loss of BRCA1/2 in tumorigenesis [1213]. The normal function of p53 is to recognize DNA damage and arrest cell cycle to either allow repair or to shut the cell down [14]. Incomplete or inadequate DNA repair thus triggers cell death in normal cells. TCGA [4] describes molecular similarities between HGSOC and triple-negative breast cancers (TNBCs), including dysregulation of the p53 and Rb checkpoints, leading to alterations in the expression of cell proliferation genes, DNA synthesis, DNA damage repair, cell cycle regulation, and apoptosis. p53 mutations are found in nearly 90% of HGSOC and in 80% of TNBC, both cancers with BRCA1/2 loss-of-function cohorts [3415]. Chromosome breaks caused by loss of BRCA1/2 function activate p53-dependent checkpoint controls and/or apoptosis to prevent tumor formation. Selective pressure favors loss of p53 function to allow cell proliferation [16]. Mutant p53 facilitates G2/M transition, and cells acquire and propagate unrepaired DNA damage.

Loss of HR repair caused by loss of BRCA1/2 function leaves the cell needing alternative methods for DNA damage repair. SSB base excision repair (BER) is a primary back-up system for HR loss in response to BRCA1/2MUT+ [10]. The rate-limiting enzyme in BER, PARP-1, identifies the site of DNA injury and recruits repair complexes [17]. Recently, PARP-1 has been shown also to regulate NHEJ activity by holding this poor fidelity pathway in check [18], and to guide repair by forming PARP/DNA adducts [19]. These varied actions of PARP-1 form the increasingly strong basis for development of the PARP inhibitor class of agents (PARPi).Go to:

biology and beyond: parp inhibition

PARP-1 is a highly conserved enzyme focused to assist in the maintenance of genomic integrity [20]. It collaborates with PARG, polyADPribose glycohydrolase, required for hydrolysis and release of single-ADP-ribose moieties [20]. It has numerous other functions, including its cleavage and involvement in apoptosis, gene regulation through histone modification, and DNA decondensation for higher order chromatin function [21] and DNA repair [22]. The PARP-1 enzyme has been implicated in signaling DNA damage through its ability to recognize and rapidly bind to DNA SSB [23]; it also has been shown to participate in controlling the telomere length and chromosome stability [1724].

PARP-1 mediates BER by recruiting the scaffolding proteins XRCC1, DNA ligase III, and DNA polymerase ß [22]. The importance of PARP-1 in HR was shown in knock-out studies by a spontaneous increase in nuclear RAD51 focus formation [25], an event that signals active DSB repair. DNA-bound activated PARP-1 uses nicotinamide adenine dinucleotide (NAD+) to polyADPribosylate nuclear target proteins, the site of DNA damage, including topoisomerases, histones, and PARP-1 itself, to signal the need for both DNA SSB and DSB repair [26]. This observation suggests loss of PARP-1 activity where HR is compromised would lead to adverse consequences for the tumor cell.

New findings implicate PARP-1 as a negative regulator of NHEJ. Patel et al. [18] reported that PARP inhibition induces phosphorylation of DNA-dependent protein kinase cs (DNA-PKcs), a rate-limiting step in NHEJ activation. PARP-1-directed NHEJ may occur more selectively in HR-deficient cells where there is a default to secondary pathways. Implications of this include reversal of the genomic instability reported in HR-deficient cells after PARP inhibition. Murai et al. [19] showed PARP inhibitors trap PARP-1 and -2 at damaged DNA where the PARP–DNA complexes were more cytotoxic than unrepaired SSB, implicating PARPi as direct DNA poisons.

BRCA-like behavior and HR dysfunction

Understanding DNA repair biology has allowed us to identify patient subsets with high potential for response PARPi treatment. The marked susceptibility of patients with BRCA1/2MUT+-associated cancers has validated BRCA1/2MUT+ as a predictive biomarker for PARPi response [27]. Tumors in patients with germline BRCA1/2MUT+ contain a second, somatic loss of BRCA1/2, following the Knudson Hypothesis [28]; this occurs as a result of genomic injury and generally incorporates part or all of the second BRCA allele. This leaves the tumor tissue homozygous null for functional BRCA1/2, with impaired HR function. Fong et al. [27] were the first to confirm this link clinically, demonstrating that BRCA1/2MUT+-associated breast, ovarian, and prostate cancer patients receiving the olaparib had a 63% likelihood of clinical benefit. This led to the broad recognition of HR dysfunction (HRD) as a functional biomarker, and opened the door to examine phenocopy susceptibility. Phenocopy patients, those with HRD not caused by BRCA1/2MUT+, are those described as having BRCA-like behavior [29].

BRCA-like behavior has both molecular and clinical characteristics. Many mechanisms reducing BRCA1/2 function and resulting in BRCA-like behavior have been identified. Examples include BRCA1 promoter methylation [11–35% of epithelial ovarian cancers (EOCs)], Fanconi F (FANCF) methylation (5∼20%), and loss or reduction in FANCD2 [30], or other proteins necessary for HR [3132]. Nearly always associated with this level of HRD is an obligate mutation in p53 and frequent c-myc amplification. Loss of function of the suppressor gene, PTEN, has been shown to yield BRCA-like behavior, more common in breast and prostate cancers [3334]. Coexpression of BRCA1MUT+ and loss of PTEN protein expression were reported to occur in 82.4% of 34 breast tumor biopsies, suggesting that PTEN loss may be a common contributing event causing HRD [33]. Increased PARPi susceptibility was shown in a series of cell lines with PTEN mutation or haploinsufficiency, confirmed in xenograft experiments using the PARPi, olaparib. There is also clinical evidence that olaparib may have a therapeutic utility in PTEN-deficient endometrioid endometrial cancer [35]. These studies provide evidence that PTEN loss of function is a potential predictive biomarker of PARPi responsiveness.

Common clinical manifestations complement the molecular characteristics of BRCA-like behavior. The first BRCA-like behavior identified is susceptibility to platinum and other DNA damaging agents. This was initially inferred from studies demonstrating improved long-term survival of women with BRCA1/2MUT+-associated EOC receiving platinum-based combination chemotherapy [36]. Intra- and inter-strand platinum-DNA crosslinks can create torsion on the double helix and lead to DSBs [31], requiring HR for proper and successful correction. Without repair, further genomic injury is sustained, leading to cell death. Reports also describe increased overall survival and progression-free survival (PFS) for mutation carriers receiving other DNA-damaging agents, such as pegylated liposomal doxorubicin (PLD) [3738]. Overall survival with PLD alone was nearly double that expected from large trials in a non-selected (general) population (median PFS 7.1 months; 95% CI 3.7–10.7), and similar findings were reported in a retrospective analysis of outcome following PLD in women who were BRCA1/2 germline mutation carriers and those considered not to harbor a germline mutation [38]. Subsequently, these characterizations have led to population evaluations, now suggesting that HRD occurs in up to 50% of HGSOC [113940] and 20% of TNBC [41]. Dissection of these clinical and molecular data will inform further study design and improve therapeutic application of PARPi.Go to:

updating clinical applications of PARP inhibitors

Multiple PARPis are in clinical development as single agents and/or in combination therapy (Table ​(Table1).1). The most common PARPi chemistry is that of reversible NAD mimetics, with differences in bioavailability and molar equivalence of PARP enzyme inhibition. There are at least six agents under study in this class; iniparib (BSI-201) is another compound that is not a true PARPi [42]. The loss of BER capacity produced by PARPi has prompted evaluation of these drugs as potential enhancers of DNA damaging cytotoxic agents, such as alkylating agents or radiation therapy, leading to new directions for combination therapies [1819].


Active PARP is under development

PARPiTreatmentCancer typesPhase
Olaparib (AstraZeneca)-Monotherapy
-Combinations with cytotoxic chemotherapy
-Combinations with targeted agents
-Combinations with RT
BRCA1/2MUT+ associated
BRCA-like tumors,
Advanced hematologic malignancies and solid tumors,
Maintenance study following remission in platinum sensitive OvCa (pending)
Veliparib (Abbott)-Monotherapy
-Combinations with cytotoxic chemotherapy
-Combinations with targeted agents
-Combinations with RT
BRCA1/2MUT+ associated BrCa/OvCa,
BRCA-like tumors,
Advanced hematologic malignancies and solid tumors
BMN 673 (BioMarin)– MonotherapyAdvanced hematologic malignancies and solid tumorsI
Rucaparib (Clovis)-Monotherapy
-Combinations (carboplatin)
Advanced solid tumors,
Recurrent OvCa,
BRCA1/2MUT+ associated BrCa/OvCa
CEP-9722 (Cephalon)-Monotherapy
-Combinations with cytotoxic chemotherapy
Advanced solid tumorsI
Niraparib (MK-4827) (TesaroBio)-Monotherapy
-Combinations (temazolomide)
Advanced hematologic malignancies and solid tumors,
BRCA1/2MUT+ associated and HER2 negative BrCa,
Maintenance study following remission in platinum sensitive OvCa (pending)

Open in a separate window

*OvCa, ovarian cancer; BrCa, breast cancer; RT, radiation therapy.

Initial dose-finding trials have demonstrated significant clinical activity of PARPi especially in BRCA1/2MUT+ breast and ovarian cancers [4346]. This suggests that BRCA 1/2MUT+ is a genetic marker for targeted therapy, similar to other therapies targeted against loss-of-suppressor function mutations that have been shown to have clinical benefit. Angiogenesis inhibition provided benefit in germline Von Hippel Landau mutation-related renal clear cell cancer, shown to have a VHL-mediated hypoxia-inducing factor 1α-VEGF drive [47]. Similarly, activating mutations of RET are associated with the pathogenesis and vandetanib-sensitivity of medullary thyroid cancer [48]. Current clinical development for PARPi builds upon these observations. The patient populations targeted in PARPi clinical trials include patients with BRCA1/2MUT+ cancers, BRCA-like cancers, and those with recognized susceptibility to DNA-damaging agents, but without BRCA-like association, such as lung or pancreas cancers (Table ​(Table22).

Table 2.

Ongoing clinical trials of PARPis for other malignancies, except breast and ovarian cancers

Cancer typeSubtypesPARP inhibitorPhase
GI malignanciesColorectal cancerVeliparib + TMZ
Olaparib + irinotecan
Pretreated colorectal cancer stratified by Microsatellite Instability (MSI)Olaparib monotherapyI/II
Gastric cancerVeliparib + FOLFIRII/II
Gastric cancer with low ATM protein levelPaclitaxel +/− olaparibII
Esophageal cancerOlaparib + RTI
Metastatic pancreatic cancerOlaparib + Gemcitabine
Veliparib + modified FOLFOX6
    + gemcitabine
    + gemcitabine/IMRT
Veliparib for BRCA or PALB2 mutated pancreatic cancer
Gem/cis +/− veliparib
Advanced liver cancerVeliparib + TMZII
Lung cancerSmall cell lung cancerTMZ +/− veliparib
Cisplatin/etoposide +/− veliparib
Stage III surgically unresectable NSCLCVeliparib + RT
   + carbo/taxol,
   + cis/gem
Olaparib + RT +/− cisplatin
EGFR mutation positive advanced NSCLCGefitinib +/− olaparibI/II
Advanced NSCLCOlaparib
Carbo/taxol +/− veliparib
Head and Neck (H&N) cancerLocally advanced H&N cancerOlaparib and cetuximab/RTI
Gynecologic cancerRecurrent or persistent cervix cancerVeliparib + cisplatin/paclitaxel
   + topotecan
Hematologic malignanciesRefractory multiple myelomaVeliparib + bortezomib/dexamethasoneI
Acute leukemiaVeliparib + TMZ
Veliparib + topotecan +/− carboplatin
Refractory lymphomaVeliparib + topotecanI
Advanced MCLCEP-9722 + cis/gemI
Advanced hematologic malignanciesBMN673 monotherapy
E7449 versus E7449 + TMZ versus E7449+ carbo/taxol
Prostate cancerMetastatic castration resistant prostate cancerVeliparib + TMZ
Abiraterone +/− veliparib Olaparib
Glioblastoma multiformeRelapsed GlioblastomaOlaparib + TMZI
MelanomaMetastatic melanomaVeliparib + TMZ
Olaparib + dacarbazine
E7449 versus E7449 + TMZ versus E7449+ carboplatin/paclitaxel
SarcomaRecurrent Ewing’s sarcomaOlaparibII
Advanced solid tumorsVeliparib + low dose cyclophosphamide
   + capecitabine/oxaliplatin
   + mitomycin C
   + carbo/taxol
   + gemcitabine
   + carbo/gem
Olaparib + topotecan
   + cis/gem
   + PLD
BMN 673
E7449 versus E7449 + TMZ versus E7449+ carbo/taxol

Open in a separate window

*TMZ, temozolomide; carbo/taxol, carboplatin/paclitaxel; cis/gem, cisplatin/gemcitabine.

Initial phase I/II clinical trials demonstrated single-agent activity of olaparib in BRCA1/2MUT+ breast, ovarian, and prostate cancers, and recurrent HGSOC; [274449], no single agent response data have yet been reported for CEP-9722 (Table ​(Table3).3). The study by Gelmon et al. [48] clearly showed that patients with platinum-sensitive HGSOC responded to olaparib without a BRCA1/2 germline mutation. Ledermann et al. [50] recently reported maintenance olaparib significantly improved PFS in a randomized, placebo-controlled, phase II trial in platinum-sensitive HGSOC following a response to two or more lines of platinum-based therapy [50]. They demonstrated a nearly doubling of median PFS post chemotherapy (8.4 versus 4.8 months) and a 65% reduction in risk of disease progression. An interim survival analysis [51] with 58% maturity showed difference between olaparib and placebo, notably in the BRCA1/2MUT+ with a hazard ratio (HR) of 0.18 (95% CI 0.11–0.31) and with a median PFS of 11.2 versus 4.3 months, respectively. Overall survival did not show difference in this group, (HR = 0.74; median: 34.9 versus 31.9 months) probably due to 22.6% of patients on placebo switched to olaparib. As a result of these findings registration trials are being developed with olaparib and other PARPi as maintenance therapy following treatment of platinum-sensitive relapsed ovarian cancer. These types of maintenance study may even be taken into front-line therapy for selected patients.

Table 3.

Single-agent activity with PARPi in phase I/II studiesa

PhasePatients population (number)Dose and scheduleObjective Response (OR) rateSurvival
II [50]Platinum-sensitive-relapsed
OvCa (265 patients)
Olaparib 400 mg bid versus placebo12 versus 4%PFS:
8.4 versus 4.8 months
OS: (interim analysis)
29.7 versus 29.9months
II [37]Recurrent OvCa/ BRCA1/2mut (97 patients)Olaparib 200 mg bid versus 400 mg bid versus PLD 50 mg/m2 IV every 28 days31 versus 25% versus 18%PFS:
6.5 months versus
8.8 months versus
7.1 months
II [49]OvCa (63 patients; 17/63 BRCA1/2mut+)Olaparib 400 mg bdOverall 29% (18/63);
41% in BRCAmut (7/17)/24% in non-BRCAmut (11/46)
II [45]Recurrent OvCa/BRCA1/2mut(57 patients)Olaparib 400 mg bd (33 patients) versus 100 mg bd (24 patients)33% versus 13%PFS:
5.8 months versus 1.9 months
II [44]Advanced BrCa/BRCA1/2mut (54 patients)Olaparib 400 mg bd (27pts) versus 100 mg bd (27pts)41% versus 22%PFS:
5.7 months versus 3.8 months
I [43]Recurrent OvCa/BRCA1/2mut (50 patients)Olaparib
40–600 mg bd (dose escalation) and 200 mg bd (dose expansion)
Overall 40%;
CBR 46%;
CBR 69% in platinum-sensitive (13 patients),
CBR 45% in platinum resistant (24 patients),
CBR 23% in platinum refractory (13 patients)
Response duration: 28 weeks
II [52]Recurrent OvCa/BRCA1/2mut (51 patients)Veliparib
400 mg bd
I [46]Recurrent solid tumors (100 patients; 29/100 patients BRCA1/2mut+)Niraparib 30 mg–400 mg qd (dose escalation)40% in
OvCa (8/20 patients)
50% in
BrCa (2/4 patients)
CBR 43% in CRPC (9/21 patients: 5PTEN loss and 1BRCAmut+)
Response duration: 387 days (range 159–518) in BRCAmut+
OvCa; 132 and 133 days in BRCAmut+
254 days(range 124–375) in CRPC
I [53]Recurrent solid tumors (29 patients; 11/29 patients BRCA1/2mut+))Rucaparib
40 mg–500 mg qd (dose escalation)
2 PR (2 patients with BRCAmut+)
10 SD (9/10 patients with BRCAmut+)
I [54]Advanced solid tumors (39 patients; 25/39 patients BRCA1/2mut+)BMN673
25 µg–1100 µg qd (dose escalation)
RECIST and/or CA-125 responses in 11/17 patients with BRCA1/2mut+ OvCa;
ORR: 2/6 patients with BRCA1/2mut+ BrCa
I [55]Advanced solid tumors (27 patients)CEP-9722
150–1000 mg qd (dose escalation)
Only safety data reportedNA

Open in a separate window

aNA, not applicable; CBR, clinical benefit rate; CRPC, castrate-resistant prostate cancer.

The greatest clinical experience to date is with olaparib monotherapy. It generally well tolerated at doses of 400 mg twice daily in capsule formulation with many patients able to take the drug for several years. A new tablet formulation [56 ], reducing the number of pills that need to be taken is being assessed. PK data including AUC0−T and Cmin from 300 mg and 400 mg tablet doses matched or exceeded the 400 mg capsule dose, and 300 mg tablet is expected to be incorporated into further studies in mid-2013. PARPis have been tested in combination with various DNA damaging agents. Studies have shown clinical benefit and interactive adverse events, including bone marrow toxicity and fatigue [274357]. Class-based adverse events also include fatigue, headache, nausea, and reflux in 25–40% of patients. Early reports also suggest a possible increased clinical benefit in combination therapy, that may out balance the toxicities [5758]. Continued follow-up and diligence are needed to define the risk of long term PARPi therapy.

Current therapeutic directions for PARPi are focused at designing combinations, determining optimal timing of therapy and breadth of application of this key class of agents to and beyond mutation carriers. Agents selected for the combination study include those likely to cause replication fork injury or further DNA damage, and anti-angiogeneic agents. Hypoxia was shown to cause DNA damage when a second DNA hit was included in a mouse model [59]. We exposed microvascular endothelial cells in vitro to the VEGF receptor antagonist, cediranib (AZD2171), in combination with olaparib, demonstrating a cooperative inhibition of angiogenesis (Kim and Kohn, unpublished data). Surprisingly, interactive anti-invasive activity was observed with this combination against a p53-mutant HGSOC cell line, OVCAR8. A phase I study of olaparib and cediranib showed clinical promise [60], and a multi-institutional randomized phase II study is in progress (NCT01116648). Additionally, a phase I study of continuous daily olaparib with bevacizumab was generally well tolerated in patients with advanced solid tumors [61].

Phase I/II studies are ongoing with PARPi and a variety of agents (Table ​(Table1).1). A phase I study of olaparib with carboplatin (AUC4/5) showed clinical benefit in 85% of 27 women with BRCA1/2MUT+-associated recurrent breast and ovarian cancers [58]. A randomized, phase II study of olaparib with paclitaxel (Taxol) and carboplatin (AUC4) followed by olaparib maintenance resulted in a significant improvement in PFS compared with paclitaxel, Bristol-Myers Squibb (New York) and carboplatin, Bristol-Myers Squibb (New York) (AUC6) alone in women with platinum-sensitive recurrent HGSOC (HR = 0.51; median PFS 12.2 versus 9.6 months) [62]. This suggests that combining olaparib with carboplatin required a dose modification of both drugs, illustrated the potential for toxicity interaction with DNA active agents. There was no difference in PFS during the period of chemotherapy in this trial; differences emerged in the maintenance phase. The optimal dosage, scheduling, and sequencing of PARPis and cytotoxic agents require carefully designed clinical trials linked to preclinical studies that specifically address the above issues.

This promising therapeutic potential has elicited considerable interest in clinical development of the PARPi class. Early clinical data also suggest that a BRCA-like gene expression profile may correlate with clinical responses to the platinum drugs in patients with sporadic EOC [6364]. Prospective validation and optimization of these signatures in a broad array of cancers, and appropriate selection of a patient population are imperative to achieve the full potential of PARPis.

challenges to PARP inhibitor development

The incorporation of targeted agents into therapy of BRCA1/2MUT+ and BRCA-like cancers presents challenges. First is development of a mechanism with which to identify patients who are most likely to benefit. Discovery and validation of predictive biomarkers is an active area of ongoing research. Biomarkers for patient selection or stratification are recommended by the US Food and Drug Administration for approval of new targeted drugs. Loss of BRCA1/2 expression, generally by demonstration of a deleterious germline mutation, is a validated predictive biomarker. Routine testing of patients is being increasingly adopted as up to 17% of patients with HGSOC, the most common form of ovarian cancer, have germline mutations [65]. However, BRCA1/2 mutation testing does not identify the full range of potentially susceptible patients, and it requires a validated predictive BRCA1/2 mutational testing tool. BRCA1/2 loss in the tumor by mutation or methylation may also be inferable by loss of BRCA1/2 protein expression demonstrated by immunohistochemical staining, leaving reduction in BRCA1/2 protein expression as a potential predictive tool [39].

The histone protein H2AX becomes rapidly phosphorylated and concatemerizes at nascent DNA DSBs [66]. This creates a focus for accumulation of DNA repair and chromatin remodeling proteins. DSBs can be labeled with an antibody to the phosphorylated form, γH2AX, and extent of DSB estimated from the number of labeled foci (Figure ​(Figure2)2) [66]. RAD51 is instrumental in initiation of assembly of HR repair proteins at the site of DNA injury [67]. Formation of nuclear RAD51 foci can be assessed by immunofluorescence and is a marker of HR competence. Formation of γH2AX and/or RAD51 foci after DNA damage has been suggested as pharmacodynamic biomarkers of PARPi activity; demonstrating that a change in these parameters early in treatment may be examined as potential predictive biomarkers. A phase 1 study of veliparib and topotecan showed an increase in γH2AX focus formation by immunofluorescence in circulating tumor cells from seven of nine patients [68], with no correlation to clinical outcomes. Inhibition of RAD51 focus formation by PARPi was shown in vitro in EOC ascites primary cultures and correlated with response to PARPi [69]. This suggests that the lack of RAD51 foci may indicate potential drug response [70].Open in a separate windowFigure 2.

γH2AX binds to DNA DSBs and RAD51 initiates repair protein assembly in the homologous recombination (HR) pathway.

Predictive biomarkers applied to readily available bioresources, such as archival tissue or non-tumor tissue, have been proposed. Changes in PAR (poly ADP Ribose) incorporation into peripheral blood mononuclear cell DNA were evaluated as a putative early on-treatment pharmacodynamic measure; while present, there was no relationship to clinical outcomes [57]. Basal levels of PAR vary in different cells, reflecting their relative capacity for DNA repair, and requiring demonstration of change in PAR concentrations over time. Hence, identifying an accurate measure of HR potential for application as a predictive biomarker remains necessary to guide administration of PARPi.

Dissecting and defining mechanisms of development of resistance to PARPis, and whether this portends potential collateral resistance to other DNA damaging agents is the second challenge. Acquisition of a secondary mutation in BRCA1/2 that allows BRCA1/2 gene read-through and yields a functional protein has been demonstrated in cell lines and some patients; this was correlated with loss of susceptibility to PARPi treatment [71]. A second, preclinically defined method of resistance is loss of function of 53bp1 [72], a key protein in the NHEJ pathway. Whether or not 53bp1 expression can be used as a selective or predictive biomarker is yet to be determined. Understanding the mechanism(s) of resistance to PARPi will lead to optimal application and sequencing of PARPi and platinum compounds. Studies are needed to evaluate outcomes to subsequent chemotherapies in patients who have received PARPis [73].Go to:


Several PARPis are under investigation and it is anticipated that this novel and exciting new class of compounds will ultimately receive regulatory approval in select subsets of cancers. This class of agents has tolerable toxicity profiles and has been given to patients for long periods. Clinical benefit has been observed in patients with BRCA1/2MUT+-associated cancers and BRCA-like phenotypes in germline mutation-negative patients. It is for these patients, in particular, that predictive markers for HR deficiency and response to PARPi are needed, so that patients can be selected for therapy. Understanding more about the molecular abnormalities involved in BRCA-like tumors will be critical to advance the field of PARP inhibition therapy and in improving patient selection and consequent clinical outcomes.

Read Full Post »

Beyond tau and amyloid

Larry H. Bernstein, MD, FCAP, Curator






Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders.

Berislav V. Zlokovic

Nature Reviews Neuroscience 12, 723-738 (December 2011) |   http:dx.doi.org:/10.1038/nrn3114

The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood–brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal ‘milieu’, which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer’s disease, and highlights therapeutic opportunities relating to these neurovascular deficits.



The neurovascular unit comprises vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)), glial cells (astrocytes, microglia and oliogodendroglia) and neurons.
Neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are associated with microvascular dysfunction and/or degeneration in the brain, neurovascular disintegration, defective blood–brain barrier (BBB) function and/or vascular factors.
The interactions between endothelial cells and pericytes are crucial for the formation and maintenance of the BBB. Indeed, pericyte deficiency leads to BBB breakdown and extravasation of multiple vasculotoxic and neurotoxic circulating macromolecules, which can contribute to neuronal dysfunction, cognitive decline and neurodegenerative changes.
Alterations in cerebrovascular metabolic functions can also lead to the secretion of multiple neurotoxic and inflammatory factors.
BBB dysfunction and/or breakdown and cerebral blood flow (CBF) reductions and/or dysregulation may occur in sporadic Alzheimer’s disease and experimental models of this disease before cognitive decline, amyloid-β deposition and brain atrophy. In patients with ALS and in some experimental models of ALS, CBF dysregulation, blood–spinal cord barrier breakdown and spinal cord hypoperfusion have been reported prior to motor neuron cell death.
Several studies in animal models of Alzheimer’s disease and, more recently, in patients with this disorder have shown diminished amyloid-β clearance from brain tissue. The recognition of amyloid-β clearance pathways opens exciting new therapeutic opportunities for this disease.
‘Multiple-target, multiple-action’ agents will stand a better chance of controlling the complex disease mechanisms that mediate neurodegeneration in disorders such as Alzheimer’s disease than will agents that have only one target. According to the vasculo-neuronal-inflammatory triad model of neurodegenerative disorders, in addition to neurons, brain endothelium, VSMCs, pericytes, astrocytes and activated microglia all represent important therapeutic targets.


Neurons depend on blood vessels for their oxygen and nutrient supplies, and for the removal of carbon dioxide and other potentially toxic metabolites from the brain’s interstitial fluid (ISF). The importance of the circulatory system to the human brain is highlighted by the fact that although the brain comprises ~2% of total body mass, it receives up to 20% of cardiac output and is responsible for ~20% and ~25% of the body’s oxygen consumption and glucose consumption, respectively1. To underline this point, when cerebral blood flow (CBF) stops, brain functions end within seconds and damage to neurons occurs within minutes2.

Neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) are associated with microvascular dysfunction and/or degeneration in the brain, neurovascular disintegration, defective blood–brain barrier (BBB) function and/or vascular factors1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Microvascular deficits diminish CBF and, consequently, the brain’s supply of oxygen, energy substrates and nutrients. Moreover, such deficits impair the clearance of neurotoxic molecules that accumulate and/or are deposited in the ISF, non-neuronal cells and neurons. Recent evidence suggests that vascular dysfunction leads to neuronal dysfunction and neurodegeneration, and that it might contribute to the development of proteinaceous brain and cerebrovascular ‘storage’ disorders. Such disorders include cerebral β-amyloidosis and cerebral amyloid angiopathy (CAA), which are caused by accumulation of the peptide amyloid-β in the brain and the vessel wall, respectively, and are features of Alzheimer’s disease1.

In this Review, I will discuss neurovascular pathways to neurodegeneration, placing a focus on Alzheimer’s disease because more is known about neurovascular dysfunction in this disease than in other neurodegenerative disorders. The article first examines transport mechanisms for molecules to cross the BBB, before exploring the processes that are involved in BBB breakdown at the molecular and cellular levels, and the consequences of BBB breakdown, hypoperfusion, and hypoxia and endothelial metabolic dysfunction for neuronal function. Next, the article reviews evidence for neurovascular changes during normal ageing and neurovascular BBB dysfunction in various neurodegenerative diseases, including evidence suggesting that vascular defects precede neuronal changes. Finally, the article considers specific mechanisms that are associated with BBB dysfunction in Alzheimer’s disease and ALS, and therapeutic opportunities relating to these neurovascular deficits.

The neurovascular unit

The neurovascular unit (NVU) comprises vascular cells (that is, endothelium, pericytes and vascular smooth muscle cells (VSMCs)), glial cells (that is, astrocytes, microglia and oliogodendroglia) and neurons1,2, 13 (Fig. 1). In the NVU, the endothelial cells together form a highly specialized membrane around blood vessels. This membrane underlies the BBB and limits the entry of plasma components, red blood cells (RBCs) and leukocytes into the brain. The BBB also regulates the delivery into the CNS of circulating energy metabolites and essential nutrients that are required for proper neuronal and synaptic function. Non-neuronal cells and neurons act in concert to control BBB permeability and CBF. Vascular cells and glia are primarily responsible for maintenance of the constant ‘chemical’ composition of the ISF, and the BBB and the blood–spinal cord barrier (BSCB) work together with pericytes to prevent various potentially neurotoxic and vasculotoxic macromolecules in the blood from entering the CNS, and to promote clearance of these substances from the CNS1.

In the brain, pial arteries run through the subarachnoid space (SAS), which contains the cerebrospinal fluid (CSF). These vessels give rise to intracerebral arteries, which penetrate into brain parenchyma. Intracerebral arteries are separated from brain parenchyma by a single, interrupted layer of elongated fibroblast-like cells of the pia and the astrocyte-derived glia limitans membrane that forms the outer wall of the perivascular Virchow–Robin space. These arteries branch into smaller arteries and subsequently arterioles, which lose support from the glia limitans and give rise to pre-capillary arterioles and brain capillaries. In an intracerebral artery, the vascular smooth muscle cell (VSMC) layer occupies most of the vessel wall. At the brain capillary level, vascular endothelial cells and pericytes are attached to the basement membrane. Pericyte processes encase most of the capillary wall, and they communicate with endothelial cells directly through synapse-like contacts containing connexins and N-cadherin. Astrocyte end-foot processes encase the capillary wall, which is composed of endothelium and pericytes. Resting microglia have a ‘ramified’ shape and can sense neuronal injury.

Figure 2 | Blood–brain barrier transport mechanisms.

Small lipophilic drugs, oxygen and carbon dioxide diffuse across the blood–brain barrier (BBB), whereas ions require ATP-dependent transporters such as the (Na++K+)ATPase. Transporters for nutrients include the glucose transporter 1 (GLUT1; also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1)), the lactate transporter monocarboxylate transporter 1 (MCT1) and the L1 and y+ transporters for large neutral and cationic essential amino acids, respectively. These four transporters are expressed at both the luminal and albuminal membranes. Non-essential amino acid transporters (the alanine, serine and cysteine preferring system (ASC), and the alanine preferring system (A)) and excitatory amino acid transporter 1 (EAAT1), EAAT2 and EAAT3 are located at the abluminal side. The ATP-binding cassette (ABC) efflux transporters that are found in the endothelial cells include multidrug resistance protein 1 (ABCB1; also known as ATP-binding cassette subfamily B member 1) and solute carrier organic anion transporter family member 1C1 (OATP1C1). Finally, transporters for peptides or proteins include the endothelial protein C receptor (EPCR) for activated protein C (APC); the insulin receptors (IRs) and the transferrin receptors (TFRs), which are associated with caveolin 1 (CAV1); low-density lipoprotein receptor-related protein 1 (LRP1) for amyloid-β, peptide transport system 1 (PTS1) for encephalins; and the PTS2 and PTS4–vasopressin V1a receptor (V1AR) for arginine vasopressin.


Transport across the blood–brain barrier. The endothelial cells that form the BBB are connected by tight and adherens junctions, and it is the tight junctions that confer the low paracellular permeability of the BBB1. Small lipophilic molecules, oxygen and carbon dioxide diffuse freely across the endothelial cells, and hence the BBB, but normal brain endothelium lacks fenestrae and has limited vesicular transport.

The high number of mitochondria in endothelial cells reflects a high energy demand for active ATP-dependent transport, conferred by transporters such as the sodium pump ((Na++K+)ATPase) and the ATP-binding cassette (ABC) efflux transporters. Sodium influx and potassium efflux across the abluminal side of the BBB is controlled by (Na++K+)ATPase (Fig. 2). Changes in sodium and potassium levels in the ISF influence the generation of action potentials in neurons and thus directly affect neuronal and synaptic functions1, 12.

Brain endothelial cells express transporters that facilitate the transport of nutrients down their concentration gradients, as described in detail elsewhere1, 14 (Fig. 2). Glucose transporter 1 (GLUT1; also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1)) — the BBB-specific glucose transporter — is of special importance because glucose is a key energy source for the brain.

Monocarboxylate transporter 1 (MCT1), which transports lactate, and the L1 and y+ amino acid transporters are expressed at the luminal and abluminal membranes12, 14. Sodium-dependent excitatory amino acid transporter 1 (EAAT1), EAAT2 and EAAT3 are expressed at the abluminal side of the BBB15 and enable removal of glutamate, an excitatory neurotransmitter, from the brain (Fig. 2). Glutamate clearance at the BBB is essential for protecting neurons from overstimulation of glutaminergic receptors, which is neurotoxic16.

ABC transporters limit the penetration of many drugs into the brain17. For example, multidrug resistance protein 1 (ABCB1; also known as ATP-binding cassette subfamily B member 1) controls the rapid removal of ingested toxic lipophilic metabolites17 (Fig. 2). Some ABC transporters also mediate the efflux of nutrients from the endothelium into the ISF. For example, solute carrier organic anion transporter family member 1C1 (OATP1C1) transports thyroid hormones into the brain. MCT8 mediates influx of thyroid hormones from blood into the endothelium18 (Fig. 2).

The transport of circulating peptides across the BBB into the brain is restricted or slow compared with the transport of nutrients19. Carrier-mediated transport of neuroactive peptides controls their low levels in the ISF20, 21, 22, 23, 24 (Fig. 2). Some proteins, including transferrin, insulin, insulin-like growth factor 1 (IGF1), leptin25, 26, 27 and activatedprotein C (APC)28, cross the BBB by receptor-mediated transcytosis (Fig. 2).

Circumventricular organs. Several small neuronal structures that surround brain ventricles lack the BBB and sense chemical changes in blood or the cerebrospinal fluid (CSF) directly. These brain areas are known as circumventricular organs (CVOs). CVOs have important roles in multiple endocrine and autonomic functions, including the control of feeding behaviour as well as regulation of water and salt metabolism29. For example, the subfornical organ is one of the CVOs that are capable of sensing extracellular sodium using astrocyte-derived lactate as a signal for local neurons to initiate neural, hormonal and behavioural responses underlying sodium homeostasis30. Excessive sodium accumulation is detrimental, and increases in plasma sodium above a narrow range are incompatible with life, leading to cerebral oedema (swelling), seizures and death29.

Vascular-mediated pathophysiology

The key pathways of vascular dysfunction that are linked to neurodegenerative diseases include BBB breakdown, hypoperfusion–hypoxia and endothelial metabolic dysfunction (Fig. 3). This section examines processes that are involved in BBB breakdown at the molecular and cellular levels, and explores the consequences of all three pathways for neuronal function and viability.

Figure 3 | Vascular-mediated neuronal damage and neurodegeneration.

a | Blood–brain barrier (BBB) breakdown that is caused by pericyte detachment leads to leakage of serum proteins and focal microhaemorrhages, with extravasation of red blood cells (RBCs). RBCs release haemoglobin, which is a source of iron. In turn, this metal catalyses the formation of toxic reactive oxygen species (ROS) that mediate neuronal injury. Albumin promotes the development of vasogenic oedema, contributing to hypoperfusion and hypoxia of the nervous tissue, which aggravates neuronal injury. A defective BBB allows several potentially vasculotoxic and neurotoxic proteins (for example, thrombin, fibrin and plasmin) to enter the brain. b | Progressive reductions in cerebral blood flow (CBF) lead to increasing neuronal dysfunction. Mild hypoperfusion, oligaemia, leads to a decrease in protein synthesis, whereas more-severe reductions in CBF, leading to hypoxia, cause an array of detrimental effects.

Blood–brain barrier breakdown. Disruption to tight and adherens junctions, an increase in bulk-flow fluid transcytosis, and/or enzymatic degradation of the capillary basement membrane cause physical breakdown of the BBB.

The levels of many tight junction proteins, their adaptor molecules and adherens junction proteins decrease in Alzheimer’s disease and other diseases that cause dementia1, 9, ALS31, multiple sclerosis32 and various animal models of neurological disease8, 33. These decreases might be partly explained by the fact that vascular-associated matrix metalloproteinase (MMP) activity rises in many neurodegenerative disorders and after ischaemic CNS injury34, 35; tight junction proteins and basement membrane extracellular matrix proteins are substrates for these enzymes34. Lowered expression of messenger RNAs that encode several key tight junction proteins, however, has also been reported in some neurodegenerative disorders, such as ALS31.

Endothelial cell–pericyte interactions are crucial for the formation36, 37and maintenance of the BBB33, 38. Pericyte deficiency can lead to a reduction in expression of certain tight junction proteins, including occludin, claudin 5 and ZO1 (Ref. 33), and to an increase in bulk-flow transcytosis across the BBB, causing BBB breakdown38. Both processes can lead to extravasation of multiple small and large circulating macromolecules (up to 500 kDa) into the brain parenchyma33, 38. Moreover, in mice, an age-dependent progressive loss of pericytes can lead to BBB disruption and microvasular degeneration and, subsequently, neuronal dysfunction, cognitive decline and neurodegenerative changes33. In their lysosomes, pericytes concentrate and degrade multiple circulating exogenous39 and endogenous proteins, including serum immunoglobulins and fibrin33, which amplify BBB breakdown in cases of pericyte deficiency.

BBB breakdown typically leads to an accumulation of various molecules in the brain. The build up of serum proteins such as immunoglobulins and albumin can cause brain oedema and suppression of capillary blood flow8, 33, whereas high concentrations of thrombin lead to neurotoxicity and memory impairment40, and accelerate vascular damage and BBB disruption41. The accumulation of plasmin (derived from circulating plasminogen) can catalyse the degradation of neuronal laminin and, hence, promote neuronal injury42, and high fibrin levels accelerate neurovascular damage6. Finally, an increase in the number of RBCs causes deposition of haemoglobin-derived neurotoxic products including iron, which generates neurotoxic reactive oxygen species (ROS)8, 43(Fig. 3a). In addition to protein-mediated vasogenic oedema, local tissue ischaemia–hypoxia depletes ATP stores, causing (Na++K+)ATPase pumps and Na+-dependent ion channels to stop working and, consequently, the endothelium and astrocytes to swell (known as cytotoxic oedema)44. Upregulation of aquaporin 4 water channels in response to ischaemia facilitates the development of cytotoxic oedema in astrocytes45.

Hypoperfusion and hypoxia. CBF is regulated by local neuronal activity and metabolism, known as neurovascular coupling46. The pial and intracerebral arteries control the local increase in CBF that occurs during brain activation, which is termed ‘functional hyperaemia’. Neurovascular coupling requires intact pial circulation, and for VSMCs and pericytes to respond normally to vasoactive stimuli33, 46, 47. In addition to VSMC-mediated constriction and vasodilation of cerebral arteries, recent studies have shown that pericytes modulate brain capillary diameter through constriction of the vessel wall47, which obstructs capillary flow during ischaemia48. Astrocytes regulate the contractility of intracerebral arteries49, 50.

Progressive CBF reductions have increasingly serious consequences for neurons (Fig. 3b). Briefly, mild hypoperfusion — termed oligaemia — affects protein synthesis, which is required for the synaptic plasticity mediating learning and memory46. Moderate to severe CBF reductions and hypoxia affect ATP synthesis, diminishing (Na++K+)ATPase activity and the ability of neurons to generate action potentials9. In addition, such reductions can lower or increase pH, and alter electrolyte balances and water gradients, leading to the development of oedema and white matter lesions, and the accumulation of glutamate and proteinaceous toxins (for example, amyloid-β and hyperphopshorylated tau) in the brain. A reduction of greater than 80% in CBF results in neuronal death2.

The effect of CBF reductions has been extensively studied at the molecular and cellular levels in relation to Alzheimer’s disease. Reduced CBF and/or CBF dysregulation occurs in elderly individuals at high risk of Alzheimer’s disease before cognitive decline, brain atrophy and amyloid-β accumulation10, 46, 51, 52, 53, 54. In animal models, hypoperfusion can induce or amplify Alzheimer’s disease-like neuronal dysfunction and/or neuropathological changes. For example, bilateral carotid occlusion in rats causes memory impairment, neuronal dysfunction, synaptic changes and amyloid-β oligomerization55, leading to accumulation of neurotoxic amyloid-β oligomers56. In a mouse model of Alzheimer’s disease, oligaemia increases neuronal amyloid-β levels and neuronal tau phosphophorylation at an epitope that is associated with Alzheimer’s disease-type paired helical filaments57. In rodents, ischaemia leads to the accumulation of hyperphosphorylated tau in neurons and the formation of filaments that resemble those present in human neurodegenerative tauopathies and Alzheimer’s disease58. Mice expressing amyloid-β precursor protein (APP) and transforming growth factor β1 (TGFβ1) develop deficient neurovascular coupling, cholinergic denervation, enhanced cerebral and cerebrovascular amyloid-β deposition, and age-dependent cognitive decline59.

Recent studies have shown that ischaemia–hypoxia influences amyloidogenic APP processing through mechanisms that increase the activity of two key enzymes that are necessary for amyloid-β production; that is, β-secretase and γ-secretase60, 61, 62, 63. Hypoxia-inducible factor 1α (HIF1α) mediates transcriptional increase in β-secretase expression61. Hypoxia also promotes phosphorylation of tau through the mitogen-activated protein kinase (MAPK; also known as extracellular signal-regulated kinase (ERK)) pathway64, downregulates neprilysin — an amyloid-β-degrading enzyme65 — and leads to alterations in the expression of vascular-specific genes, including a reduction in the expression of the homeobox protein MOX2 gene mesenchyme homeobox 2 (MEOX2) in brain endothelial cells5 and an increase in the expression of the myocardin gene (MYOCD) in VSMCs66. In patients with Alzheimer’s disease and in models of this disorder, these changes cause vessel regression, hypoperfusion and amyloid-β accumulation resulting from the loss of the key amyloid-β clearance lipoprotein receptor (see below). In addition, hypoxia facilitates alternative splicing of Eaat2 mRNA in Alzheimer’s disease transgenic mice before amyloid-β deposition67 and suppresses glutamate reuptake by astrocytes independently of amyloid formation68, resulting in glutamate-mediated neuronal injury that is independent of amyloid-β.

In response to hypoxia, mitochondria release ROS that mediate oxidative damage to the vascular endothelium and to the selective population of neurons that has high metabolic activity. Such damage has been suggested to occur before neuronal degeneration and amyloid-β deposition in Alzheimer’s disease69, 70. Although the exact triggers of hypoxia-mediated neurodegeneration and the role of HIF1α in neurodegeneration versus preconditioning-mediated neuroprotection remain topics of debate, mitochondria-generated ROS seem to have a primary role in the regulation of the HIF1α-mediated transcriptional switch that can activate an array of responses, ranging from mechanisms that increase cell survival and adaptation to mechanisms inducing cell cycle arrest and death71. Whether inhibition of hypoxia-mediated pathogenic pathways will delay onset and/or control progression in neurodegenerative conditions such as Alzheimer’s disease remains to be determined.

When comparing the contributions of BBB breakdown and hypoperfusion to neuronal injury, it is interesting to consider Meox2+/− mice. Such animals have normal pericyte coverage and an intact BBB but a substantial perfusion deficit5 that is comparable to that found in pericyte-deficient mice that develop BBB breakdown33 Notably, however, Meox2+/− mice show less pronounced neurodegenerative changes than pericyte-deficient mice, indicating that chronic hypoperfusion–hypoxia alone can cause neuronal injury, but not to the same extent as hypoperfusion–hypoxia combined with BBB breakdown.

Endothelial neurotoxic and inflammatory factors. Alterations in cerebrovascular metabolic functions can lead to the secretion of multiple neurotoxic and inflammatory factors72, 73. For example, brain microvessels that have been isolated from individuals with Alzheimer’s disease (but not from neurologically normal age-matched and young individuals) and brain microvessels that have been treated with inflammatory proteins release neurotoxic factors that kill neurons74, 75. These factors include thrombin, the levels of which increase with the onset of Alzheimer’s disease76. Thrombin can injure neurons directly40and indirectly by activating microglia and astrocytes73. Compared with those from age-matched controls, brain microvessels from individuals with Alzheimer’s disease secrete increased levels of multiple inflammatory mediators, such as nitric oxide, cytokines (for example, tumour necrosis factor (TNF), TGFβ1, interleukin-1β (IL-1β) and IL-6), chemokines (for example, CC-chemokine ligand 2 (CCL2; also known as monocyte chemoattractant protein 1 (MCP1)) and IL-8), prostaglandins, MMPs and leukocyte adhesion molecules73. Endothelium-derived neurotoxic and inflammatory factors together provide a molecular link between vascular metabolic dysfunction, neuronal injury and inflammation in Alzheimer’s disease and, possibly, in other neurodegenerative disorders.

Neurovascular changes

This section examines evidence for neurovascular changes during normal ageing and for neurovascular and/or BBB dysfunction in various neurodegenerative diseases, as well as the possibility that vascular defects can precede neuronal changes.

Age-associated neurovascular changes. Normal ageing diminishes brain circulatory functions, including a detectable decay of CBF in the limbic and association cortices that has been suggested to underlie age-related cognitive changes77. Alterations in the cerebral microvasculature, but not changes in neural activity, have been shown to lead to age-dependent reductions in functional hyperaemia in the visual system in cats78 and in the sensorimotor cortex in pericyte-deficient mice33. Importantly, a recent longitudinal CBF study in neurologically normal individuals revealed that people bearing the apolipoprotein E (APOE) ɛ4allele — the major genetic risk factor for late-onset Alzheimer’s disease79, 80, 81 — showed greater regional CBF decline in brain regions that are particularly vulnerable to pathological changes in Alzheimer’s disease than did people without this allele82.

A meta-analysis of BBB permeability in 1,953 individuals showed that neurologically healthy humans had an age-dependent increase in vascular permeability83. Moreover, patients with vascular or Alzheimer’s disease-type dementia and leucoaraiosis — a small-vessel disease of the cerebral white matter — had an even greater age-dependent increase in vascular permeability83. Interestingly, an increase in BBB permeability in brain areas with normal white matter in patients with leukoaraiosis has been suggested to play a causal part in disease and the development of lacunar strokes84. Age-related changes in the permeability of the blood–CSF barrier and the choroid plexus have been reported in sheep85.

Vascular pathology. Patients with Alzheimer’s disease or other dementia-causing diseases frequently show focal changes in brain microcirculation. These changes include the appearance of string vessels (collapsed and acellular membrane tubes), a reduction in capillary density, a rise in endothelial pinocytosis, a decrease in mitochondrial content, accumulation of collagen and perlecans in the basement membrane, loss of tight junctions and/or adherens junctions3, 4, 5, 6, 9,46, 86, and BBB breakdown with leakage of blood-borne molecules4, 6,7, 9. The time course of these vascular alterations and how they relate to dementia and Alzheimer’s disease pathology remain unclear, as no protocol that allows the development of the diverse brain vascular pathology to be scored, and hence to be tracked with ageing, has so far been developed and widely validated87. Interestingly, a recent study involving 500 individuals who died between the ages of 69 and 103 years showed that small-vessel disease, infarcts and the presence of more than one vascular pathological change were associated with Alzheimer’s disease-type pathological lesions and dementia in people aged 75 years of age87. These associations were, however, less pronounced in individuals aged 95 years of age, mainly because of a marked ageing-related reduction in Alzheimer’s disease neuropathology relative to a moderate but insignificant ageing-related reduction in vascular pathology87.

Accumulation of amyloid-β and amyloid deposition in pial and intracerebral arteries results in CAA, which is present in over 80% of Alzheimer’s disease cases88. In patients who have Alzheimer’s disease with established CAA in small arteries and arterioles, the VSMC layer frequently shows atrophy, which causes a rupture of the vessel wall and intracerebral bleeding in about 30% of these patients89, 90. These intracerebral bleedings contribute to, and aggravate, dementia. Patients with hereditary cerebral β-amyloidosis and CAA of the Dutch, Iowa, Arctic, Flemish, Italian or Piedmont L34V type have accelerated VSMC degeneration resulting in haemorrhagic strokes and dementia91. Duplication of the gene encoding APP causes early-onset Alzheimer’s disease dementia with CAA and intracerebral haemorrhage92.

Early studies of serum immunoglobulin leakage reported that patients with ALS had BSCB breakdown and BBB breakdown in the motor cortex93. Microhaemorrhages and BSCB breakdown have been shown in the spinal cord of transgenic mice expressing mutant variants of human superoxide dismutase 1 (SOD1), which in mice cause an ALS-like disease8, 94, 95. In mice with ALS-like disease and in patients with ALS, BSCB breakdown has been shown to occur before motor neuron degeneration or brain atrophy8, 11, 95.

BBB breakdown in the substantia nigra and the striatum has been detected in murine models of Parkinson’s disease that are induced by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)96, 97, 98. However, the temporal relationship between BBB breakdown and neurodegeneration in Parkinson’s disease is currently unknown. Notably, the prevalence of CAA and vascular lesions increases in Parkinson’s disease99, 100. Vascular lesions in the striatum and lacunar infarcts can cause vascular parkinsonism syndrome101. A recent study reported BBB breakdown in a rat model of Huntington’s disease that is induced with the toxin 3-nitropropionic acid102.

Several studies have established disruption of BBB with a loss of tight junction proteins during neuroinflammatory conditions such as multiple sclerosis and its murine model, experimental allergic encephalitis. Such disruption facilitates leukocyte infiltration, leading to oliogodendrocyte death, axonal damage, demyelination and lesion development32.

Functional changes in the vasculature. In individuals with Alzheimer’s disease, GLUT1 expression at the BBB decreases103, suggesting a shortage in necessary metabolic substrates. Studies using18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) have identified reductions in glucose uptake in asymptomatic individuals with a high risk of dementia104, 105. Several studies have suggested that reduced glucose uptake across the BBB, as seen by FDG PET, precedes brain atrophy104, 105, 106, 107, 108.

Amyloid-β constricts cerebral arteries109. In a mouse model of Alzheimer’s disease, impairment of endothelium-dependent regulation of neocortical microcirculation110, 111 occurs before amyloid-β accumulation. Recent studies have shown that CD36, a scavenger receptor that binds amyloid-β, is essential for the vascular oxidative stress and diminished functional hyperaemia that occurs in response to amyloid-β exposure112. Neuroimaging studies in patients with Alzheimer’s disease have shown that neurovascular uncoupling occurs before neurodegenerative changes10, 51, 52, 53. Moreover, cognitively normal APOE ɛ4 carriers at risk of Alzheimer’s disease show impaired CBF responses to brain activation in the absence of neurodegenerative changes or amyloid-β accumulation54. Recently, patients with Alzheimer’s disease as well as mouse models of this disease with high cerebrovascular levels of serum response factor (SRF) and MYOCD, the two transcription factors that control VSMC differentiation, have been shown to develop a hypercontractile arterial phenotype resulting in brain hypoperfusion, diminished functional hyperaemia and CAA66, 113. More work is needed to establish the exact role of SRF and MYOCD in the vascular dysfunction that results in the Alzheimer’s disease phenotype and CAA.

PET studies with 11C-verapamil, an ABCB1 substrate, have indicated that the function of ABCB1, which removes multiple drugs and toxins from the brain, decreases with ageing114 and is particularly compromised in the midbrain of patients with Parkinson’s disease, progressive supranuclear palsy or multiple system atrophy115. More work is needed to establish the exact roles of ABC BBB transporters in neurodegeneration and whether their failure precedes the loss of dopaminergic neurons that occurs in Parkinson’s disease.

In mice with ALS-like disease and in patients with ALS, hypoperfusion and/or dysregulated CBF have been shown to occur before motor neuron degeneration or brain atrophy8, 116. Reduced regional CBF in basal ganglia and reduced blood volume have been reported in pre-symptomatic gene-tested individuals at risk for Huntington’s disease117. Patients with Huntington’s disease display a reduction in vasomotor activity in the cerebral anterior artery during motor activation118.

Vascular and neuronal common growth factors. Blood vessels and neurons share common growth factors and molecular pathways that regulate their development and maintenance119, 120. Angioneurins are growth factors that exert both vasculotrophic and neurotrophic activities121. The best studied angioneurin is vascular endothelial growth factor (VEGF). VEGF regulates vessel formation, axonal growth and neuronal survival120. Ephrins, semaphorins, slits and netrins are axon guidance factors that also regulate the development of the vascular system121. During embryonic development of the neural tube, blood vessels and choroid plexus secrete IGF2 into the CSF, which regulates the proliferation of neuronal progenitor cells122. Genetic and pharmacological manipulations of angioneurin activity yielded various vascular and cerebral phenotypes121. Given the dual nature of angioneurin action, these studies have not been able to address whether neuronal dysfunction results from a primary insult to neurons and/or whether it is secondary to vascular dysfunction.

Increased levels of VEGF, a hypoxia-inducible angiogenic factor, were found in the walls of intraparenchymal vessels, perivascular deposits, astrocytes and intrathecal space of patients with Alzheimer’s disease, and were consistent with the chronic cerebral hypoperfusion and hypoxia that were observed in these individuals73. In addition to VEGF, brain microvessels in Alzheimer’s disease release several molecules that can influence angiogenesis, including IL-1β, IL-6, IL-8, TNF, TGFβ, MCP1, thrombin, angiopoietin 2, αVβ3 and αVβ5 integrins, and HIF1α73. However, evidence for increased vascularity in Alzheimer’s disease is lacking. On the contrary, several studies have reported that focal vascular regression and diminished microvascular density occur in Alzheimer’s disease4, 5, 73 and in Alzheimer’s disease transgenic mice123. The reason for this discrepancy is not clear. The anti-angiogenic activity of amyloid-β, which accumulates in the brains of individuals with Alzheimer’s disease and Alzheimer’s disease models, may contribute to hypovascularity123. Conversely, genome-wide transcriptional profiling of brain endothelial cells from patients with Alzheimer’s disease revealed that extremely low expression of vascular-restricted MEOX2 mediates aberrant angiogenic responses to VEGF and hypoxia, leading to capillary death5. This finding raises the interesting question of whether capillary degeneration in Alzheimer’s disease results from unsuccessful vascular repair and/or remodelling. Moreover, mice that lack one Meox2 allele have been shown to develop a primary cerebral endothelial hypoplasia with chronic brain hypoperfusion5, resulting in secondary neurodegenerative changes33.

Does vascular dysfunction cause neuronal dysfunction? In summary, the evidence that is discussed above clearly indicates that vascular dysfunction is tightly linked to neuronal dysfunction. There are many examples to illustrate that primary vascular deficits lead to secondary neurodegeneration, including CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts), an hereditary small-vessel brain disease resulting in multiple small ischaemic lesions, neurodegeneration and dementia124; mutations in SLC2A1 that cause dysfunction of the BBB-specific GLUT1 transporter in humans resulting in seizures; cognitive impairment and microcephaly125; microcephaly and epileptiform discharges in mice with genetic deletion of a single Slc2a1allele126; and neurodegeneration mediated by a single Meox2 homebox gene deletion restricted to the vascular system33. Patients with hereditary cerebral β-amyloidosis and CAA of the Dutch, Iowa, Arctic, Flemish, Italian or Piedmont L34V type provide another example showing that primary vascular dysfunction — which in this case is caused by deposition of vasculotropic amyloid-β mutants in the arterial vessel wall — leads to dementia and intracerebral bleeding. Moreover, as reviewed in the previous sections, recent evidence suggests that BBB dysfunction and/or breakdown, and CBF reductions and/or dysregulation may occur in sporadic Alzheimer’s disease and experimental models of this disease before cognitive decline, amyloid-β deposition and brain atrophy. In patients with ALS and in some experimental models of ALS, CBF dysregulation, BSCB breakdown and spinal cord hypoperfusion have been reported to occur before motor neuron cell death. Whether neurological changes follow or precede vascular dysfunction in Parkinson’s disease, Huntington’s disease and multiple sclerosis remains less clear. However, there is little doubt that vascular injury mediates, amplifies and/or lowers the threshold for neuronal dysfunction and loss in several neurological disorders.

Disease-specific considerations

This section examines how amyloid-β levels are kept low in the brain, a process in which the BBB has a central role, and how faulty BBB-mediated clearance mechanisms go awry in Alzheimer’s disease. On the basis of this evidence and the findings discussed elsewhere in the Review, a new hypothesis for the pathogenesis of Alzheimer’s disease that incorporates the vascular evidence is presented. ALS-specific disease mechanisms relating to the BBB are then examined.

Alzheimer’s disease. Amyloid-β clearance from the brain by the BBB is the best studied example of clearance of a proteinaceous toxin from the CNS. Multiple pathways regulate brain amyloid-β levels, including its production and clearance (Fig. 4). Recent studies127, 128, 129 have confirmed earlier findings in multiple rodent and non-human primate models demonstrating that peripheral amyloid-β is an important precursor of brain amyloid-β130, 131, 132, 133, 134, 135, 136. Moreover, peripheral amyloid-β sequestering agents such as soluble LRP1 (ref.137), anti-amyloid-β antibodies138, 139, 140, gelsolin and the ganglioside GM1 (Ref. 141), or systemic expression of neprilysin142, 143have been shown to reduce the amyloid burden in Alzheimer’s disease mice by eliminating contributions of the peripheral amyloid-β pool to the total brain pool of this peptide.

Figure 4 | The role of blood–brain barrier transport in brain homeostasis of amyloid-β.

Amyloid-β (Aβ) is produced from the amyloid-β precursor protein (APP), both in the brain and in peripheral tissues. Clearance of amyloid-β from the brain normally maintains its low levels in the brain. This peptide is cleared across the blood–brain barrier (BBB) by the low-density lipoprotein receptor-related protein 1 (LRP1). LRP1 mediates rapid efflux of a free, unbound form of amyloid-β and of amyloid-β bound to apolipoprotein E2 (APOE2), APOE3 or α2-macroglobulin (not shown) from the brain’s interstitial fluid into the blood, and APOE4 inhibits such transport. LRP2 eliminates amyloid-β that is bound to clusterin (CLU; also known as apolipoprotein J (APOJ)) by transport across the BBB, and shows a preference for the 42-amino-acid form of this peptide. ATP-binding cassette subfamily A member 1 (ABCA1; also known as cholesterol efflux regulatory protein) mediates amyloid-β efflux from the brain endothelium to blood across the luminal side of the BBB (not shown). Cerebral endothelial cells, pericytes, vascular smooth muscle cells, astrocytes, microglia and neurons express different amyloid-β-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme (IDE), tissue plasminogen activator (tPA) and matrix metalloproteinases (MMPs), which contribute to amyloid-β clearance. In the circulation, amyloid-β is bound mainly to soluble LRP1 (sLRP1), which normally prevents its entry into the brain. Systemic clearance of amyloid-β is mediated by its removal by the liver and kidneys. The receptor for advanced glycation end products (RAGE) provides the key mechanism for influx of peripheral amyloid-β into the brain across the BBB either as a free, unbound plasma-derived peptide and/or by amyloid-β-laden monocytes. Faulty vascular clearance of amyloid-β from the brain and/or an increased re-entry of peripheral amyloid-β across the blood vessels into the brain can elevate amyloid-β levels in the brain parenchyma and around cerebral blood vessels. At pathophysiological concentrations, amyloid-β forms neurotoxic oligomers and also self-aggregates, which leads to the development of cerebral β-amyloidosis and cerebral amyloid angiopathy.

The receptor for advanced glycation end products (RAGE) mediates amyloid-β transport in brain and the propagation of its toxicity. RAGE expression in brain endothelium provides a mechanism for influx of amyloid-β144, 145 and amyloid-β-laden monocytes146 across the BBB, as shown in Alzheimer’s disease models (Fig. 4). The amyloid-β-rich environment in Alzheimer’s disease and models of this disorder increases RAGE expression at the BBB and in neurons147, 148, amplifying amyloid-β-mediated pathogenic responses. Blockade of amyloid-β–RAGE signalling in Alzheimer’s disease is a promising strategy to control self-propagation of amyloid-β-mediated injury.

Several studies in animal models of Alzheimer’s disease and, more recently, in patients with this disorder149 have shown that diminished amyloid-β clearance occurs in brain tissue in this disease. LRP1 plays an important part in the three-step serial clearance of this peptide from brain and the rest of the body150 (Fig. 4). In step one, LRP1 in brain endothelium binds brain-derived amyloid-β at the abluminal side of the BBB, initiating its clearance to blood, as shown in many animal models151, 152, 153, 154, 155, 156 and BBB models in vitro151, 157,158. The vasculotropic mutants of amyloid-β that have low binding affinity for LRP1 are poorly cleared from the brain or CSF151, 159, 160. APOE4, but not APOE3 or APOE2, blocks LRP1-mediated amyloid-β clearance from the brain and, hence, promotes its retention161, whereas clusterin (also known as apolipoprotein J (APOJ)) mediates amyloid-β clearance across the BBB via LRP2 (Ref. 153). APOE and clusterin influence amyloid-β aggregation162, 163. Reduced LRP1 levels in brain microvessels, perhaps in addition to altered levels of ABCB1, are associated with amyloid-β cerebrovascular and brain accumulation during ageing in rodents, non-human primates, humans, Alzheimer’s disease mice and patients with Alzheimer’s disease66, 151, 152, 164, 165, 166. Moreover, recent work has shown that brain LRP1 is oxidized in Alzheimer’s disease167, and may contribute to amyloid-β retention in brain because the oxidized form cannot bind and/or transport amyloid-β137. LRP1 also mediates the removal of amyloid-β from the choroid plexus168.

In step two, circulating soluble LRP1 binds more than 70% of plasma amyloid-β in neurologically normal humans137. In patients with Alzheimer’s disease or mild cognitive impairment (MCI), and in Alzheimer’s disease mice, amyloid-β binding to soluble LRP1 is compromised due to oxidative changes137, 169, resulting in elevated plasma levels of free amyloid-β isoforms comprising 40 or 42 amino acids (amyloid-β1–40 and amyloid-β1–42). These peptides can then re-enter the brain, as has been shown in a mouse model of Alzheimer’s disease137. Rapid systemic removal of amyloid-β by the liver is also mediated by LRP1 and comprises step three of the clearance process170.

In brain, amyloid-β is enzymatically degraded by neprilysin171, insulin-degrading enzyme172, tissue plasminogen activator173 and MMPs173,174 in various cell types, including endothelial cells, pericytes, astrocytes, neurons and microglia. Cellular clearance of this peptide by astrocytes and VSMCs is mediated by LRP1 and/or another lipoprotein receptor66, 175. Clearance of amyloid-β aggregates by microglia has an important role in amyloid-β-directed immunotherapy176 and reduction of the amyloid load in brain177. Passive ISF–CSF bulk flow and subsequent clearance through the CSF might contribute to 10–15% of total amyloid-β removal152, 153, 178. In the injured human brain, increasing soluble amyloid-β concentrations in the ISF correlated with improvements in neurological status, suggesting that neuronal activity might regulate extracellular amyloid-β levels179.

The role of BBB dysfunction in amyloid-β accumulation, as discussed above, underlies the contribution of vascular dysfunction to Alzheimer’s disease (see Fig. 5 for a model of vascular damage in Alzheimer’s disease). The amyloid hypothesis for the pathogenesis of Alzheimer’s disease maintains that this peptide initiates a cascade of events leading to neuronal injury and loss and, eventually, dementia180, 181. Here, I present an alternative hypothesis — the two-hit vascular hypothesis of Alzheimer’s disease — that incorporates the vascular contribution to this disease, as discussed in this Review (Box 1). This hypothesis states that primary damage to brain microcirculation (hit one) initiates a non-amyloidogenic pathway of vascular-mediated neuronal dysfunction and injury, which is mediated by BBB dysfunction and is associated with leakage and secretion of multiple neurotoxic molecules and/or diminished brain capillary flow that causes multiple focal ischaemic or hypoxic microinjuries. BBB dysfunction also leads to impairment of amyloid-β clearance, and oligaemia leads to increased amyloid-β generation. Both processes contribute to accumulation of amyloid-β species in the brain (hit two), where these peptides exert vasculotoxic and neurotoxic effects. According to the two-hit vascular hypothesis of Alzheimer’s disease, tau pathology develops secondary to vascular and/or amyloid-β injury.

Figure 5 | A model of vascular damage in Alzheimer’s disease.

a | In the early stages of Alzheimer’s disease, small pial and intracerebral arteries develop a hypercontractile phenotype that underlies dysregulated cerebral blood flow (CBF). This phenotype is accompanied by diminished amyloid-β clearance by the vascular smooth muscle cells (VSMCs). In the later phases of Alzheimer’s disease, amyloid deposition in the walls of intracerebral arteries leads to cerebral amyloid angiopathy (CAA), pronounced reductions in CBF, atrophy of the VSMC layer and rupture of the vessels causing microbleeds. b | At the level of capillaries in the early stages of Alzheimer’s disease, blood–brain barrier (BBB) dysfunction leads to a faulty amyloid-β clearance and accumulation of neurotoxic amyloid-β oligomers in the interstitial fluid (ISF), microhaemorrhages and accumulation of toxic blood-derived molecules (that is, thrombin and fibrin), which affect synaptic and neuronal function. Hyperphosphorylated tau (p-tau) accumulates in neurons in response to hypoperfusion and/or rising amyloid-β levels. At this point, microglia begin to sense neuronal injury. In the later stages of the disease in brain capillaries, microvascular degeneration leads to increased deposition of basement membrane proteins and perivascular amyloid. The deposited proteins and amyloid obstruct capillary blood flow, resulting in failure of the efflux pumps, accumulation of metabolic waste products, changes in pH and electrolyte composition and, subsequently, synaptic and neuronal dysfunction. Neurofibrillary tangles (NFTs) accumulate in response to ischaemic injury and rising amyloid-β levels. Activation of microglia and astrocytes is associated with a pronounced inflammatory response. ROS, reactive oxygen species.

Amyotrophic lateral sclerosis. The cause of sporadic ALS, a fatal adult-onset motor neuron neurodegenerative disease, is not known182. In a relatively small number of patients with inherited SOD1 mutations, the disease is caused by toxic properties of mutant SOD1 (Ref. 183). Mutations in the genes encoding ataxin 2 and TAR DNA-binding protein 43 (TDP43) that cause these proteins to aggregate have been associated with ALS182, 184. Some studies have suggested that abnormal SOD1 species accumulate in sporadic ALS185. Interestingly, studies in ALS transgenic mice expressing a mutant version of human SOD1 in neurons, and in non-neuronal cells neighbouring these neurons, have shown that deletion of this gene from neurons does not influence disease progression186, whereas deletion of this gene from microglia186 or astrocytes187 substantially increases an animal’s lifespan. According to an emerging hypothesis of ALS that is based on studies in SOD1 mutant mice, the toxicity that is derived from non-neuronal neighbouring cells, particularly microglia and astrocytes, contributes to disease progression and motor neuron degeneration186, 187, 188, 189, 190, whereas BBB dysfunction might be critical for disease initiation8, 43, 94, 95. More work is needed to determine whether this concept of disease initiation and progression may also apply to cases of sporadic ALS.

Human data support a role for angiogenic factors and vessels in the pathogenesis of ALS. For example, the presence of VEGF variations (which were identified in large meta-analysis studies) has been linked to ALS191. Angiogenin is another pro-angiogenic gene that is implicated in ALS because heterozygous missense mutations in angiogenin cause familial and sporadic ALS192. Moreover, mice with a mutation that eliminates hypoxia-responsive induction of the Vegf gene (Vegfδ/δ mice) develop late-onset motor neuron degeneration193. Spinal cord ischaemia worsens motor neuron degeneration and functional outcome in Vegfδ/δmice, whereas the absence of hypoxic induction of VEGF in mice that develop motor neuron disease from expression of ALS-linked mutant SOD1G93A results in substantially reduced survival191.

Therapeutic opportunities

Many investigators believe that primary neuronal dysfunction resulting from an intrinsic neuronal disorder is the key underlying event in human neurodegenerative diseases. Thus, most therapeutic efforts for neurodegenerative diseases have so far been directed at the development of so-called ‘single-target, single-action’ agents to target neuronal cells directly and reverse neuronal dysfunction and/or protect neurons from injurious insults. However, most preclinical and clinical studies have shown that such drugs are unable to cure or control human neurological disorders2, 181, 183, 194, 195. For example, although pathological overstimulation of glutaminergic NMDA receptors (NMDARs) has been shown to lead to neuronal injury and death in several disorders, including stroke, Alzheimer’s disease, ALS and Huntington’s disease16, NMDAR antagonists have failed to show a therapeutic benefit in the above-mentioned human neurological disorders.

Recently, my colleagues and I coined the term vasculo-neuronal-inflammatory triad195 to indicate that vascular damage, neuronal injury and/or neurodegeneration, and neuroinflammation comprise a common pathological triad that occurs in multiple neurological disorders. In line with this idea, it is conceivable that ‘multiple-target, multiple-action’ agents (that is, drugs that have more than one target and thus have more than one action) will have a better chance of controlling the complex disease mechanisms that mediate neurodegeneration than agents that have only one target (for example, neurons). According to the vasculo-neuronal-inflammatory triad model, in addition to neurons, brain endothelium, VSMCs, pericytes, astrocytes and activated microglia are all important therapeutic targets.

Here, I will briefly discuss a few therapeutic strategies based on the vasculo-neuronal-inflammatory triad model. VEGF and other angioneurins may have multiple targets, and thus multiple actions, in the CNS120. For example, preclinical studies have shown that treatment of SOD1G93A rats with intracerebroventricular VEGF196 or intramuscular administration of a VEGF-expressing lentiviral vector that is transported retrogradely to motor neurons in SOD1G93A mice197 reduced pathology and extended survival, probably by promoting angiogenesis and increasing the blood flow through the spinal cord as well as through direct neuronal protective effects of VEGF on motor neurons. On the basis of these and other studies, a phase I–II clinical trial has been initiated to evaluate the safety of intracerebroventricular infusion of VEGF in patients with ALS198. Treatment with angiogenin also slowed down disease progression in a mouse model of ALS199.

IGF1 delivery has been shown to promote amyloid-β vascular clearance and to improve learning and memory in a mouse model of Alzheimer’s disease200. Local intracerebral implantation of VEGF-secreting cells in a mouse model of Alzheimer’s disease has been shown to enhance vascular repair, reduce amyloid burden and improve learning and memory201. In contrast to VEGF, which can increase BBB permeability, TGFβ, hepatocyte growth factor and fibroblast growth factor 2 promote BBB integrity by upregulating the expression of endothelial junction proteins121 in a similar way to APC43. However, VEGF and most growth factors do not cross the BBB, so the development of delivery strategies such as Trojan horses is required for their systemic use25.

A recent experimental approach with APC provides an example of a neurovascular medicine that has been shown to favourably regulate multiple pathways in non-neuronal cells and neurons, resulting in vasculoprotection, stabilization of the BBB, neuroprotection and anti-inflammation in several acute and chronic models of the CNS disorders195 (Box 2).

The recognition of amyloid-β clearance pathways (Fig. 4), as discussed above, opens exciting new therapeutic opportunities for Alzheimer’s disease. Amyloid-β clearance pathways are promising therapeutic targets for the future development of neurovascular medicines because it has been shown both in animal models of Alzheimer’s disease1 and in patients with sporadic Alzheimer’s disease149 that faulty clearance from brain and across the BBB primarily determines amyloid-β retention in brain, causing the formation of neurotoxic amyloid-β oligomers56 and the promotion of brain and cerebrovascular amyloidosis3. The targeting of clearance mechanisms might also be beneficial in other diseases; for example, the clearance of extracellular mutant SOD1 in familial ALS, the prion protein in prion disorders and α-synuclein in Parkinson’s disease might all prove beneficial. However, the clearance mechanisms for these proteins in these diseases are not yet understood.

Conclusions and perspectives

Currently, no effective disease-modifying drugs are available to treat the major neurodegenerative disorders202, 203, 204. This fact leads to a question: are we close to solving the mystery of neurodegeneration? The probable answer is yes, because the field has recently begun to recognize that, first, damage to neuronal cells is not the sole contributor to disease initiation and progression, and that, second, correcting disease pathways in vascular and glial cells may offer an array of new approaches to control neuronal degeneration that do not involve targeting neurons directly. These realizations constitute an important shift in paradigm that should bring us closer to a cure for neurodegenerative diseases. Here, I raise some issues concerning the existing models of neurodegeneration and the new neurovascular paradigm.

The discovery of genetic abnormalities and associations by linkage analysis or DNA sequencing has broadened our understanding of neurodegeneration204. However, insufficient effort has been made to link genetic findings with disease biology. Another concern for neurodegenerative research is how we should interpret findings from animal models202. Genetically engineered models of human neurodegenerative disorders in Drosophila melanogaster andCaenorhabditis elegans have been useful for dissecting basic disease mechanisms and screening compounds. However, in addition to having much simpler nervous systems, insects and avascular species do not have cerebrovascular and immune systems that are comparable to humans and, therefore, are unlikely to replicate the complex disease pathology that is found in people.

For most neurodegenerative disorders, early steps in the disease processes remain unclear, and biomarkers for these stages have yet to be identified. Thus, it is difficult to predict whether mammalian models expressing human genes and proteins that we know are implicated in the intermediate or later stages of disease pathophysiology, such as amyloid-β or tau in Alzheimer’s disease7, 181, will help us to discover therapies for the early stages of disease and for disease prevention, because the exact role of these pathological accumulations during disease onset remains uncertain. According to the two-hit vascular hypothesis of Alzheimer’s disease, incorporating vascular factors that are associated with Alzheimer’s disease into current models of this disease may more faithfully replicate dementia events in humans. Alternatively, by focusing on the comorbidities and the initial cellular and molecular mechanisms underlying early neurovascular dysfunction that are associated with Alzheimer’s disease, new models of dementia and neurodegeneration may be developed that do not require the genetic manipulation of amyloid-β or tau expression.

The proposed neurovascular triad model of neurodegenerative diseases challenges the traditional neurocentric view of such disorders. At the same time, this model raises a set of new important issues that require further study. For example, the molecular basis of the neurovascular link with neurodegenerative disorders is poorly understood, in terms of the adhesion molecules that keep the physical association of various cell types together, the molecular crosstalk between different cell types (including endothelial cells, pericytes and astrocytes) and how these cellular interactions influence neuronal activity. Addressing these issues promises to create new opportunities not only to better understand the molecular basis of the neurovascular link with neurodegeneration but also to develop novel neurovascular-based medicines.

The construction of a human BBB molecular atlas will be an important step towards understanding the role of the BBB and neurovascular interactions in health and disease. Achievement of this goal will require identifying new BBB transporters by using genomic and proteomic tools, and by cloning some of the transporters that are already known. Better knowledge of transporters at the human BBB will help us to better understand their potential as therapeutic targets for disease.

Development of higher-resolution imaging methods to evaluate BBB integrity, key transporters’ functions and CBF responses in the microregions of interest (for example, in the entorhinal region of the hippocampus) will help us to understand how BBB dysfunction correlates with cognitive outcomes and neurodegenerative processes in MCI, Alzheimer’s disease and related disorders.

The question persists: are we missing important therapeutic targets by studying the nervous system in isolation from the influence of the vascular system? The probable answer is yes. However, the current exciting and novel research that is based on the neurovascular model has already begun to change the way that we think about neurodegeneration, and will continue to provide further insights in the future, leading to the development of new neurovascular therapies.


  1. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

  2. Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).
    A comprehensive review describing mechanisms of ischaemic injury to the neurovascular unit.

  3. Zlokovic, B. V. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

  4. Brown, W. R. & Thore, C. R. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56–74 (2011).

  5. Wu, Z. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nature Med. 11, 959–965 (2005).
    A study demonstrating that low expression of MEOX2 in brain endothelium leads to aberrant angiogenesis and vascular regression in Alzheimer’s disease.

  6. Paul, J., Strickland, S. & Melchor, J. P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J. Exp. Med. 204, 1999–2008 (2007).
    A study showing BBB breakdown in models of Alzheimer’s disease.

  7. Zipser, B. D. et al. Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol. Aging 28, 977–986 (2007).

  8. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neurosci. 11, 420–422 (2008).
    A study demonstrating that BSCB defects precede motor neuron degeneration in mice that develop an ALS-like disease.

  9. Kalaria, R. N. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr. Rev. 68, S74–S87 (2010).

  10. Knopman, D. S. & Roberts, R. Vascular risk factors: imaging and neuropathologic correlates. J. Alzheimers Dis. 20, 699–709 (2010).

  11. Miyazaki, K. et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 89, 718–728 (2011).

  12. Neuwelt, E. A. et al. Engaging neuroscience to advance translational research in brain barrier biology. Nature Rev. Neurosci. 12, 169–182 (2011).

  13. Guo, S. & Lo, E. H. Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease.Stroke 40, S4–S7 (2009).

  14. Redzic, Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8, 3 (2011).

  15. O’Kane, R. L., Martinez-Lopez, I., DeJoseph, M. R., Vina, J. R. & Hawkins, R. A. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood–brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274, 31891–31895 (1999).

………   212

Author affiliations

  1. Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, California 90089, USA.
    Email: bzlokovi@usc.edu


Retromer in Alzheimer disease, Parkinson disease and other neurological disorders.

Scott A. Small and Gregory A. Petsko

Nature Reviews Neuroscience  2015; 16:126-132.   http://dx.doi.org:/10.1038/nrn3896


Retromer is a protein assembly that has a central role in endosomal trafficking, and retromer dysfunction has been linked to a growing number of neurological disorders. First linked to Alzheimer disease, retromer dysfunction causes a range of pathophysiological consequences that have been shown to contribute to the core pathological features of the disease. Genetic studies have established that retromer dysfunction is also pathogenically linked to Parkinson disease, although the biological mechanisms that mediate this link are only now being elucidated. Most recently, studies have shown that retromer is a tractable target in drug discovery for these and other disorders of the nervous system.

Yeast has proved to be an informative model organism in cell biology and has provided early insight into much of the molecular machinery that mediates the intracellular transport of proteins1,2. Indeed, the term ‘retromer’ was first introduced in a yeast study in 1998 (Ref. 3). In this study, retromer was referred to as a complex of proteins that was dedicated to transporting cargo in a retrograde direction, from the yeast endosome back to the Golgi.

By 2004, a handful of studies had identified the molecular4 and the functional5, 6 homologies of the mammalian retromer, and in 2005 retromer was linked to its first human disorder, Alzheimer disease (AD)7. At the time, the available evidence suggested that the mammalian retromer might match the simplicity of its yeast homologue. Since then, a dramatic and exponential rise in research focusing on retromer has led to more than 300 publications. These studies have revealed the complexity of the mammalian retromer and its functional diversity in endosomal transport, and have implicated retromer in a growing number of neurological disorders.

New evidence indicates that retromer is a ‘master conductor’ of endosomal sorting and trafficking8. Synaptic function heavily depends on endosomal trafficking, as it contributes to the presynaptic release of neurotransmitters and regulates receptor density in the postsynaptic membrane, a process that is crucial for neuronal plasticity9. Therefore, it is not surprising that a growing number of studies are showing that retromer has an important role in synaptic biology10, 11, 12, 13. These observations may account for why the nervous system seems particularly sensitive to genetic and other defects in retromer. In this Progress article, we briefly review the molecular organization and the functional role of retromer, before discussing studies that have linked retromer dysfunction to several neurological diseases — notably, AD and Parkinson disease (PD).

Function and organization

The endosome is considered a hub for intracellular transport. From the endosome, transmembrane proteins can be actively sorted and trafficked to various intracellular sites via distinct transport routes (Fig. 1a). Studies have shown that the mammalian retromer mediates two of the three transport routes out of endosomes. First, retromer is involved in the retrieval of cargos from endosomes and in their delivery, in a retrograde direction, to the trans-Golgi network (TGN)5,6. Retrograde transport has many cellular functions but, as we describe, it is particularly important for the normal delivery of hydrolases and proteases to the endosomal–lysosomal system. The second transport route in which retromer functions is the recycling of cargos from endosomes back to the cell surface14, 15 (Fig. 1a). It is this transport route that is particularly important for neurons, as it mediates the normal delivery of glutamate and other receptors to the plasma membrane during synaptic remodelling and plasticity10, 11, 12, 13.

Figure 1: Retromer’s endosomal transport function and molecular organization.
Retromer's endosomal transport function and molecular organization.

a | Retromer mediates two transport routes out of endosomes via tubules that extend out of endosomal membranes. The first is the retrograde pathway in which cargo is retrieved from the endosome and trafficked to the trans-Golgi network (TGN). The second is the recycling pathway in which cargo is trafficked back from the endosome to the cell surface. The degradation pathway, which is not mediated by retromer, involves the trafficking of cargo from endosomes to lysosomes for degradation. b | The retromer assembly of proteins can be organized into distinct functional modules, all of which work together as part of retromer’s transport role. The ‘cargo-recognition core’ is the central module of the retromer assembly and comprises a trimer of proteins, in which vacuolar protein sorting-associated protein 26 (VPS26) and VPS29 bind VPS35. The ‘tubulation’ module includes protein complexes that bind the cargo-recognition core and aid in the formation and stabilization of tubules that extend out of endosomes, directing the transport of cargos towards their final destinations. The ‘membrane-recruiting’ proteins recruit the cargo-recognition core to the endosomal membrane. The WAS protein family homologue (WASH) complex of proteins also binds the cargo-recognition core and is involved in endosomal ‘actin remodelling’ to form actin patches, which are important for directing cargos towards retromer’s transport pathways. Retromer cargos includes a range of receptors — which bind the cargo-recognition core — and their ligands. PtdIns3P, phosphatidylinositol-3-phosphate.

As well as extending the endosomal transport routes, recent studies have considerably expanded the number of molecular constituents and what is known about the functional organization of the mammalian retromer. Following this expansion in knowledge of the molecular diversity and organizational complexity, retromer might be best described as a multimodular protein assembly. The protein or group of proteins that make up each module can vary, but each module is defined by its distinct function, and the modules work in unison in support of retromer’s transport role.

Two modules are considered central to the retromer assembly. First and foremost is a trimeric complex that functions as a ‘cargo-recognition core’, which selects and binds to the transmembrane proteins that need to be transported and that reside in endosomal membranes5, 6. This trimeric core comprises vacuolar protein sorting-associated protein 26 (VPS26), VPS29 and VPS35; VPS35 functions as the core’s backbone to which the other two proteins bind16. VPS26 is the only member of the core that has been found to have two paralogues, VPS26a and VPS26b17,18, and studies suggest that VPS26b might be differentially expressed in the brain19, 20. Some studies suggest that VPS26a and VPS26b are functionally redundant21, whereas others suggest that they might form distinct cargo-recognition cores20, 22.

The second central module of the retromer assembly is the ‘tubulation’ module, which is made up of proteins that work together in the formation and the stabilization of tubules that extend out of endosomes and that direct the transport of cargo towards its final destination (Fig. 1b). The proteins in this module, which directly binds the cargo-recognition core, are members of the subgroup of the sorting nexin (SNX) family that are characterized by the inclusion of a carboxy-terminal BIN–amphiphysin–RVS (BAR) domain23. These members include SNX1, SNX2, SNX5 and SNX6 (Refs 24,25). As part of the tubulation module, these SNX-BAR proteins exist in different dimeric combinations, but typically SNX1 interacts with SNX5 or SNX6, and SNX2 interacts with SNX5 or SNX6 (Refs 26,27). The EPS15-homology domain 1 (EHD1) protein can be included in this module, as it is involved in stabilizing the tubules formed by the SNX-BAR proteins28.

A third module of the retromer assembly functions to recruit the cargo-recognition core to endosomal membranes and to stabilize the core once it is there (Fig. 1b). Proteins that are part of this ‘membrane-recruiting’ module include SNX3 (Ref. 29), the RAS-related protein RAB7A30, 31,32 and TBC1 domain family member 5 (TBC1D5), which is a member of the TRE2–BUB2–CDC16 (TBC) family of RAB GTPase-activating proteins (GAPs)28. In addition, the lipid phosphatidylinositol-3-phosphate (PtdIns3P), which is found on endosomal membranes, contributes to recruiting most of the retromer-related SNXs through their phox homology domains33. Interestingly, another SNX with a phox homology domain, SNX27, was recently linked to retromer and its function15, 34. SNX27 functions as an adaptor for binding to PDZ ligand-containing cargos that are destined for transport to the cell surface via the recycling pathway. Thus, according to the functional organization of the retromer assembly, SNX27 belongs to the module that engages in cargo recognition and selection.

Recent studies have identified a fourth module of the retromer assembly. The five proteins in this module — WAS protein family homologue 1 (WASH1), FAM21, strumpellin, coiled-coil domain-containing protein 53 (CCDC53) and KIAA1033 (also known as WASH complex subunit 7) — form the WASH complex and function as an ‘actin-remodelling’ module28, 35, 36 (Fig. 1b). Specifically, the WASH complex functions in the rapid polymerization of actin to create patches of actin filaments on endosomal membranes. The complex is recruited to endosomal membranes by binding VPS35 (Ref. 28), and together they divert cargo towards retromer transport pathways and away from the degradation pathway.

The cargos that are transported by retromer include the receptors that directly bind the cargo-recognition core and the ligands of these receptors that are co-transported with the receptors. The receptors that are transported by retromer that have so far been identified to be the most relevant to neurological diseases are the family of VPS10 domain-containing receptors (including sortilin-related receptor 1 (SORL1; also known as SORLA), sortilin, and SORCS1, SORCS2 and SORCS3)7; the cation-independent mannose-6-phosphate receptor (CIM6PR)6, 5; glutamate receptors10; and phagocytic receptors that mediate the clearing function of microglia37. The most disease-relevant ligand to be identified that is trafficked as retromer cargo is the β-amyloid precursor protein (APP)7, 38, 39, 40, 41, which binds SORL1 and perhaps other VPS10 domain-containing receptors42 at the endosomal membrane.

Retromer dysfunction

Guided by retromer’s established function, and on the basis of empirical evidence, there are three well-defined pathophysiological consequences of retromer dysfunction that have proven to be relevant to AD and nervous system disorders. First, retromer dysfunction can cause cargos that typically transit rapidly through the endosome to reside in the endosome for longer than normal durations, such that they can be pathogenically processed into neurotoxic fragments (for example, APP, when stalled in the endosome, is more likely to be processed into amyloid-β, which is implicated in AD43 (Fig. 2a)). Second, by reducing endosomal outflow via impairment of the recycling pathway, retromer dysfunction can lead to a reduction in the number of cell surface receptors that are important for brain health (for example, microglia phagocytic receptors37 (Fig. 2b)).

Figure 2: The pathophysiology of retromer dysfunction.
The pathophysiology of retromer dysfunction.

Retromer dysfunction has three established pathophysiological consequences. In the examples shown, the left graphic represents a cell with normal retromer function and the right graphic represents a cell with a deficit in retromer function. a | Retromer dysfunction causes increased levels of cargo to reside in endosomes. For example, in primary neurons, retromer transports the β-amyloid precursor protein (APP) out of endosomes. Accordingly, retromer dysfunction increases APP levels in endosomes, leading to accelerated APP processing, resulting in an accumulation of neurotoxic fragments of APP (namely, β-carboxy-terminal fragment (βCTF) and amyloid-β) that are pathogenic in Alzheimer disease. b | Retromer dysfunction causes decreased cargo levels at the cell surface. For example, in microglia, retromer mediates the transport of phagocytic receptors to the cell surface and retromer dysfunction results in a decrease in the delivery of these receptors. Studies suggest that this cellular phenotype might have a pathogenic role in Alzheimer disease. c | Retromer dysfunction causes decreased delivery of proteases to the endosome. Retromer is required for the normal retrograde transport of the cation-independent mannose-6-phosphate receptor (CIM6PR) from the endosome back to the trans-Golgi network (TGN). It is in the TGN that this receptor binds cathepsin D and other proteases, and transports them to the endosome, to support the normal function of the endosomal–lysosomal system. By impairing the retrograde transport of the receptor, retromer dysfunction ultimately leads to reduced delivery of cathepsin D to this system. Cathepsin D deficiency has been shown to disrupt the endosomal–lysosomal system and to trigger tau pathology either within endosomes or secondarily in the cytosol.

The third consequence (Fig. 2c) is a result of the established role that retromer has in the retrograde transport of receptors, such as CIM6PR5, 6 or sortilin44, after these receptors transport proteases from the TGN to the endosome. Once at the endosome, the proteases disengage from the receptors, are released into endosomes and migrate to lysosomes. These proteases function in the endosomal–lysosomal system to degrade proteins, protein oligomers and aggregates45. Retromer functions to transfer the ‘naked’ receptor from the endosome back to the TGN via the retrograde pathway5, 6, allowing the receptors to continue in additional rounds of protease delivery. Accordingly, by reducing the normal retrograde transport of these receptors, retromer dysfunction has been shown to reduce the proper delivery of proteases to the endosomal–lysosomal system5,6, which, as discussed below, is a pathophysiological state linked to several brain disorders.

Although requiring further validation, recent studies suggest that retromer dysfunction might be involved in two other mechanisms that have a role in neurological disease. One study suggested that retromer might be involved in trafficking the transmembrane protein autophagy-related protein 9A (ATG9A) to recycling endosomes, from where it can then be trafficked to autophagosome precursors — a trafficking step that is crucial in the formation and the function of autophagosomes46. Autophagy is an important mechanism by which neurons clear neurotoxic aggregates that accumulate in numerous neurodegenerative diseases47. A second study has suggested that retromer dysfunction might enhance the seeding and the cell-to-cell spread of intracellular neurotoxic aggregates48, which have emerged as novel pathophysiological mechanisms that are relevant to AD49, PD50 and other neurodegenerative diseases.

Alzheimer disease

Retromer was first implicated in AD in a molecular profiling study that relied on functional imaging observations in patients and animal models to guide its molecular analysis7. Collectively, neuroimaging studies confirmed that the entorhinal cortex is the region of the hippocampal circuit that is affected first in AD, even in preclinical stages, and suggested that this effect was independent of ageing (as reviewed in Ref. 51). At the same time, neuroimaging studies identified a neighbouring hippocampal region, the dentate gyrus, that is relatively unaffected in AD52. Guided by this information, a study was carried out in which the two regions of the brain were harvested post mortem from patients with AD and from healthy individuals, intentionally covering a broad range of ages. A statistical analysis was applied to the determined molecular profiles of the regions that was designed to address the following question: among the thousands of profiled molecules, which are the ones that are differentially affected in the entorhinal cortex versus the dentate gyrus, in patients versus controls, but that are not affected by age? The final results led to the determination that the brains of patients with AD are deficient in two core retromer proteins — VPS26 and VPS35 (Ref. 7).

Little was known about the receptors of the neuronal retromer, so to understand how retromer deficiency might be mechanistically linked to AD, an analysis was carried out on the molecular data set that looked for transmembrane molecules for which expression levels correlated with VPS35 expression. The top ‘hit’ was the transcript encoding the transmembrane protein SORL1 (Ref. 43). As SORL1 belongs to the family of VPS10-containing receptors and as VPS10 is the main retromer receptor in yeast3, it was postulated that SORL1 and the family of other VPS10-containing proteins (sortillin, SORCS1, SORCS2 and SORCS3) might function as retromer receptors in neurons7. In addition, SORL1 had recently been reported to bind APP53, so if SORL1 was assumed to be a receptor that is trafficked by retromer, then APP might be the cargo that is co-trafficked by retromer. This led to a model in which retromer traffics APP out of endosomes7, which are the organelles in which APP is most likely to be cleaved by βAPP-cleaving enzyme 1 (BACE1; also known as β-secretase 1)43; this is the initial enzymatic step in the pathogenic processing of APP.

Subsequent studies were required to further establish the pathogenic link between retromer and AD, and to test the proposed model. The pathogenic link was further supported by human genetic studies. First, a genetic study investigating the association between AD, the genes encoding the components of the retromer cargo-recognition core and the family of VPS10-containing receptors found that variants of SORL1 increase the risk of developing AD38. This finding was confirmed by numerous studies, including a recent large-scale AD genome-wide association study54. Other genetic studies identified AD-associated variants in genes encoding proteins that are linked to nearly all modules of the retromer assembly55, including genes encoding proteins of the retromer tubulation module (SNX1), genes encoding proteins of the retromer membrane-recruiting module (SNX3 and RAB7A) and genes encoding proteins of the retromer actin-remodelling module (KIAA1033). In addition, nearly all of the genes encoding the family of VPS10-containing retromer receptors have been found to have variants that associate with AD56. Finally, a study found that brain regions that are differentially affected in AD are deficient in PtdIns3P, which is the phospholipid required for recruiting many sorting nexins to endosomal membranes57. Thus, together with the observation that the brains of patients with AD are deficient in VPS26a and VPS35 (Refs 7,37), all modules in the retromer assembly are implicated in AD.

Studies in mice39, 58, 59, flies39 and cells in culture34, 40, 41, 60, 61 have investigated how retromer dysfunction leads to the pathogenic processing of APP. Although rare discrepancies have been observed among these studies62, when viewed in total, the most consistent findings are that retromer dysfunction causes increased pathogenic processing of APP by increasing the time that APP resides in endosomes. Moreover, these studies have confirmed that SORL1 and other VPS10-containing proteins function as APP receptors that mediate APP trafficking out of endosomes.

Retromer has unexpectedly been linked to microglial abnormalities37 — another core feature of AD — which, on the basis of recent genetic findings, seem to have an upstream role in disease pathogenesis54, 63. A recent study found that microglia harvested from the brains of individuals with AD are deficient in VPS35 and provided evidence suggesting that retromer’s recycling pathway regulates the normal delivery of various phagocytic receptors to the cell surface of microglia37, including the phagocytic receptor triggering receptor expressed on myeloid cells 2 (TREM2) (Fig. 2b). Mutations in TREM2 have been linked to AD63, and a recent study indicates that these mutations cause a reduction in its cell surface delivery and accelerate TREM2 degradation, which suggests that the mutations are linked to a recycling defect64. While they are located at the microglial cell surface, these phagocytic receptors function in the clearance of extracellular proteins and other molecules from the extracellular space65. Taken together, these recent studies suggest that defects in the retromer’s recycling pathway can, at least in part, account for the microglial defects observed in the disease.

The microtubule-associated protein tau is the key element of neurofibrillary tangles, which are the other hallmark histological features of AD. Although a firm link between retromer dysfunction and tau toxicity remains to be established, recent insight into tau biology suggests several plausible mechanisms that are worth considering. Tau is a cytosolic protein, but nonetheless, through mechanisms that are still undetermined, it is released into the extracellular space from where it gains access to neuronal endosomes via endocytosis66, 67. In fact, recent studies suggest that the pathogenic processing of tau is triggered after it is endocytosed into neurons and while it resides in endosomes67. Of note, it still remains unknown which specific tau processing step — its phosphorylation, cleavage or aggregation — is an obligate step towards tau-related neurotoxicity. Accordingly, if defects in microglia or in other phagocytic cells reduce their capacity to clear extracellular tau, this would accelerate tau endocytosis in neurons and its pathogenic processing.

A second possibility comes from the established role retromer has in the proper delivery of cathepsin D and other proteases to the endosomal–lysosomal system via CIM6PR or sortilin (Fig. 2c). Studies in sheep, mice and flies68 have shown that cathepsin D deficiency can enhance tau toxicity and that this is mediated by a defective endosomal–lysosomal system68. Whether this mechanism leads to abnormal processing of tau within endosomes or in the cytosol via caspase activation68 remains unclear. As discussed above, retromer dysfunction will lead to a decrease in the normal delivery of cathepsin D to the endosome and will result in endosomal–lysosomal system defects. Retromer dysfunction can therefore be considered as a functional phenocopy of cathepsin D deficiency, which suggests a plausible link between retromer dysfunction and tau toxicity. Nevertheless, although these recent insights establish plausibility and support further investigation into the link between retromer and tau toxicity, whether this link exists and how it may be mediated remain open and outstanding questions.

Parkinson disease

The pathogenic link between retromer and PD is singular and straightforward: exome sequencing has identified autosomal-dominant mutations in VPS35 that cause late-onset PD69, 70, one of a handful of genetic causes of late-onset disease. However, the precise mechanism by which these mutations cause the disease is less clear.

Among a group of recent studies, all46, 48, 71, 72, 73, 74, 75, 76 but one77 strongly suggest that these mutations cause a loss of retromer function. At the molecular level, the mutations do not seem to disrupt mutant VPS35 from interacting normally with VPS26 and VPS29, and from forming the cargo-recognition core. Rather, two studies suggest that the mutations have a restricted effect on the retromer assembly but reduce the ability of VPS35 to associate with the WASH complex46, 75. Studies disagree about the pathophysiological consequences of the mutations. Four studies suggest that the mutations affect the normal retrograde transport of CIM6PR71, 73, 75, 76 from the endosome back to the TGN (Fig. 2c). In this scenario, the normal delivery of cathepsin D to the endosomal–lysosomal system should be reduced and this has been empirically shown73. Cathepsin D has been shown to be the dominant endosomal–lysosomal protease for the normal processing of α-synuclein76, and mutations could therefore lead to abnormal α-synuclein processing and to the formation of α-synuclein aggregates, which are thought to have a key pathogenic role in PD.

A separate study suggested that the mutation might cause a mistrafficking of ATG9, and thereby, as discussed above, reduce the formation and the function of autophagosomes46. Autophagosomes have also been implicated as an intracellular site in which α-synuclein aggregates are cleared. Thus, although future studies are needed to resolve these discrepant findings (which may in fact not be mutually exclusive), these studies are generally in agreement that retromer defects will probably increase the neurotoxic levels of α-synuclein aggregates48.

Several studies in flies71, 74 and in rat neuronal cultures71 provide strong evidence that increasing retromer function by overexpressing VPS35 rescues the neurotoxic effects of the most common PD-causing mutations in leucine-rich repeat kinase 2 (LRRK2). Moreover, a separate study has shown that increasing retromer levels rescues the neurotoxic effect of α-synuclein aggregates in a mouse model48. These findings have immediate therapeutic implications for drugs that increase VPS35 and retromer function, as discussed in the next section, but they also offer mechanistic insight. LRRK2 mutations were found to phenocopy the transport defects caused either by theVPS35 mutations or by knocking down VPS35 (Ref. 71). Together, this and other studies78suggest that LRRK2 might have a role in retromer-dependent transport, but future studies are required to clarify this role.

Other neurological disorders

Besides AD and PD, in which a convergence of findings has established a strong pathogenic link, retromer is being implicated in an increasing number of other neurological disorders. Below, we briefly review three disorders for which the evidence of the involvement of retromer in their pathophysiology is currently the most compelling.

The first of these disorders is Down syndrome (DS), which is caused by an additional copy of chromosome 21. Given the hundreds of genes that are duplicated in DS, it has been difficult to identify which ones drive the intellectual impairments that characterize this condition. A recent elegant study provides strong evidence that a deficiency in the retromer cargo-selection protein SNX27 might be a primary driver for some of these impairments79. This study found that the brains of individuals with DS were deficient in SNX27 and that this deficiency may be caused by an extra copy of a microRNA (miRNA) encoded by human chromosome 21 (the miRNA is produced at elevated levels and thereby decreases SNX27 expression). Consistent with the known role of SNX27 in retromer function, decreased expression of this protein in mice disrupted glutamate receptor recycling in the hippocampus and led to dendritic dysfunction. Importantly, overexpression of SNX27 rescued cognitive and other defects in animal models79, which not only strengthens the causal link between retromer dysfunction and cognitive impairment in DS but also has important therapeutic implications.

Hereditary spastic paraplegia (HSP) is another disorder linked to retromer. HSP is caused by genetic mutations that affect upper motor neurons and is characterized by progressive lower limb spasticity and weakness. Although there are numerous mutations that cause HSP, most are unified by their effects on intracellular transport80. One HSP-associated gene in particular encodes strumpellin81, which is a member of the WASH complex.

The third disorder linked to retromer is neuronal ceroid lipofuscinosis (NCL). NCL is a young-onset neurodegenerative disorder that is part of a larger family of lysosomal storage diseases and is caused by mutations in one of ten identified genes — nine neuronal ceroid lipofuscinosis (CLN) genes and the gene encoding cathepsin D82. Besides cathepsin D, for which the link to retromer has been discussed above, CLN3 seems to function in the normal trafficking of CIM6PR83. However, the most direct link to retromer has been recently described for CLN5, which seems to function, at least in part, as a retromer membrane-recruiting protein84.

Retromer as a therapeutic target

As suggested by the first study implicating retromer in AD7, and in several subsequent studies71,85, increasing the levels of retromer’s cargo-recognition core enhances retromer’s transport function. Motivated by this observation and after a decade-long search86, we identified a novel class of ‘retromer pharmacological chaperones’ that can bind and stabilize retromer’s cargo-recognition core and increase retromer levels in neurons61.

Validating the motivating hypothesis, the chaperones were found to enhance retromer function, as shown by the increased transport of APP out of endosomes and a reduction in the accumulation of APP-derived neurotoxic fragments61. Although there are numerous other pharmacological approaches for enhancing retromer function, this success provides the proof-of-principle that retromer is a tractable therapeutic target.

As retromer functions in all cells, a general concern is whether enhancing its function will have toxic adverse effects. However, studies have found that in stark contrast to even mild retromer deficiencies, increasing retromer levels has no obvious negative consequences in yeast, neuronal cultures, flies or mice40, 48, 61, 71. This might make sense because unlike drugs that, for example, function as inhibitors, simply increasing the normal flow of transport through the endosome might not be cytotoxic.

If retromer drugs are safe and can effectively enhance retromer function in the nervous system — which are still outstanding issues — there are two general indications for considering their clinical application. One rests on the idea that these agents will only be efficacious in patients who have predetermined evidence of retromer dysfunction. The most immediate example is that of individuals with PD that is caused by LRRK2 mutations. As discussed above, several ‘preclinical’ studies in flies and neuronal cultures have already established that increasing retromer levels71, 74can reverse the neurotoxic effects of such mutations and, thus, if this approach is proven to be safe, LRRK2-linked PD might be an appropriate indication for clinical trials.

Alternatively, the pathophysiology of a disease might be such that retromer-enhancing drugs would be efficacious regardless of whether there is documented evidence of retromer dysfunction. AD illustrates this point. As reviewed above, current evidence suggests that retromer-enhancing drugs will, at the very least, decrease pathogenic processing of APP in neurons and enhance microglial function, even if there are no pre-existing defects in retromer.

More generally, histological studies comparing the entorhinal cortex of patients with sporadic AD to age-matched controls have documented that enlarged endosomes are a defining cellular abnormality in AD87, 88. Importantly, enlarged endosomes are uniformly observed in a broad range of patients with sporadic AD, which suggests that enlarged endosomes reflect an intracellular site at which molecular aetiologies converge87. In addition, because they are observed in early stages of the disease in regions of the brain without evidence of amyloid pathology87, enlarged endosomes are thought to be an upstream event. Mechanistically, the most likely cause of enlarged endosomes is either too much cargo flowing into endosomes — as occurs, for example, with apolipoprotein E4 (APOE4), which has been shown to accelerate endocytosis89, 90 — or too little cargo flowing out, as observed in retromer dysfunction40, 61 and related transport defects57. By any mechanism, retromer-enhancing drugs might correct this unifying cellular defect and might be expected to be beneficial regardless of the specific aetiology.


The fact that retromer defects, including those derived from bona fide genetic mutations, seem to differentially target the nervous system suggests that the nervous system is differentially dependent on retromer for its normal function. We think that this reflects the unique cellular properties of neurons and how synaptic biology heavily depends on endosomal transport and trafficking. Although plausible, future studies are required to confirm and to test the details of this hypothesis.

However, currently, it is the clinical rather than the basic neuroscience of retromer that is much better understood, with the established pathophysiological consequences of retromer dysfunction providing a mechanistic link to the disorders in which retromer has been implicated. Nevertheless, many questions remain. The two most interesting questions, which are in fact inversions of each other, relate to regional vulnerability in the nervous system. First, why does retromer dysfunction target specific neuronal populations? Second, how can retromer dysfunction cause diseases that target different regions of the nervous system? Recent evidence hints at answers to both questions, which must somehow be rooted in the functional and molecular diversity of retromer.

The type and the extent of retromer defects linked to different disorders might provide pathophysiological clues as well as reasons for differential vulnerability. As discussed, in AD there seem to be across-the-board defects in retromer, such that each module of the retromer assembly as well as multiple retromer cargos have been pathogenically implicated. By contrast, the profile of retromer defects in PD seems to be more circumscribed, involving selective disruption of the interaction between VPS35 and the WASH complex. These insights might agree with histological87, 88 and large-scale genetic studies54 that suggest that endosomal dysfunction is a unifying focal point in the cellular pathogenesis of AD. In contrast, genetics and other studies91suggest that the cellular pathobiology of PD is more distributed, implicating the endosome but other organelles as well, in particular the mitochondria.

Interestingly, studies suggest that the entorhinal cortex — a region that is differentially vulnerable to AD — has unique dendritic structure and function92, which are highly dependent on endosomal transport. We speculate that it is the unique synaptic biology of the entorhinal cortex that can account for why it might be particularly sensitive to defects in endosomal transport in general and retromer dysfunction in particular, and for why this region is the early site of disease. Future studies are required to investigate this hypothesis, as well as to understand why the substantia nigra or other regions that are differentially vulnerable to PD would be particularly sensitive to the more circumscribed defect in retromer.

Perhaps the most important observation for clinical neuroscience is the now well-established fact that increasing levels of retromer proteins enhances retromer function and has already proved capable of reversing defects associated with AD, PD and DS in either cell culture or in animal models. The relationships between protein levels and function are not always simple, but emerging pharmaceutical technologies that selectively and safely increase protein levels are now a tractable goal in drug discovery93. With the evidence mounting that retromer has a pathogenic role in two of the most common neurodegenerative diseases, we think that targeting retromer to increase its functional activity is an important goal that has strong therapeutic promise.


  • Schekman, R. Charting the secretory pathway in a simple eukaryote. Mol. Biol. Cell 21,37813784 (2010).
  • Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 7791(2011).
  • Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665681 (1998).
  • Haft, C. R.et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 41054116 (2000).
  • Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111122 (2004).
  • Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123133 (2004).
  • Small, S. A.et al. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann. Neurol. 58, 909919 (2005).
  • Burd, C. & Cullen, P. J. Retromer: a master conductor of endosome sorting. Cold Spring Harb. Perspect. Biol. 6, a016774 (2014).
  • Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315324 (2001).
  • Choy, R. W.et al. Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82, 5562 (2014).
  • Zhang, D.et al. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J. Cell Biol. 196, 85101 (2012).
  • Hussain, N. K., Diering, G. H., Sole, J., Anggono, V. & Huganir, R. L. Sorting nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc. Natl Acad. Sci. USA111, 1184011845 (2014).
  • Loo, L. S., Tang, N., Al-Haddawi, M., Dawe, G. S. & Hong, W. A role for sorting nexin 27 in AMPA receptor trafficking. Nature Commun. 5, 3176 (2014).
  • Feinstein, T. N.et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nature Chem. Biol. 7, 278284 (2011).
  • Temkin, P.et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nature Cell Biol. 13, 715721 (2011).
  • Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 6875 (2005).
  • Kerr, M. C.et al. A novel mammalian retromer component, Vps26B. Traffic 6, 9911001(2005).
  • Collins, B. M.et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366379 (2008).
  • Kim, E.et al. Identification of novel retromer complexes in the mouse testis. Biochem. Biophys. Res. Commun. 375, 1621 (2008).
  • Bugarcic, A.et al. Vps26A and Vps26B subunits define distinct retromer complexes. Traffic12, 17591773 (2011).

……. 93


Taub Institute for Research on Alzheimer’s Disease and the Ageing Brain, Departments of Neurology, Radiology, and Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.

Scott A. Small

Helen and Robert Appel Alzheimer’s Disease Research Institute, Department of Neurology and Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10065, USA.

Gregory A. Petsko


See also:

Neurobiol Aging. 2011 Nov;32(11):2109.e1-14. doi: 10.1016/j.neurobiolaging.2011.05.025.
Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer’s disease.
Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD.

Trends Neurosci. 2013 Jun;36(6):325-35. doi: 10.1016/j.tins.2013.03.002.
Why size matters – balancing mitochondrial dynamics in Alzheimer’s disease.
DuBoff B, Feany M, Götz J.

Neuron. 2014 Dec 3;84(5):1023-33. doi: 10.1016/j.neuron.2014.10.024.
Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease.
Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J, Schoch S, Becker A, von der Kammer H, Remy S.



Video: How can we tease out the role of other toxic insults in AD pathogenesis?




Read Full Post »

Author and Curator: Ritu Saxena, Ph.D

Although cancer stem cells constitute only a small percentage of the tumor burden, their self-renewal capacity and possible link with recurrence of cancer post treatment makes them a sought after therapeutic target in cancer. The post on cancer stem cells published on the 22nd of March, 2013, describes the identity of CSCs, their functional characteristics, possible cell of origin and biomarkers. This post focuses on the therapeutic potential of CSCs, their resistance to conventional anti-tumor therapies and current therapeutic targets including biomarkers, signaling pathways and niches.

CSCs Are Resistant to conventional anticancer therapies including chemotherapy, radiotherapy and surgery that are used either alone or in combination. However, these strategies have failed several times to eradicate CSCs resulting in metastasis and relapse, hence, a fatal disease outcome.

The properties of CSCs that contribute to or lead to chemoresistance include:

Quiescent Phenotype

Chemotherapeutic agents target fast-growing cells; however, some CSCs that remain in the dormant or quiescent stage are spared from lethal damage. Later, when the dormant CSCs enter cell cycle, tumor proliferation is stimulated.


Antiapoptotic proteins such as BCL-2 and some self-renewal pathways such as transforming growth factor β, Wnt/ β -catenin or BMI-1 are activated in CSCs. Consequently, DNA damage repair capability of CSCs is enhanced after genotoxic stress or activation of autocrine loops through the production of growth factors like epidermal growth factor (Moserle L, Cancer Lett, 1 Feb 2010;288(1):1-9).

Expression of Drug Efflux Pumps

CSCs express some proteins that have typically been known to contribute to multidrug resistance. The proteins are drug efflux pumps ABCC1, ABCG2 or MDR1. Multidrug resistance-associated proteins (ABCC subfamily) are members of the ATP-binding cassette (ABC) superfamily of transport proteins and act as cellular efflux transporters for a wide variety of substrates, in particular glutathione, glucuronide and sulfate conjugates of diverse compounds.

Radiotherapy is mainly used in breast cancer and glioblastoma multiforme. In glioblastoma multiforme, the properties of CSCs that contribute to radiotherapy resistance is the presence of CD133 marker. CD133+ CSCs preferentially activate DNA damage repair pathway and significantly induced checkpoint kinases that leads to reduced apoptosis in CSCs compared to the CD133- tumor cells (Bao S, Nature, 7 Dec 2006;444(7120):756-60).

Radiotherapy resistance in breast cancer is due to reduced levels of reactive oxygen species in CSCs. In addition, radiation resistance of progenitor cells in an immortalized breast cancer cell line was mediated by the Wnt/β catenin pathway proteins (Diehn M, et al, Nature, 9 Apr 2009;458(7239):780-3; Chen MS, et al, J Cell Sci, 1 Feb 2007;120(Pt 3):468-77).

As mentioned in the previous post on CSCs, CSC targeting therapy could either eliminate CSCs by either killing them after differentiating them from other tumor population, and/or by disrupting their niche. Efficient eradication of CSCs may require the combined ablation of CSCs themselves and their niches. Thus, identification of appropriate and specific markers of CSCs is crucial for targeting them and preventing tumor relapse. Table 1 (adapted from a review article on CSCs by Zhao et al) describes the currently used biomarkers for CSC-targeted therapy (Zhao L, et al, Eur Surg Res, 2012;49(1):8-15).

Table 1

Specific Target Cancer type Marker properties and therapy
Targeting cell markers
CD24+CD44+ESA+ Pancreatic cancer Pancreatic CSCs, elevated during tumorigenesis
CD44+CD24–ESA+ Breast cancer Breast CSCs
EpCAM high CD44+CD166+ Colorectal cancer
CD34+CD38– AML broad use as a target for chemotherapy
CD133+ Prostate cancer and breast cancer 5-transmembrane domain cell surface glycoprotein,also a marker for neuron epithelial, hematopoietic and endothelialprogenitor cells
Stro1+CD105+CD44+ Bone sarcoma
Nodal/activin Knockdown or pharmacological inhibition of its receptorAlk4/7 abrogated self-renewal capacity and in vivo tumorigenicity of CSCs.
Targeting signaling pathways
Hedgehog signaling Upregulated in several cancer types inhibitors: GDC-0449,PF04449913, BMS-833923, IPI-926 and TAK-441
Wnt/β-catenin signaling CML, squamous cell carcinoma Be required for CSC self-renewal and tumor growthinhibitors: PRI-724, WIF-1 and telomerase
Notch signaling Several cancer types An important regulator in normal development, adult stem cell maintenance,and tumorigenesis in multiple organs,inhibitors: RO4929097, BMS-906024, IPI-926 and MK0752
PI3K/Akt/PTEN/mTOR, Several cancer types The pathway is deregulated in many tumors and used to preferentially target CSCsinhibitors: temsirolimus, everolimus FDA-approved therapy for renal cell carcinoma
Targeting CSC Niche
Angiogenesis Niche Colon cancer, breast cancer, NSCLC Inhibitor: bevacizumab results in a disruption of the CSC niche, depleted vasculature and a dramatic reduction in the number of CSCs.
Hypoxia (HIF pathway) Ovarian cancer, lung cancer, cervical cancer Inhibitors: topotecan and digoxin have been approved for ovarian, lung and cervical cancer
Targeting Micro RNA
miR-200 family Inhibits EMT and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
Let-7 family Regulates BT-IC stem cell-like properties by silencing more than one target
miR-124 Related to neuronal differentiation, targets laminin γ1 and integrin β1.
miR-21 Suppresses the self-renewal of embryonic stem cells

The challenge is to develop an effective treatment regimen that prevents survival, self-renewal and differentiation of CSCs and also disturbs their niche without damaging normal stem cells. In order to evaluate the efficiency of CSC-targeting therapies, in vitro models and mouse xenotransplantation models have been used for preclinical studies. Some potential CSC targeting agents in preclinical stages include notch inhibitors for glioblastoma stem cells and telomerase peptide vaccination after chemoradiotherapy of non-small cell lung cancer stem cells Stem Cells (Hovinga KE, et al, Jun 2010;28(6):1019-29; Serrano D, Mol Cancer, 9 Aug 2011;10:96). In addition, several phase II and phase III trials are currently underway to test CSC-targeting drugs focusing on efficacy and safety of treatment.


Bao S, Nature, 7 Dec 2006;444(7120):756-60).

Diehn M, et al, Nature, 9 Apr 2009;458(7239):780-3

Chen MS, et al, J Cell Sci, 1 Feb 2007;120(Pt 3):468-77

Zhao L, et al, Eur Surg Res, 2012;49(1):8-15

Hovinga KE, et al, Jun 2010;28(6):1019-29

Serrano D, Mol Cancer, 9 Aug 2011;10:96

Pharmaceutical Intelligence posts:

https://pharmaceuticalintelligence.com/2013/03/22/in-focus-identity-of-cancer-stem-cells/ Author and curator: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/08/15/to-die-or-not-to-die-time-and-order-of-combination-drugs-for-triple-negative-breast-cancer-cells-a-systems-level-analysis/ Authors: Anamika Sarkar, PhD and Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2013/03/07/the-importance-of-cancer-prevention-programs-new-perceptions-for-fighting-cancer/ Author: Ziv Raviv, PhD

https://pharmaceuticalintelligence.com/2013/03/03/treatment-for-metastatic-her2-breast-cancer/ Reporter: Larry H Bernstein, MD

https://pharmaceuticalintelligence.com/2013/03/02/recurrence-risk-for-breast-cancer/ Larry H Bernstein, MD

https://pharmaceuticalintelligence.com/2013/02/14/prostate-cancer-androgen-driven-pathomechanism-in-early-onset-forms-of-the-disease/ Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/01/15/exploring-the-role-of-vitamin-c-in-cancer-therapy/ Curator: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2013/01/12/harnessing-personalized-medicine-for-cancer-management-prospects-of-prevention-and-cure-opinions-of-cancer-scientific-leaders-httppharmaceuticalintelligence-com/ Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/01/10/the-molecular-pathology-of-breast-cancer-progression/ Author and reporter: Tilda Barliya PhD

https://pharmaceuticalintelligence.com/2012/11/30/histone-deacetylase-inhibitors-induce-epithelial-to-mesenchymal-transition-in-prostate-cancer-cells/ Reporter and Curator: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2012/10/22/blood-vessel-generating-stem-cells-discovered/ Reporter: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/10/17/stomach-cancer-subtypes-methylation-based-identified-by-singapore-led-team/ Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/09/17/natural-agents-for-prostate-cancer-bone-metastasis-treatment/ Reporter: Ritu Saxena, PhD

https://pharmaceuticalintelligence.com/2012/08/28/cardiovascular-outcomes-function-of-circulating-endothelial-progenitor-cells-cepcs-exploring-pharmaco-therapy-targeted-at-endogenous-augmentation-of-cepcs/ Aviva Lev-Ari, PhD, RN


Read Full Post »

CRACKING THE CODE OF HUMAN LIFE: Milestones along the Way – Part IIA

Curator: Larry H Bernstein, MD, FCAP

Introduction and purpose

This material goes beyond the Initiation Phase of Molecular Biology, Part I.

Part II reviews the Human Genome Project and the decade beyond.

In a three part series:
Part IIA.  CRACKING THE CODE OF HUMAN LIFE: Milestones along the Way
Part IIB.  CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics
Part IIC.  CRACKING THE CODE OF HUMAN LIFE: Recent Advances in Genomic Analysis and Disease

Part III will conclude with Ubiquitin, it’s Role in Signaling and Regulatory Control.
Part I reviewed the huge expansion of the biological research enterprise after the Second World War. It concentrated on the

  • discovery of cellular structures,
  • metabolic function, and
  • creation of a new science of Molecular Biology.

Part II follows the race to delineation of the Human Genome, discovery methods and fundamental genomic patterns that are ancient in both animal and plant speciation. But it explores both the complexity and the systems view of the architecture that underlies and understanding of the genome.

These articles review a web-like connectivity between inter-connected scientific discoveries, as significant findings have led to novel hypotheses and many expectations over the last 75 years. This largely post WWII revolution has driven our understanding of biological and medical processes at an exponential pace owing to successive discoveries of

  • chemical structure,
  • the basic building blocks of DNA  and proteins,
  • nucleotide and protein-protein interactions,
  • protein folding, allostericity,
  • genomic structure,
  • DNA replication,
  • nuclear polyribosome interaction, and
  • metabolic control.

In addition, the emergence of methods for

  • copying,
  • removal,
  • insertion,
  • improvements in structural analysis
  • developments in applied mathematics that have transformed the research framework.

Part IIA:


Milestones along the Way

A NOVA interview with Francis Collins (NHGRI) (FC), J. Craig Venter (CELERA)(JCV), and Eric Lander (EL).
RK: For the past ten years, scientists all over the world have been painstakingly trying to read the tiny instructions buried inside our DNA. And now, finally, the “Human Genome” has been decoded.
EL: The genome is a storybook that’s been edited for a couple billion years.
The following will address the odd similarity of genes between man and yeast

EL: In the nucleus of your cell the DNA molecule resides that is about 10 angstroms wide curled up, but the amount of curling is limited by the negative charges that repel one another, but there are folds upon folds. If the DNA is stretched the length of the DNA would be thousands of feet.
EL: We have known for 2000 years that your kids look a lot like you. Well it’s because you must pass them instructions that give them the eyes, the hair color, and the nose shape they have. RK: Cracking the code of those minuscule differences in DNA that influence health and illness is what the Human Genome Project is all about. Since 1990, scientists all over the world have been involved in the effort to read all three billion As, Ts, Gs, and Cs of human DNA.  It took 10 years to find the one genetic mistake that causes cystic fibrosis. Another 10 years to find the gene for Huntington’s disease. Fifteen years to find one of the genes that increase the risk for breast cancer. One letter at a time, painfully slowly…     And then came the revolution. In the last ten years the entire process has been computerized. The computations can do a thousand every second and that has made all the difference. EL: This is basically a parts list with a lot of parts. If you take an airplane, a Boeing 777, I think it has like 100,000 parts. If I gave you a parts list for the Boeing 777 in one sense you’d know 100,000 components, screws and wires and rudders and things like that.  But you wouldn’t know how to put it together, or why it flies. We now have a parts list, and that’s not enough to understand why it flies.

The Human Genome

The Human Genome (Photo credit: dullhunk)

A Quest For Clarity

Tracy Vence is a senior editor of Genome Technology
Tracy Vence @GenomeTechMag
Projects supported by the US National Institutes of Health will have produced 68,000 total human genomes — around 18,000 of those whole human genomes — through the end of this year, National Human Genome Research Institute estimates indicate. And in his book, The Creative Destruction of Medicine, the Scripps Research Institute’s Eric Topol projects that 1 million human genomes will have been sequenced by 2013 and 5 million by 2014.
Daniel MacArthur, a group leader in Massachusetts General Hospital’s Analytic and Translational Genetics Unit estimates that “From a capacity perspective … millions of genomes are not that far off. If you look at the rate that we’re scaling, we can certainly achieve that.”    The prospect of so many genomes has brought clinical interpretation into focus. But there is an important distinction to be made between the interpretation of an apparently healthy person’s genome and that of an individual who is already affected by a disease.
In an April Science Translational Medicine paper, Johns Hopkins University School of Medicine‘s Nicholas Roberts and his colleagues reported that personal genome sequences for healthy monozygotic twin pairs are not predictive of significant risk for 24 different diseases in those individuals. The researchers concluded that whole-genome sequencing was not likely to be clinically useful. Ambiguities have clouded even the most targeted interpretation efforts.

  • Technological challenges,
  • meager sample sizes,
  • a need for increased,
  • fail-safe automation and most important
  • a lack of community-wide standards for the task.

have hampered researchers’ attempts to reliably interpret the clinical significance of genomic variation.

How signals from the cell surface affect transcription of genes in the nucleus.

James Darnell, Jr., MD, Astor Professor, Rockefeller
After graduation from Washington University School of Medicine he worked with Francois Jacob at the Pasteur Institute in Paris and served as Vice President for Academic Affairs at Rockefeller in 1990-91. He is the coauthor with S.E. Luria of General Virology and the founding author with Harvey Lodish and David Baltimore of Molecular Cell Biology, now in its sixth edition. His book RNA, Life’s Indispensable Molecule was published in July 2011 by Cold Spring Harbor Laboratory Press. A member of the National Academy of Sciences since 1973, recipient of  numerous awards, including the 2003 National Medal of Science, the 2002 Albert Lasker Award.
Using interferon as a model cytokine, the Darnell group discovered that cell transcription was quickly changed by binding of cytokines to the cell surface. The bound interferon led to the tyrosine phosphorylation of latent cytoplasmic proteins now called STATs (signal transducers and activators of transcription) that dimerize by

  • reciprocal phosphotyrosine-SH2 interchange.
  • accumulate in the nucleus,
  • bind DNA and drive transcription.

This pathway has proved to be of wide importance with seven STATs now known in mammals that take part in a wide variety of developmental and homeostatic events in all multicellular animals. Crystallographic analysis defined functional domains in the STATs, and current attention is focused on two areas:

  • how the STATs complete their cycle of  activation and inactivation, which requires regulated tyrosine dephosphorylation; and how
  • persistent activation of STAT3 that occurs in a high proportion of many human cancers contributes to blocking apoptosis in cancer cells.

Current efforts are devoted to inhibiting STAT3 with modified peptides that can enter cells.

Cell cycle regulation and the cellular response to genotoxic stress

Stephen J Elledge, PhD, Gregor Mendel Professor of Genetics and Medicine, Investigator, Howard Hughes Medical Institute, Harvard Medical School
As a postdoctoral fellow at Stanford working on eukaryotic homologous recombination, he serendipitously found a family of genes known as ribonucleotide reductases. He subsequently showed that

  • these genes are activated by DNA damage and
  • could serve as tools to help scientists dissect the signaling pathways
  • through which cells sense and respond to DNA damage and replication stress.

At Baylor College of Medicine he made a second major breakthrough with the discovery of the cyclin-dependent kinase 2 gene (Cdk2), which

  • controls the G1-to-S cell cycle transition,
  • an entry checkpoint for the cell proliferation cycle and
  • a critical regulatory step in tumorigenesis.

From there, using a novel “two-hybrid” cloning method he developed, Elledge and Wade Harper, PhD, proceeded to

  • isolate several members of the Cdk2-inhibitory family.

Their discoveries included the p21 and p57 genes, mutations in the latter (responsible for Beckwith-Wiedemann syndrome), characterized by somatic overgrowth and increased cancer risk. Elledge is also recognized for his work in understanding

  • proteome remodeling through ubiquitin-mediated proteolysis.
  • they identified F-box proteins that regulate protein degradation in the cell by
  1. binding to specific target protein sequences and then
  2. marking them with ubiquitin for destruction by the cell’s proteasome machinery.

This breakthrough resulted in

  • the elucidation of the cullin ubiquitin ligase family,
  • which controls regulated protein stability in eukaryotes.

nature10774-f5.2  nature10774-f3.2   ubiquitin structures  Rn1  Rn2

Elledge’s recent research has focused on the cellular mechanisms underlying DNA damage detection and cancer using genetic technologies. In collaboration with Cold Spring Harbor Laboratory researcher Gregory Hannon, PhD, Elledge has generated complete human and mouse short hairpin RNA (shRNA) libraries for genome-wide loss-of-function studies. Their efforts have led to

  • the identification of a number of tumor suppressor proteins
  • genes upon which cancer cells uniquely depend for survival.

This work led to the development of the “non-oncogene addiction” concept. This is noted as follows:

  • proteome remodeling through ubiquitin-mediated proteolysis
  • F-box proteins regulate protein degradation in the cell by binding to specific target protein sequences
  • and then marking them with ubiquitin for destruction by the cell’s proteasome machinery
  • elucidation of the cullin ubiquitin ligase family, which controls regulated protein stability in eukaryotes

Playing the dual roles of inventor and investigator, Elledge developed original techniques to define

  • what drives the cell cycle and
  • how cells respond to DNA damage.

By using these tools, he and his colleagues have identified multiple genes involved in cell-cycle regulation.

Elledge’s work has earned him many awards, including a 2001 Paul Marks Prize for Cancer Research and a 2003 election to the National Academy of Sciences. In his Inaugural Article (1), published in this issue of PNAS, Elledge and his colleagues describe the function of Fbw7, a protein involved in controlling cell proliferation (see below). Elledge studied the error-prone DNA repair mechanism in E-Coli (Escherichia coli) called SOS mutagenesis for his PhD thesis at MIT. His work identified  and described

  • the regulation of a group of enzymes now known as error-prone polymerases,
  • the first members of which were the umuCD genes in E. coli.

It was then that he developed a new cloning tool. Elledge invented a technique that allowed him to approach future cloning problems of this type with great rapidity. With the new technique, “you could make large libraries in lambda that behave like plasmids. We called them `phasmid’ vectors, like plasmid and phage together”. The phasmid cloning method was an early cornerstone for molecular biology research.

Elledge began working on homologous recombination in postdoctoral fellowship at Stanford University, an important niche in the field of eukaryotic genetics. Working with the yeast genome, Elledge searched for rec A, a gene that allows DNA to recombine homologously. Although he never located rec A, he discovered a family of genes known as ribonucleotide reductases (RNRs), which are involved in DNA production. Rec A and RNRs share the same last 4 amino acids, which caused an antibody crossreaction in one of Elledge’s experiments. Initially disappointed with the false positives in his hunt for rec A, Elledge was later delighted with his luck. He found that

  • RNRs are turned  on by DNA damage, and
  • these genes are regulated by the cell cycle.

Prior to leaving Stanford, Elledge attended a talk at the University of California, San Francisco, by Paul Nurse, a leader in cell-cycle research who would later win the 2001 Nobel Prize in medicine. Nurse described his success in isolating the homolog of a key human cell-cycle kinase gene, Cdc2, by using a mutant strain of yeast (8). Although Nurse’s methods were primitive, Elledge was struck by the message he carried: that

  • cell-cycle regulation was functionally conserved, and
  • many human genes could be isolated by looking for complimentary genes in yeast.

Elledge then took advantage of his past successes in building phasmid vectors to build a versatile human cDNA library that could be expressed in yeast. After setting up a laboratory at Baylor, he introduced this library into yeast, screening for complimentary cell-cycle genes.  He quickly identified the same Cdc2 gene isolated by Nurse. However, Elledge also discovered a related gene known as Cdk2. Elledge subsequently found that

  • Cdk2 controlled the G1 to S cell-cycle transition, a step that often goes awry in cancer. These results were published in the EMBO Journal in 1991.

He then continued to use

  • RNRs to perform genetic screens to
  • identify genes involved in sensing and responding to DNA damage.

He subsequently worked out the

  • signal transduction pathways in both yeast and humans that recognize damaged DNA and replication problems.

These “checkpoint” pathways are central to the

  • prevention of genomic instability and a key to understanding tumorigenesis.

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 29, 2003.

Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein.

Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K , Harper JW, Schwartz RJ, and SJ Elledge. PNAS 2004; 101(10): 3338-3345. cgi doi 10.1073.  pnas.0307875101

The mammalian F-box protein Fbw7 and its Caenorhabditis elegans counterpart Sel-10 have been implicated in

  • the ubiquitin-mediated turnover of cyclin E
  • as well as the Notch Lin-12 family of transcriptional activators. Both unregulated
  1. Notch and cyclin E
  2. promote tumorigenesis, and
  3. inactivate mutations in human

Fbw7 studies suggest that it may be a tumor suppressor. To generate an in vivo system to assess the consequences of such unregulated signaling, we generated mice deficient for Fbw7.  Fbw7-null mice die around 10.5 days post coitus because of a combination of deficiencies in hematopoietic and vascular development and heart chamber mutations. The absence of Fbw7 results in elevated levels of cyclin E, concurrent with inappropriate DNA replication in placental giant trophoblast cells. Moreover, the levels of both Notch 1 and Notch 4 intracellular domains were elevated, leading to stimulation of downstream transcriptional pathways involving Hes1, Herp1, and Herp2. These data suggest essential functions for Fbw7 in controlling cyclin E and Notch signaling pathways in the mouse.

Science as an Adventure


Prof. Avram Hershko – Science as an Adventure
Prof. Avram Hershko shared the 2004 Nobel Prize in Chemistry with Aaron Ciechanover and Irwin Rose for “for the discovery of ubiquitin-mediated protein degradation.”


Gene Switches

Nipam Patel is a professor in the Departments of Molecular and Cell Biology and Integrative Biology at UC Berkeley and runs a research laboratory that studies the role, during embryonic development, of homeotic genes (the genetic switches described in this feature). “Ghost in Your Genes” focuses on epigenetic “switches” that turn genes “on” or “off.” But not all switches are epigenetic; some are genetic. That is, other genes within the chromosome turn genes on or off. In an animal’s embryonic stage, these gene switches play a predominant role in laying out the animal’s basic body plan and perform other early functions;

  • the epigenome begins to take over during the later stages of embryogenesis.

Beginning as a fertilized single egg that egg becomes many different kinds of cells.  Altogether, multicellular organisms like humans have thousands of differentiated cells. Each is optimized for use in the brain, the liver, the skin, and so on. Remarkably, the DNA inside all these cells is exactly the same. What makes the cells differ from one another is that different genes in that DNA are either turned on or off in each type of cell.

Take a typical cell, such as a red blood cell. Each gene within that cell has a coding region that encodes the information used to make a particular protein. (Hemoglobin shuttles oxygen to the tissues and carbon dioxide back out to the lungs—or gills, if you’re a fish.) But another region of the gene, called “regulatory DNA,” determines whether and when the gene will be expressed, or turned on, in a particular kind of cell. This precise transcribing of genes is handled by proteins known as transcription factors, which bind to the regulatory DNA, thereby generating instructions for the coding region.

One important class of transcription factors is encoded by the so called homeotic, or Hox, genes. Found in all animals, Hox genes act to “regionalize” the body along the embryo’s anterior-to-posterior (head-to-tail) axis. In a fruit fly, for example, Hox genes lay out the various main body segments—the head, thorax, and abdomen. Amazingly, all animals, from fruit flies to mice to people, rely on the same basic Hox-gene complex. Using different-colored antibody stains, we can see exactly where and to what degree Hox genes are expressed. Each Hox gene is expressed in a specific region along the anterior-to-posterior axis of the embryo.

A fly’s body has three main divisions: head, thorax, and abdomen. We’ll focus on the thorax, which itself has three main segments. In a normal adult fly, the second thoracic segment features a pair of wings, while the third thoracic segment has a pair of small, balloon-shaped structures called halteres. A modified second wing, the haltere serves as a flight stabilizer. In order for the pair of wings and the pair of halteres (as well as all other parts of the fly) to develop properly, the fly’s suite of

  • Hox genes must be expressed in a precise way and at precise times.

During development, the fly’s two wings grow from a structure in the larva known as the wing imaginal disk. (An imago is an insect in its final, adult state.) The haltere grows from the larval haltere imaginal disk. Remember the Ubx Hox gene? Using staining again, we can detect the gene product of Ubx. This reveals that

  • the Ubx gene is naturally “off” in the wing disk—
  • and is “on” in the haltere disk.
  • Now you’ll see what happens when the Ubx gene—just one of a large number of Hox genes—is turned off in the haltere disk. What if a genetic mutation caused the Ubx gene to be turned off, during the larval stage, in the third thoracic segment, the segment that normally produces the haltere? Instead of a pair of halteres, the fly has a second set of wings. With the switch of that single Hox gene, Ubx, from on to off, the third thoracic segment becomes an additional second thoracic segment and the pair of halteres became a second pair of wings. This illustrates the remarkable ability of transcription factors like Ubx to control patterning as well as cell type during development.


A. Data Suggests “Gene” Redefinition

As part of a huge collaborative effort called ENCODE (Encyclopedia of DNA Elements), a research team led by Cold Spring Harbor Laboratory (CSHL) Professor Thomas Gingeras, PhD, publishes a genome-wide analysis of RNA messages, called transcripts, produced within human cells.
Their analysis—one component of a massive release of research results by ENCODE teams from 32 institutes in 5 countries, with 30 papers appearing in 3 different high-level scientific journals—shows that three-quarters of the genome is capable of being transcribed.  This indicates that nearly all of our genome is dynamic and active.  It stands in marked contrast to consensus views prior to ENCODE’s comprehensive research efforts, which suggested that

  • only the small protein-encoding fraction of the genome was transcribed.

The vast amount of data generated with advanced technologies by Gingeras’ group and others in the ENCODE project changes the prevailing understanding of what defines a gene. The current outstanding question concerns

  • the nature and range of those functions.  It is thought that these
  • “non-coding” RNA transcripts act something like components of a giant, complex switchboard, controlling a network of  many events in the cell by
  1. regulating the processes of
  2. replication,
  3. transcription
  4. and translation

– that is, the copying of DNA and the making of proteins is based on information carried by messenger RNAs.  With the understanding that so much of our DNA can be transcribed into RNA comes the realization that there is much less space between what we previously thought of as genes, Gingeras points out.

The full ENCODE Consortium data sets can be freely accessed through

  • the ENCODE project portal as well as at the University of California at Santa Cruz genome browser,
  • the National Center for Biotechnology Information, and
  • the European Bioinformatics Institute.

Topic threads that run through several different papers can be explored via the ENCODE microsite page at http://Nature.com/encode.    Date: September 5, 2012   Source: Cold Spring Harbor Laboratory

1000 Genomes Project Team Reports on Variation Patterns

(from Phase I Data) October 31, 2012 GenomeWeb

In a study appearing online today in Nature, members of the 1000 Genomes Project Consortium presented an integrated haplotype map representing the genomic variation present in more than 1,000 individuals from 14 human populations.  Using data on 1,092 individuals tested by

  • low-coverage whole-genome sequencing,
  • deep exome sequencing, and/or
  • dense genotyping,

the team looked at the nature and extent of the rare and common variation present in the genomes of individuals within these populations. In addition to population-specific differences in common variant profiles, for example, the researchers found distinct rare variant patterns within populations from different parts of the world — information that is expected to be important in interpreting future disease studies. They also encountered a surprising number of the variants that are expected to impact gene function, such as

  • non-synonymous changes,
  • loss-of-function variants, and, in some cases,
  • potentially damaging mutations.

ENCODE was designed to pick up where the Human Genome Project left off.
Although that massive effort revealed the blue­print of human biology, it quickly became clear that the instruction manual for reading the blueprint was sketchy at best. Researchers could identify in its 3 billion letters many of the regions that code for proteins, but they make up little more than 1% of the genome, contained in around 20,000 genes. ENCODE, which started in 2003, is a massive data-collection effort designed to catalogue the

  • ‘functional’ DNA sequences,
  • learn when and in which cells they are active and
  • trace their effects on how the genome is
  1. packaged,
  2. regulated and
  3. read.

After an initial pilot phase, ENCODE scientists started applying their methods to the entire genome in 2007. That phase came to a close with the publication of 30 papers, in Nature, Genome Research and Genome Biology. The consortium has assigned some sort of function to roughly 80% of the genome, including

  • more than 70,000 ‘promoter’ regions — the sites, just upstream of genes, where proteins bind to control gene expression —
  • and nearly 400,000 ‘enhancer’ regions that regulate expression of  distant genes (see page 57)1. But the job is far from done.

Junk DNA? What Junk DNA?

New data reveals that at least 80% of the human genome encodes elements that have some sort of biological function. [© Gernot Krautberger – Fotolia.com] Far from containing vast amounts of junk DNA between its protein-coding genes, at least 80% of the human genome encodes elements that have some sort of biological function, according to newly released data from the Encyclopedia of DNA Elements (Encode) project, a five-year initiative that aims to delineate all functional elements within human DNA. The massive international project, data from which are published in 30 different papers in Nature, Genome Research, Genome Biology, the Journal of Biological Chemistry, Science, and Cell, has identified four million gene switches, effectively

  • regulatory regions in the genome where
  • proteins interact with the DNA to control gene expression.

Overall, the Encode data define regulatory switches that are scattered all over the three billion nucleotides of the genome. In fact, the data suggests,

  • the regions that lie between gene-coding sequences contain a wealth of previously unrecognized functional elements,Including
  • nonprotein-coding RNA transcribed sequences,
  • transcription factor binding sites,
  • chromatin structural elements, and
  • DNA methylation sites.

The combined results suggest that 95% of the genome lies within 8 kb of a DNA-protein interaction, and 99% lies within 1.7 kb of at least one of the biochemical events, the researchers say. Importantly, given the complex three-dimensional nature of DNA, it’s also apparent that

  • a regulatory element for one gene may be located quite some ‘linear’ distance from the gene itself.

“The information processing and the intelligence of the genome reside in the regulatory elements,” explains Jim Kent, director of the University of California, Santa Cruz Genome Browser project and head of the Encode Data Coordination Center. “With this project, we probably went from understanding less than 5% to now around 75% of them.”
The ENCODE results also identified SNPs within regulatory regions that are associated with a range of diseases, providing new insights into the roles that

  • noncoding DNA plays in disease development.

“As much as nine out of 10 times, disease-linked genetic variants are not in protein-coding regions,” comments Mike Pazin, Encode program director at the National Human Genome Research Institute.  “Far from being junk DNA, this regulatory DNA clearly makes important contributions to human disease.”

Other Related Articles on this Open Access Online Scientific Journal, include the following: 

Big Data in Genomic Medicine LHB


BRCA1 a tumour suppressor in breast and ovarian cancer – functions in transcription, ubiquitination and DNA repair S Saha

Computational Genomics Center: New Unification of Computational Technologies at Stanford A Lev-Ari

Personalized medicine gearing up to tackle cancer ritu saxena

Differentiation Therapy – Epigenetics Tackles Solid Tumors sj Williams

Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment A Lev-Ari

The Molecular pathology of Breast Cancer Progression tilde barliya`

Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine – Part 1 (pharmaceuticalintelligence.com) A Lev-Ari


LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2 A Lev-Ari

Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research: Part 3 A Lev-Ari

Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @ http://pharmaceuticalintelligence.com ALA
http://pharmaceuticalintelligence.com/2013/01/13/7000/Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders/

GSK for Personalized Medicine using Cancer Drugs needs Alacris systems biology model to determine the in silico effect of the inhibitor in its “virtual clinical trial” A Lev-Ari

Recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes in serous endometrial tumors S Saha

Personalized medicine-based cure for cancer might not be far away ritu saxena

Human Variome Project: encyclopedic catalog of sequence variants indexed to the human genome sequence A Lev-Ari

Prostate Cancer Cells: Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition sjwilliams

Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics A Lev-Ari

The “Cancer establishments” examined by James Watson, co-discoverer of DNA w/Crick, 4/1953 A Lev-Ari

Directions for genomics in personalized medicine lhb

How mobile elements in “Junk” DNA promote cancer. Part 1: Transposon-mediated tumorigenesis. SJwilliams

Mitochondria: More than just the “powerhouse of the cell” eritu saxena

Mitochondrial fission and fusion: potential therapeutic targets? Ritu saxena

Mitochondrial mutation analysis might be “1-step” away ritu saxena

mRNA interference with cancer expression lhb

Expanding the Genetic Alphabet and linking the genome to the metabolome LHB

Breast Cancer, drug resistance, and biopharmaceutical targets lhb

Breast Cancer: Genomic profiling to predict Survival: Combination of Histopathology and Gene Expression Analysis A Lev-Ari

Gastric Cancer: Whole-genome reconstruction and mutational signatures A Lev-Ari

Ubiquinin-Proteosome pathway, autophagy, the mitochondrion, proteolysis and cell apoptosis lhb

Genomic Analysis: FLUIDIGM Technology in the Life Science and Agricultural Biotechnology A Lev-Ari

Reveals from ENCODE project will invite high synergistic collaborations to discover specific targets A. Sarkar


ENCODE: the key to unlocking the secrets of complex genetic diseases R. Saxena


Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations s Saha


ENCODE Findings as Consortium A Lev-Ari


Genomics Orientations for Personalized Medicine SJH, ALA, LHB


2013 Genomics: The Era Beyond the Sequencing of the Human Genome: Francis Collins, Craig Venter, Eric Lander, et al.


 Related Articles

Read Full Post »

 Curator: Ritu Saxena, Ph.D.

Vitamin C or Ascorbic acid (AA) or Ascorbate

Biochemical role: AA serves a basic biochemical role of accelerating hydroxylation in several biochemical reactions. It provides electrons to metal ions, the reduced forms of which are required for the full enzymatic activity of some enzymes. Most emphasized role of AA is as a cofactor for the enzyme required for the biosynthesis of collagen.

Molecular structure and the oxidized form of AA, dihydroascorbic acid, bear similarity to that of glucose.

Biological role: AA is an essential vitamin for humans and its deficiency leads to disease called Scurvy characterized by initial symptoms of malaise and lethargy, followed by formation of spots on the skin, spongy gums, and bleeding from the mucous membranes. As scurvy advances, there can be open, suppurating wounds, loss of teeth, jaundice, fever, neuropathy and death. AA is water soluble and found in high concentrations in several tissues including eye lens, WBCs, adrenal glad and pituitary gland. Some of the roles of ascorbate include:

  1. Carnitine synthesis from lysine
  2. Neurotransmitter synthesis,
  3. Cytochrome P-450 activity,
  4. Cholesterol metabolism,
  5. Detoxification of exogenous compounds,
  6. Antioxidant
  7. Possibly an ergogenic aid (Ergogenic aids are substances, devices, or practices that enhance an individual’s energy use, production, or recovery.)

Vitamin C and Cancer

As early as in 1949, vitamin C was implicated in cancer therapy. Since then, several research articles have been published exploring the role of ascorbate in cancer therapy. Among the plethora of literature discussing the relationship between vitamin C and cancer, one of the very significant and comprehensive reviews was published in 1979 in Cancer Research (2).

Mechanisms of action of AA (1) with respect to cancer have been divided and subdivided into the following:

  1. Primary mechanisms
  2. Secondary mechanisms
  • Preventive mechanism

Ascorbate acts as a cancer preventive agent by virtue of its strong antioxidant activities. Being one of the strongest reductants and radical scavenger, it absorbs unstable oxygen, nitrogen, and sulphur-centered radicals. AA can prevent biomembranes from peroxidative damage from peroxyl radicals. Ascorbate can trap peroxyl radicals and lead to their peroxidation in the aqueous phase before they reach the lipid rich biomembranes and cause damage. Ascorbate has been speculated to have a biomembrane protective action by its synergistic antioxidant activity with vitamin E (tocopherol).  Vitamin E is lipid-soluble and tocopheroxyl radical is generated in the cell membranes as a result of its antioxidant activity.  Ascorbate reacts with the tocopheroxyl radical and regenerates tocopherol transferring the oxidative challenge to the aqueous phase. At this point, the less active ascorbate radical might be reduced to AA by an NADP-dependent system. The probably mechanism might explain the reduction of nitrates via ascorbate to prevent the formation of carcinogenic nitrosamines.

  • Anticancer mechanisms

1. Primary anticancer mechanisms

i.     Oxidative, oxidant and pro-oxidant properties: Ascorbate has been reported to be cytotoxic at high concentrations, which has been demonstrated in a number of malignant cell lines. Transcription factor NFkB is potentially activated via ascorbate and its radicals leading to the inhibition of cell growth. Also, ascorbate inhibits certain prostaglandins leading to decrease in cell proliferation.

ii.     Hydrogen peroxide: On oxidation with oxygen, ascorbate produces a hydrogen peroxide, a reactive oxygen species. Hydrogen peroxide can generate several other reactive species and can have several damaging effects on cells including decrease in cell viability by damaging cell membranes of malignant cells. The amount of these reactive species produced via oxidation is limited in healthy cells unlike that in malignant cells where they exist in large amounts. The amount of hydrogen peroxide generated has been correlated to the amount of ascorbate in the cells. The reactive species can lead to multiple negative effects on cells including DNA strand breaks, lipid peroxidation leading to membrane function disruption, cellular ATP depletion.

Authors state that “the failure to maintain high ATP production may be a consequence of oxidative inactivation of key enzymes especially those related to the Krebs cycle and the electron transport chain.” This might result in alteration of transmembrane potential and distortion of mitochondrial function, suggestive of the important role of mitochondria in the process of carcinogenesis. In this paper, vitamin C has been correlated with cancer with the involvement of altered mitochondrial function. In addition, ascorbate has been detected in mitochondria where it is also regenerated. Different aspects of mitochondrial involvement in cancer have been discussed in several posts published earlier (3-8).

iii.     Other oxidation products of AA: Other oxidation products of AA include 2,3-diketoglutonic acid, and 5-methyl 1-3, 4-dehydrotetrone and other degradation products, have demonstrated antitumor activity. Additionally, some degradation and oxidation products of AA, gamma-cronolactone and 3-hydroxyl-2-pyrone, have been found to inhibit tumor growth. The mechanism of their antitumor actions is complex and might involve multitude of steps, including generation of reactive oxygen species, lipid peroxidation, inducing structural changes in important cellular proteins, inhibition of mitosis and so on.

iv.     Intracellular transport of ascorbate and its tumor specificity: Oxidized ascorbate, dihydroascorbic acid, is transported intracellularly where it is reduced back to ascorbate. Owing to its structural similarity with glucose, dihydroascorbic transport is facilitated via glucose transporters (GLUTs). Ascrobate in its reduced form is transported through a sodium-dependent cotransporter in some cells. Tumor cells require large amounts of glucose, which leads to an increase in the number of GLUTs, hence, resulting in an increase in ascorbate concentration within cancer cells. Because of this selective increased uptake of ascorbate and its cytotoxic effects in cancer cells (generation of hydrogen peroxide, DNA damage, other cytotoxic effects), AA has become a selective, nontoxic chemotherapeutic agent. The difference in the levels of catalase enzyme has been found to lead to intracellular tumor selectivity in cancer cells.

Ascorbate induced cytotoxicity in cancer cells involves its final electron acceptor, oxygen, which interferes with the anaerobic respiration within malignant cells. This gives an important clue for the involvement of mitochondria in malignant cells.

v.     Intravenous AA: High concentrations of AA in plasma (>200mg/dL) have been found to be cytotoxic to cancer cells. Clinically high plasma concentrations of AA can be achieved by its intravenous administration. It was observed that 60g infusion of AA given to cancer patients for 60 minutes followed by 20g given over the next 60 minutes resulted in a 240 minutes high plasma AA concentration of >400mg/dL, that is known to be cytotoxic.

Lipoic acid when administered with AA, is able to reduce the high-dose requirement of AA for its cytotoxic activity reducing it from 700mg/dL to 120mg/dL. Lipoic acid can recycle vitamin C, mediate the reduction of dihydroascorbic acid and improves mitochondrial function. Thus, energy intermediates such as coenzyme Q, vitamin K3, B-complex vitamins, alpha-ketoglutarate aspartate, magnesium might aid in cancer therapy by intercting with ascorbate, directly or indirectly, thereby stimuating/interacting/correcting aerobic mitochondrial respiration.

Hence, the pro-oxidant activity of vitamin C is being referred to as the primary mechanism of anticancer action.

2. Secondary anticancer mechanisms

i.     AA and intracellular matrix: Collagen is an important constituent of the matrix and its concentration determines the strength of the tissue along with its resistance to the infiltration of malignant cancer cells. In Scurvy, a disease resulting from a chronic deficiency of vitamin C, there is generalized tissue disintegration, dissolution of intercellular ground substance and the disruption of collagen bundles. This disintegration leads to ulceration; bacterial colonization and general undifferentiated cellular proliferation with specialized cells reverting back to their primitive form, very much like cancer.  Lack of ascorbate causes a reduction in the hydroxylation of prolyl and lysyl residues into hydroxyproline and hydroxylysine, leading to instability of the collagen triple helix, a common feature in scurvy and also in cancer. Thus, a secondary mechanism of ascorbic acid anticancer mechanism would be to repair these sites, which is emphasized by its role in wound healing, including surgical recovery and other traumatic injuries.

ii.     Ascorbate and immunocompetence: Ascorbate plays several roles for the efficient functioning of immune system in ways that are invoved in both humoral and cell-mediated.  Ascorbate provides humoral immunocompetence as it is essential for immunoglobulin synthesis. In addition, lymphocytes, seminal cells involved in cell-mediated immunity have been found to contain high concentrations of ascorbate. Other immune system roles include, aid in active phagocytosis and enhancing of interferon production.

Classical vitamin C and Cancer controversy-A possible explanation

Conflicting results were obtained from the studies performed by Pauling (Pauling Institute) and Cameron (Mayo Clinic) with vitamin C and its effect on cancer, the issue was debated a few decades ago. Both the studies, however, used oral doses of ascorbate (10g). Gonzalez et al, authors of the review on which the post is based, analyzed and expressed their views on the controversy. They state that the plasma concentration cannot be replicated when the dose is given orally as opposed to when the dose is given intravenously. According to their research, when AA is administered intravenously, higher plasma levels of ascorbate are achieved that could be retained for longer time periods. Also, the authors advocate the use of substantially higher doses (25-200g) to be given intravenously for selective toxicity towards cancer cells.

Modern vitamin C and Cancer controversy-Chemotherapy and radiation

A recent concern regarding the antioxidants like vitamin C is that they might reduce the effectiveness of chemotherapy and radiation by reducing the potency of free radicals necessary for killing cells. A publication by Agus et al (13) has a major role to play in this misconception. The authors describe how cancer cells acquire and concentrate vitamin C providing malignant cells with metabolic advantage. However, details or explanations regarding the theory are missing. Some studies, on the other hand, explain that high concentrations of AA in cancer cells is cytotoxic and is achieved because of similarity in structure between AA and glucose. Cancer cells uptake AA derivative, dehydroascorbic acid via glucose transporters (GLUTs).

In a case report published in PNAS in 1985 (12), two patients with ovarian cancer stage IIIC were found to respond positively to chemotherapy along with high-dose of antioxidants. Antioxidant, AA was administered intravenously to maintain a high plasma dose of 200 mg/dL. The two patients didn’t show disease recurrence after three years of chemotherapy and vitamin C administration. Vast literature exists on the topic indicating that antioxidants, including ascorbate, provide beneficial effects in several cancers without reducing the efficacy of chemotherapy or radiation during treatment of these cancers. Some data, in fact, suggests increase in effectiveness of chemotherapy when supplemented with antioxidants along with an increase in adverse effects. The topic has been summarized and discussed in a series of articles by Lawson and Brignall (9-11).


The post is primarily based on the following two review articles:

1. González MJ et al. Orthomolecular oncology review: ascorbic acid and cancer 25 years later.  Integr Cancer Ther. 2005 Mar;4(1):32-44.

2. Cameron E, Pauling L, Leibovitz B. Ascorbic acid and cancer: a review. Cancer Res. 1979 Mar;39(3):663-81.

Other articles  on Mitochondria and Cancer were published on this Open Source Online Scientific Journal

3. Ritu Saxena. Mitochondria and Cancer: An overview of mechanisms

4. Ritusaxena. β Integrin emerges as an important player in mitochondrial dysfunction associated Gastric Cancer.

5. Larry H Bernstein. Mitochondria: Origin from oxygen free environment, role in aerobic glycolysis, metabolic adaptation

6. Ritu Saxena. Mitochondria and Cancer: An overview of mechanisms

7. Larry H Bernstein. Mitochondrial Damage and Repair under Oxidative Stress

8. Larry H Bernstein. What can we expect of tumor therapeutic response?

Research articles:

9. Lamson DW, Brignall MS. Antioxidants and cancer, part 3: quercetin. Altern Med Rev. 2000 Jun;5(3):196-208. Review.

10. Lamson DW, Brignall MS. Antioxidants and cancer therapy II: quick reference guide. Altern Med Rev. 2000 Apr;5(2):152-63.

11. Lamson DW, Brignall MS. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev. 1999 Oct;4(5):304-29.

12. Bensch KG, Fleming JE, Lohman W. The role of ascorbic acid in senile cataracts. Proc Natl Acad Sci USA 1985;82:7193-7196.

13. Agus DB, Vera JG, Golde DW. Stand allocation: a mechanism by which tumors obtain vitamin C. Cancer Res. 1999;59:4555-4558.

Read Full Post »

Author and Curator: Ritu Saxena, Ph.D.



Nitric oxide (NO) is a lipophilic, highly diffusible and short-lived molecule that acts as a physiological messenger and has been known to regulate a variety of important physiological responses including vasodilation, respiration, cell migration, immune response and apoptosis. Jordi Muntané et al

NO is synthesized by the Nitric Oxide synthase (NOS) enzyme and the enzyme is encoded in three different forms in mammals: neuronal NOS (nNOS or NOS-1), inducible NOS (iNOS or NOS-2), and endothelial NOS (eNOS or NOS-3). The three isoforms, although similar in structure and catalytic function, differ in the way their activity and synthesis in controlled inside a cell. NOS-2, for example is induced in response to inflammatory stimuli, while NOS-1 and NOS-3 are constitutively expressed.

Regulation by Nitric oxide

NO is a versatile signaling molecule and the net effect of NO on gene regulation is variable and ranges from activation to inhibition of transcription.

The intracellular localization is relevant for the activity of NOS. Infact, NOSs are subject to specific targeting to subcellular compartments (plasma membrane, Golgi, cytosol, nucleus and mitochondria) and that this trafficking is crucial for NO production and specific post-translational modifications of target proteins.

Role of Nitric oxide in Cancer

One in four cases of cancer worldwide are a result of chronic inflammation. An inflammatory response causes high levels of activated macrophages. Macrophage activation, in turn, leads to the induction of iNOS gene that results in the generation of large amount of NO. The expression of iNOS induced by inflammatory stimuli coupled with the constitutive expression of nNOS and eNOS may contribute to increased cancer risk. NO can have varied roles in the tumor environment influencing DNA repair, cell cycle, and apoptosis. It can result in antagonistic actions including DNA damage and protection from cytotoxicity, inhibiting and stimulation cell proliferation, and being both anti-apoptotic and pro-apoptotic. Genotoxicity due to high levels of NO could be through direct modification of DNA (nitrosative deamination of nucleic acid bases, transition and/or transversion of nucleic acids, alkylation and DNA strand breakage) and inhibition of DNA repair enzymes (such as alkyltransferase and DNA ligase) through direct or indirect mechanisms. The Multiple actions of NO are probably the result of its chemical (post-translational modifications) and biological heterogeneity (cellular production, consumption and responses). Post-translational modifications of proteins by nitration, nitrosation, phosphorylation, acetylation or polyADP-ribosylation could lead to an increase in the cancer risk. This process can drive carcinogenesis by altering targets and pathways that are crucial for cancer progression much faster than would otherwise occur in healthy tissue.

NO can have several effects even within the tumor microenvironment where it could originate from several cell types including cancer cells, host cells, tumor endothelial cells. Tumor-derived NO could have several functional roles. It can affect cancer progression by augmenting cancer cell proliferation and invasiveness. Infact, it has been proposed that NO promotes tumor growth by regulating blood flow and maintaining the vasodilated tumor microenvironment. NO can stimulate angiogenesis and can also promote metastasis by increasing vascular permeability and upregulating matrix metalloproteinases (MMPs). MMPs have been associated with several functions including cell proliferation, migration, adhesion, differentiation, angiogenesis and so on. Recently, it was reported that metastatic tumor-released NO might impair the immune system, which enables them to escape the immunosurveillance mechanism of cells. Molecular regulation of tumour angiogenesis by nitric oxide.

S-nitrosylation and Cancer

The most prominent and recognized NO reaction with thiols groups of cysteine residues is called S-nitrosylation or S-nitrosation, which leads to the formation of more stable nitrosothiols. High concentrations of intracellular NO can result in high concentrations of S-nitrosylated proteins and dysregulated S-nitrosylation has been implicated in cancer. Oxidative and nitrosative stress is sensed and closely associated with transcriptional regulation of multiple target genes.

Following are a few proteins that are modified via NO and modification of these proteins, in turn, has been known to play direct or indirect roles in cancer.

NO mediated aberrant proteins in Cancer


Bcl-2 is an important anti-apoptotic protein. It works by inhibiting mitochondrial Cytochrome C that is released in response to apoptotic stimuli. In a variety of tumors, Bcl-2 has been shown to be upregulated, and it has additionally been implicated with cancer chemo-resistance through dysregulation of apoptosis. NO exposure causes S-nitrosylation at the two cysteine residues – Cys158 and Cys229 that prevents ubiquitin-proteasomal pathway mediated degradation of the protein. Once prevented from degradation, the protein attenuates its anti-apoptotic effects in cancer progression. The S-nitrosylation based modification of Bcl-2 has been observed to be relevant in drug treatment studies (for eg. Cisplatin). Thus, the impairment of S-nitrosylated Bcl-2 proteins might serve as an effective therapeutic target to decrease cancer-drug resistance.


p53 has been well documented as a tumor suppressor protein and acts as a major player in response to DNA damage and other genomic alterations within the cell. The activation of p53 can lead to cell cycle arrest and DNA repair, however, in case of irrepairable DNA damage, p53 can lead to apoptosis. Nuclear p53 accumulation has been related to NO-mediated anti-tumoral properties. High concentration of NO has been found to cause conformational changes in p53 resulting in biological dysfunction.. In RAW264.7, a murine macrophage cell line, NO donors induce p53 accumulation and apoptosis through JNK-1/2.


Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor that is predominantly active under hypoxic conditions because the HIF-1a subunit is rapidly degraded in normoxic conditions by proteasomal degradation. It regulates the transciption of several genes including those involved in angiogenesis, cell cycle, cell metabolism, and apoptosis. Hypoxic conditions within the tumor can lead to overexpression of HIF-1a. Similar to hypoxia-mediated stress, nitrosative stress can stabilize HIF-1a. NO derivatives have also been shown to participate in hypoxia signaling. Resistance to radiotherapy has been traced back to NO-mediated HIF-1a in solid tumors in some cases.


Phosphatase and tensin homolog deleted on chromosome ten (PTEN), is again a tumor suppressor protein. It is a phosphatase and has been implicated in many human cancers. PTEN is a crucial negative regulator of PI3K/Akt signaling pathway. Over-activation of PI3K/Akt mediated signaling pathway is known to play a major role in tumorigenesis and angiogenesis. S-nitrosylation of PTEN, that could be a result of NO stress, inhibits PTEN. Inhibition of PTEN phosphatase activity, in turn, leads to promotion of angiogenesis.


C-src belongs to the Src family of protein tyrosine kinases and has been implicated in the promotion of cancer cell invasion and metastasis. It was demonstrated that S-nitrosylation of c-Src at cysteine 498 enhanced its kinase activity, thus, resulting in the enhancement of cancer cell invasion and metastasis.


Muntané J and la Mata MD. Nitric oxide and cancer. World J Hepatol. 2010 Sep 27;2(9):337-44. http://www.ncbi.nlm.nih.gov/pubmed/21161018

Wang Z. Protein S-nitrosylation and cancer. Cancer Lett. 2012 Jul 28;320(2):123-9. http://www.ncbi.nlm.nih.gov/pubmed/22425962

Ziche M and Morbidelli L. Molecular regulation of tumour angiogenesis by nitric oxide. Eur Cytokine Netw. 2009 Dec;20(4):164-70.http://www.ncbi.nlm.nih.gov/pubmed/20167555

Jaiswal M, et al. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G626-34. http://www.ncbi.nlm.nih.gov/pubmed/11518674

Read Full Post »