Feeds:
Posts
Comments

Posts Tagged ‘COVID-19’


Is SARS-COV2 Hijacking the Complement and Coagulation Systems?

Reporter: Stephen J. Williams, PhD

In a recent Nature Medicine paper “Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection” Ramlall et al. demonstrate, in a retrospective study, that a significant number of patients presenting SARS-CoV2 complications had prior incidences of macular degeneration and coagulation disorders and these previous indications are risk factors for COVID-related complications.

 

Abstract

Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral–host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality—effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection.

Introduction

As part of a separate study, the authors mapped over 140 cellular proteins that are structurally mimicked by coronaviruses (CoVs) and identified complement and coagulation pathways as targets of this strategy across all CoV strains4. The complement system is a critical defense against pathogens, including viruses5 and when dysregulated (by germline variants or acquired through age-related effects or excessive tissue damage) can contribute to pathologies mediated by inflammation5,6,7.

“So, virally encoded structural mimics of complement and coagulation factors may contribute to CoV-associated immune-mediated pathology and indicate sensitivities in antiviral defenses.”

 

Methods and Results

  • Between 1 February 2020 and 25 April 2020, 11,116 patients presented to New York-Presbyterian/Columbia University Irving Medical Center with suspected SARS-CoV-2 infection, of which 6,398 tested positive
  • Electronic health records (EHRs) were used to define sex, age and smoking history status as well as histories of macular degeneration, coagulatory disorders (thrombocytopenia, thrombosis and hemorrhage), hypertension, type 2 diabetes (T2D), coronary artery disease (CAD) and obesity (see Methods). A Python algorithm was used to analyze all confounders.
  • identified 88 patients with history of macular degeneration, 4 with complement deficiency disorders and 1,179 with coagulatory disorders).
  • observed a 35% mortality rate among patients that were put on mechanical ventilation and that 31% of deceased patients had been on mechanical respiration.
  • patients with AMD (a proxy for complement activation disorders) and coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) were at significantly increased risk of adverse clinical outcomes (including mechanical respiration and death) following SARS-CoV-2 infection
  • 650 NP swabs from control and SARS-CoV-2-infected patients who presented to Weill-Cornell Medical Center were evaluated by RNA-Seq. Gene set enrichment analysis (GSEA) of Hallmark gene sets found that SARS-CoV-2 infection (as defined by presence of SARS-CoV-2 RNA and stratified into ‘positive’, ‘low’, ‘medium’ or ‘high’ based on viral load; induces genes related to pathways with known immune modulatory functions (Fig. 2a). Moreover, among the most enriched gene sets, SARS-CoV-2 infection induces robust activation of the complement cascade (false discovery rate (FDR) P < 0.001), with increasing enrichment and significance with viral load (FDR P < 0.0001).
  • KEGG Pathway Analysis revealed KEGG_Complement_and_Coagulation_Cascades’, ‘GO_Coagulation’ and ‘Reactome_initial_triggering_of_complement’ to be significantly enriched in expression profiles of SARS-CoV-2-infected samples
  • conducted a candidate-driven study to evaluate whether genetic variation within a 60-Kb window around 102 genes with known roles in regulating complement or coagulation cascades (2,888 genetic variants fulfill this criteria of the 805,426 profiled in the UK Biobank) is associated with poor SARS-CoV-2 clinical outcome
  • identified 11 loci representing seven genes with study-wide significance. A variant of coagulation factor III (F3), variant rs72729504, was found to be associated with increased risk of adverse clinical outcome associated with SARS-CoV-2 infection. The analysis also identified that four variants previously reported to be associated with AMD (rs45574833, rs61821114, rs61821041 and rs12064775)15predispose carriers to hospitalization following SARS-CoV-2 infection

As authors state:

“Among the implications, the data warrant heightened public health awareness for the most vulnerable individuals and further investigation into an existing menu of complement and coagulation targeting therapies that were recently shown to be beneficial in a small cohort of patients with SARS-CoV-2 infection.” 26,27.

 

References

Ramlall, V., Thangaraj, P.M., Meydan, C. et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med (2020). https://doi.org/10.1038/s41591-020-1021-2

 

4.

Lasso, G., Honig, B. & Shapira, S. D. A sweep of earth’s virome reveals host-guided viral protein structural mimicry; with implications for human disease. Preprint at bioRxiv https://doi.org/10.1101/2020.06.18.159467 (2020).

 

SUMMARY

Viruses deploy an array of genetically encoded strategies to coopt host machinery and support viral replicative cycles. Molecular mimicry, manifested by structural similarity between viral and endogenous host proteins, allow viruses to harness or disrupt cellular functions including nucleic acid metabolism and modulation of immune responses. Here, we use protein structure similarity to scan for virally encoded structure mimics across thousands of catalogued viruses and hosts spanning broad ecological niches and taxonomic range, including bacteria, plants and fungi, invertebrates and vertebrates. Our survey identified over 6,000,000 instances of structural mimicry, the vast majority of which (>70%) cannot be discerned through protein sequence. The results point to molecular mimicry as a pervasive strategy employed by viruses and indicate that the protein structure space used by a given virus is dictated by the host proteome. Interrogation of proteins mimicked by human-infecting viruses points to broad diversification of cellular pathways targeted via structural mimicry, identifies biological processes that may underly autoimmune disorders, and reveals virally encoded mimics that may be leveraged to engineer synthetic metabolic circuits or may serve as targets for therapeutics. Moreover, the manner and degree to which viruses exploit molecular mimicry varies by genome size and nucleic acid type, with ssRNA viruses circumventing limitations of their small genomes by mimicking human proteins to a greater extent than their large dsDNA counterparts. Finally, we identified over 140 cellular proteins that are mimicked by CoV, providing clues about cellular processes driving the pathogenesis of the ongoing COVID-19 pandemic.

 

26.

Risitano, A. M. Complement as a target in COVID-19?. Nat. Rev. Immunol. 20, 343–344 (2020).

 

27.

Mastaglio, S. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol. 215, 108450 (2020).

 

28.

Polubriaginof, F. C. G. et al. Challenges with quality of race and ethnicity data in observational databases. J. Am. Med. Inf. Assoc. 26, 730–736 (2019).

 

Read Full Post »


Novel SARS-CoV-2 sybodies

Reporter: Irina Robu, PhD

Absolute Antibody Ltd., a leader of the market in recombinant antibody products announced a partnership with University of Zurich to offer synthetic nanobodies against the receptor binding domain (RBD) of SARS-CoV-2. Under the partnership, the original nanobodies and recently engineered formats are now accessible to the global research community for use as serological controls and in COVID-19 therapeutic development. The synthetic nanobodies hold a particular potential for the development of inhalable drugs, which could suggest a convenient treatment option for the COVID-19 pandemic.

The laboratory of Markus Seeger at University of Zurich designs a rapid in vitro selection platform to generate synthetic nanobodies, sybodies, against the receptor binding domain (RBD) of SARS-CoV-2. Within a two-week timeframe, the lab had recognized more than 60 unique anti-RBD sybodies from combinatorial display libraries. The sybodies are “designed to mimic the natural shape diversity of camelid nanobodies, consequently allowing for an optimal surface complementarity to the limited hydrophilic epitopes on membrane proteins. Due to their high thermal stabilities and low production costs, sybodies demonstrate a promise for diagnostic and therapeutic applications.

Sybodies are perfectly suited to trap intrinsically flexible membrane proteins and thereby facilitate structure determination by X-ray crystallography and cryo-EM.
Additional research indicate that six of the sybodies bound SARS-CoV-2 spike protein with very high affinity, while five of those also inhibited ACE2, the host cell receptor to which SARS-CoV-2 binds to initiate the COVID-19 infection. Furthermore, two of the sybodies can at the same time bind the RBD, which could permit the construction of a polyvalent antiviral drug. The SARS-CoV-2 sybodies are therefore valuable tools for coronavirus research, diagnostics and therapeutic development.

Moreover, Absolute Antibody has used antibody engineering to fuse the nanobodies to Fc domains in different species, isotypes and subtypes. Absolute Antibody also offers supporting coronavirus research such as the production of gram quantities of human antibodies sequenced from recovering COVID-19 patients.

SOURCE

https://www.biocompare.com/Life-Science-News/562900-SARS-CoV-2-COVID-19-Research-News-Latest-Updates

 

Read Full Post »


Three Stages to COVID-19 Brain Damage

Reporter: Irina Robu, PhD

According to a review published by Majid Fotuhi, PhD in the Journal of Alzheimer’s Disease, the impact of COVID-19 on the nervous system can be classified in three stages. In stage 1, viral damage is limited to the epithelial cells of the nose and mouth; stage 2, blood clots that form in the lungs can travel to the brain and in stage 3, the virus crosses the blood brain barrier and invades the brain.

Dr. Fotuhi recognized that patients with COVID-19 should have a neurological evaluation and an MRI before leaving the hospital, to distinguish if there are any anomalies. It has become increasingly obvious that SARS-CoV-2 can cause neurologic manifestations, including anosmia, seizures, stroke, confusion, encephalopathy, and total paralysis, the authors write. As stated by authors of the review, the SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) that facilitates the conversion of angiotensin II to angiotensin. Subsequently ACE2 binds to respiratory epithelial cells, and then to epithelial cells in blood vessels, SARS-CoV-2 triggers the formation of a “cytokine storm.” The cytokines, increase vascular permeability, edema and widespread inflammation which can cause small or large blood clots that affect multiple organs.

They concluded, that If SARS-CoV-2 crosses the blood–brain barrier, directly entering the brain, it can contribute to demyelination or neurodegeneration. Scientists have limited information published about it, so doctors/scientists are uncertain why a virus this small can cause so many neurological things.

SOURCE

https://www.medscape.com/viewarticle/933131

Read Full Post »


Does CSF Antibody Testing Confirm Coronavirus in the Brain?

Reporter: Irina Robu, PhD

It is still uncertain how COVID-19 invades the brain, but testing for antibodies in the cerebrospinal fluid may give some indication.  COVID-19 is typic Is characterized by respiratory illness and viral pneumonia with fever, cough, shortness of breath, and in severe cases, progression to acute respiratory distress syndrome. Recently, there have been a few investigations on what neurological complications can COVID-19 produce.

A case series of three patients attending an inner-city US hospital who had severe, laboratory-confirmed COVID-19 and encephalitis indicated that while only one had abnormal white blood cells or protein present in cerebral spinal fluid, all had evidence of immunoglobulin (IgM) antibodies. The cases include a 31-year-old woman with sickle cell disease who had a recent pulmonary embolus, a 34-year-old woman with sign of fever, shortness of breath and hypertension and a 64-year-old with hypertension. Dr. Benameur, from Emory University assessed cerebrospinal fluid inflammatory proteins and completed testing for SARS-CoV-2 using reverse transcription polymerase chain reaction (PCR).

The results show that two of the patients had normal white blood cell counts and protein levels. Yet, according to Dr. Benameur, even though the PCR in cerebral spinal fluid is negative, it doesn’t mean that the virus didn’t make it into the brain. The PCR test is good for some viruses, but it is not as reliable for this new coronavirus. Even though, all patients had encephalitis, the female patients also developed encephalomyelitis as indicated by inflammation in her brain and spinal cord.

Altogether, patients had symptoms affecting cortical and brainstem function at the peak of neurologic illness.

SOURCE

https://www.medscape.com/viewarticle/931964?src=mkm_covid_update_200608_mscpedit

 

Read Full Post »


The race for a COVID-19 vaccine: What’s ahead ?

Reporter: Irina Robu, PhD

Researchers are conducting over 100 coronavirus vaccines studies, as they race to produce the first serum to protect people from COVID-19. Its uncertain which one would be successful, but what is certain is that without the vaccine, life would not return to normal anywhere on the world.

Usually, a vaccine takes 20 to 15 years to develop, but Moderna Therapeutics, a U.S. pharmaceutical company will test their vaccine on tens of thousands of people which are in critical phase 3. Even though many vaccines are tested now, only ten candidates are currently in clinical trials. The process to develop a vaccine is complicated and requires time and money.

However, in order to develop a vaccine, a pathogen has to be identified. After several in vitro trials, the vaccine is tested in mice, then in a non-human primate model. After these preclinical studies show  promising results, then the next step is to into clinical trials i.e. human testing. The human testing, occurs in various steps. The first step, phase 1 clinical trial is usually a small trial with 20 to 100 patients. The goal of this step is to asses the toxicity of the vaccine. Once, the first step clinical trials are completed and the results show positive result on toxicity and safety, progress to phase 2 trials can be started. Phase 2 clinical trials include 200 to 400 patients. In this phase, immunogenicity of the vaccine it is tested as well as how long it is effective.  Then, the last step is phase 3 clinical trial which can include as many as 30,000 people. The last phase it assesses whether the vaccine works on a broader scale.

Once the vaccine is effective, companies have to increase production to develop more than 7 billion doses. But due to the large number of people requiring this vaccine, scientists have to look at how to increase the manufacturing capability and distribution. In order to produce them effectively, a portfolio of vaccines have to be used.

 SOURCE

https://scopeblog.stanford.edu/2020/06/25/the-race-for-a-covid-19-vaccine-whats-ahead/

 

 

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 has been found. The placenta serves as the lungs, gut, kidneys, and liver of the fetus. This fetal organ also has major endocrine actions that modulate maternal physiology and, importantly, together with the extraplacental chorioamniotic membranes shield the fetus against microbes from hematogenous dissemination and from invading the amniotic cavity.

 

Most pathogens that cause hematogenous infections in the mother are not able to reach the fetus, which is largely due to the potent protective mechanisms provided by placental cells (i.e. trophoblast cells: syncytiotrophoblasts and cytotrophoblasts). Yet, some of these pathogens such as Toxoplasma gondii, Rubella virus, herpesvirus (HSV), cytomegalovirus (CMV), and Zika virus (ZIKV), among others, are capable of crossing the placenta and infecting the fetus, causing congenital disease.

 

The placental membranes that contain the fetus and amniotic fluid lack the messenger RNA (mRNA) molecule required to manufacture the ACE2 receptor, the main cell surface receptor used by the SARS-CoV-2 virus to cause infection. These placental tissues also lack mRNA needed to make an enzyme, called TMPRSS2, that SARS-CoV-2 uses to enter a cell. Both the receptor and enzyme are present in only miniscule amounts in the placenta, suggesting a possible explanation for why SARS-CoV-2 has only rarely been found in fetuses or newborns of women infected with the virus, according to the study authors.

 

The single-cell transcriptomic analysis presented by the researchers provides evidence that SARS-CoV-2 is unlikely to infect the placenta and fetus since its canonical receptor and protease, ACE2 and TRMPSS2, are only minimally expressed by the human placenta throughout pregnancy. In addition, it was shown that the SARS-CoV-2 receptors are not expressed by the chorioamniotic membranes in the third trimester. However, viral receptors utilized by CMV, ZIKV, and others are highly expressed by the human placental tissues.

 

Transcript levels do not always correlate with protein expression, but the data of the present study indicates a low likelihood of placental infection and vertical transmission of SARS-CoV-2. However, it is still possible that the expression of these proteins is much higher in individuals with pregnancy complications related with the renin-angiotensin-aldosterone system, which can alter the expression of ACE2. The cellular receptors and mechanisms that could be exploited by SARS-CoV-2 are still under investigation.

 

References:

 

https://www.nih.gov/news-events/news-releases/placenta-lacks-major-molecules-used-sars-cov-2-virus-cause-infection

 

https://pubmed.ncbi.nlm.nih.gov/32662421/

 

https://pubmed.ncbi.nlm.nih.gov/32217113/

 

https://pubmed.ncbi.nlm.nih.gov/32161408/

 

https://pubmed.ncbi.nlm.nih.gov/32335053/

 

https://pubmed.ncbi.nlm.nih.gov/32298273/

 

Read Full Post »


The Castleman Disease Research Network publishes Phase 1 Results of Drug Repurposing Database for COVID-19

Reporter: Stephen J. Williams, PhD.

 

From CNN at https://www.cnn.com/2020/06/27/health/coronavirus-treatment-fajgenbaum-drug-review-scn-wellness/index.html

Updated 8:17 AM ET, Sat June 27, 2020

(CNN)Every morning, Dr. David Fajgenbaum takes three life-saving pills. He wakes up his 21-month-old daughter Amelia to help feed her. He usually grabs some Greek yogurt to eat quickly before sitting down in his home office. Then he spends most of the next 14 hours leading dozens of fellow researchers and volunteers in a systematic review of all the drugs that physicians and researchers have used so far to treat Covid-19. His team has already pored over more than 8,000 papers on how to treat coronavirus patients.

The 35-year-old associate professor at the University of Pennsylvania Perelman School of Medicine leads the school’s Center for Cytokine Storm Treatment & Laboratory. For the last few years, he has dedicated his life to studying Castleman disease, a rare condition that nearly claimed his life. Against epic odds, he found a drug that saved his own life six years ago, by creating a collaborative method for organizing medical research that could be applicable to thousands of human diseases. But after seeing how the same types of flares of immune-signaling cells, called cytokine storms, kill both Castleman and Covid-19 patients alike, his lab has devoted nearly all of its resources to aiding doctors fighting the pandemic.

A global repository for Covid-19 treatment data

Researchers working with his lab have reviewed published data on more than 150 drugs doctors around the world have to treat nearly 50,000 patients diagnosed with Covid-19. They’ve made their analysis public in a database called the Covid-19 Registry of Off-label & New Agents (or CORONA for short).
It’s a central repository of all available data in scientific journals on all the therapies used so far to curb the pandemic. This information can help doctors treat patients and tell researchers how to build clinical trials.The team’s process resembles that of the coordination Fajgenbaum used as a medical student to discover that he could repurpose Sirolimus, an immunosuppressant drug approved for kidney transplant patients, to prevent his body from producing deadly flares of immune-signaling cells called cytokines.The 13 members of Fajgenbaum’s lab recruited dozens of other scientific colleagues to join their coronavirus effort. And what this group is finding has ramifications for scientists globally.
This effort by Dr. Fajgenbaum’s lab and the resultant collaborative effort shows the power and speed at which a coordinated open science effort can achieve goals. Below is the description of the phased efforts planned and completed from the CORONA website.

CORONA (COvid19 Registry of Off-label & New Agents)

Drug Repurposing for COVID-19

Our overarching vision:  A world where data on all treatments that have been used against COVID19 are maintained in a central repository and analyzed so that physicians currently treating COVID19 patients know what treatments are most likely to help their patients and so that clinical trials can be appropriately prioritized.

 

Phase 1: COMPLETED

Our team reviewed 2500+ papers & extracted data on over 9,000 COVID19 patients. We found 115 repurposed drugs that have been used to treat COVID19 patients and analyzed data on which ones seem most promising for clinical trials. This data is open source and can be used by physicians to treat patients and prioritize drugs for trials. The CDCN will keep this database updated as a resource for this global fight. Repurposed drugs give us the best chance to help COVID19 as quickly as possible! As disease hunters who have identified and repurposed drugs for Castleman disease, we’re applying our ChasingMyCure approach to COVID19.

Read our systematic literature review published in Infectious Diseases and Therapy at the following link: Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review

From Fajgenbaum, D.C., Khor, J.S., Gorzewski, A. et al. Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review. Infect Dis Ther (2020). https://doi.org/10.1007/s40121-020-00303-8

The following is the Abstract and link to the metastudy.  This study was a systematic review of literature with strict inclusion criteria.  Data was curated from these published studies and a total of 9152 patients were evaluated for treatment regimens for COVID19 complications and clinical response was curated for therapies in these curated studies.  Main insights from this study were as follows:

Key Summary Points

Why carry out this study?
  • Data on drugs that have been used to treat COVID-19 worldwide are currently spread throughout disparate publications.
  • We performed a systematic review of the literature to identify drugs that have been tried in COVID-19 patients and to explore clinically meaningful response time.
What was learned from the study?
  • We identified 115 uniquely referenced treatments administered to COVID-19 patients. Antivirals were the most frequently administered class; combination lopinavir/ritonavir was the most frequently used treatment.
  • This study presents the latest status of off-label and experimental treatments for COVID-19. Studies such as this are important for all diseases, especially those that do not currently have definitive evidence from randomized controlled trials or approved therapies.

Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review

Abstract

The emergence of SARS-CoV-2/2019 novel coronavirus (COVID-19) has created a global pandemic with no approved treatments or vaccines. Many treatments have already been administered to COVID-19 patients but have not been systematically evaluated. We performed a systematic literature review to identify all treatments reported to be administered to COVID-19 patients and to assess time to clinically meaningful response for treatments with sufficient data. We searched PubMed, BioRxiv, MedRxiv, and ChinaXiv for articles reporting treatments for COVID-19 patients published between 1 December 2019 and 27 March 2020. Data were analyzed descriptively. Of the 2706 articles identified, 155 studies met the inclusion criteria, comprising 9152 patients. The cohort was 45.4% female and 98.3% hospitalized, and mean (SD) age was 44.4 years (SD 21.0). The most frequently administered drug classes were antivirals, antibiotics, and corticosteroids, and of the 115 reported drugs, the most frequently administered was combination lopinavir/ritonavir, which was associated with a time to clinically meaningful response (complete symptom resolution or hospital discharge) of 11.7 (1.09) days. There were insufficient data to compare across treatments. Many treatments have been administered to the first 9152 reported cases of COVID-19. These data serve as the basis for an open-source registry of all reported treatments given to COVID-19 patients at www.CDCN.org/CORONA. Further work is needed to prioritize drugs for investigation in well-controlled clinical trials and treatment protocols.

Read the Press Release from PennMedicine at the following link: PennMedicine Press Release

Phase 2: Continue to update CORONA

Our team continues to work diligently to maintain an updated listing of all treatments reported to be used in COVID19 patients from papers in PubMed. We are also re-analyzing publicly available COVID19 single cell transcriptomic data alongside our iMCD data to search for novel insights and therapeutic targets.

You can visit the following link to access a database viewer built and managed by Matt Chadsey, owner of Nonlinear Ventures.

If you are a physician treating COVID19 patients, please visit the FDA’s CURE ID app to report de-identified information about drugs you’ve used to treat COVID19 in just a couple minutes.

For more information on COVID19 on this Open Access Journal please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

Read Full Post »


National Cancer Institute Director Neil Sharpless says mortality from delays in cancer screenings due to COVID19 pandemic could result in tens of thousands of extra deaths in next decade

Reporter: Stephen J Williams, PhD

Source: https://cancerletter.com/articles/20200619_1/

NCI Director’s Report

Sharpless: COVID-19 expected to increase mortality by at least 10,000 deaths from breast and colorectal cancers over 10 years

By Matthew Bin Han Ong

This story is part of The Cancer Letter’s ongoing coverage of COVID-19’s impact on oncology. A full list of our coverage, as well as the latest meeting cancellations, is available here.

The COVID-19 pandemic will likely cause at least 10,000 excess deaths from breast cancer and colorectal cancer over the next 10 years in the United States.

Scenarios run by NCI and affiliated modeling groups predict that delays in screening for and diagnosis of breast and colorectal cancers will lead to a 1% increase in deaths through 2030. This translates into 10,000 additional deaths, on top of the expected one million deaths resulting from these two cancers.

“For both these cancer types, we believe the pandemic will influence cancer deaths for at least a decade,” NCI Director Ned Sharpless said in a virtual joint meeting of the Board of Scientific Advisors and the National Cancer Advisory Board June 15. “I find this worrisome as cancer mortality is common. Even a 1% increase every decade is a lot of cancer suffering.

“And this analysis, frankly, is pretty conservative. We do not consider cancers other than those of breast and colon, but there is every reason to believe the pandemic will affect other types of cancer, too. We did not account for the additional non-lethal morbidity from upstaging, but this could also be significant and burdensome.”

An editorial by Sharpless on this subject appears in the journal Science.

The early analyses, conducted by the institute’s Cancer Intervention and Surveillance Modeling Network, focused on breast and colorectal cancers, because these are common, with relatively high screening rates.

CISNET modelers created four scenarios to assess long-term increases in cancer mortality rates for these two diseases:

  1. The pandemic has no effect on cancer mortality

 

  1. Delayed screening—with 75% reduction in mammography and, colorectal screening and adenoma surveillance for six months

 

  1. Delayed diagnosis—with one-third of people delaying follow-up after a positive screening or diagnostic mammogram, positive FIT or clinical symptoms for six months during a six-month period

 

  1. Combination of scenarios two and three

 

Treatment scenarios after diagnosis were not included in the model. These would be: delays in treatment, cancellation of treatment, or modified treatment.

“What we did is show the impact of the number of excess deaths per year for 10 years for each year starting in 2020 for scenario four versus scenario one,” Eric “Rocky” Feuer, chief of the NCI’s Statistical Research and Applications Branch in the Surveillance Research Program, said to The Cancer Letter.

Feuer is the overall project scientist for CISNET, a collaborative group of investigators who use simulation modeling to guide public health research and priorities.

“The results for breast cancer were somewhat larger than for colorectal,” Feuer said. “And that’s because breast cancer has a longer preclinical natural history relative to colorectal cancer.”

Modelers in oncology are creating a global modeling consortium, COVID-19 and Cancer Taskforce, to “support decision-making in cancer control both during and after the crisis.” The consortium is supported by the Union for International Cancer Control, The International Agency for Research on Cancer, The International Cancer Screening Network, the Canadian Partnership Against Cancer, and Cancer Council NSW, Australia.

A spike in cancer mortality rates threatens to reverse or slow down—at least in the medium term—the steady trend of reduction of cancer deaths. On Jan. 8, the American Cancer Society published its annual estimates of new cancer cases and deaths, declaring that the latest data—from 2016 to 2017—show the “largest ever single-year drop in overall cancer mortality of 2.2%.” Experts say that innovation in lung cancer treatment and the success of smoking cessation programs are driving the sharp decrease (The Cancer LetterFeb. 7, 2020).

The pandemic is expected to have broader impact, including increases in mortality rates for other cancer types. Also, variations in severity of COVID-19 in different regions in the U.S. will influence mortality metrics.

“There’s some other cancers that might have delays in screening—for example cervical, prostate, and lung cancer, although lung cancer screening rates are still quite low and prostate cancer screening should only be conducted on those who determine that the benefits outweigh the harms,” Feuer said. “So, those are the major screening cancers, but impacts of delays in treatment, canceling treatment or alternative treatments—could impact a larger range of cancer sites.

“This model assumes a moderate disruption which resolves after six months, and doesn’t consider non-lethal morbidities associated with the delay. One thing I think probably is occurring is regional variation in these impacts,” Feuer said. “If you’re living in New York City where things were ground zero for some of the worst impact early on, probably delays were larger than other areas of the country. But now, as we’re seeing upticks in other areas of the country, there may be in impact in these areas as well”

How can health care providers mitigate some of these harms? For example, for people who delayed screening and diagnosis, are providers able to perform triage, so that those at highest risk are prioritized?

“From a strictly cancer control point of view, let’s get those people who delayed screening, or followup to a positive test, or treatment back on schedule as soon as possible,” Feuer said. “But it’s not a simple calculus, because in every situation, we have to weigh the harms and benefits. As we come out of the pandemic, it tips more and more to, ‘Let’s get back to business with respect to cancer control.’

“Telemedicine doesn’t completely substitute for seeing patients in person, but at least people could get the advice they need, and then are triaged through their health care providers to indicate if they really should prioritize coming in. That helps the individual and the health care provider  weigh the harms and benefits, and try to strategize about what’s best for any individual.”

If the pandemic continues to disrupt routine care, cancer-related mortality rates would rise beyond the predictions in this model.

“I think this analysis begins to help us understand the costs with regard to cancer outcomes of the pandemic,” Sharpless said. “Let’s all agree we will do everything in our power to minimize these adverse effects, to protect our patients from cancer suffering.”

 

For more Articles on COVID-19 please see our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Updates on the Oxford, AstraZeneca COVID-19 Vaccine

Reporter: Stephen J. Williams, PhD

AstraZeneca’s CEO states that their COVID-19 vaccine, codeveloped with Oxford University, should provide protection for a year.

AstraZeneca’s potential coronavirus vaccine is likely to provide protection against contracting Covid-19 for about a year, the company’s chief executive told a Belgian radio station on Tuesday.

The British drugmaker has already begun human trials of the vaccine developed by the University of Oxford, with a phase I trial in Britain due to end soon and a phase III trial already begun, Pascal Soriot told broadcaster Bel RTL.

“We think that it will protect for about a year,” Soriot said.

AstraZeneca said on Saturday that it had signed contracts with France, Germany, Italy and the Netherlands to supply the European Union with up to 400 million doses of the potential vaccine.

It has also agreed deals with Britain and the United States.

“If all goes well, we will have the results of the clinical trials in August/September. We are manufacturing in parallel. We will be ready to deliver from October if all goes well,” Soriot said.

Source: https://www.cnbc.com/2020/06/16/astrazeneca-covid-19-vaccine-likely-to-protect-for-a-year-ceo-says.html

 

 

From In The Pipeline (Derek Lowe’s regular column in Science)

Criticism of the Oxford Coronavirus Vaccine

By Derek Lowe 18 May, 2020

This piece at Forbes by Bill Haseltine has set off a lot of comment – it’s a look at the Oxford group’s vaccine candidate as compared to the SinoVac candidate, and you may recall (background here) that these are the two teams that have separately reported that their vaccines appear to protect rhesus monkeys from infection after exposure to the coronavirus. Haseltine has some criticisms of the Oxford data, and as you will see from that link to his name, his opinions deserve to be taken seriously. So what’s going on? Update: here’s the take on this at BioCentury.

Looking at the preprint on the Oxford results, Haseltine has a problem with the claim that the monkeys were protected from infection by a dose of ChAdOx1 nCoV-19. The key data are in the preprint’s Figure 3. The Oxford team checked for viral RNA several different ways. One was using bronchoaveolar lavage (BAL fluid), a sampling technique that involves running a bronchoscope down into the lungs and washing out aveolar spaces – a pretty darn invasive assay, which is why you don’t hear about it all that much compared to the still-not-so-nonivasive nose swabs. BAL fluid of the virus-exposed unvaccinated animals showed coronavirus genomic RNA throughout the study, and viral subgenomic RNA (more indicative of active replication) at days 3 and 5 after exposure. Meanwhile, the vaccinated animals showed the genomic RNA in only two monkeys, and no subgenomic RNA at all.

So far, so good. But both vaccinated and unvaccinated monkeys showed the same amount of viral genomic RNA from nose swab samples (Figure 3c). That’s the test that’s used out in the human population, and that means that the vaccinated animals would still be declared as positive for the coronavirus after being exposed to it. And the other thing that Haseltine notes is that the amount (the “titer”, in the lingo) of neutralizing antibodies in the blood of the vaccinated animals does not appear to be that high. You’d like to be able to dilute the blood antibody samples down by hundreds of times or even a thousandfold and still see antiviral activity in an in vitro assay, but in the Oxford case the activity started disappearing at about fortyfold dilution (Figure 2b).

On the positive side, 2/3 of the unvaccinated animals showed clear evidence of viral pneumonia at autopsy, but none of the vaccinated ones did. The conclusion is that the vaccinated animals were indeed infected – the vaccine did not protect against that – but that the disease was definitely less severe. But these results mean that the virus might well still be transmissible from people who had been so vaccinated, even if the disease course itself was not as deadly. You’d want to do better than that, if you can. Haseltine’s take is “Time will tell if this is the best approach. I wouldn’t bet on it.

Haseltine compares these results to the SinoVac inactivated virus vaccine, and finds that that one looks better – at its highest dose, no viral RNA was recovered from the tissues of the vaccinated animals, for example. This sort of “sterilizing immunity” is what you’d want to aim for – it gives the virus nowhere to go in the human population if you can vaccinate enough people. But it’s worth noting that the SinoVac results were from three doses of their vaccine (versus one of the Oxford candidate), and the viral exposure challenge was about half as strong (total viral particles) as what the Oxford paper used. The Oxford group also inoculated their monkeys in both the upper and lower respiratory tract, while the SinoVac team used a single inoculation in the trachea. So I agree with that tweet linked from AndyBiotech; I don’t think that a head-to-head comparison is fair. But Haseltine’s point stands, that the results as we have them from the ChAdOx1 nCoV-19 vaccine did not actually protect monkeys from infection.

Source: https://blogs.sciencemag.org/pipeline/archives/2020/05/18/criticism-of-the-oxford-coronavirus-vaccine

 

Please see other Articles on COVID-19 on our Coronavirus Portal Including Late Breaking News at:

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


New Coronavirus Passive Vaccine Developed by Israeli Researchers

Reporter: Irina Robu, PhD

Researchers at Bar-Ilan University have identified short amino acid sequences that could help the development of a vaccine against COVID-19 virus. Of the 25 epitopes that were discovered to be 100% identical to SARS, seven are theoretically efficient vaccine candidates. Their research indicate that they could cover as much as 87% of the world population

Their study has identified a set of immunodominant epitopes from the SARS-CoV-2 proteome, which are capable of generating antibody and cell mediated immune responses. The epitopes, known as antigenic determinants, are the part of the antigen that binds to a specific antigen receptor on the surface of B cells or T cells and are able to provoke an immune response.

It is known that immune response occurs within an organism for the purpose of defending against foreign invaders such as viruses, bacteria, parasites and fungi. The immune responses that are based on specific immunodominant epitopes contain the generation of both antibody- and cell-mediated immunity against pathogens. Such immunity can facilitate fast and effective elimination of the pathogen. The end result is a passive vaccine capable of capable of activating both cellular and humoral immune responses in humans.

According to the team at Bar-Ilan University, the mapped coronavirus epitopes with those of the influenza virus. And they found that 85% of the sequence identity with experimentally detected epitopes of Severe Acute Respiratory Syndrome-related coronavirus (SARS-CoV).

Additional analysis indicated that the epitopes are non-allergic and non-toxic to humans and have very low risk for generating autoimmune responses. The team is looking to partner with companies to build vaccine constructs and test them in-vitro and on animal trials before starting any clinical trials.

SOURCE

https://www.jpost.com/health-science/israeli-researchers-on-road-to-new-covid-19-passive-vaccine-630988?utm_source=ActiveCampaign

Read Full Post »

Older Posts »