Feeds:
Posts
Comments

Posts Tagged ‘Single Nucleotide polymorphisms’

Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

Reporter/Curator: Stephen J. Williams, Ph.D.

 

UPDATED on 9/6/2017

On 9/6/2017, Aviva Lev-Ari, PhD, RN had attend a talk by Paul Nioi, PhD, Amgen, at HMS, Harvard BioTechnology Club (GSAS).

Nioi discussed his 2016 paper in NEJM, 2016, 374:2131-2141

Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease

Paul Nioi, Ph.D., Asgeir Sigurdsson, B.Sc., Gudmar Thorleifsson, Ph.D., Hannes Helgason, Ph.D., Arna B. Agustsdottir, B.Sc., Gudmundur L. Norddahl, Ph.D., Anna Helgadottir, M.D., Audur Magnusdottir, Ph.D., Aslaug Jonasdottir, M.Sc., Solveig Gretarsdottir, Ph.D., Ingileif Jonsdottir, Ph.D., Valgerdur Steinthorsdottir, Ph.D., Thorunn Rafnar, Ph.D., Dorine W. Swinkels, M.D., Ph.D., Tessel E. Galesloot, Ph.D., Niels Grarup, Ph.D., Torben Jørgensen, D.M.Sc., Henrik Vestergaard, D.M.Sc., Torben Hansen, Ph.D., Torsten Lauritzen, D.M.Sc., Allan Linneberg, Ph.D., Nele Friedrich, Ph.D., Nikolaj T. Krarup, Ph.D., Mogens Fenger, Ph.D., Ulrik Abildgaard, D.M.Sc., Peter R. Hansen, D.M.Sc., Anders M. Galløe, Ph.D., Peter S. Braund, Ph.D., Christopher P. Nelson, Ph.D., Alistair S. Hall, F.R.C.P., Michael J.A. Williams, M.D., Andre M. van Rij, M.D., Gregory T. Jones, Ph.D., Riyaz S. Patel, M.D., Allan I. Levey, M.D., Ph.D., Salim Hayek, M.D., Svati H. Shah, M.D., Muredach Reilly, M.B., B.Ch., Gudmundur I. Eyjolfsson, M.D., Olof Sigurdardottir, M.D., Ph.D., Isleifur Olafsson, M.D., Ph.D., Lambertus A. Kiemeney, Ph.D., Arshed A. Quyyumi, F.R.C.P., Daniel J. Rader, M.D., William E. Kraus, M.D., Nilesh J. Samani, F.R.C.P., Oluf Pedersen, D.M.Sc., Gudmundur Thorgeirsson, M.D., Ph.D., Gisli Masson, Ph.D., Hilma Holm, M.D., Daniel Gudbjartsson, Ph.D., Patrick Sulem, M.D., Unnur Thorsteinsdottir, Ph.D., and Kari Stefansson, M.D., Ph.D.

N Engl J Med 2016; 374:2131-2141June 2, 2016DOI: 10.1056/NEJMoa1508419

Abstract
Article
References
Citing Articles (22)
Metrics

BACKGROUND

Several sequence variants are known to have effects on serum levels of non–high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease.

METHODS

We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability.

RESULTS

We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10−16), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10−6). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10−3).

CONCLUSIONS

ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.)

 

Amgen’s deCODE Genetics Publishes Largest Human Genome Population Study to Date

Mark Terry, BioSpace.com Breaking News Staff reported on results of one of the largest genome sequencing efforts to date, sequencing of the genomes of 2,636 people from Iceland by deCODE genetics, Inc., a division of Thousand Oaks, Calif.-based Amgen (AMGN).

Amgen had bought deCODE genetics Inc. in 2012, saving the company from bankruptcy.

There were a total of four studies, published on March 25, 2015 on the online version of Nature Genetics; titled “Large-scale whole-genome sequencing of the Icelandic population[1],” “Identification of a large set of rare complete human knockouts[2],” “The Y-chromosome point mutation rate in humans[3]” and “Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease[4].”

The project identified some new genetic variants which increase risk of Alzheimer’s disease and confirmed some variants known to increase risk of diabetes and atrial fibrillation. A more in-depth post will curate these findings but there was an interesting discrete geographic distribution of certain rare variants located around Iceland. The dataset offers a treasure trove of meaningful genetic information not only about the Icelandic population but offers numerous new targets for breast, ovarian cancer as well as Alzheimer’s disease.

View Mark Terry’s article here on Biospace.com.

“This work is a demonstration of the unique power sequencing gives us for learning more about the history of our species,” said Kari Stefansson, founder and chief executive officer of deCode and one of the lead authors in a statement, “and for contributing to new means of diagnosing, treating and preventing disease.”

The scale and ambition of the study is impressive, but perhaps more important, the research identified a new genetic variant that increases the risk of Alzheimer’s disease and already had identified an APP variant that is associated with decreased risk of Alzheimer’s Disease. It also confirmed variants that increase the risk of diabetes and a variant that results in atrial fibrillation.
The database of human genetic variation (dbSNP) contained over 50 million unique sequence variants yet this database only represents a small proportion of single nucleotide variants which is thought to exist. These “private” or rare variants undoubtedly contribute to important phenotypes, such as disease susceptibility. Non-SNV variants, like indels and structural variants, are also under-represented in public databases. The only way to fully elucidate the genetic basis of a trait is to consider all of these types of variants, and the only way to find them is by large-scale sequencing.

Curation of Population Genomic Sequencing Programs/Corporate Partnerships

Click on “Curation of genomic studies” below for full Table

Curation of genomic studies
Study Partners Population Enrolled Disease areas Analysis
Icelandic Genome

Project

deCODE/Amgen Icelandic 2,636 Variants related to: Alzheimer’s, cardiovascular, diabetes WES + EMR; blood samples
Genome Sequencing Study Geisinger Health System/Regeneron Northeast PA, USA 100,000 Variants related to hypercholestemia, autism, obesity, other diseases WES +EMR +MyCode;

– Blood samples

The 100,000 Genomes Project National Health Service/NHS Genome Centers/ 10 companies forming Gene Consortium including Abbvie, Alexion, AstraZeneca, Biogen, Dimension, GSK, Helomics, Roche,   Takeda, UCB Rare disorders population UK Starting to recruit 100,000 Initially rare diseases, cancer, infectious diseases WES of blood, saliva and tissue samples

Ref paper

Saudi Human Genome Program 7 centers across Saudi Arabia in conjunction with King Abdulaziz City Science & Tech., King Faisal Hospital & Research Centre/Life Technologies General population Saudi Arabia 20,000 genomes over three years First focus on rare severe early onset diseases: diabetes, deafness, cardiovascular, skeletal deformation Whole genome sequence blood samples + EMR
Genome of the Netherlands (GoNL) Consortium consortium of the UMCG,LUMCErasmus MCVU university and UMCU. Samples where contributed by LifeLinesThe Leiden Longevity StudyThe Netherlands Twin Registry (NTR), The Rotterdam studies, and The Genetic Research in Isolated Populations program. All the sequencing work is done by BGI Hong Kong. Families in Netherlands 769 Variants, SNV, indels, deletions from apparently healthy individuals, family trios Whole genome NGS of whole blood no EMR

Ref paper in Nat. Genetics

Ref paper describing project

Faroese FarGen project Privately funded Faroe Islands Faroese population 50,000 Small population allows for family analysis Combine NGS with EMR and genealogy reports
Personal Genome Project Canada $4000.00 fee from participants; collaboration with University of Toronto and SickKids Organization; technical assistance with Harvard Canadian Health System Goal: 100,000 ? just started no defined analysis goals yet Whole exome and medical records
Singapore Sequencing Malay Project (SSMP) Singapore Genome Variation Project

Singapore Pharmacogenomics Project

Malaysian 100 healthy Malays from Singapore Pop. Health Study Variant analysis Deep whole genome sequencing
GenomeDenmark four Danish universities (KU, AU, DTU and AAU), two hospitals (Herlev and Vendsyssel) and two private firms (Bavarian Nordic and BGI-Europe). 150 complete genomes; first 30 published in Nature Comm. ? See link
Neuromics Consortium University of Tübingen and 18 academic and industrial partners (see link for description) European and Australian 1,100 patients with neuro-

degenerative and neuro-

muscular disease

Moved from SNP to whole exome analysis Whole Exome, RNASeq

References

  1. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al: Large-scale whole-genome sequencing of the Icelandic population. Nature genetics 2015, advance online publication.
  2. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A et al: Identification of a large set of rare complete human knockouts. Nature genetics 2015, advance online publication.
  3. Helgason A, Einarsson AW, Gumundsdottir VB, Sigursson A, Gunnarsdottir ED, Jagadeesan A, Ebenesersdottir SS, Kong A, Stefansson K: The Y-chromosome point mutation rate in humans. Nature genetics 2015, advance online publication.
  4. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U et al: Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature genetics 2015, advance online publication.

Other post related to DECODE, population genomics, and NGS on this site include:

Illumina Says 228,000 Human Genomes Will Be Sequenced in 2014

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics and Computational Genomics – Part IIB

Human genome: UK to become world number 1 in DNA testing

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases: A consortium of 18 European and Australian institutions

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Three Ancestral Populations Contributed to Modern-day Europeans: Ancient Genome Analysis

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Read Full Post »

Finding the Genetic Links in Common Disease:  Caveats of Whole Genome Sequencing Studies

Writer and Reporter: Stephen J. Williams, Ph.D.

In the November 23, 2012 issue of Science, Jocelyn Kaiser reports (Genetic Influences On Disease Remain Hidden in News and Analysis)[1] on the difficulties that many genomic studies are encountering correlating genetic variants to high risk of type 2 diabetes and heart disease.  At the recent American Society of Human Genetics annual 2012 meeting, results of several DNA sequencing studies reported difficulties in finding genetic variants and links to high risk type 2 diabetes and heart disease.  These studies were a part of an international effort to determine the multiple genetic events contributing to complex, common diseases like diabetes.  Unlike Mendelian inherited diseases (like ataxia telangiectasia) which are characterized by defects mainly in one gene, finding genetic links to more complex diseases may pose a problem as outlined in the article:

  • Variants may be so rare that massive number of patient’s genome would need to be analyzed
  • For most diseases, individual SNPs (single nucleotide polymorphisms) raise risk modestly
  • Hard to find isolated families (hemophilia) or isolated populations (Ashkenazi Jew)
  • Disease-influencing genes have not been weeded out by natural selection after human population explosion (~5000 years ago) resulted in numerous gene variants
  • What percentage variants account for disease heritability (studies have shown this is as low as 26% for diabetes with the remaining risk determined by environment)

Although many genome-wide-associations studies have found SNPs that have causality to increasing risk diseases such as cancer, diabetes, and heart disease, most individual SNPs for common diseases raise risk by about only 20-40% and would be useless for predicting an individual’s chance they will develop disease and be a candidate for a personalized therapy approach.  Therefore, for common diseases, investigators are relying on direct exome sequencing and whole-genome sequencing to detect these medium-rare risk variants, rather than relying on genome-wide association studies (which are usually fine for detecting the higher frequency variants associated with common diseases).

Three of the many projects (one for heart risk and two for diabetes risk) are highlighted in the article:

1.  National Heart, Lung and Blood Institute Exome Sequencing Project (ESP)[2]: heart, lung, blood

  • Sequenced 6,700 exomes of European or African descent
  • Majority of variants linked to disease too rare (as low as one variant)
  • Groups of variants in the same gene confirmed link between APOC3 and higher risk for early-onset heart attack
  • No other significant gene variants linked with heart disease

2.  T2D-GENES Consortium: diabetes

Sequenced 5,300 exomes of type 2 diabetes patients and controls from five ancestry groups
SNP in PAX4 gene associated with disease in East Asians
No low-frequency variant with large effect though

3.  GoT2D: diabetes

  • After sequencing 2700 patient’s exomes and whole genome no new rare variants above 1.5% frequency with a strong effect on diabetes risk

A nice article by Dr. Sowmiya Moorthie entitled Involvement of rare variants in common disease can be found at the PGH Foundation site http://www.phgfoundation.org/news/5164/ further discusses this conundrum,  and is summarized below:

“Although GWAs have identified many SNPs associated with common disease, they have as yet had little success in identifying the causative genetic variants. Those that have been identified have only a weak effect on disease risk, and therefore only explain a small proportion of the heritable, genetic component of susceptibility to that disease. This has led to the common disease-common variant hypothesis, which predicts that common disease-causing genetic variants exist in all human populations, but each individual variant will necessarily only have a small effect on disease susceptibility (i.e. a low associated relative risk).

An alternative hypothesis is the common disease, many rare variants hypothesis, which postulates that disease is caused by multiple strong-effect variants, each of which is only found in a few individuals. Dickson et al. in a paper in PLoS Biology postulate that these rare variants can be indirectly associated with common variants; they call these synthetic associations and demonstrate how further investigation could help explain findings from GWA studies [Dickson et al. (2010) PLoS Biol. 8(1):e1000294][3].  In simulation experiments, 30% of synthetic associations were caused by the presence of rare causative variants and furthermore, the strength of the association with common variants also increased if the number of rare causative variants increased. “

one_of_many rare variants

Figure from Dr. Moorthie’s article showing the problem of “finding one in many”.

(please   click to enlarge)

Indeed, other examples of such issues concerning gene variant association studies occur with other common diseases such as neurologic diseases and obesity, where it has been difficult to clearly and definitively associate any variant with prediction of risk.

For example, Nuytemans et. al.[4] used exome sequencing to find variants in the vascular protein sorting 3J (VPS35) and eukaryotic transcription initiation factor 4  gamma1 (EIF4G1) genes, tow genes causally linked to Parkinson’s Disease (PD).  Although they identified novel VPS35 variants none of these variants could be correlated to higher risk of PD.   One EIF4G1 variant seemed to be a strong Parkinson’s Disease risk factor however there was “no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development”.

These negative results may have relevance as companies such as 23andme (www.23andme.com) claim to be able to test for Parkinson’s predisposition.  To see a description of the LLRK2 mutational analysis which they use to determine risk for the disease please see the following link: https://www.23andme.com/health/Parkinsons-Disease/. This company and other like it have been subjects of posts on this site (Personalized Medicine: Clinical Aspiration of Microarrays)

However there seems to be more luck with strategies focused on analyzing intronic sequence rather than exome sequence. Jocelyn Kaiser’s Science article notes this in a brief interview with Harry Dietz of Johns Hopkins University where he suspects that “much of the missing heritability lies in gene-gene interactions”.  Oliver Harismendy and Kelly Frazer and colleagues’ recent publication in Genome Biology  http://genomebiology.com/content/11/11/R118 support this notion[5].  The authors used targeted resequencing of two endocannabinoid metabolic enzyme genes (fatty-acid-amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in 147 normal weight and 142 extremely obese patients.

These patients were enrolled in the CRESCENDO trial and patients analyzed were of European descent. However, instead of just exome sequencing, the group resequenced exome AND intronic sequence, especially focusing on promoter regions.   They identified 1,448 single nucleotide variants but using a statistical filter (called RareCover which is referred to as a collapsing method) they found 4 variants in the promoters and intronic areas of the FAAH and MGLL genes which correlated to body mass index.  It should be noted that anandamide, a substrate for FAAH, is elevated in obese patients. The authors did note some issues though mentioning that “some other loci, more weakly or inconsistently associated in the original GWASs, were not replicated in our samples, which is not too surprising given the sample size of our cohort is inadequate to replicate modest associations”.

PLEASE WATCH VIDEO on the National Heart, Lung and Blood Institute Exome Sequencing Project

https://www.youtube.com/watch?v=-Qr5ahk1HEI

REFERENCES

http://www.phgfoundation.org/news/5164/  PHG Foundation

1.            Kaiser J: Human genetics. Genetic influences on disease remain hidden. Science 2012, 338(6110):1016-1017.

2.            Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G et al: Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012, 337(6090):64-69.

3.            Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB: Rare variants create synthetic genome-wide associations. PLoS biology 2010, 8(1):e1000294.

4.            Nuytemans K, Bademci G, Inchausti V, Dressen A, Kinnamon DD, Mehta A, Wang L, Zuchner S, Beecham GW, Martin ER et al: Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease. Neurology 2013, 80(11):982-989.

5.            Harismendy O, Bansal V, Bhatia G, Nakano M, Scott M, Wang X, Dib C, Turlotte E, Sipe JC, Murray SS et al: Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants associated with extreme obesity and metabolite level. Genome biology 2010, 11(11):R118.

Other posts on this site related to Genomics include:

Cancer Biology and Genomics for Disease Diagnosis

Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk

Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

Genomics-based cure for diabetes on-the-way

Personalized Medicine: Clinical Aspiration of Microarrays

Late Onset of Alzheimer’s Disease and One-carbon Metabolism

Genetics of Disease: More Complex is How to Creating New Drugs

Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

Centers of Excellence in Genomic Sciences (CEGS): NHGRI to Fund New CEGS on the Brain: Mental Disorders and the Nervous System

Cancer Genomic Precision Therapy: Digitized Tumor’s Genome (WGSA) Compared with Genome-native Germ Line: Flash-frozen specimen and Formalin-fixed paraffin-embedded Specimen Needed

Mitochondrial Metabolism and Cardiac Function

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

Quantum Biology And Computational Medicine

Personalized Cardiovascular Genetic Medicine at Partners HealthCare and Harvard Medical School

Centers of Excellence in Genomic Sciences (CEGS): NHGRI to Fund New CEGS on the Brain: Mental Disorders and the Nervous System

LEADERS in Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment: Part 2

Consumer Market for Personal DNA Sequencing: Part 4

Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research: Part 3

Whole-Genome Sequencing Data will be Stored in Coriell’s Spin off For-Profit Entity

 

Read Full Post »

ENCODE data reveals important information from Genome Wide Association Studies relevant to understanding complex genetic diseases

Author: Ritu Saxena, Ph.D.

 

Introduction

“The depth, quality, and diversity of the ENCODE data are unprecedented” is what was stated by John Stamatoyannopoulos, professor of genomic sciences at the University of Washington and one of the many principle investigators of ENCODE project. ENCODE (Encyclopedia of DNA elements), indeed, was an ambitious project launched as a pilot in 2003 and then expanded in 2007 for the whole genome analysis and identification of all the functional elements of the human genome. The findings were striking as they challenged the definition of “gene” and ‘the central dogma of genetics (Gene-mRNA-protein). Infact, the non-coding part that constitutes about 80% of the genome or the so-called “junk DNA” was found to contain elements crucial for gene regulation. The elements, in large part, include RNA transcripts that are not transcribed into proteins but might have a regulatory role. For detailed reading, refer to the findings published in the issue of Nature, The ENCODE Project Consortium Nature 489, 57–74 (2012) An integrated encyclopedia of DNA elements in the human genome

Key features of the data, as explained in the National Human Genome Research Institute website (National Human Genome Research Institute News feature), include comprehensive mapping of:

  • Protein-coding genes — Proteins are molecules made of amino acids linked together in a specific sequence; the amino acid sequence is encoded by the sequence of DNA subunits called nucleotides that make up genes.
  • Non-coding genes — Stretches of DNA that are read by the cell as if they were genes but do not encode proteins. These appear to help regulate the activity of the genome.
  • Chromatin structure features — Complex physical structures made from a combination of DNA and binding proteins that make up the contents of the nucleus and affects genome function.
  • Histone modifications — Histones are the proteins that make up the chromatin structures that help shape and control the genome. In addition, histone proteins can be physically modified by adding chemical groups, such as a methyl molecule, that further regulates genomic activity.
  • DNA methylation — Just like histones, methyl groups can be added to DNA itself in a process called DNA methylation. Chemically attaching methyl groups to DNA physically changes the ability of enzymes to reach the DNA and thus alters the gene expression pattern in cells. Methylation helps cells “remember what they are doing” or alter levels of gene expression, and it is a crucial part of normal development and cellular differentiation in higher organisms.
  • Transcription factor binding sites — Transcription factors are proteins that bind to specific DNA sequences, controlling the flow (or transcription) of genetic information from DNA to mRNA. Mapping the binding sites can help researchers understand how genomic activity is controlled.

How could ENCODE be helpful in the study of complex human diseases?

Complex diseases and Genome wide association studies (GWAS)

Coronary artery disease, type 2 diabetes and many forms of cancer are complex human diseases that have a significant genetic component. Unlike mendelian disorders that have defined loci, the genetic component of complex disorders lies in the form of genetic variations in the genome making an individual susceptible to these complex diseases.

Researchers have performed Genome-wide association studies (GWAS) of the human genome, leading to the identification of thousands of DNA variants that could be linked with complex traits and diseases. However, identifying the variants, referred to as SNPs (Single Nucleotide Polymorphisms), that actually contribute to the disease, and understanding how they exert influence on a disease has been more of a mystery.

How would ENCODE solve the puzzle?

The puzzle lies in interpreting how the SNPs found in the genome affect a person’s susceptibility to a particular trait or disease and what is the mechanism behind it. As identified in the GWAS, most variants that are associated with the phenotype of the trait or disease lie in the non-coding region of the genome. Infact, in more than 400 studies compiled in the GWAS catalog only a small minority of the trait/disease-associated SNPs occur in protein-coding regions; the large majority (89%) are in noncoding regions. These variants fall in the gene deserts that lie far from protein-coding region, similar to those where cis-regulatory modules (CRMs) are found. CRMs such as promoters and enhancers are a group of binding sites for transcription factors, and the presence of transcription factors bound to these sites is a good indicator of the potential regulatory regions.

The integrative analysis of ENCODE data has give important insights to the results of GWAS studies. Investigators have employed ENCODE data as an initial guide to discover regulatory regions in which genetic variation is affecting a complex trait. Additionally, ENCODE study when examined the SNPs from GWAS that were associated with the phenotype of the trait, found that these regions are enriched in DNase-sensitive regions i.e, lie in the function-associated DNA region of the genome as it could be bound by transcription factors affecting the regulation of gene expression. Thus, the project demonstrates that non-coding regions must be considered when interpreting GWAS results, and it provides a strong motivation for reinterpreting previous GWAS findings.

Using ENCODE Data to Interpret GWAS Results

ENCODE and predisposition to CANCER:

C-Myc, a proto-oncogene, codes for a transcripton factor, when expressed constitutively leads to uninhibited cell proliferation resulting in cancer. It has been observed that common variants within a ~1 Mb region upstream of c-Myc gene have been associated with cancers of the colon, prostate, and breast. Several SNPs have been reported in this region, that although affect the phenotype, lie in the distal cis-region of the MYC gene. Alignment of the ENCODE data in this region with the significant variants from the GWAS also reveals that key variants are found in the transcription factor occupied DNA segments mapped by this consortium. One variant rs698327, lies within a DNase hypersensitive site that is bound by several transcription factors, enhancer-associated protein p300, and contains histone modifications relative to enhancers (high H3K4me1, low H3K4me3). ENCODE data indicates that non-coding regions in the human chromosome 8q24 loci are associated with cancer and as observed in the case of c-myc gene, similar studies on cancer-related genes could help explain predisposition to cancer.

ENCODE and fetal hemoglobin expression:

Another example of the use of ENCODE data is that of gene regulation of fetal hemoglobin. Several regions were predicted via ENCODE that were involved in the regulation of fetal hemoglobin. It was found that these predicted regions are close to the SNPs in the BLC11A gene that is associated with persistent expression of fetal hemoglobin.

Future perspective

As evident from the above examples, the ENCODE data shows that genetic variants do affect regulated expression of a target gene. Recently, several research groups in the UK performed a large-scale GWAS study to determine the genetic predisposition to fracture risk. The collaborative effort, published in a recent issue of the PLoS journal, was made to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) with data from more than 10,000 subjects. http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002745 The study generated a wealth of data including the result – identification of SNPs in the WNT16 and its adjacent gene, FAM3C were found to be relevant to CBT and BMD. ENCODE data, in this case, could be helpful in interpreting more detailed information including determining additional SNPs, the regulatory information of the genes involved and much more. Thus, it could be concluded that ENCODE data could be immensely useful in interpreting associations between disease and DNA sequences that can vary from person to person.

Sources:

Research articles

An integrated encyclopedia of DNA elements in the human genome

A User’s Guide to the Encyclopedia of DNA Elements (ENCODE)

What does our genome encode?

Genome-wide Epigenetic Data Facilitate Understanding of Disease Susceptibility Association Studies

Genomics: ENCODE explained

ENCODE Project Writes Eulogy For Junk DNA

WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk

 News articles

ENCODE project: In massive genome analysis new data suggests ‘gene’ redefinition

National Human Genome Research Institute News feature

Related posts

Expanding the Genetic Alphabet and linking the genome to the metabolome

Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes

ENCODE Findings as Consortium

Read Full Post »

%d bloggers like this: