Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘genetic variants’


Bioinformatics Tool Review: Genome Variant Analysis Tools

Curator: Stephen J. Williams, Ph.D.

 

The following post will be an ongoing curation of reviews of gene variant bioinformatic software.

 

The Ensembl Variant Effect Predictor.

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F.

Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.

Author information

1

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. wm2@ebi.ac.uk.

2

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.

3

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. fiona@ebi.ac.uk.

Abstract

The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.

 

Rare diseases can be difficult to diagnose due to low incidence and incomplete penetrance of implicated alleles however variant analysis of whole genome sequencing can identify underlying genetic events responsible for the disease (Nature, 2015).  However, a large cohort is required for many WGS association studies in order to produce enough statistical power for interpretation (see post and here).  To this effect major sequencing projects have been initiated worldwide including:

A more thorough curation of sequencing projects can be seen in the following post:

Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

 

And although sequencing costs have dramatically been reduced over the years, the costs to determine the functional consequences of such variants remains high, as thorough basic research studies must be conducted to validate the interpretation of variant data with respect to the underlying disease, as only a small fraction of variants from a genome sequencing project will encode for a functional protein.  Correct annotation of sequences and variants, identification of correct corresponding reference genes or transcripts in GENCODE or RefSeq respectively offer compelling challenges to the proper identification of sequenced variants as potential functional variants.

To this effect, the authors developed the Ensembl Variant Effect Predictor (VEP), which is a software suite that performs annotations and analysis of most types of genomic variation in coding and non-coding regions of the genome.

Summary of Features

  • Annotation: VEP can annotate two broad categories of genomic variants
    • Sequence variants with specific and defined changes: indels, base substitutions, SNVs, tandem repeats
    • Larger structural variants > 50 nucleotides
  • Species and assembly/genomic database support: VEP can analyze data from any species with assembled genome sequence and annotated gene set. VEP supports chromosome assemblies such as the latest GRCh38, FASTA, as well as transcripts from RefSeq as well as user-derived sequences
  • Transcript Annotation: VEP includes a wide variety of gene and transcript related information including NCBI Gene ID, Gene Symbol, Transcript ID, NCBI RefSeq ID, exon/intron information, and cross reference to other databases such as UniProt
  • Protein Annotation: Protein-related fields include Protein ID, RefSeq ID, SwissProt, UniParc ID, reference codons and amino acids, SIFT pathogenicity score, protein domains
  • Noncoding Annotation: VEP reports variants in noncoding regions including genomic regulatory regions, intronic regions, transcription binding motifs. Data from ENCODE, BLUEPRINT, and NIH Epigenetics RoadMap are used for primary annotation.  Plugins to the Perl coding are also available to link other databases which annotate noncoding sequence features.
  • Frequency, phenotype, and citation annotation: VEP searches Ensembl databases containing a large amount of germline variant information and checks variants against the dbSNP single nucleotide polymorphism database. VEP integrates with mutational databases such as COSMIC, the Human Gene Mutation Database, and structural and copy number variants from Database of Genomic Variants.  Allele Frequencies are reported from 1000 Genomes and NHLBI and integrates with PubMed for literature annotation.  Phenotype information is from OMIM, Orphanet, GWAS and clinical information of variants from ClinVar.
  • Flexible Input and Output Formats: VEP supports input data format called “variant call format” or VCP, a standard in next-gen sequencing. VEP has the ability to process variant identifiers from other database formats.  Output formats are tab deliminated and give the user choices in presentation of results (HTML or text based)
  • Choice of user interface
    • Online tool (VEP Web): simple point and click; incorporates Instant VEP Functionality and copy and paste features. Results can be stored online in cloud storage on Ensembl.
    • VEP script: VEP is available as a downloadable PERL script (see below for link) and can process large amounts of data rapidly. This interface is powerfully flexible with the ability to integrate multiple plugins available from Ensembl and GitHub.  The ability to alter the PERL code and add plugins and code functions allows the flexibility to modify any feature of VEP.
    • VEP REST API: provides robust computational access to any programming language and returns basic variant annotation. Can make use of external plugins.

 

 

Watch Video on VES Instructional Webinar: https://youtu.be/7Fs7MHfXjWk

Watch Video on VES Web Version training on How to Analyze Your Sequence in VEP

 

 

Availability of data and materials

The dataset supporting the conclusions of this article is available from Illumina’s Platinum Genomes [93] and using the Ensembl release 75 gene set. Pre-built data sets are available for all Ensembl and Ensembl Genomes species [94]. They can also be downloaded automatically during set up whilst installing the VEP.

 

References

Large-scale discovery of novel genetic causes of developmental disorders.

Deciphering Developmental Disorders Study.

Nature2015 Mar 12;519(7542):223-8. doi: 10.1038/nature14135. PMID:25533962

Other articles related to Genomics and Bioinformatics on this online Open Access Journal Include:

Finding the Genetic Links in Common Disease: Caveats of Whole Genome Sequencing Studies

 

Large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes

 

US Personalized Cancer Genome Sequencing Market Outlook 2018 –

 

Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

 

 

Advertisements

Read Full Post »


     


SomaticSeq: An Ensemble Approach with Machine Learning to Detect Cancer Variants

June 16 at 1pm EDT Register for this Webinar |  View All Webinars

Accurate detection of somatic mutations has proven to be challenging in cancer NGS analysis, due to tumor heterogeneity and cross-contamination between tumor and matched normal samples. Oftentimes, a somatic caller that performs well for one tumor may not for another.

In this webinar we will introduce SomaticSeq, a tool within the Bina Genomic Management Solution (Bina GMS) designed to boost the accuracy of somatic mutation detection with a machine learning approach. You will learn:

  • Benchmarking of leading somatic callers, namely MuTect, SomaticSniper, VarScan2, JointSNVMix2, and VarDict
  • Integration of such tools and how accuracy is achieved using a machine learning classifier that incorporates over 70 features with SomaticSeq
  • Accuracy validation including results from the ICGC-TCGA DREAM Somatic Mutation Calling Challenge, in which Bina placed 1st in indel calling and 2nd in SNV calling in stage 5
  • Creation of a new SomaticSeq classifier utilizing your own dataset
  • Review of the somatic workflow within the Bina Genomic Management Solution

Speakers:

Li Tai Fang

Li Tai Fang
Sr. Bioinformatics Scientist
Bina Technologies, Part of
Roche Sequencing

Anoop Grewal

Anoop Grewal
Product Marketing Manager
Bina Technologies, Part of
Roche Sequencing

<Read full speaker bios here>

Cost: No cost!

Schedule conflict? Register now and you’ll receive a copy of the recording.

This webinar is compliments of: 

Bio-ITWorld.com/Bio-IT-Webinars

Read Full Post »


Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

Reporter/Curator: Stephen J. Williams, Ph.D.

 

UPDATED on 9/6/2017

On 9/6/2017, Aviva Lev-Ari, PhD, RN had attend a talk by Paul Nioi, PhD, Amgen, at HMS, Harvard BioTechnology Club (GSAS).

Nioi discussed his 2016 paper in NEJM, 2016, 374:2131-2141

Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease

Paul Nioi, Ph.D., Asgeir Sigurdsson, B.Sc., Gudmar Thorleifsson, Ph.D., Hannes Helgason, Ph.D., Arna B. Agustsdottir, B.Sc., Gudmundur L. Norddahl, Ph.D., Anna Helgadottir, M.D., Audur Magnusdottir, Ph.D., Aslaug Jonasdottir, M.Sc., Solveig Gretarsdottir, Ph.D., Ingileif Jonsdottir, Ph.D., Valgerdur Steinthorsdottir, Ph.D., Thorunn Rafnar, Ph.D., Dorine W. Swinkels, M.D., Ph.D., Tessel E. Galesloot, Ph.D., Niels Grarup, Ph.D., Torben Jørgensen, D.M.Sc., Henrik Vestergaard, D.M.Sc., Torben Hansen, Ph.D., Torsten Lauritzen, D.M.Sc., Allan Linneberg, Ph.D., Nele Friedrich, Ph.D., Nikolaj T. Krarup, Ph.D., Mogens Fenger, Ph.D., Ulrik Abildgaard, D.M.Sc., Peter R. Hansen, D.M.Sc., Anders M. Galløe, Ph.D., Peter S. Braund, Ph.D., Christopher P. Nelson, Ph.D., Alistair S. Hall, F.R.C.P., Michael J.A. Williams, M.D., Andre M. van Rij, M.D., Gregory T. Jones, Ph.D., Riyaz S. Patel, M.D., Allan I. Levey, M.D., Ph.D., Salim Hayek, M.D., Svati H. Shah, M.D., Muredach Reilly, M.B., B.Ch., Gudmundur I. Eyjolfsson, M.D., Olof Sigurdardottir, M.D., Ph.D., Isleifur Olafsson, M.D., Ph.D., Lambertus A. Kiemeney, Ph.D., Arshed A. Quyyumi, F.R.C.P., Daniel J. Rader, M.D., William E. Kraus, M.D., Nilesh J. Samani, F.R.C.P., Oluf Pedersen, D.M.Sc., Gudmundur Thorgeirsson, M.D., Ph.D., Gisli Masson, Ph.D., Hilma Holm, M.D., Daniel Gudbjartsson, Ph.D., Patrick Sulem, M.D., Unnur Thorsteinsdottir, Ph.D., and Kari Stefansson, M.D., Ph.D.

N Engl J Med 2016; 374:2131-2141June 2, 2016DOI: 10.1056/NEJMoa1508419

Abstract
Article
References
Citing Articles (22)
Metrics

BACKGROUND

Several sequence variants are known to have effects on serum levels of non–high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease.

METHODS

We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability.

RESULTS

We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10−16), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10−6). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10−3).

CONCLUSIONS

ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.)

 

Amgen’s deCODE Genetics Publishes Largest Human Genome Population Study to Date

Mark Terry, BioSpace.com Breaking News Staff reported on results of one of the largest genome sequencing efforts to date, sequencing of the genomes of 2,636 people from Iceland by deCODE genetics, Inc., a division of Thousand Oaks, Calif.-based Amgen (AMGN).

Amgen had bought deCODE genetics Inc. in 2012, saving the company from bankruptcy.

There were a total of four studies, published on March 25, 2015 on the online version of Nature Genetics; titled “Large-scale whole-genome sequencing of the Icelandic population[1],” “Identification of a large set of rare complete human knockouts[2],” “The Y-chromosome point mutation rate in humans[3]” and “Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease[4].”

The project identified some new genetic variants which increase risk of Alzheimer’s disease and confirmed some variants known to increase risk of diabetes and atrial fibrillation. A more in-depth post will curate these findings but there was an interesting discrete geographic distribution of certain rare variants located around Iceland. The dataset offers a treasure trove of meaningful genetic information not only about the Icelandic population but offers numerous new targets for breast, ovarian cancer as well as Alzheimer’s disease.

View Mark Terry’s article here on Biospace.com.

“This work is a demonstration of the unique power sequencing gives us for learning more about the history of our species,” said Kari Stefansson, founder and chief executive officer of deCode and one of the lead authors in a statement, “and for contributing to new means of diagnosing, treating and preventing disease.”

The scale and ambition of the study is impressive, but perhaps more important, the research identified a new genetic variant that increases the risk of Alzheimer’s disease and already had identified an APP variant that is associated with decreased risk of Alzheimer’s Disease. It also confirmed variants that increase the risk of diabetes and a variant that results in atrial fibrillation.
The database of human genetic variation (dbSNP) contained over 50 million unique sequence variants yet this database only represents a small proportion of single nucleotide variants which is thought to exist. These “private” or rare variants undoubtedly contribute to important phenotypes, such as disease susceptibility. Non-SNV variants, like indels and structural variants, are also under-represented in public databases. The only way to fully elucidate the genetic basis of a trait is to consider all of these types of variants, and the only way to find them is by large-scale sequencing.

Curation of Population Genomic Sequencing Programs/Corporate Partnerships

Click on “Curation of genomic studies” below for full Table

Curation of genomic studies
Study Partners Population Enrolled Disease areas Analysis
Icelandic Genome

Project

deCODE/Amgen Icelandic 2,636 Variants related to: Alzheimer’s, cardiovascular, diabetes WES + EMR; blood samples
Genome Sequencing Study Geisinger Health System/Regeneron Northeast PA, USA 100,000 Variants related to hypercholestemia, autism, obesity, other diseases WES +EMR +MyCode;

– Blood samples

The 100,000 Genomes Project National Health Service/NHS Genome Centers/ 10 companies forming Gene Consortium including Abbvie, Alexion, AstraZeneca, Biogen, Dimension, GSK, Helomics, Roche,   Takeda, UCB Rare disorders population UK Starting to recruit 100,000 Initially rare diseases, cancer, infectious diseases WES of blood, saliva and tissue samples

Ref paper

Saudi Human Genome Program 7 centers across Saudi Arabia in conjunction with King Abdulaziz City Science & Tech., King Faisal Hospital & Research Centre/Life Technologies General population Saudi Arabia 20,000 genomes over three years First focus on rare severe early onset diseases: diabetes, deafness, cardiovascular, skeletal deformation Whole genome sequence blood samples + EMR
Genome of the Netherlands (GoNL) Consortium consortium of the UMCG,LUMCErasmus MCVU university and UMCU. Samples where contributed by LifeLinesThe Leiden Longevity StudyThe Netherlands Twin Registry (NTR), The Rotterdam studies, and The Genetic Research in Isolated Populations program. All the sequencing work is done by BGI Hong Kong. Families in Netherlands 769 Variants, SNV, indels, deletions from apparently healthy individuals, family trios Whole genome NGS of whole blood no EMR

Ref paper in Nat. Genetics

Ref paper describing project

Faroese FarGen project Privately funded Faroe Islands Faroese population 50,000 Small population allows for family analysis Combine NGS with EMR and genealogy reports
Personal Genome Project Canada $4000.00 fee from participants; collaboration with University of Toronto and SickKids Organization; technical assistance with Harvard Canadian Health System Goal: 100,000 ? just started no defined analysis goals yet Whole exome and medical records
Singapore Sequencing Malay Project (SSMP) Singapore Genome Variation Project

Singapore Pharmacogenomics Project

Malaysian 100 healthy Malays from Singapore Pop. Health Study Variant analysis Deep whole genome sequencing
GenomeDenmark four Danish universities (KU, AU, DTU and AAU), two hospitals (Herlev and Vendsyssel) and two private firms (Bavarian Nordic and BGI-Europe). 150 complete genomes; first 30 published in Nature Comm. ? See link
Neuromics Consortium University of Tübingen and 18 academic and industrial partners (see link for description) European and Australian 1,100 patients with neuro-

degenerative and neuro-

muscular disease

Moved from SNP to whole exome analysis Whole Exome, RNASeq

References

  1. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al: Large-scale whole-genome sequencing of the Icelandic population. Nature genetics 2015, advance online publication.
  2. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A et al: Identification of a large set of rare complete human knockouts. Nature genetics 2015, advance online publication.
  3. Helgason A, Einarsson AW, Gumundsdottir VB, Sigursson A, Gunnarsdottir ED, Jagadeesan A, Ebenesersdottir SS, Kong A, Stefansson K: The Y-chromosome point mutation rate in humans. Nature genetics 2015, advance online publication.
  4. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U et al: Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature genetics 2015, advance online publication.

Other post related to DECODE, population genomics, and NGS on this site include:

Illumina Says 228,000 Human Genomes Will Be Sequenced in 2014

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics and Computational Genomics – Part IIB

Human genome: UK to become world number 1 in DNA testing

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases: A consortium of 18 European and Australian institutions

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Three Ancestral Populations Contributed to Modern-day Europeans: Ancient Genome Analysis

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Read Full Post »


Finding the Genetic Links in Common Disease:  Caveats of Whole Genome Sequencing Studies

Writer and Reporter: Stephen J. Williams, Ph.D.

In the November 23, 2012 issue of Science, Jocelyn Kaiser reports (Genetic Influences On Disease Remain Hidden in News and Analysis)[1] on the difficulties that many genomic studies are encountering correlating genetic variants to high risk of type 2 diabetes and heart disease.  At the recent American Society of Human Genetics annual 2012 meeting, results of several DNA sequencing studies reported difficulties in finding genetic variants and links to high risk type 2 diabetes and heart disease.  These studies were a part of an international effort to determine the multiple genetic events contributing to complex, common diseases like diabetes.  Unlike Mendelian inherited diseases (like ataxia telangiectasia) which are characterized by defects mainly in one gene, finding genetic links to more complex diseases may pose a problem as outlined in the article:

  • Variants may be so rare that massive number of patient’s genome would need to be analyzed
  • For most diseases, individual SNPs (single nucleotide polymorphisms) raise risk modestly
  • Hard to find isolated families (hemophilia) or isolated populations (Ashkenazi Jew)
  • Disease-influencing genes have not been weeded out by natural selection after human population explosion (~5000 years ago) resulted in numerous gene variants
  • What percentage variants account for disease heritability (studies have shown this is as low as 26% for diabetes with the remaining risk determined by environment)

Although many genome-wide-associations studies have found SNPs that have causality to increasing risk diseases such as cancer, diabetes, and heart disease, most individual SNPs for common diseases raise risk by about only 20-40% and would be useless for predicting an individual’s chance they will develop disease and be a candidate for a personalized therapy approach.  Therefore, for common diseases, investigators are relying on direct exome sequencing and whole-genome sequencing to detect these medium-rare risk variants, rather than relying on genome-wide association studies (which are usually fine for detecting the higher frequency variants associated with common diseases).

Three of the many projects (one for heart risk and two for diabetes risk) are highlighted in the article:

1.  National Heart, Lung and Blood Institute Exome Sequencing Project (ESP)[2]: heart, lung, blood

  • Sequenced 6,700 exomes of European or African descent
  • Majority of variants linked to disease too rare (as low as one variant)
  • Groups of variants in the same gene confirmed link between APOC3 and higher risk for early-onset heart attack
  • No other significant gene variants linked with heart disease

2.  T2D-GENES Consortium: diabetes

Sequenced 5,300 exomes of type 2 diabetes patients and controls from five ancestry groups
SNP in PAX4 gene associated with disease in East Asians
No low-frequency variant with large effect though

3.  GoT2D: diabetes

  • After sequencing 2700 patient’s exomes and whole genome no new rare variants above 1.5% frequency with a strong effect on diabetes risk

A nice article by Dr. Sowmiya Moorthie entitled Involvement of rare variants in common disease can be found at the PGH Foundation site http://www.phgfoundation.org/news/5164/ further discusses this conundrum,  and is summarized below:

“Although GWAs have identified many SNPs associated with common disease, they have as yet had little success in identifying the causative genetic variants. Those that have been identified have only a weak effect on disease risk, and therefore only explain a small proportion of the heritable, genetic component of susceptibility to that disease. This has led to the common disease-common variant hypothesis, which predicts that common disease-causing genetic variants exist in all human populations, but each individual variant will necessarily only have a small effect on disease susceptibility (i.e. a low associated relative risk).

An alternative hypothesis is the common disease, many rare variants hypothesis, which postulates that disease is caused by multiple strong-effect variants, each of which is only found in a few individuals. Dickson et al. in a paper in PLoS Biology postulate that these rare variants can be indirectly associated with common variants; they call these synthetic associations and demonstrate how further investigation could help explain findings from GWA studies [Dickson et al. (2010) PLoS Biol. 8(1):e1000294][3].  In simulation experiments, 30% of synthetic associations were caused by the presence of rare causative variants and furthermore, the strength of the association with common variants also increased if the number of rare causative variants increased. “

one_of_many rare variants

Figure from Dr. Moorthie’s article showing the problem of “finding one in many”.

(please   click to enlarge)

Indeed, other examples of such issues concerning gene variant association studies occur with other common diseases such as neurologic diseases and obesity, where it has been difficult to clearly and definitively associate any variant with prediction of risk.

For example, Nuytemans et. al.[4] used exome sequencing to find variants in the vascular protein sorting 3J (VPS35) and eukaryotic transcription initiation factor 4  gamma1 (EIF4G1) genes, tow genes causally linked to Parkinson’s Disease (PD).  Although they identified novel VPS35 variants none of these variants could be correlated to higher risk of PD.   One EIF4G1 variant seemed to be a strong Parkinson’s Disease risk factor however there was “no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development”.

These negative results may have relevance as companies such as 23andme (www.23andme.com) claim to be able to test for Parkinson’s predisposition.  To see a description of the LLRK2 mutational analysis which they use to determine risk for the disease please see the following link: https://www.23andme.com/health/Parkinsons-Disease/. This company and other like it have been subjects of posts on this site (Personalized Medicine: Clinical Aspiration of Microarrays)

However there seems to be more luck with strategies focused on analyzing intronic sequence rather than exome sequence. Jocelyn Kaiser’s Science article notes this in a brief interview with Harry Dietz of Johns Hopkins University where he suspects that “much of the missing heritability lies in gene-gene interactions”.  Oliver Harismendy and Kelly Frazer and colleagues’ recent publication in Genome Biology  http://genomebiology.com/content/11/11/R118 support this notion[5].  The authors used targeted resequencing of two endocannabinoid metabolic enzyme genes (fatty-acid-amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in 147 normal weight and 142 extremely obese patients.

These patients were enrolled in the CRESCENDO trial and patients analyzed were of European descent. However, instead of just exome sequencing, the group resequenced exome AND intronic sequence, especially focusing on promoter regions.   They identified 1,448 single nucleotide variants but using a statistical filter (called RareCover which is referred to as a collapsing method) they found 4 variants in the promoters and intronic areas of the FAAH and MGLL genes which correlated to body mass index.  It should be noted that anandamide, a substrate for FAAH, is elevated in obese patients. The authors did note some issues though mentioning that “some other loci, more weakly or inconsistently associated in the original GWASs, were not replicated in our samples, which is not too surprising given the sample size of our cohort is inadequate to replicate modest associations”.

PLEASE WATCH VIDEO on the National Heart, Lung and Blood Institute Exome Sequencing Project

https://www.youtube.com/watch?v=-Qr5ahk1HEI

REFERENCES

http://www.phgfoundation.org/news/5164/  PHG Foundation

1.            Kaiser J: Human genetics. Genetic influences on disease remain hidden. Science 2012, 338(6110):1016-1017.

2.            Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G et al: Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012, 337(6090):64-69.

3.            Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB: Rare variants create synthetic genome-wide associations. PLoS biology 2010, 8(1):e1000294.

4.            Nuytemans K, Bademci G, Inchausti V, Dressen A, Kinnamon DD, Mehta A, Wang L, Zuchner S, Beecham GW, Martin ER et al: Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 2013, 80(11):982-989.

5.            Harismendy O, Bansal V, Bhatia G, Nakano M, Scott M, Wang X, Dib C, Turlotte E, Sipe JC, Murray SS et al: Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants associated with extreme obesity and metabolite level. Genome biology 2010, 11(11):R118.

Other posts on this site related to Genomics include:

Cancer Biology and Genomics for Disease Diagnosis

Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

Genomics-based cure for diabetes on-the-way

Personalized Medicine: Clinical Aspiration of Microarrays

Late Onset of Alzheimer’s Disease and One-carbon Metabolism

Genetics of Disease: More Complex is How to Creating New Drugs

Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

Centers of Excellence in Genomic Sciences (CEGS): NHGRI to Fund New CEGS on the Brain: Mental Disorders and the Nervous System

Cancer Genomic Precision Therapy: Digitized Tumor’s Genome (WGSA) Compared with Genome-native Germ Line: Flash-frozen specimen and Formalin-fixed paraffin-embedded Specimen Needed

Mitochondrial Metabolism and Cardiac Function

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

Quantum Biology And Computational Medicine

Personalized Cardiovascular Genetic Medicine at Partners HealthCare and Harvard Medical School

Centers of Excellence in Genomic Sciences (CEGS): NHGRI to Fund New CEGS on the Brain: Mental Disorders and the Nervous System

LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2

Consumer Market for Personal DNA Sequencing: Part 4

Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research: Part 3

Whole-Genome Sequencing Data will be Stored in Coriell’s Spin off For-Profit Entity

 

Read Full Post »