Posts Tagged ‘prostaglandins’

Understanding the Stem Cell Niche: A Webinar by The Scientist

Reporter: Stephen J. Williams, Ph.D.


The Scientist

nature stem cell

Schematic diagram showing some of the factors implicated in each process. Haematopoietic stem cells (HSCs) bound to the bone-marrow niche are mobilized in response to granulocyte colony-stimulating factor (G-CSF) or cyclophosphamide, or after peripheral myeloablation following treatment with 5-fluorouracil (5-FU). After extravasation from the bone-marrow cords into the microvasculature, HSCs enter the circulation and are distributed to peripheral tissues such as the spleen or liver. HSCs locate close to endothelial cells in the splenic red pulp. They home to the bone-marrow cords through the circulation, a process that is controlled by a number of adhesion molecules such as very late antigen 4 (VLA4), VLA5, lymphocyte function-associated antigen 1 (LFA1) or selectins. After entering the bone marrow, HSCs specifically lodge in the niche, a process requiring membrane-bound stem-cell factor (SCF), CXC-chemokine ligand 12 (CXCL12), osteopontin (OPN), hyaluronic acid, and their corresponding receptors. CXCR4, CXC-chemokine receptor 4; E-selectin, endothelial-cell selectin; P-selectin, platelet selectin; PSGL1, P-selectin glycoprotein ligand 1.


Understanding the Stem Cell Niche

  This presentation will begin on Tuesday, December 01, 2015 at 02:30 PM Eastern Standard Time.

Free Webinar
Tuesday December 1, 2015
2:30 – 4:00 PM EST

Stem cells provide an attractive model to study human physiology and disease. However, technical challenges persist in the biological characterization and manipulation of stem cells in their native microenvironment. The Scientist brings together a panel of experts to discuss interactions between stem cells and external cues, and the role of the stem cell niche in development and disease. Topics to be covered include the molecular mechanisms of hematopoietic stem cell niche interactions and techniques for engineering 3-D stem-cell microenvironments. Following the presentations, attendees will have an opportunity to ask questions concerning their specific applications and receive answers in real-time.


Dr. Jon Hoggatt, Assistant Professor of Medicine, Cancer Center and Center for Transplantation Sciences, Harvard Medical School/Massachusetts General Hospital.

Dr. Todd McDevitt, Senior Investigator, Gladstone Institute of Cardiovascular Disease, Professor, Department of Bioengineering & Therapeutic Sciences, UCSF.


Understanding the Stem Cell Niche
Click Here To Watch The Video

To find out about our upcoming events follow us on Twitter @LabMgrEvents


Notes from Webinar:

Hematopoetic stem cells good model since now we have liquid biopsies (as a result field has skyrocketed).

Two processes involved with stem cells finding their niche

  1. Homing; CXCR4-SDK1 dependent process into the bone marrow.
  2. Mobilization: stem cells moving from bone into blood (found that GMCSF main factor responsible for this process)

Dr. Raymond Schofield was one of the first to propose the existence of this stem cell niche (each progenitor will produce a unique factor {possibly a therapeutic target} for example leptin+ receptor target perivascular cells so one target is good for only a small subset of stem cells)

Therefore it may be possible or advantageous to target the whole stem cell milieu. One such possible target they are investigating is CD26 (dipeptyl peptidase). The diabetes drug Januvia is an inhibitor of CD26.

It was also noticed if inhibit the GMCSF receptor complex can inhibit the whole stem cell niche.

Prostoglandins and stem cell niche

  • Indomethacin blocks the mobilization step
  • Prostaglandin E increases homing
  • GMCSF and malaxocam (COX2 inhibitor) flattens osteoblast cells and may be a mechanism how inhibition of prostaglandin synthesis blocks mobilization
  • Found that the PGE4 receptor is ultimately responsible for the NSAID effect

The niche after G-CSF

Dr. Hoggat found that macrophages are supplying the factors that support the niche. He will be presenting the findings at 2015 Hematology conference. (See information about his conference presentation here).

From the 57th Annual American Society of Hematology Meeting (2015) please see Dr. Hoggat’s moderated section Hematopoiesis and Stem Cells: Microenvironment, Cell Adhesion and Stromal Stem Cells: Hematopoietic Stem Cell Niche


Relevant articles from Dr. Hoggat

Anti-CD47 Therapy Is More Than a Dinner Bell October 19, 2015

Dr. Hoggatt looks at the therapeutic effects of blocking CD47 aside from alerting macrophages to devour tumor cells.

Hematopoietic Stem Cells Should Hold Their Breath August 12, 2015

Dr. Hoggatt and Hannah Rasmussen discuss new approaches to the use of hematopoietic stem cells considering observer effects that emerge due to our experimental systems for HSCs.

Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Hoggatt J, Singh P, Sampath J, Pelus LM. Blood. 2009 May 28;113(22):5444-55. doi: 10.1182/blood-2009-01-201335. Epub 2009 Mar 26.


Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Hoggatt J, Mohammad KS, Singh P, Pelus LM. Blood. 2013 Oct 24;122(17):2997-3000. doi: 10.1182/blood-2013-07-515288. Epub 2013 Sep 18.


Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Speth JM, Hoggatt J, Singh P, Pelus LM. Blood. 2014 Jan 9;123(2):203-7. doi: 10.1182/blood-2013-07-516336. Epub 2013 Oct 28.


Blockade of prostaglandin E2 signaling through EP1 and EP3 receptors attenuates Flt3L-dependent dendritic cell development from hematopoietic progenitor cells. Singh P, Hoggatt J, Hu P, Speth JM, Fukuda S, Breyer RM, Pelus LM. Blood. 2012 Feb 16;119(7):1671-82. doi: 10.1182/blood-2011-03-342428. Epub 2011 Nov 22.


Recovery from hematopoietic injury by modulating prostaglandin E(2) signaling post-irradiation. Hoggatt J, Singh P, Stilger KN, Plett PA, Sampson CH, Chua HL, Orschell CM, Pelus LM. Blood Cells Mol Dis. 2013 Mar;50(3):147-53. doi: 10.1016/j.bcmd.2012.11.006. Epub 2012 Nov 30.


Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Pelus LM, Hoggatt J, Singh P. Cell Prolif. 2011 Apr;44 Suppl 1:22-9. doi: 10.1111/j.1365-2184.2010.00726.x.


Pleiotropic effects of prostaglandin E2 in hematopoiesis; prostaglandin E2 and other eicosanoids regulate hematopoietic stem and progenitor cell function. Pelus LM, Hoggatt J. Prostaglandins Other Lipid Mediat. 2011 Nov;96(1-4):3-9. doi: 10.1016/j.prostaglandins.2011.06.004. Epub 2011 Jun 21. Review.


Differential stem- and progenitor-cell trafficking by prostaglandin E2. Hoggatt J, Mohammad KS, Singh P, Hoggatt AF, Chitteti BR, Speth JM, Hu P, Poteat BA, Stilger KN, Ferraro F, Silberstein L, Wong FK, Farag SS, Czader M, Milne GL, Breyer RM, Serezani CH, Scadden DT, Guise TA, Srour EF, Pelus LM. Nature. 2013 Mar 21;495(7441):365-9. doi: 10.1038/nature11929. Epub 2013 Mar 13.


Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking.Hoggatt J, Pelus LM. Leukemia. 2010 Dec;24(12):1993-2002. doi: 10.1038/leu.2010.216. Epub 2010 Sep 30. Review.


Hematopoietic stem cell mobilization with agents other than G-CSF. Hoggatt J, Pelus LM. Methods Mol Biol. 2012;904:49-67. doi: 10.1007/978-1-61779-943-3_4.


Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Hoggatt J, Pelus LM. Stem Cell Res Ther. 2011 Mar 14;2(2):13. doi: 10.1186/scrt54. Review.


Engineering 3D Pluripotent Stem Cell Microenvironments by Todd McDevitt, Ph.D.

In recent years, it has finally been shown how to produce centrally derived (self assembling) organoids (microtissues).


How to specifically deliver specific morphogens in 3D organoids


  1. Microparticle (MP)-mediated delivery (can do in mouse and human): reduces the amount needed to be delivered



What are other effects of introduced MP in ES (embryonic stem cell) aggregates?

  1. a) physiocomechanical changes –mechanical effects of materials
  2. b) how changes in local presentation of factors affect bioavailbility and binding properties








Read Full Post »

Sex Hormones, Adrenal Cortisol, Prostaglandins


Curator: Larry H. Bernstein, MD, FCAP


A major class of lipids, steroids, have a ring structure of three cyclohexanes and one
cyclopentane in a fused ring system as shown below. There are a variety of functional
groups that may be attached. The main feature, as in all lipids, is the large number of
carbon-hydrogens which make steroids non-polar.

Steroids include such well known compounds as cholesterol, sex hormones, birth
control pills, cortisone, and anabolic steroids.



 The best known and most abundant steroid in the body is cholesterol. Cholesterol is
formed in brain tissue, nerve tissue, and the blood stream. It is the major compound
found in gallstones and bile salts. Cholesterol also contributes to the formation of
deposits on the inner walls of blood vessels. This topic was covered in the previous
discussion of the lipids series, and extensively in cardiovascular topics.

Cholesterol is synthesized by the liver from carbohydrates and proteins as well as fat.
Therefore, the elimination of cholesterol rich foods from the diet does not necessarily
lower blood cholesterol levels. Some studies have found that if certain unsaturated fats
and oils are substituted for saturated fats, the blood cholesterol level decreases.
The research is incomplete on this problem.

Cholesterol exists as an ester with fatty acids.What is the functional group at carbon 3
which is used to make an ester?
OH is alcohol

What is the feature on carbon 17?
Branched long hydrocarbon chain

Sex Hormones

sex hormones

sex hormones

 The primary sex hormones, testosterone and estrogen, are responsible for the
development of secondary sex characteristics. Two female sex hormones,
progesterone and estrogen or estradiol control the ovulation cycle. Notice
that the male and female hormones have only slight differences in structures,
but yet have very different physiological effects.

Testosterone promotes the normal development of male genital organs and
is synthesized from cholesterol in the testes. It also promotes secondary male
sexual characteristics such as deep voice, facial and body hair.

Estrogen, along with progesterone regulates changes occurring in the uterus
and ovaries known as the menstrual cycle. Estrogen is synthesized from
testosterone by making the first ring aromatic which results in the loss of a
methyl group and formation of an alcohol group.

List three functional groups in progesterone?
C#3 & #17 are ketones; C#4&5 are alkenes;

What is difference between progesterone and testosterone?
testosterone has C#17 alcohol vs ketone on progesterone

What is difference between testosterone and estrogen?
Estrogen has C#3 alcohol, + aromatic first ring;
no methyl group on C#17

Adrenocorticoid Hormones

The adrenocorticoid hormones are products of the adrenal glands.

The most important mineralcorticoid is aldosterone, which regulates the
reabsorption of sodium and chloride ions in the kidney tubules and increases
the loss of potassium ions.Aldosterone is secreted when blood sodium ion
levels are too low to cause the kidney to retain sodium ions. If sodium
levels are elevated, aldosterone is not secreted, so that some sodium
will be lost in the urine. Aldosterone also controls swelling in the tissues.

Cortisol, the most important glucocortinoid, has the function of increasing
glucose and glycogen concentrations in the body. These reactions are
completed in the liver by taking fatty acids from lipid storage cells and
amino acids from body proteins to make glucose and glycogen.

In addition, cortisol is elevated in the circulation with cytokine mediated
(IL1, IL1, TNFα) inflammatory reaction, called the systemic inflammatory
response syndrome. Its ketone derivative, cortisone, has the ability
to relieve inflammatory effects. Cortisone or similar synthetic derivatives
such as prednisolone are used to treat inflammatory diseases, rheumatoid
arthritis, and bronchial asthma. There are many side effects with the use
of cortisone drugs, such as bone resorption, so there use must be
monitored carefully.  Cortisol is increased pathologically with the growth
of a pituitary gland tumor that secretes adrenocorticotropic hormone
(ACTH), called Addison’s Disease, which is also associated with
hirsuit features.

What is the only difference between cortisol and aldosterone?
Aldosterone has C#13 aldehyde instead of methyl group




Prostaglandins, are like hormones in that they act as chemical messengers,
but do not move to other sites, but work right within the cells where
they are synthesized. (PARACRINE)

Prostaglandins are unsaturated carboxylic acids, consisting of of a 20 carbon
skeleton that also contains a five member ring. They are biochemically
synthesized from the fatty acid, arachidonic acid.

arachidonic acid

arachidonic acid

 The unique shape of the arachidonic acid caused by a series of cis double
 helps to put it into position to make the five member ring.

Prostaglandins are unsaturated carboxylic acids, consisting of a

  • 20 carbon skeleton that also contains
  • a five member ring and
  • are based upon the fatty acid, arachidonic acid.

There are a variety of structures one, two, or three double bonds. On the
five member ring there may also be double bonds, a ketone, or alcohol groups.

In PGE2, list all of the functional groups.
one acid; two alkenes; two alcohols; one ketone

What is difference the C=C double bonds?
the upper is cis; the lower is trans.

prostaglandin PGE2

prostaglandin PGE2

Functions of Prostaglandins 

There are a variety of physiological effects including:

  1. Activation of the inflammatory response, production of pain, and fever.
    When tissues are damaged, white blood cells flood to the site to
    try to minimize tissue destruction. Prostaglandins are produced
    as a result.
  2. Blood clots form when a blood vessel is damaged. A type of
    prostaglandin called thromboxane stimulates constriction and
    clotting of platelets. Conversely, PGI2, is produced to have the
    opposite effect on the walls of blood vessels where clots
    should not be forming.
  3. Certain prostaglandins are involved with the induction of labor
    and other reproductive processes. PGE2 causes uterine
    contractions and has been used to induce labor.
  4. Prostaglandins are involved in several other organs such as
    the gastrointestinal tract (inhibit acid synthesis and increase
    secretion of protective mucus), increase blood flow in kidneys,
    and leukotriens promote constriction of bronchi associated
    with asthma.

When you see that prostaglandins induce inflammation, pain, and fever,
what comes to mind but aspirin. Aspirin blocks an enzyme called
cyclooxygenase, COX-1 and COX-2, which is involved with the ring
closure and addition of oxygen to arachidonic acid converting to

The acetyl group on aspirin is hydrolzed and then bonded to the
alcohol group of serine as an ester. This has the effect of blocking
the channel in the enzyme and arachidonic can not enter the active
site of the enzyme.

By inhibiting or blocking this enzyme, the synthesis of prostaglandins
is blocked, which in turn relives some of the effects of pain and fever.

cox1 aspirin

cox1 aspirin


Sphingolipids are a second type of lipid found in cell membranes, particularly
nerve cells and brain tissues. They do not contain glycerol, but retain the
two alcohols with the middle position occupied by an amine.

As shown in the graphic, sphingosine has three parts, a three carbon
chain with two alcohols and amine attached and a long hydrocarbon chain.

 Structure of Sphingomyelin

In sphingomyelin, the base sphingosine has several other groups attached
as shown in the graphic on the left. A fatty acid is attached to the amine
through amide bond. Phosphate is attached through a phosphate ester bond,
and again through a phosphate ester bond to choline.

The human brain and spinal cord is made up of gray and white regions.
The white region is made of nerve axons wrapped in a white lipid coating,
the myelin sheath, which provides insulation to allow rapid conduction of
electrical signals. Multiple sclerosis caused by a gradual degradation of
the myelin sheath.

Sphingomyleins are located throughout the body in nerve cell membranes.
They make up about 25 % of the lipids in the myelin sheath that surrounds
and insulates cells of the central nervous system.

Niemann-Pick disease is caused by a deficiency of an enzyme that breaks
down excessive sphingomyelin, which then builds up on the liver, spleen,
brain, and bone marrow. An effected child usually dies within several years.



Glycolipids and Cerebrosides

Glycolipids are complex lipids that contain carbohydrates. Cerebrosides are an
example which contain the sphingosine backbone attached to a fatty acid and
a carbohydrate. The carbohydrates are most often glucose or galactose. Those
that contain several carbohydrates are called gangliosides. The example on the
left is shown with glucose. Glucocerebroside has the specific function to be in
the cell membranes of macrophages, (cells that protect the body by destroying
foreign microorganisms. Galactocerebroside is found almost exclusively in the
membranes of brain cells.

There are several genetic diseases resulting from the absence of specific enzymes
which breakdown the glycolipids. Tay-Sachs, which mainly effects Jewish children,
results in a build up of gangliosides and result in death in several years. Gaucher’s
disease results in the excessive build up of glucocerebroside resulting in severe
anemia and enlarged liver and spleen.



Read Full Post »

 Curator: Ritu Saxena, Ph.D.

Vitamin C or Ascorbic acid (AA) or Ascorbate

Biochemical role: AA serves a basic biochemical role of accelerating hydroxylation in several biochemical reactions. It provides electrons to metal ions, the reduced forms of which are required for the full enzymatic activity of some enzymes. Most emphasized role of AA is as a cofactor for the enzyme required for the biosynthesis of collagen.

Molecular structure and the oxidized form of AA, dihydroascorbic acid, bear similarity to that of glucose.

Biological role: AA is an essential vitamin for humans and its deficiency leads to disease called Scurvy characterized by initial symptoms of malaise and lethargy, followed by formation of spots on the skin, spongy gums, and bleeding from the mucous membranes. As scurvy advances, there can be open, suppurating wounds, loss of teeth, jaundice, fever, neuropathy and death. AA is water soluble and found in high concentrations in several tissues including eye lens, WBCs, adrenal glad and pituitary gland. Some of the roles of ascorbate include:

  1. Carnitine synthesis from lysine
  2. Neurotransmitter synthesis,
  3. Cytochrome P-450 activity,
  4. Cholesterol metabolism,
  5. Detoxification of exogenous compounds,
  6. Antioxidant
  7. Possibly an ergogenic aid (Ergogenic aids are substances, devices, or practices that enhance an individual’s energy use, production, or recovery.)

Vitamin C and Cancer

As early as in 1949, vitamin C was implicated in cancer therapy. Since then, several research articles have been published exploring the role of ascorbate in cancer therapy. Among the plethora of literature discussing the relationship between vitamin C and cancer, one of the very significant and comprehensive reviews was published in 1979 in Cancer Research (2).

Mechanisms of action of AA (1) with respect to cancer have been divided and subdivided into the following:

  1. Primary mechanisms
  2. Secondary mechanisms
  • Preventive mechanism

Ascorbate acts as a cancer preventive agent by virtue of its strong antioxidant activities. Being one of the strongest reductants and radical scavenger, it absorbs unstable oxygen, nitrogen, and sulphur-centered radicals. AA can prevent biomembranes from peroxidative damage from peroxyl radicals. Ascorbate can trap peroxyl radicals and lead to their peroxidation in the aqueous phase before they reach the lipid rich biomembranes and cause damage. Ascorbate has been speculated to have a biomembrane protective action by its synergistic antioxidant activity with vitamin E (tocopherol).  Vitamin E is lipid-soluble and tocopheroxyl radical is generated in the cell membranes as a result of its antioxidant activity.  Ascorbate reacts with the tocopheroxyl radical and regenerates tocopherol transferring the oxidative challenge to the aqueous phase. At this point, the less active ascorbate radical might be reduced to AA by an NADP-dependent system. The probably mechanism might explain the reduction of nitrates via ascorbate to prevent the formation of carcinogenic nitrosamines.

  • Anticancer mechanisms

1. Primary anticancer mechanisms

i.     Oxidative, oxidant and pro-oxidant properties: Ascorbate has been reported to be cytotoxic at high concentrations, which has been demonstrated in a number of malignant cell lines. Transcription factor NFkB is potentially activated via ascorbate and its radicals leading to the inhibition of cell growth. Also, ascorbate inhibits certain prostaglandins leading to decrease in cell proliferation.

ii.     Hydrogen peroxide: On oxidation with oxygen, ascorbate produces a hydrogen peroxide, a reactive oxygen species. Hydrogen peroxide can generate several other reactive species and can have several damaging effects on cells including decrease in cell viability by damaging cell membranes of malignant cells. The amount of these reactive species produced via oxidation is limited in healthy cells unlike that in malignant cells where they exist in large amounts. The amount of hydrogen peroxide generated has been correlated to the amount of ascorbate in the cells. The reactive species can lead to multiple negative effects on cells including DNA strand breaks, lipid peroxidation leading to membrane function disruption, cellular ATP depletion.

Authors state that “the failure to maintain high ATP production may be a consequence of oxidative inactivation of key enzymes especially those related to the Krebs cycle and the electron transport chain.” This might result in alteration of transmembrane potential and distortion of mitochondrial function, suggestive of the important role of mitochondria in the process of carcinogenesis. In this paper, vitamin C has been correlated with cancer with the involvement of altered mitochondrial function. In addition, ascorbate has been detected in mitochondria where it is also regenerated. Different aspects of mitochondrial involvement in cancer have been discussed in several posts published earlier (3-8).

iii.     Other oxidation products of AA: Other oxidation products of AA include 2,3-diketoglutonic acid, and 5-methyl 1-3, 4-dehydrotetrone and other degradation products, have demonstrated antitumor activity. Additionally, some degradation and oxidation products of AA, gamma-cronolactone and 3-hydroxyl-2-pyrone, have been found to inhibit tumor growth. The mechanism of their antitumor actions is complex and might involve multitude of steps, including generation of reactive oxygen species, lipid peroxidation, inducing structural changes in important cellular proteins, inhibition of mitosis and so on.

iv.     Intracellular transport of ascorbate and its tumor specificity: Oxidized ascorbate, dihydroascorbic acid, is transported intracellularly where it is reduced back to ascorbate. Owing to its structural similarity with glucose, dihydroascorbic transport is facilitated via glucose transporters (GLUTs). Ascrobate in its reduced form is transported through a sodium-dependent cotransporter in some cells. Tumor cells require large amounts of glucose, which leads to an increase in the number of GLUTs, hence, resulting in an increase in ascorbate concentration within cancer cells. Because of this selective increased uptake of ascorbate and its cytotoxic effects in cancer cells (generation of hydrogen peroxide, DNA damage, other cytotoxic effects), AA has become a selective, nontoxic chemotherapeutic agent. The difference in the levels of catalase enzyme has been found to lead to intracellular tumor selectivity in cancer cells.

Ascorbate induced cytotoxicity in cancer cells involves its final electron acceptor, oxygen, which interferes with the anaerobic respiration within malignant cells. This gives an important clue for the involvement of mitochondria in malignant cells.

v.     Intravenous AA: High concentrations of AA in plasma (>200mg/dL) have been found to be cytotoxic to cancer cells. Clinically high plasma concentrations of AA can be achieved by its intravenous administration. It was observed that 60g infusion of AA given to cancer patients for 60 minutes followed by 20g given over the next 60 minutes resulted in a 240 minutes high plasma AA concentration of >400mg/dL, that is known to be cytotoxic.

Lipoic acid when administered with AA, is able to reduce the high-dose requirement of AA for its cytotoxic activity reducing it from 700mg/dL to 120mg/dL. Lipoic acid can recycle vitamin C, mediate the reduction of dihydroascorbic acid and improves mitochondrial function. Thus, energy intermediates such as coenzyme Q, vitamin K3, B-complex vitamins, alpha-ketoglutarate aspartate, magnesium might aid in cancer therapy by intercting with ascorbate, directly or indirectly, thereby stimuating/interacting/correcting aerobic mitochondrial respiration.

Hence, the pro-oxidant activity of vitamin C is being referred to as the primary mechanism of anticancer action.

2. Secondary anticancer mechanisms

i.     AA and intracellular matrix: Collagen is an important constituent of the matrix and its concentration determines the strength of the tissue along with its resistance to the infiltration of malignant cancer cells. In Scurvy, a disease resulting from a chronic deficiency of vitamin C, there is generalized tissue disintegration, dissolution of intercellular ground substance and the disruption of collagen bundles. This disintegration leads to ulceration; bacterial colonization and general undifferentiated cellular proliferation with specialized cells reverting back to their primitive form, very much like cancer.  Lack of ascorbate causes a reduction in the hydroxylation of prolyl and lysyl residues into hydroxyproline and hydroxylysine, leading to instability of the collagen triple helix, a common feature in scurvy and also in cancer. Thus, a secondary mechanism of ascorbic acid anticancer mechanism would be to repair these sites, which is emphasized by its role in wound healing, including surgical recovery and other traumatic injuries.

ii.     Ascorbate and immunocompetence: Ascorbate plays several roles for the efficient functioning of immune system in ways that are invoved in both humoral and cell-mediated.  Ascorbate provides humoral immunocompetence as it is essential for immunoglobulin synthesis. In addition, lymphocytes, seminal cells involved in cell-mediated immunity have been found to contain high concentrations of ascorbate. Other immune system roles include, aid in active phagocytosis and enhancing of interferon production.

Classical vitamin C and Cancer controversy-A possible explanation

Conflicting results were obtained from the studies performed by Pauling (Pauling Institute) and Cameron (Mayo Clinic) with vitamin C and its effect on cancer, the issue was debated a few decades ago. Both the studies, however, used oral doses of ascorbate (10g). Gonzalez et al, authors of the review on which the post is based, analyzed and expressed their views on the controversy. They state that the plasma concentration cannot be replicated when the dose is given orally as opposed to when the dose is given intravenously. According to their research, when AA is administered intravenously, higher plasma levels of ascorbate are achieved that could be retained for longer time periods. Also, the authors advocate the use of substantially higher doses (25-200g) to be given intravenously for selective toxicity towards cancer cells.

Modern vitamin C and Cancer controversy-Chemotherapy and radiation

A recent concern regarding the antioxidants like vitamin C is that they might reduce the effectiveness of chemotherapy and radiation by reducing the potency of free radicals necessary for killing cells. A publication by Agus et al (13) has a major role to play in this misconception. The authors describe how cancer cells acquire and concentrate vitamin C providing malignant cells with metabolic advantage. However, details or explanations regarding the theory are missing. Some studies, on the other hand, explain that high concentrations of AA in cancer cells is cytotoxic and is achieved because of similarity in structure between AA and glucose. Cancer cells uptake AA derivative, dehydroascorbic acid via glucose transporters (GLUTs).

In a case report published in PNAS in 1985 (12), two patients with ovarian cancer stage IIIC were found to respond positively to chemotherapy along with high-dose of antioxidants. Antioxidant, AA was administered intravenously to maintain a high plasma dose of 200 mg/dL. The two patients didn’t show disease recurrence after three years of chemotherapy and vitamin C administration. Vast literature exists on the topic indicating that antioxidants, including ascorbate, provide beneficial effects in several cancers without reducing the efficacy of chemotherapy or radiation during treatment of these cancers. Some data, in fact, suggests increase in effectiveness of chemotherapy when supplemented with antioxidants along with an increase in adverse effects. The topic has been summarized and discussed in a series of articles by Lawson and Brignall (9-11).


The post is primarily based on the following two review articles:

1. González MJ et al. Orthomolecular oncology review: ascorbic acid and cancer 25 years later.  Integr Cancer Ther. 2005 Mar;4(1):32-44.

2. Cameron E, Pauling L, Leibovitz B. Ascorbic acid and cancer: a review. Cancer Res. 1979 Mar;39(3):663-81.

Other articles  on Mitochondria and Cancer were published on this Open Source Online Scientific Journal

3. Ritu Saxena. Mitochondria and Cancer: An overview of mechanisms

4. Ritusaxena. β Integrin emerges as an important player in mitochondrial dysfunction associated Gastric Cancer.

5. Larry H Bernstein. Mitochondria: Origin from oxygen free environment, role in aerobic glycolysis, metabolic adaptation

6. Ritu Saxena. Mitochondria and Cancer: An overview of mechanisms

7. Larry H Bernstein. Mitochondrial Damage and Repair under Oxidative Stress

8. Larry H Bernstein. What can we expect of tumor therapeutic response?

Research articles:

9. Lamson DW, Brignall MS. Antioxidants and cancer, part 3: quercetin. Altern Med Rev. 2000 Jun;5(3):196-208. Review.

10. Lamson DW, Brignall MS. Antioxidants and cancer therapy II: quick reference guide. Altern Med Rev. 2000 Apr;5(2):152-63.

11. Lamson DW, Brignall MS. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev. 1999 Oct;4(5):304-29.

12. Bensch KG, Fleming JE, Lohman W. The role of ascorbic acid in senile cataracts. Proc Natl Acad Sci USA 1985;82:7193-7196.

13. Agus DB, Vera JG, Golde DW. Stand allocation: a mechanism by which tumors obtain vitamin C. Cancer Res. 1999;59:4555-4558.

Read Full Post »