Archive for the ‘Cell Biology’ Category

Bioinformatic Tools for RNASeq: A Curation

Curator: Stephen J. Williams, Ph.D. 


Note:  This will be an ongoing curation as new information and tools become available.

RNASeq is a powerful tool for the analysis of the transcriptome profile and has been used to determine the transcriptional changes occurring upon stimuli such as drug treatment or detecting transcript differences between biological sample cohorts such as tumor versus normal tissue.  Unlike its genomic companion, whole genome and whole exome sequencing, which analyzes the primary sequence of the genomic DNA, RNASeq analyzes the mRNA transcripts, thereby more closely resembling the ultimate translated proteome. In addition, RNASeq and transcriptome profiling can determine if splicing variants occur as well as determining the nonexomic sequences, such as miRNA and lncRNA species, all of which have shown pertinence in the etiology of many diseases, including cancer.

However, RNASeq, like other omic technologies, generates enormous big data sets, which requires multiple types of bioinformatic tools in order to correctly analyze the sequence reads, and to visualize and interpret the output data.  This post represents a curation by the RNA-Seq blog of such tools useful for RNASeq studies and lists and reviews published literature using these curated tools.


From the RNA-Seq Blog

List of RNA-Seq bioinformatics tools

Posted by: RNA-Seq Blog in Data Analysis, Web Tools September 16, 2015 6,251 Views

from: https://en.wiki2.org/wiki/List_of_RNA-Seq_bioinformatics_tools

A review of some of the literature using some of the aforementioned curated tools are discussed below:


A.   Tools Useful for Single Cell RNA-Seq Analysis


B.  Tools for RNA-Seq Analysis of the Sliceasome


C.  Tools Useful for RNA-Seq read assembly visualization


Other articles on RNA and Transcriptomics in this Open Access Journal Include:

NIH to Award Up to $12M to Fund DNA, RNA Sequencing Research: single-cell genomics, sample preparation, transcriptomics and epigenomics, and genome-wide functional analysis.

Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Complex rearrangements and oncogene amplification revealed by long-read DNA and RNA sequencing of a breast cancer cell line

Single-cell RNA-seq helps in finding intra-tumoral heterogeneity in pancreatic cancer

First challenge to make use of the new NCI Cloud Pilots – Somatic Mutation Challenge – RNA: Best algorithms for detecting all of the abnormal RNA molecules in a cancer cell

Evolution of the Human Cell Genome Biology Field of Gene Expression, Gene Regulation, Gene Regulatory Networks and Application of Machine Learning Algorithms in Large-Scale Biological Data Analysis


Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Parkinson’s Disease (PD), characterized by both motor and non-motor system pathology, is a common neurodegenerative disorder affecting about 1% of the population over age 60. Its prevalence presents an increasing social burden as the population ages. Since its introduction in the 1960’s, dopamine (DA)-replacement therapy (e.g., L-DOPA) has remained the gold standard treatment. While improving PD patients’ quality of life, the effects of treatment fade with disease progression and prolonged usage of these medications often (>80%) results in side effects including dyskinesias and motor fluctuations. Since the selective degeneration of A9 mDA neurons (mDANs) in the substantia nigra (SN) is a key pathological feature of the disease and is directly associated with the cardinal motor symptoms, dopaminergic cell transplantation has been proposed as a therapeutic strategy.


Researchers showed that mammalian fibroblasts can be converted into embryonic stem cell (ESC)-like induced pluripotent stem cells (iPSCs) by introducing four transcription factors i.e., Oct4, Sox2, Klf4, and c-Myc. This was then accomplished with human somatic cells, reprogramming them into human iPSCs (hiPSCs), offering the possibility of generating patient-specific stem cells. There are several major barriers to implementation of hiPSC-based cell therapy for PD. First, probably due to the limited understanding of the reprogramming process, wide variability exists between the differentiation potential of individual hiPSC lines. Second, the safety of hiPSC-based cell therapy has yet to be fully established. In particular, since any hiPSCs that remain undifferentiated or bear sub-clonal tumorigenic mutations have neoplastic potential, it is critical to eliminate completely such cells from a therapeutic product.


In the present study the researchers established human induced pluripotent stem cell (hiPSC)-based autologous cell therapy. Researchers reported a platform of core techniques for the production of mDA progenitors as a safe and effective therapeutic product. First, by combining metabolism-regulating microRNAs with reprogramming factors, a method was developed to more efficiently generate clinical grade iPSCs, as evidenced by genomic integrity and unbiased pluripotent potential. Second, a “spotting”-based in vitro differentiation methodology was established to generate functional and healthy mDA cells in a scalable manner. Third, a chemical method was developed that safely eliminates undifferentiated cells from the final product. Dopaminergic cells thus produced can express high levels of characteristic mDA markers, produce and secrete dopamine, and exhibit electrophysiological features typical of mDA cells. Transplantation of these cells into rodent models of PD robustly restored motor dysfunction and reinnervated host brain, while showing no evidence of tumor formation or redistribution of the implanted cells.


Together these results supported the promise of these techniques to provide clinically applicable personalized autologous cell therapy for PD. It was recognized by researchers that this methodology is likely to be more costly in dollars and manpower than techniques using off-the-shelf methods and allogenic cell lines. Nevertheless, the cost for autologous cell therapy may be expected to decrease steadily with technological refinement and automation. Given the significant advantages inherent in a cell source free of ethical concerns and with the potential to obviate the need for immunosuppression, with its attendant costs and dangers, it was proposed that this platform is suitable for the successful implementation of human personalized autologous cell therapy for PD.




















Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


Effective humoral immune responses to infection and immunization are defined by high-affinity antibodies generated as a result of B cell differentiation and selection that occurs within germinal centers (GC). Within the GC, B cells undergo affinity maturation, an iterative and competitive process wherein B cells mutate their immunoglobulin genes (somatic hypermutation) and undergo clonal selection by competing for T cell help. Balancing the decision to remain within the GC and continue participating in affinity maturation or to exit the GC as a plasma cell (PC) or memory B cell (MBC) is critical for achieving optimal antibody avidity, antibody quantity, and establishing immunological memory in response to immunization or infection. Humoral immune responses during chronic infections are often dysregulated and characterized by hypergammaglobulinemia, decreased affinity maturation, and delayed development of neutralizing antibodies. Previous studies have suggested that poor antibody quality is in part due to deletion of B cells prior to establishment of the GC response.


In fact the impact of chronic infections on B cell fate decisions in the GC remains poorly understood. To address this question, researchers used single-cell transcriptional profiling of virus-specific GC B cells to test the hypothesis that chronic viral infection disrupted GC B cell fate decisions leading to suboptimal humoral immunity. These studies revealed a critical GC differentiation checkpoint that is disrupted by chronic infection, specifically at the point of dark zone re-entry. During chronic viral infection, virus-specific GC B cells were shunted towards terminal plasma cell (PC) or memory B cell (MBC) fates at the expense of continued participation in the GC. Early GC exit was associated with decreased B cell mutational burden and antibody quality. Persisting antigen and inflammation independently drove facets of dysregulation, with a key role for inflammation in directing premature terminal GC B cell differentiation and GC exit. Thus, the present research defines GC defects during chronic viral infection and identify a critical GC checkpoint that is short-circuited, preventing optimal maturation of humoral immunity.


Together, these studies identify a key GC B cell differentiation checkpoint that is dysregulated during chronic infection. Further, it was found that the chronic inflammatory environment, rather than persistent antigen, is sufficient to drive altered GC B cell differentiation during chronic infection even against unrelated antigens. However, the data also indicate that inflammatory circuits are likely linked to perception of antigen stimulation. Nevertheless, this study reveals a B cell-intrinsic program of transcriptional skewing in chronic viral infection that results in shunting out of the cyclic GC B cell process and early GC exit with consequences for antibody quality and hypergammaglobulinemia. These findings have implications for vaccination in individuals with pre-existing chronic infections where antibody responses are often ineffective and suggest that modulation of inflammatory pathways may be therapeutically useful to overcome impaired humoral immunity and foster affinity maturation during chronic viral infections.
















Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.


One of the most contagious diseases known to humankind, measles killed an average of 2.6 million people each year before a vaccine was developed, according to the World Health Organization. Widespread vaccination has slashed the death toll. However, lack of access to vaccination and refusal to get vaccinated means measles still infects more than 7 million people and kills more than 100,000 each year worldwide as reported by WHO. The cases are on the rise, tripling in early 2019 and some experience well-known long-term consequences, including brain damage and vision and hearing loss. Previous epidemiological research into immune amnesia suggests that death rates attributed to measles could be even higher, accounting for as much as 50 percent of all childhood mortality.


Over the last decade, evidence has mounted that the measles vaccine protects in two ways. It prevents the well-known acute illness with spots and fever and also appears to protect from other infections over the long term by giving general boost to the immune system. The measles virus can impair the body’s immune memory, causing so-called immune amnesia. By protecting against measles infection, the vaccine prevents the body from losing or “forgetting” its immune memory and preserves its resistance to other infections. Researchers showed that the measles virus wipes out 11% to 73% of the different antibodies that protect against viral and bacterial strains a person was previously immune to like from influenza to herpes virus to bacteria that cause pneumonia and skin infections.


This study at Harvard Medical School and their collaborators is the first to measure the immune damage caused by the virus and underscores the value of preventing measles infection through vaccination. The discovery that measles depletes people’s antibody repertoires, partially obliterating immune memory to most previously encountered pathogens, supports the immune amnesia hypothesis. It was found that those who survive measles gradually regain their previous immunity to other viruses and bacteria as they get re-exposed to them. But because this process may take months to years, people remain vulnerable in the meantime to serious complications of those infections and thus booster shots of routine vaccines may be required.


VirScan detects antiviral and antibacterial antibodies in the blood that result from current or past encounters with viruses and bacteria, giving an overall snapshot of the immune system. Researchers gathered blood samples from unvaccinated children during a 2013 measles outbreak in the Netherlands and used VirScan to measure antibodies before and two months after infection in 77 children who’d contracted the disease. The researchers also compared the measurements to those of 115 uninfected children and adults. Researchers found a striking drop in antibodies from other pathogens in the measles-infected children that clearly suggested a direct effect on the immune system resembling measles-induced immune amnesia.


Further tests revealed that severe measles infection reduced people’s overall immunity more than mild infection. This could be particularly problematic for certain categories of children and adults, the researchers said. The present study observed the effects in previously healthy children only. But, measles is known to hit malnourished children much harder, the degree of immune amnesia and its effects could be even more severe in less healthy populations. Inoculation with the MMR (measles, mumps, rubella) vaccine did not impair children’s overall immunity. The results align with decades of research. Ensuring widespread vaccination against measles would not only help prevent the expected 120,000 deaths that will be directly attributed to measles this year alone, but could also avert potentially hundreds of thousands of additional deaths attributable to the lasting damage to the immune system.
















Read Full Post »

Nano-guided cell networks as conveyors of molecular communication

Nature Communications
Article number:
07 March 2015
28 August 2015
12 October 2015


Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and ‘binned’ responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a ‘bio-litmus’ in a manner read by simple optical means.

At a glance


View all figures


  1. Nano-guided cell networks for processing molecular information.
    Figure 1
  2. Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.
    Figure 2
  3. Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.
    Figure 3
  4. Affinity-based probing for functional analysis of AI-2-induced protein expression.
    Figure 4
  5. Single and multi-population cell responses to autoinducer-2.
    Figure 5
  6. Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.
    Figure 6
  7. Extension of nano-guided cell networks for hypothetical regulatory structures.
    Figure 7



It has become increasingly apparent that a wealth of molecular information exists, which, when appropriately accessed, can provide feedback on biological systems, their componentry and their function. Thus, there is a developing niche that transcends length scales to concurrently recognize molecular detail and at the same time provide understanding of the overall system1, 2. An emerging scheme is to develop nano- to micro-scaled tools that intimately engage with biological systems through monitoring and interacting at the molecular level, with synthetic biology being one such tool3, 4, 5, 6, 7.

While synthetic biology is often viewed as an innovative means for ‘green’ product synthesis through the genetic rearrangement of cells, their biosynthetic capabilities and their regulatory networks can instead be tuned for executive function8, 9, 10. That is, cells can be rewired to survey molecular space3, 11, 12 as they have sophisticated capabilities to recognize, amplify and transduce chemical information13. Further, they provide a means to connect biological systems with traditional microelectronic devices and in doing so present a potential interface between chemically based biomolecular processing and conventional vectors of information flow, such as electrons and photons14, 15, 16. Specifically, through engineered design, cell-based molecular processing can be further coupled to enable external abiotic responses. Cells, then, represent a versatile means for mediating the molecular ‘signatures’ common in complex environments, or in other words, they are conveyors of molecular communication17, 18, 19.

Further, beyond clonal cell-based sensors, there is an emerging concept of population engineering to establish microorganisms in deliberate networks that enable enriched system identification through a combination of distinctive yet coexistent behaviours, including, perhaps, competitive or cooperative features8, 20, 21, 22, 23, 24, 25. We posit the use of cell populations assembled in parallel¸ where multiple microbes with distinct molecular recognition capabilities work congruently. An advantage is that populations, as opposed to few cells, can facilitate thorough sampling since the presence of many cells increases their spatial breadth and per-cell data contributions (Fig. 1a). Each cellular unit undergoes independent decision-making and contributes a datum to its entire constituency. The prevalence of data provided within the population, then, substantiates a collective output by the system based on the molecular landscape. As follows in a multi-population system, molecular input thus influences the outcomes of each population, and elicits plural responses when the molecular input ranges overlap the ranges of the sensing populations21, which can define classification boundaries (Fig. 1a). Cell-mediated classification was posited in silico by Didovyk et al.21, where reporter libraries with randomized sensitivities to a molecular cue elicit concentration-dependent fluorescent patterns and these are elucidated by population screening . In the present construct, multiple populations enable multiplexed analysis, resulting, here, in a response gradation that is designed to index the molecular input ‘signature’. Consequently, the fed-back information becomes transfigured beyond a dose-dependent cell-by-cell analysis. That is, the output is predicated by the comparison between the populations rather than accumulation of response within a total population.

Figure 1: Nano-guided cell networks for processing molecular information.

Nano-guided cell networks for processing molecular information.

(a) Biotic (multicellular) processing is facilitated by cell recognition, signal transduction and genetic response. The genetically encoded response reflects the identity and prevalence of the target molecule(s). Biotic processing includes both increased cell number of responders and their genetically tuned response patterns. (b) Abiotic processing, used in conjunction with biotic processing, adds dimensionality to cell-based output by modifying through a physical stimulus (in our example, magnetic focusing). (c) Schematic of a cell population and nanomaterial-based network comprising both biotic (green/red axis) and abiotic (black axis) processing mechanisms. This conceptual system interprets molecular information by intercepting diverse molecular inputs, processes them autonomously through independent cell units within the system and refines output to include positive responders that are viewed via orthogonal means (visual classification). The system’s hierarchical structure allows molecular information to be refined into categorized collective outputs.

With population engineering as a premise for enriched molecular information processing, we engineered cell species, each to achieve an appropriate output through genetic means. There is conceptual basis for incorporation into networks, such as through mobile surveillance and position-based information relay26, 27. Hence, it is conceivable that, in addition to autonomous molecular recognition and processing afforded by synthetic biology, the use of physical stimuli to enable cell response could confer similar networking properties28, 29. For example, the complete information-processing ‘repertoire’ can be expanded beyond specific cell responses by the integration of external stimuli that serve to collate cell populations30. Specifically, we envision integration of nanomaterials that enable co-responses to molecular inputs, such that cell populations employ traditional reporting functions, that is, fluorescence marker expression, as well as responses that enable additional processing via the integration of stimuli-responsive abiotic materials (Fig. 1b).

In our example, cells are engineered to respond by permitting the attachment of magnetic nanoparticles (mNPs), such that each fluorescent cell becomes receptive to a magnetic field. Thus, the combination of cell-nanoparticle structures provides further dimensionality for the conveyance of molecular information (via magnetic stimulation). That is, without magnetic collation the fully distributed system would harbour diffuse responses; a magnetically stimulated system results in acute output due to a filtering and focusing effect (Fig. 1b)31, 32, allowing binned information to be readily, and fluorescently, conveyed.

The detection and interpretation of signalling molecules in our example is based on a microbial communication process known as quorum sensing (QS). The molecules, autoinducers (AIs), are secreted and perceived within a microbial community; once accumulated, the AI level indicates that the population size has reached a ‘quorum’33, 34. By surpassing a threshold concentration, the AI signalling coordinates population-wide phenotypic changes35. We have designed a QS information processor that utilizes two cell populations to independently interrogate natural microbial communities and generate information about QS activity by accessing AI-2 (ref. 36). Each cell population becomes ‘activated’ in response to a characteristic AI-2 level by expressing a fluorescent marker and a streptavidin-binding peptide (SBP) on the outer membrane38. SBP provides a means for collating data by binding mNPs that are introduced into the community. Using a post-processing magnetic sweep, the system as a whole interprets a molecular landscape and refines output into colour-categorized, or ‘binned,’ states (no fluorescence, red, or red and green) through (1) parallel population processing and (2) acute focusing (Fig. 1c).

The use of engineered cells as data-acquiring units and selectively equipping each with functional nanomaterials to form a redistributable processing system merges two paradigms: decentralized, active probing at a molecular scale and self-organization of units through structured dependencies on stimuli42. The population-based system overall contributes categorized feedback about a biological environment.


Surface expression of SBP and fluorescent protein fusions

First, we established expression of a fusion protein consisting of a fluorescent marker (enhanced green fluorescent protein (eGFP) and variants) and SBP. Importantly, for SBP to function as a coupling agent between cells and mNPs, we used AIDAc (kindly shared by J. Larssen)40 to export the chimeric protein to Escherichia coli’s outer surface. Translocation to a cell’s surface utilizes a signal peptide (for inner membrane translocation) and AIDAc as an outer membrane autotransporter pore38, 39, 40, 41, with the passenger protein linked to each. In Fig. 2a, we depict expression of three different constructs using Venus, eGFP and mCherry for optical transmission, and the AIDAc translocator domain for surface localization. These constructs are mapped inSupplementary Fig. 1. After induction with isopropyl B-D-1-thiogalactopyranoside (IPTG), cultures were probed for surface expression of the SBP portion of the tagged fluorescent protein. Cells were incubated with fluorescently labelled streptavidin; the fluorophore of the streptavidin probe was orthogonal to the expressed fluorescent protein. The multiple fluorescence emissions were analysed by confocal microscopy without spectral overlap. The fraction of cells (fc) that exhibit colocalized fluorescent protein and the fluorescently-labeled streptavidin is reported in Fig. 2b, showing that SBP–Venus cells bound streptavidin at a slightly lower frequency than SBP–mCherry and SBP–eGFP, which exhibited statistically similar fractions (fc=0.7).

Figure 2: Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

(a) A T7 cassette was used to express chimeric proteins consisting of a membrane autotransporter domain (AIDAc), one of several fluorescent proteins and a streptavidin-binding peptide (SBP). Fluorophore-tagged streptavidin (SA) was used to bind SBP. (b) Of cells expressing fluorescent proteins (FP), those also marked by SBP coupling are represented as a ‘colocalized fraction (fc),’ plotted with image analysis-based s.d. of at least five replicates. The asterisk ‘*’ denotes fc that +SBP–eGFP and+SBP–mCherry are statistically equivalent (fc~0.7) by t-test and greater than +SBP–Venus cells. (c) Composite images show cell fluorescence (Column I) from the fluorescent protein (FP); labelled streptavidin using orthogonal filter sets (Column II); and an overlay of both (Column III). Arrows indicate representative cells with strong colocalization. Plotted in Column IV are the fluorescence mean grey values (y-axis) from a representative horizontal slice of the composite image (x-axis). Vertical bars displayed between Columns III and IV identify the position of each analysed slice. Arrows indicate peaks that match the highlighted cells in Column III. fc values are noted. Fluorophores with non-overlapping spectra were paired. Row 1, Venus expression (yellow-green) was paired with Dylight405-labelled SA (blue). Row 2, eGFP expression (green) was paired with Alexafluor594-labeled SA (red). Row 3, mCherry expression (red) was paired with Alexafluor488-labeled SA (green). Scale bar in lower left, 50μm.

That is, microscopy results related to the colocalization analysis are depicted for pairings of Venus and blue-streptavidin (SA), eGFP and red-SA, and mCherry and green-SA (Fig. 2c). Strong signals were observed in both filter sets (the fluorescent protein (Column I) and the labelled streptavidin (Column II)). Overlaying each image reveals colocalization, as indicated in Column III, where arrows point to examples of strong colocalization. In addition, Column IV plots fluorescence intensities across horizontal sections of the images, where cells that exhibit colocalized fluorescence are indicated by superimposed peaks. For +pSBP–Venus cells, those with both a blue and yellow signal are observed as pale blue–violet in the overlaid image. Cells with +pSBP–eGFP and +pSBP–mCherry and labelled streptavidin emit both green and red signals; their colocalization appears yellow. Controls shown in Supplementary Fig. 2, verify that fluorescent streptavidin (all colours) has specificity for only SBP-expressing cells over negative controls. Colocalization indicates that not only are both components of the fusion, SBP and the fluorescent protein, expressed, but that SBP is accessible to bind streptavidin on the cell’s surface. This is the first use of AIDAc for cell surface anchoring of fluorescent proteins, each having been functionalized with an affinity peptide.

Cell hybridization via mNPs

Given that expression of a fluorescent protein tagged with SBP enabled external binding of streptavidin, we employed this interaction for fastening streptavidin-functionalized materials directly to the cell surface. We chose streptavidin-conjugated mNPs, 100nm in diameter (an order of magnitude smaller than a cell), for binding to a cell surface (Fig. 3a) to impart the abiotic magnetic properties. Scanning electron microscopy (SEM) was used to observe surface interaction between cell surface-expressing SBP and streptavidin-functionalized mNPs. Supplementary Fig. 3a,bshows electron micrographs of E. coli cells (dimensions 1.5–2μm in length) and the mNPs (~100nm in diameter). The SEM image in Fig. 3b, shows a magnetically isolated SBP-expressing cell with streptavidin-mNPs. The sample was prepared by mixing SBP-expressing cells with streptavidin-mNPs, then collecting or ‘focusing’ into a magnetized pellet via magnetic field, then separating from unbound cells in the supernatant. The cells were then washed and resuspended. In Fig. 3b, clusters of surface-bound mNPs are observed. In addition, the elemental composition was analysed with energy-dispersive X-ray spectroscopy, shown in Fig. 3c by an element map superimposed with carbon (red) and iron (green). While the cell appears to be of a uniform carbon composition, the particles localized at the cell surface (highlighted with arrows) were found having a strong iron composition; thus, elemental analysis confirmed particle identity as iron oxide mNPs. Additional characterization of magnetic functionality, including detailed SEM and fluorescent microscopic analysis prior to and after application of magnetic fields, is described in theSupplementary Information (Supplementary Fig. 3).

Figure 3: Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

(a) Cell surface binding of streptavidin-conjugated magnetic nanoparticles occurs via surface-anchored streptavidin-binding peptide (SBP). The fusion of T7-expressed SBP-fluorescent protein (FP)-AIDAc enables the cell surface accessibility. (b) Scanning electron micrograph of an E. coli cell with surface-bound particles. (c) Element map of carbon (red) and iron (green) through energy-dispersive spectroscopy.

In sum, the well-known affinity interaction between streptavidin and the peptide SBP is harnessed to endow cells with non-natural abiotic properties. Here coupling a functionalized nanomaterial to the surface-displayed peptide physically extends the fusion protein and also adds physical (magnetic) functionality to the cell.

Linking expression to AI-2 recognition

The expression system for pSBP–Venus was then put under AI-2 control so that the protein is expressed in the presence of AI-2 instead of IPTG. That is, we coupled the native QS signal transduction circuitry to the reporter cassette. To ensure ample expression (as the native operon is fairly weak), we placed expression of T7 RNA polymerase under control of the natural QS circuitry43. Phosphorylated AI-2 activates the system through derepression of the regulator LsrR, naturally upregulating AI-2 import and phosphorylation44, and, by design, the T7 RNA polymerase on a sensor plasmid43. When sbp–Venus is included downstream of a T7 promoter region on a second plasmid, expression is then triggered by AI-2 uptake (Supplementary Fig. 4a). Then, we used two host sensor strains engineered to provide varied AI-2 sensitivity (denoted responders ‘A’ and ‘B’). In ‘A’, lsrFG, genes required for internally phosphorylated AI-2 degradation45, 46 are deleted. Also, both strains lack the terminal AI-2 synthase, luxS, so they cannot produce AI-2 and, instead, must ‘receive’ AI-2 from an external source (Supplementary Fig. 4a). The phenotypic difference between A and B is the threshold level of AI-2 that activates the genetic response47, 48. Fully constructed, these cells are designed to take up and process AI-2 to generate fluorescence output (that co-functions with streptavidin binding).

We next evaluated the kinetics of surface-fusion protein expression and effects on cell growth. The AI-2-induced expression for AIDAc-linked and SBP-tagged fluorescent proteins did not alter growth kinetics for either cell type (Supplementary Fig. 4b,c). Expression efficacy was also evaluated via immunoassay of the outer membrane, probing for AI-2-induced surface display. After induction with 20μM AI-2, extracts from cell types A and B were size-separated and blotted using alkaline phosphatase-conjugated streptavidin to probe for the SBP-tagged protein fusion (Supplementary Fig. 5). The 88kDa AIDAc–Venus–SBP protein was only found in the membrane-containing pellet fraction (Fig. 4a). Analogously, protein orientation was assessed by immunolabeling the fluorescent protein. Cell type B transformed with pSBP–eGFP was induced with 20μM AI-2 overnight; cell surfaces were then probed for eGFP using a mouse anti-GFP primary antibody and red-labelled secondary anti-mouse IgG. Simultaneously, cells were observed using phase contrast and fluorescence confocal microscopy. We noted a punctate pattern for eGFP, which was in one-to-one correspondence with red immunostaining of the surface-expressed protein. The positive staining of eGFP-expressing cells for red fluorescence, contrasted by the absence of negative control immunostaining indicated surface exposure of the fusion (Supplementary Fig. 6). Confocal microscopy confirmed precise colocalization of the eGFP and red-labelled antibodies within the confines of individual cells (Fig. 4b). Therefore, efficient transport of this functionality to the membrane under AI-2 induction was demonstrated in each host.

Figure 4: Affinity-based probing for functional analysis of AI-2-induced protein expression.

Affinity-based probing for functional analysis of AI-2-induced protein expression.

(a) 64–82kDa region of western blot for pelleted (P) and supernatant (S) protein fractions isolated from Type A and B cells. Alkaline phosphatase-conjugated streptavidin was used to target AIDAc–Venus–SBP at expression timepoints. Arrows indicate the expected position of the full fusion protein. (b) Immunostaining for assessment of the fluorescent protein surface accessibility. The external surfaces of cells expressing AIDAc–eGFP–SBP were probed with an anti–eGFP and Alexafluor594-labelled antibody pair. A representative overlaid fluorescence and phase contrast image is shown along with fluorescence images of the green (G) and red (R) filters for the boxed-in region. Scale bar, 2μM.

Establishing molecular ranges for cell interrogation

Importantly, the engineered cells each provide a characteristic response to the level of AI-2. Recently, we showed that AI-2 level influences the quorum size of responding engineered populations but does not alter the expression level within each quorum47. Here we evaluated our engineered AI-2 responders, again for quorum size (or in other words, percentage of AI-2-responsive cells in the population), this time varying the compositions of molecular input and the configuration of responders (Fig. 5a). First, we added AI-2, synthesized in vitro, to each of the two responder populations (Fig. 5b). We also added conditioned medium (CM), the spent medium from an AI-2 producer culture containing metabolic byproducts, as well as AI-2 (refs 36, 49; Fig. 5c). We also mixed the responder populations and added AI-2 to gauge responses in complex cultures (Fig. 5d).

Figure 5: Single and multi-population cell responses to autoinducer-2.

Single and multi-population cell responses to autoinducer-2.

(a) Fluorescence output is linked to small molecule input, derived from purified or crude sources. Fluorescence from Responders A and B was analysed after exposure to autoinducer-2 (AI-2) in mono and mixed culture environments. (b) Venus expression from in vitro-synthesized AI-2 added to monocultures of A and B. (c) Venus expression from conditioned media (CM) added to monocultures of A and B. CM was isolated from WT W3110 E. coli cultures sampled at indicated OD. Data are averages from triplicate cultures with s.d. indicated. (d) Red and green fluorescence responses to AI-2 during co-incubation of Responders A (pSBP–mCherry+, red) and B (pSBP–eGFP+, green). Representative fluorescence images show colocalization of red and green cells. Scale bar, 10μm. The average cell count per responder cell is plotted against AI-2 concentration, as determined by image analysis in quadruplicate. All data are plotted as averages of at least triplicate samples with s.d.

Specifically, in Fig. 5b, A and B populations were incubated at mid-exponential phase with in vitro-synthesized AI-2 (refs 50, 51) at concentrations: 0, 2, 10, 28 and 75μM. After 12h, samples were observed for fluorescence by confocal microscopy and then quantified by fluorescence-activated cell sorting (FACS; Supplementary Fig. 4c). We found that SBP–Venus expression for responder A cells occurred at the lowest tested level (2μM AI-2), where 56% of the population expressed SBP–Venus and this fraction increased with AI-2 reaching a maximum of 90% at 28μM. For type B, a more gradual trend was found; only ~1% was fluorescent from 0-2μM, and this increased from 9 to 46% as AI-2 was increased to 28μM. Finally, the highest fraction of fluorescing cells was found at the highest concentration tested, 75μM.

We next isolated CM, which contains a dynamic composition of unfiltered metabolites and media components, from W3110 E. coli cultures at intervals during their exponential growth, throughout which AI-2 accumulates (AI-2 levels for the samples are indicated in Supplementary Fig. 7). CM aliquots were mixed with either A or B cells and cultured in triplicate for 12h. Through FACS analysis it was found, again, that a larger subpopulation of A expressed Venus compared with population B at any concentration (Fig. 5c). Statistically relevant expression from B was not apparent until incubated with CM from cultures at an optical density (OD) of 0.23. In all cases, population A recognized AI-2 presence, including from media isolated at a W3110 OD of 0.05, the minimum cell density tested in this study.

The sensitivities of both strains to AI-2-mediated induction corroborate previous literature10, 47. These trends demonstrate that strains engineered for altered sensitivity to molecular cues provide discrimination of concentration level. That is, the identical plasmid expression system was transformed into different hosts, providing robust and distinct levels of expression.

Having developed cell types A and B with differential ability to detect AI-2, we next altered the reporters so that each cell type expressed a unique SBP-fluorescence fusion for colour-coded designation. Cell type A was engineered with pSBP–mCherry and type B with pSBP–eGFP, resulting in red and green fluorescence, respectively. These populations were mixed together in equal proportion at mid-exponential phase, introduced to a range of AI-2 concentrations, and incubated overnight. Populations A and B exhibited equal growth rates when cultured alone and together (Supplementary Fig. 8c); it followed that the cocultures should comprise a 1:1 ratio of each constituent. Fluorescence output is shown by representative images in Fig. 5d. Also in Fig. 5d, the green and red cell count is plotted from a quadruplicate analysis for each input concentration.

Coculturing enables parallel processing as the molecule-rich environment is perceived by each cell, and is processed uniquely per cell type. Yet, since each sensing mechanism is a living and proliferating population, we tested whether the potentially altered dynamics of coculturing would permit the same sensitivities as isolated culturing. We evaluated the Monod-type saturation constant for each population independently and in cocultures. We found, in Fig. 5d, the general trends in response to an increasing AI-2 level were as predicted by modelled response curves (Supplementary Table 4), which were also well-correlated to Fig. 5b data (Supplementary Fig. 8a,b). That is, the saturation constants that describe dependence on AI-2 were unchanged when measured in cocultures. Phenomenologically, as expected, an initial accumulation of red type A responders was found. Then, at higher AI-2 levels, we found an emergence of a green subpopulation (type B). Above 28μM, there was no longer an apparent differential response that would otherwise enable discrimination of AI-2 concentration; based on the consistency with modelled behaviour, coculturing contributed to dampen the response as the maximum percentage of responding cells in cocultures is 50% instead of 100%. However, the overall fluorescence output is enriched by the combination of multiple populations since the ranges of sensitivity overlap and effectively expand that of the master population (Supplementary Fig. 8d). Specifically, because the fluorescence of B is described by a larger saturation constant, its fluorescence continually increases at higher AI-2 concentrations, while the fluorescence of A remains unchanged. Thus, coculturing between A and B enables resolvable output that is lower than the detection limit of B (due to A) yet surpasses the upper limit at which A saturates by the inclusion of B. The choice to fluorescently differentiate A and B was important because the output would otherwise be biased by extracellular components including the existence of non-sensing cells. Due to colour designation of A and B, a colour ‘pattern’ emerges as a feature of the parallel response, which we recognize is independent of the absolute fluorescence of the population.

Consensus feedback through multidimensional processing

We hypothesized that the value of cell-based sensing would be enhanced if the cell output could be collated in an unbiased manner that in turn were easily ‘read’ using optical means. We engaged magnetic processing, which represents an abiotic processing step that enhances the signal by focusing the collective response. Hence, cells were equipped with streptavidin-conjugated mNPs (Fig. 3). The ability of a magnetic field to refine fluorescence output through filtering and focusing is described in the Supplementary Information (Supplementary Fig. 11). Thus, in our combinatorial approach, fluorescence feedback about molecular information within a microbial community entails biotic processing through constituencies of two independent cell types in conjunction with magnetic post-processing that is enabled by guidance at the nanoscale (Fig. 6c). Moreover, since the fluorescence feedback data is provided through two constituencies, consensus from each independently provides an aggregate output; in our example, the output becomes relayed as a distinctive ‘binned’ category due to finite colour-combinations generated from constituencies A and B (Fig. 6c).

Figure 6: Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

(a) A and B cell types were co-incubated with AI-2 levels ranging from 0 to 55μM AI-2 (left axis), then imaged after magnetic nanoparticle coupling and magnetic collation. Fluorescence results (centred directly over the magnet) are shown from high to low input (top left to bottom right). (b) Quantification of red and green fluorescence cell densities per AI-2 level. (c) The process of accessing molecular information begins by distributing Responders A and B within the environment of an AI-2 producer, P. A and B independently express fluorophore fusions and are linked with magnetic nanoparticles on processing autoinducer-2. Magnetic focusing translocates fluorescing responders. Image analysis of the magnetically collated cell aggregate reveals classified fluorescence output, representing the AI-2 composition of the interrogated environment. (d) Bright field (left) and fluorescence (right, red and green filters) images positioned over the edge of a magnet, as indicated by the inset. The sample in the bottom image pair was isolated from an environment of low AI-2 accumulation. The sample in the top image pair was isolated from a high AI-2 environment. (e) Quantification of visual space occupied by collated cells (eGFP and mCherry expressers) while distributed (- magnet) and magnetically focused (+). Scale bars, 50μm.

Again, type A transmits red output (SBP–mCherry+) and type B transmits green (SBP–eGFP+). These were first co-incubated with titred concentrations of AI-2, to obtain results similar to those ofFig. 5d. By coupling mNPs to the responsive parallel populations, we tested for aggregate two-colour output to provide informative feedback within a set of outcomes ranging from no colour, red-only to red+green. After overnight co-incubation and a magnetic sweep with streptavidin-mNPs, fluorescence results are shown in Fig. 6a, where the recovered cells are displayed above a magnet’s center in order from highest to lowest AI-2 level (top left to bottom right). The processing output generated by the range of conditions was quantitatively assessed for contributions from A and B responders. The spatial density of each fluorophore, or the area occupied by fluorescent responders as a percentage of total visible area, was quantified and plotted in Fig. 6b. Here the trend of increasing fluorescence with AI-2 is followed by both A and B cell types; however, red A cells accumulate at a higher rate than green B cells. This relationship between A and B processing is not only consistent with their previous characterizations (Fig. 5) but indicates that the aggregate output is unbiased regardless of assembly with mNPs and magnetic-stimulated redistribution (Supplementary Information, Supplementary Fig. 14a).

Next, A and B cells were added together to probe the QS environment of Listeria innocua, an AI-2-producing cell type that is genetically and ecologically similar to the pathogenic strain L. monocytogenes52. The environment was biased towards low and high cell density conditions by altering nutrient levels to develop contrasting scenarios of AI-2 level. Preliminary characterization in the Supplementary Information indicated that L. innocua proliferation is unperturbed by the presence of E. coli responders (Supplementary Fig. 12) and that type A cells detect AI-2 at lowListeria densities limited by sparse nutrients; then with rich nutrient availability, cell proliferation permits a higher AI-2 level that can be detected by type B (Supplementary Fig. 13). Replicating these conditions, we expected red fluorescence to be observed at low culture density and for green fluorescence to be reported when high (Fig. 6c). Two conditions were tested: L. innocua was proportioned to responder cells at 20:1 in dilute media to establish a low culture density condition or, alternatively, a ratio of 200:1 in rich media for a high culture density condition. After overnight co-incubation and a magnetic sweep (applied directly to the triple strain cultures) with streptavidin-mNPs, the recovered cells are displayed above a magnet’s edge (shown in Fig. 6d). Acute focusing of the fluorescence signals, contributed by each subset population of the processor (A and B), is visually apparent. The magnetic field had a physical effect of repositioning the ‘on’ subsets to be tightly confined within the magnetic field.

The processing output generated by the contrasting culture conditions was again assessed for the respective contributions of A and B, and for changes in spatial signal density due to the magnetic sweep (Fig. 6e). The analysis was based on images provided in Supplementary Fig. 14b. Data inFig. 6e indicate that red type A cells are prevalent regardless of culture condition (except negative controls). However, compared with the low AI-2 condition, the abundance of green cells is 100-fold higher in the high AI-2 condition. In addition, the ratio of green to red was consistent prior to and after magnetic concentration, substantiating observations in the distributed system. Further, data show that magnetic refining increased per-area fluorescence 100-fold or 10-fold in low and high cell culture studies, respectively.

Based on the thresholds established for responder populations A and B, we found colour-coded binning corresponded to AI-2 level, where ‘red-only’ represented less AI-2 than ‘red+green’ (Fig. 5d). Thus, we found a binned output was established via this multidimensional molecular information-processing system and that this matched the expectations. Red feedback (from responder A) indicated dilute AI-2 accumulation occurred in the low density culture. In the dense cultures, high AI-2 accumulation turned on both A and B for combined red and green feedback.

System response patterns defined by parallel populations

Our example demonstrates the concept of an amorphous processing system that utilizes several biotic and abiotic components for multidimensional information processing. Interestingly, a binning effect was enabled: our system yields an index of colour-categorized feedback that characterizes the sampled environment. In Fig. 7, we present a means to extend our approach to multidimensional systems, those with more than one molecule-of-interest and at different concentrations. That is, by appropriate design of the cell responders, we can further enrich the methodology, its depth and breadth of applicability. We depict 10 hypothetical pairs of responses (with defining equations located in Supplementary Table 5)—those that can be driven by appropriately engineering cells to portend altered genetic responses. For example, rows 1 and 3 provide genetic outcomes as a function of analyte (AI-2) concentration. The hypothetical depictions are feasible as ‘designer’ signal transduction and marker expression processes enabled by synthetic biology21, 53, 54. Rows 2 and 4 demonstrate the corresponding visual planes, where red cell numbers (x-axis) are plotted against green (y-axis), illustrated by the first example. If one divides the two-dimensional space into quadrants (no colour, majority red, majority green, and equivalent ratios of red and green), it becomes apparent that the relationship between cell types influences the ‘visual’ or optical output. Thus, the 10 arbitrary response sets yield a variety of pairings that can provide unique visual patterns for categorizing molecular information. We have simplified the analysis by placing dot marker symbols at the various coincident datapoints, revealing visual patterns. In this way, the ability to incorporate unique responses to a multitude of molecular cues, all within a single pair of cells, or through further multiplexing with additional cell populations becomes apparent.

Figure 7: Extension of nano-guided cell networks for hypothetical regulatory structures.

Extension of nano-guided cell networks for hypothetical regulatory structures.

(a) Rows 1 and 3 depict 10 hypothetical genetic responses to molecular inputs for pairs of fluorescence-reporting cell populations (red, R and green, G). Rows 2 and 4 depict genetic responses as phase-plane plots yielding distinct patterns. This establishes a visual field, showing the extent of any population–population bias (illustrated in example case 1). (b) Left panel: a two-population pairing (shown in case 10) defines visual output that inherently bins into three quadrants: Q1, negligible colour; Q2, red bias due to majority red cell output; and Q4, combined red and green output. Right panel: data from Figs 5d and 6bare plotted analogously, where each data point represents an autoinducer-2 input (labelled, μM). As expected, red and green outputs were binned into Q1, Q2 and Q4 as indicated by coloured outlines.

Our AI-2-conveying cell network is similar to example 7 in Fig. 7a and the AI-2 response curves inFig. 5 (characterized by Supplementary Table 4 equations). Example 7 establishes output into three basic quadrants, including Q1 (negligible colour), Q2 (majority red) and Q4 (roughly equal red and green) (Fig. 7b). We recast the data from Figs 5d and 6b as a phase-plane portrait in Fig. 7c. This reveals the mechanisms by which the output is binned and how the originating cell response curves lead to this pattern, which in turn, was unchanged due to magnetic refinement. InSupplementary Fig. 15, we demonstrate a parameterization of the red and green response curves that suggest the methodology is robust, that when cells are appropriately engineered one could ‘tune’ system characteristics to enhance or diminish a binning effect. We suggest that the utility of subcellular genetic tuning extends well beyond per-cell performance. Rather, we suggest such a strategy may be used to guide the dynamics of population architecture for actuation of by-design response patterns at a systems level.


While cell-based sensors work well in well-defined assay conditions, extension to complex environments remains a challenge. They grow, they move, they perturb their environs, they report in a time and concentration-dependent manner, small numbers of sensor cells may require signal amplification and so on. Also, increasingly, bacterial cells are engineered for user specified ‘executive’ functions in complex environments55, 56, 57. Their performance depends on their ability to filter out extraneous noise while surveying the molecular landscape, and providing informed actuation.

Our system interrogates the molecular space by focusing on bacterial QS and a widely distributed signal molecule, AI-2. In addition to genetic attributes of the AI-2-responding sensor cells, AI-2 is a chemoattractant for E. coli, and hence E. coli engineered to sense and respond to AI-2 will naturally move towards its sources, enabling full sampling of the prevailing state10, 37. Each strain evaluates AI-2 with a distinct sensitivity. When ‘activated’ in response to a characteristic level, the cells simultaneously expressed a fluorescent marker and a SBP on the outer membrane via AIDAc translocation. SBP provides a means for cell hybridization through its strong affinity to streptavidin, and here, aids in binding mNPs. This enables the non-genetically coded property of cell translocation within a magnetic field through physically stimulated focusing and binning.

By making use of a diversity of biotic and abiotic features, our multidimensional system of ‘responder’ populations exemplifies several key metrics that promote executive performance in such environments: active molecule capture, post-capture refining of the detection output and finally the utilization of multiple feedback thresholds58, 59, 60. Here cells facilitate AI-2 recognition autonomously and actively because, as a distributed network they reside planktonically, chemotaxing to and continually processing signals over time. When AI-2 is detected, a processor cell’s cognate machinery responds by upregulation of the native QS operon, leading to rapid signal uptake and thereby creating an active-capture signal-processing mechanism. To maximize information acquisition and account for a potentially heterogeneous molecular landscape, cells serve as molecular sampling units among a distributed population, which leads to data fed back as a consensus of fluorescent ‘datapoints’. Then, distributed data collection can be selectively reversed via the incorporated abiotic feature: mNPs, fastened externally on the cell through affinity-guided self-assembly. As such, responding cells obtained this extendable feature, thereby becomes sensitized to repositioning within a magnetic field.

The layered nature of the processor here, from the subcellular to multicellular scale, permits a series of selective steps: it commences with the AI-2-triggered expression cascade which releases a tight repressor, surface localization of both the fluorescent protein and SBP tag, and finally nanoparticle binding for recovery. In addition, multiple layers of amplification result in orthogonal fluorescence feedback. The AI-2 detection event leads to whole-cell fluorescence through expression of many protein copies47. Then their physical collection further amplifies the signal, yielding a macroscopic composite of many individual cell units. When utilized as a network of multiple constituencies, responder cell types A and B contribute individual recognition results (off, red or green) to a single consensus output. Finally, due to their overlapping thresholds for recognition of the same molecule, in this case, AI-2, parallel processing by A and B responders can contribute to visual interpretation of information about the molecule. Outcomes are classified into a finite number of states: here output to no fluorescence, red, or red and green, with each addition of colour as a metric of a higher interval of AI-2. In many respects, the elucidation of layered information networks as demonstrated here is analogous to computer information processing via information theory61, 62, 63.

Here, however, interrogation of biological systems requires a reliable means for accessing molecular information—that which is communicated between biological species and that which can be relayed to the end user. The responder cells need not be present in high concentration, nor must they all be collected in the present format. We suggest that engineered biological mechanisms are well-poised to serve at this critical interface between information acquisition and user interaction. Thus, the functional design of components for autonomous self-assembly, decision-making and networking is requisite in the field of micro- and nano-scaled machines. Our combinatorial approach allows for cells to independently assess, yet collectively report, on molecular information. Its processing is enabled through appropriate integration of synthetic biology and nanomaterials design. We suggest this approach provides a rich opportunity to direct many formats of multi-population response through genetic tuning and systems-level engineering. Further development of cellular networks and incorporation of alternate abiotic attributes can expand the depth and breadth of molecular communication for user specified actuation.

Read Full Post »

Cancer Genomics: Multiomic Analysis of Single Cells and Tumor Heterogeneity

Curator: Stephen J. Williams, PhD


scTrio-seq identifies colon cancer lineages

Single-cell multiomics sequencing and analyses of human colorectal cancer. Shuhui Bian et al. Science  30 Nov 2018:Vol. 362, Issue 6418, pp. 1060-1063

To better design treatments for cancer, it is important to understand the heterogeneity in tumors and how this contributes to metastasis. To examine this process, Bian et al. used a single-cell triple omics sequencing (scTrio-seq) technique to examine the mutations, transcriptome, and methylome within colorectal cancer tumors and metastases from 10 individual patients. The analysis provided insights into tumor evolution, linked DNA methylation to genetic lineages, and showed that DNA methylation levels are consistent within lineages but can differ substantially among clones.

Science, this issue p. 1060


Although genomic instability, epigenetic abnormality, and gene expression dysregulation are hallmarks of colorectal cancer, these features have not been simultaneously analyzed at single-cell resolution. Using optimized single-cell multiomics sequencing together with multiregional sampling of the primary tumor and lymphatic and distant metastases, we developed insights beyond intratumoral heterogeneity. Genome-wide DNA methylation levels were relatively consistent within a single genetic sublineage. The genome-wide DNA demethylation patterns of cancer cells were consistent in all 10 patients whose DNA we sequenced. The cancer cells’ DNA demethylation degrees clearly correlated with the densities of the heterochromatin-associated histone modification H3K9me3 of normal tissue and those of repetitive element long interspersed nuclear element 1. Our work demonstrates the feasibility of reconstructing genetic lineages and tracing their epigenomic and transcriptomic dynamics with single-cell multiomics sequencing.

Fig. 1 Reconstruction of genetic lineages with scTrio-seq2.

Global SCNA patterns (250-kb resolution) of CRC01. Each row represents an individual cell. The subclonal SCNAs used for identifying genetic sublineages were marked and indexed; for details, see fig. S6B. On the top of the heatmap, the amplification or deletion frequency of each genomic bin (250 kb) of the non-hypermutated CRC samples from the TCGA Project and patient CRC01’s cancer cells are shown.

” data-icon-position=”” data-hide-link-title=”0″>


Fig. 1 Reconstruction of genetic lineages with scTrio-seq2.

Global SCNA patterns (250-kb resolution) of CRC01. Each row represents an individual cell. The subclonal SCNAs used for identifying genetic sublineages were marked and indexed; for details, see fig. S6B. On the top of the heatmap, the amplification or deletion frequency of each genomic bin (250 kb) of the non-hypermutated CRC samples



Read Full Post »

from The American Association for Cancer Research aacr.org:


AACR Congratulates Dr. William G. Kaelin Jr., Sir Peter J. Ratcliffe, and Dr. Gregg L. Semenza on 2019 Nobel Prize in Physiology or Medicine


PHILADELPHIA — The American Association for Cancer Research (AACR) congratulates Fellow of the AACR Academy William G. Kaelin Jr., MDSir Peter J. Ratcliffe, MD, FRS, and AACR member Gregg L. Semenza, MD, PhD, on receiving the 2019 Nobel Prize in Physiology or Medicine for their discoveries of how cells sense and adapt to oxygen availability.

Kaelin, professor of medicine at the Dana-Farber Cancer Institute and Harvard Medical School in Boston; Ratcliffe, director of Clinical Research at the Francis Crick Institute in London; and Semenza, director of the Vascular Program at the Institute for Cell Engineering at Johns Hopkins University School of Medicine in Baltimore, are being recognized by the Nobel Assembly at the Karolinska Institute for identifying the molecular machinery that regulates the activity of genes in response to varying levels of oxygen, which is one of life’s most essential adaptive processes. Their work has provided basic understanding of several diseases, including many types of cancer, and has laid the foundation for the development of promising new approaches to treating cancer and other diseases.

Kaelin, Ratcliffe, and Semenza were previously recognized for this work with the 2016 Lasker-DeBakey Clinical Medical Research Award.

Kaelin’s research focuses on understanding how mutations affecting tumor-suppressor genes cause cancer. As part of this work, he discovered that a tumor-suppressor gene called von Hippel–Lindau (VHL) is involved in controlling the cellular response to low levels of oxygen. Kaelin’s studies showed that the VHL protein binds to hypoxia-inducible factor (HIF) when oxygen is present and targets it for destruction. When the VHL protein is mutated, it is unable to bind to HIF, resulting in inappropriate HIF accumulation and the transcription of genes that promote blood vessel formation, such as vascular endothelial growth factor (VEGF). VEGF is directly linked to the development of renal cell carcinoma and therapeutics that target VEGF are used in the clinic to treat this and several other types of cancer.

Kaelin has been previously recognized with numerous other awards and honors, including the 2006 AACR-Richard and Hinda Rosenthal Award.

Ratcliffe independently discovered that the VHL protein binds to HIF. Since then, his research has focused on the molecular interactions underpinning the binding of VHL to HIF and the molecular events that occur in low levels of oxygen, a condition known as hypoxia. Prior to his work on VHL, Ratcliffe’s research contributed to elucidating the mechanisms by which hypoxia increases levels of the hormone erythropoietin (EPO), which leads to increased production of red blood cells.

Semenza’s research, which was independent of Ratcliffe’s, identified in exquisite detail the molecular events by which the EPO gene is regulated by varying levels of oxygen. He discovered HIF and identified this protein complex as the oxygen-dependent regulator of the EPO gene. Semenza followed up this work by identifying additional genes activated by HIF, including showing that the protein complex activates the VEGF gene that is pivotal to the development of renal cell carcinoma.

The recognition of Kaelin and Semenza increases the number of AACR members to have been awarded a Nobel Prize to 70, 44 of whom are still living.

The Nobel Prize in Physiology or Medicine is awarded by the Nobel Assembly at the Karolinska Institute for discoveries of major importance in life science or medicine that have changed the scientific paradigm and are of great benefit for mankind. Each laureate receives a gold medal, a diploma, and a sum of money that is decided by the Nobel Foundation.

The Nobel Prize Award Ceremony will be Dec. 10, 2019, in Stockholm.

Please find following articles on the Nobel Prize and Hypoxia in Cancer on this Open Access Journal:

2018 Nobel Prize in Physiology or Medicine for contributions to Cancer Immunotherapy to James P. Allison, Ph.D., of the University of Texas, M.D. Anderson Cancer Center, Houston, Texas. Dr. Allison shares the prize with Tasuku Honjo, M.D., Ph.D., of Kyoto University Institute, Japan

The History, Uses, and Future of the Nobel Prize, 1:00pm – 6:00pm, Thursday, October 4, 2018, Harvard Medical School

2017 Nobel prize in chemistry given to Jacques Dubochet, Joachim Frank, and Richard Henderson  for developing cryo-electron microscopy

Tumor Ammonia Recycling: How Cancer Cells Use Glutamate Dehydrogenase to Recycle Tumor Microenvironment Waste Products for Biosynthesis

Hypoxia Inducible Factor 1 (HIF-1)[7.9]



Read Full Post »

Older Posts »