Feeds:
Posts
Comments

Posts Tagged ‘NGS’


Structure-guided Drug Discovery: (1) The Coronavirus 3CL hydrolase (Mpro) enzyme (main protease) essential for proteolytic maturation of the virus and (2) viral protease, the RNA polymerase, the viral spike protein, a viral RNA as promising two targets for discovery of cleavage inhibitors of the viral spike polyprotein preventing the Coronavirus Virion the spread of infection

 

Curators and Reporters: Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN

 

Therapeutical options to coronavirus (2019-nCoV) include consideration of the following:

(a) Monoclonal and polyclonal antibodies

(b)  Vaccines

(c)  Small molecule treatments (e.g., chloroquinolone and derivatives), including compounds already approved for other indications 

(d)  Immuno-therapies derived from human or other sources

 

 

Structure of the nCoV trimeric spike

The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp et al. determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV. [Bold Face Added by ALA]

Science, this issue p. 1260

Abstract

The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo–electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.

SOURCE
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  1. Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.

  2. 2Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  1. Corresponding author. Email: jmclellan@austin.utexas.edu
  1. * These authors contributed equally to this work.

Science  13 Mar 2020:
Vol. 367, Issue 6483, pp. 1260-1263
DOI: 10.1126/science.abb2507

 

02/04/2020

New Coronavirus Protease Structure Available

PDB data provide a starting point for structure-guided drug discovery

A high-resolution crystal structure of COVID-19 (2019-nCoV) coronavirus 3CL hydrolase (Mpro) has been determined by Zihe Rao and Haitao Yang’s research team at ShanghaiTech University. Rapid public release of this structure of the main protease of the virus (PDB 6lu7) will enable research on this newly-recognized human pathogen.

Recent emergence of the COVID-19 coronavirus has resulted in a WHO-declared public health emergency of international concern. Research efforts around the world are working towards establishing a greater understanding of this particular virus and developing treatments and vaccines to prevent further spread.

While PDB entry 6lu7 is currently the only public-domain 3D structure from this specific coronavirus, the PDB contains structures of the corresponding enzyme from other coronaviruses. The 2003 outbreak of the closely-related Severe Acute Respiratory Syndrome-related coronavirus (SARS) led to the first 3D structures, and today there are more than 200 PDB structures of SARS proteins. Structural information from these related proteins could be vital in furthering our understanding of coronaviruses and in discovery and development of new treatments and vaccines to contain the current outbreak.

The coronavirus 3CL hydrolase (Mpro) enzyme, also known as the main protease, is essential for proteolytic maturation of the virus. It is thought to be a promising target for discovery of small-molecule drugs that would inhibit cleavage of the viral polyprotein and prevent spread of the infection.

Comparison of the protein sequence of the COVID-19 coronavirus 3CL hydrolase (Mpro) against the PDB archive identified 95 PDB proteins with at least 90% sequence identity. Furthermore, these related protein structures contain approximately 30 distinct small molecule inhibitors, which could guide discovery of new drugs. Of particular significance for drug discovery is the very high amino acid sequence identity (96%) between the COVID-19 coronavirus 3CL hydrolase (Mpro) and the SARS virus main protease (PDB 1q2w). Summary data about these closely-related PDB structures are available (CSV) to help researchers more easily find this information. In addition, the PDB houses 3D structure data for more than 20 unique SARS proteins represented in more than 200 PDB structures, including a second viral protease, the RNA polymerase, the viral spike protein, a viral RNA, and other proteins (CSV).

Public release of the COVID-19 coronavirus 3CL hydrolase (Mpro), at a time when this information can prove most vital and valuable, highlights the importance of open and timely availability of scientific data. The wwPDB strives to ensure that 3D biological structure data remain freely accessible for all, while maintaining as comprehensive and accurate an archive as possible. We hope that this new structure, and those from related viruses, will help researchers and clinicians address the COVID-19 coronavirus global public health emergency.

Update: Released COVID-19-related PDB structures include

  • PDB structure 6lu7 (X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao Crystal structure of COVID-19 main protease in complex with an inhibitor N3 doi: 10.2210/pdb6lu7/pdb) Released 2020-02-05
  • PDB structure 6vsb (D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.-L. Hsieh, O. Abiona, B.S. Graham, J.S. McLellan (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation Science doi: 10.1126/science.abb2507) Released 2020-02-26
  • PDB structure 6lxt (Y. Zhu, F. Sun Structure of post fusion core of 2019-nCoV S2 subunit doi: 10.2210/pdb6lxt/pdb) Released 2020-02-26
  • PDB structure 6lvn (Y. Zhu, F. Sun Structure of the 2019-nCoV HR2 Domain doi: 10.2210/pdb6lvn/pdb) Released 2020-02-26
  • PDB structure 6vw1
    J. Shang, G. Ye, K. Shi, Y.S. Wan, H. Aihara, F. Li Structural basis for receptor recognition by the novel coronavirus from Wuhan doi: 10.2210/pdb6vw1/pdb
    Released 2020-03-04
  • PDB structure 6vww
    Y. Kim, R. Jedrzejczak, N. Maltseva, M. Endres, A. Godzik, K. Michalska, A. Joachimiak, Center for Structural Genomics of Infectious Diseases Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 doi: 10.2210/pdb6vww/pdb
    Released 2020-03-04
  • PDB structure 6y2e
    L. Zhang, X. Sun, R. Hilgenfeld Crystal structure of the free enzyme of the SARS-CoV-2 (2019-nCoV) main protease doi: 10.2210/pdb6y2e/pdb
    Released 2020-03-04
  • PDB structure 6y2f
    L. Zhang, X. Sun, R. Hilgenfeld Crystal structure (monoclinic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b) doi: 10.2210/pdb6y2f/pdb
    Released 2020-03-04
  • PDB structure 6y2g
    L. Zhang, X. Sun, R. Hilgenfeld Crystal structure (orthorhombic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b) doi: 10.2210/pdb6y2g/pdb
    Released 2020-03-04
First page image

Abstract

Coronavirus disease 2019 (COVID-19) is a global pandemic impacting nearly 170 countries/regions and more than 285,000 patients worldwide. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which invades cells through the angiotensin converting enzyme 2 (ACE2) receptor. Among those with COVID-19, there is a higher prevalence of cardiovascular disease and more than 7% of patients suffer myocardial injury from the infection (22% of the critically ill). Despite ACE2 serving as the portal for infection, the role of ACE inhibitors or angiotensin receptor blockers requires further investigation. COVID-19 poses a challenge for heart transplantation, impacting donor selection, immunosuppression, and post-transplant management. Thankfully there are a number of promising therapies under active investigation to both treat and prevent COVID-19. Key Words: COVID-19; myocardial injury; pandemic; heart transplant

SOURCE

https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.120.046941

ACE2

  • Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW (Apr 2004). “ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis”The Journal of Biological Chemistry279 (17): 17996–8007. doi:10.1074/jbc.M311191200PMID 14754895.

 

  • Turner AJ, Tipnis SR, Guy JL, Rice G, Hooper NM (Apr 2002). “ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors”Canadian Journal of Physiology and Pharmacology80 (4): 346–53. doi:10.1139/y02-021PMID 12025971.

 

  •  Zhang, Haibo; Penninger, Josef M.; Li, Yimin; Zhong, Nanshan; Slutsky, Arthur S. (3 March 2020). “Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target”Intensive Care Medicine. Springer Science and Business Media LLC. doi:10.1007/s00134-020-05985-9ISSN 0342-4642PMID 32125455.

 

  • ^ Gurwitz, David (2020). “Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics”Drug Development Researchdoi:10.1002/ddr.21656PMID 32129518.

 

Angiotensin converting enzyme 2 (ACE2)

is an exopeptidase that catalyses the conversion of angiotensin I to the nonapeptide angiotensin[1-9][5] or the conversion of angiotensin II to angiotensin 1-7.[6][7] ACE2 has direct effects on cardiac functiona and is expressed predominantly in vascular endothelial cells of the heart and the kidneys.[8] ACE2 is not sensitive to the ACE inhibitor drugs used to treat hypertension.[9]

ACE2 receptors have been shown to be the entry point into human cells for some coronaviruses, including the SARS virus.[10] A number of studies have identified that the entry point is the same for SARS-CoV-2,[11] the virus that causes COVID-19.[12][13][14][15]

Some have suggested that a decrease in ACE2 could be protective against Covid-19 disease[16], but others have suggested the opposite, that Angiotensin II receptor blocker drugs could be protective against Covid-19 disease via increasing ACE2, and that these hypotheses need to be tested by datamining of clinical patient records.[17]

REFERENCES

https://en.wikipedia.org/wiki/Angiotensin-converting_enzyme_2

 

FOLDING@HOME TAKES UP THE FIGHT AGAINST COVID-19 / 2019-NCOV

We need your help! Folding@home is joining researchers around the world working to better understand the 2019 Coronavirus (2019-nCoV) to accelerate the open science effort to develop new life-saving therapies. By downloading Folding@Home, you can donate your unused computational resources to the Folding@home Consortium, where researchers working to advance our understanding of the structures of potential drug targets for 2019-nCoV that could aid in the design of new therapies. The data you help us generate will be quickly and openly disseminated as part of an open science collaboration of multiple laboratories around the world, giving researchers new tools that may unlock new opportunities for developing lifesaving drugs.

2019-nCoV is a close cousin to SARS coronavirus (SARS-CoV), and acts in a similar way. For both coronaviruses, the first step of infection occurs in the lungs, when a protein on the surface  of the virus binds to a receptor protein on a lung cell. This viral protein is called the spike protein, depicted in red in the image below, and the receptor is known as ACE2. A therapeutic antibody is a type of protein that can block the viral protein from binding to its receptor, therefore preventing the virus from infecting the lung cell. A therapeutic antibody has already been developed for SARS-CoV, but to develop therapeutic antibodies or small molecules for 2019-nCoV, scientists need to better understand the structure of the viral spike protein and how it binds to the human ACE2 receptor required for viral entry into human cells.

Proteins are not stagnant—they wiggle and fold and unfold to take on numerous shapes.  We need to study not only one shape of the viral spike protein, but all the ways the protein wiggles and folds into alternative shapes in order to best understand how it interacts with the ACE2 receptor, so that an antibody can be designed. Low-resolution structures of the SARS-CoV spike protein exist and we know the mutations that differ between SARS-CoV and 2019-nCoV.  Given this information, we are uniquely positioned to help model the structure of the 2019-nCoV spike protein and identify sites that can be targeted by a therapeutic antibody. We can build computational models that accomplish this goal, but it takes a lot of computing power.

This is where you come in! With many computers working towards the same goal, we aim to help develop a therapeutic remedy as quickly as possible. By downloading Folding@home here [LINK] and selecting to contribute to “Any Disease”, you can help provide us with the computational power required to tackle this problem. One protein from 2019-nCoV, a protease encoded by the viral RNA, has already been crystallized. Although the 2019-nCoV spike protein of interest has not yet been resolved bound to ACE2, our objective is to use the homologous structure of the SARS-CoV spike protein to identify therapeutic antibody targets.

This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.

Image and Caption Credit: Alissa Eckert, MS; Dan Higgins, MAM available at https://phil.cdc.gov/Details.aspx?pid=23311

Structures of the closely related SARS-CoV spike protein bound by therapeutic antibodies may help rapidly design better therapies. The three monomers of the SARS-CoV spike protein are shown in different shades of red; the antibody is depicted in green. [PDB: 6NB7 https://www.rcsb.org/structure/6nb7]

(post authored by Ariana Brenner Clerkin)

References:

PDB 6lu7 structure summary ‹ Protein Data Bank in Europe (PDBe) ‹ EMBL-EBI https://www.ebi.ac.uk/pdbe/entry/pdb/6lu7 (accessed Feb 5, 2020).

Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; et al. Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-Specific Human Monoclonal Antibody; preprint; Microbiology, 2020. https://doi.org/10.1101/2020.01.28.923011.

Walls, A. C.; Xiong, X.; Park, Y. J.; Tortorici, M. A.; Snijder, J.; Quispe, J.; Cameroni, E.; Gopal, R.; Dai, M.; Lanzavecchia, A.; et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 2019176, 1026-1039.e15. https://doi.org/10.2210/pdb6nb7/pdb.

SOURCE

https://foldingathome.org/2020/02/27/foldinghome-takes-up-the-fight-against-covid-19-2019-ncov/

UPDATED 3/13/2020

I am reposting the following Science blog post from Derrick Lowe as is and ask people go browse through the comments on his Science blog In the Pipeline because, as Dr. Lowe states that in this current crisis it is important to disseminate good information as quickly as possible so wanted the readers here to have the ability to read his great posting on this matter of Covid-19.  Also i would like to direct readers to the journal Science opinion letter concerning how important it is to rebuild the trust in good science and the scientific process.  The full link for the following In the Pipeline post is: https://blogs.sciencemag.org/pipeline/archives/2020/03/06/covid-19-small-molecule-therapies-reviewed

A Summary of current potential repurposed therapeutics for COVID-19 Infection from In The Pipeline: A Science blog from Derick Lowe

Covid-19 Small Molecule Therapies Reviewed

Let’s take inventory on the therapies that are being developed for the coronavirus epidemic. Here is a very thorough list of at Biocentury, and I should note that (like Stat and several other organizations) they’re making all their Covid-19 content free to all readers during this crisis. I’d like to zoom in today on the potential small-molecule therapies, since some of these have the most immediate prospects for use in the real world.

The ones at the front of the line are repurposed drugs that are already approved for human use, for a lot of obvious reasons. The Biocentury list doesn’t cover these, but here’s an article at Nature Biotechnology that goes into detail. Clinical trials are a huge time sink – they sort of have to be, in most cases, if they’re going to be any good – and if you’ve already done all that stuff it’s a huge leg up, even if the drug itself is not exactly a perfect fit for the disease. So what do we have? The compound that is most advanced is probably remdesivir from Gilead, at right. This has been in development for a few years as an RNA virus therapy – it was originally developed for Ebola, and has been tried out against a whole list of single-strand RNA viruses. That includes the related coronaviruses SARS and MERS, so Covid-19 was an obvious fit.

The compound is a prodrug – that phosphoramide gets cleaved off completely, leaving the active 5-OH compound GS-44-1524. It mechanism of action is to get incorporated into viral RNA, since it’s taken up by RNA polymerase and it largely seems to evade proofreading. This causes RNA termination trouble later on, since that alpha-nitrile C-nucleoside is not exactly what the virus is expecting in its genome at that point, and thus viral replication is inhibited.

There are five clinical trials underway (here’s an overview at Biocentury). The NIH has an adaptive-design Phase II trial that has already started in Nebraska, with doses to be changed according to Bayesian readouts along the way. There are two Phase III trials underway at China-Japan Friendship Hospital in Hubei, double-blinded and placebo-controlled (since placebo is, as far as drug therapy goes, the current standard of care). And Gilead themselves are starting two open-label trials, one with no control arm and one with an (unblinded) standard-of-care comparison arm. Those might read out first, depending on when they get off the ground, but will be only rough readouts due to the fast-and-loose trial design. The two Hubei trials and the NIH one will add some rigor to the process, but I’m not sure when they’re going to report. My personal opinion is that I like the chances of this drug more than anything else on this list, but it’s still unlikely to be a game-changer.

There’s an RNA polymerase inhibitor (favipiravir) from Toyama, at right, that’s in a trial in China. It’s a thought – a broad-spectrum agent of this sort would be the sort of thing to try. But unfortunately, from what I can see, it has already turned up as ineffective in in vitro tests. The human trial that’s underway is honestly the sort of thing that would only happen under circumstances like the present: a developing epidemic with a new pathogen and no real standard of care. I hold out little hope for this one, but given that there’s nothing else at present, it probably should be tried. As you’ll see, this is far from the only situation like this.

One of the screens of known drugs in China that also flagged remdesivir noted that the old antimalarial drug chloroquine seemed to be effective in vitro. It had been reported some years back as a possible antiviral, working through more than one mechanism, probably both at viral entry and intracellularly thereafter. That part shouldn’t be surprising – chloroquine’s actual mode(s) of action against malaria parasites are still not completely worked out, either, and some of what people thought they knew about it has turned out to be wrong. There are several trials underway with it at Chinese facilities, some in combination with other agents like remdesivir. Chloroquine has of course been taken for many decades as an antimalarial, but it has a number of liabilities, including seizures, hearing damage, retinopathy and sudden effects on blood glucose. So it’s going to be important to establish just how effective it is and what doses will be needed. Just as with vaccine candidates, it’s possible to do more harm with a rushed treatment than the disease is doing itself

There are several other known antiviral drugs are being tried in China, but I don’t have too much hope for those, either. The neuraminidase inhibitors such as oseltamivir (better known as Tamiflu) were tried against SARS and were ineffective; there is no reason to expect anything versus Covid-19 although these drugs are a component of some drug cocktail trials. The HIV protease therapies such as darunavir and the combination therapy Kaletra are in trials, but that’s also a rather desperate long shot, since there’s no particular reason to think that they will have any such protease inhibition against what this new virus has to offer (and indeed, such agents weren’t much help against SARS in the end, either). The classic interferon/ribavirin combination seems to have had some activity against SARS and MERS, and is in two trials from what I can see. That’s not an awful idea by any means, but it’s not a great one, either: if your viral disease has interferon/ribavirin as a front line therapy, it generally means that there’s nothing really good available. No, unless we get really lucky none of these ideas are going to slow the disease down much.

There are a few other repurposed-protease-inhibitors ideas out there, such as this one. (Edit: I had seen this paper but couldn’t track it down, so thanks to those who sent it along). This paper suggests that the TMPRSS2 protease is important for viral entry on the human-cell-side of the process, a pathway that has been noted for other coronaviruses. And it points out that there is a an approved inhibitor (in Japan) for this enzyme (camostat), so that would definitely seem to be worth a trial, probably in combination with remdesivir.

That’s about it for the existing small molecules, from what I can see. What about new ones? Don’t hold your breath, is all I can say. A drug discovery program from scratch against a new pathogen is, as many readers here well know, not a trivial exercise. As this Bloomberg article details, many such efforts in the past (small molecules and vaccines alike) have come to grief because by the time they had anything to deliver the epidemic itself had passed. Indeed, Gilead’s remdesivir had already been dropped as a potential Ebola therapy.

You will either need to have a target in mind up front or go phenotypic. For the former, what you’d see are better characterizations of the viral protease and more extensive screens against it. Two other big target areas are viral entry (which involves the “spike” proteins on the virus surface and the ACE2 protein on human cells) and viral replication. To the former, it’s worth quickly noting that ACE2 is so much unlike the more familiar ACE protein that none of the cardiovascular ACE inhibitors do anything to it at all. And targeting the latter mechanisms is how remdesivir was developed as a possible Ebola agent, but as you can see, that took time, too. Phenotypic screens are perfectly reasonable against viral pathogens as well, but you’ll need to put time and effort into that assay up front, just as with any phenotypic effort, because as anyone who does that sort of work will tell you, a bad phenotypic screen is a complete waste of everyone’s time.

One of the key steps for either route is identifying an animal model. While animal models of infectious disease can be extremely well translated to human therapy, that doesn’t happen by accident: you need to choose the right animal. Viruses in general (and coronaviruses are no exception) vary widely in their effects in different species, and not just across the gaps of bird/reptile/human and the like. No, you’ll run into things where even the usual set of small mammals are acting differently from each other, with some of them not even getting sick at all. This current virus may well have gone through a couple of other mammalian species before landing on us, but you’ll note that dogs (to pick one) don’t seem to have any problem with it.

All this means that any new-target new-chemical-matter effort against Covid-19 (or any new pathogen) is going to take years, and there is just no way around that. Update: see here for just such an effort to start finding fragment hits for the viral protease. This puts small molecules in a very bimodal distribution: you have the existing drugs that might be repurposed, and are presumably available right now. Nothing else is! At the other end, for completely new therapies you have the usual prospects of drug discovery: years from now, lots of money, low success rate, good luck to all of us. The gap between these two could in theory be filled by vaccines and antibody therapies (if everything goes really, really well) but those are very much their own area and will be dealt with in a separate post.

Either way, the odds are that we (and I mean “we as a species” here) are going to be fighting this epidemic without any particularly amazing pharmacological weapons. Eventually we’ll have some, but I would advise people, pundits, and politicians not to get all excited about the prospects for some new therapies to come riding up over the hill to help us out. The odds of that happening in time to do anything about the current outbreak are very small. We will be going for months, years, with the therapeutic options we have right now. Look around you: what we have today is what we have to work with.

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Group of Researchers @ University of California, Riverside, the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory, and Northwestern University solve COVID-19 Structure and Map Potential Therapeutics

Reporters: Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/03/06/group-of-researchers-solve-covid-19-structure-and-map-potential-therapeutic/

Predicting the Protein Structure of Coronavirus: Inhibition of Nsp15 can slow viral replication and Cryo-EM – Spike protein structure (experimentally verified) vs AI-predicted protein structures (not experimentally verified) of DeepMind (Parent: Google) aka AlphaFold

Curators: Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/03/08/predicting-the-protein-structure-of-coronavirus-inhibition-of-nsp15-can-slow-viral-replication-and-cryo-em-spike-protein-structure-experimentally-verified-vs-ai-predicted-protein-structures-not/

 

Coronavirus facility opens at Rambam Hospital using new Israeli tech

https://www.jpost.com/Israel-News/Coronavirus-facility-opens-at-Rambam-Hospital-using-new-Israeli-tech-619681

 

Read Full Post »


     


SomaticSeq: An Ensemble Approach with Machine Learning to Detect Cancer Variants

June 16 at 1pm EDT Register for this Webinar |  View All Webinars

Accurate detection of somatic mutations has proven to be challenging in cancer NGS analysis, due to tumor heterogeneity and cross-contamination between tumor and matched normal samples. Oftentimes, a somatic caller that performs well for one tumor may not for another.

In this webinar we will introduce SomaticSeq, a tool within the Bina Genomic Management Solution (Bina GMS) designed to boost the accuracy of somatic mutation detection with a machine learning approach. You will learn:

  • Benchmarking of leading somatic callers, namely MuTect, SomaticSniper, VarScan2, JointSNVMix2, and VarDict
  • Integration of such tools and how accuracy is achieved using a machine learning classifier that incorporates over 70 features with SomaticSeq
  • Accuracy validation including results from the ICGC-TCGA DREAM Somatic Mutation Calling Challenge, in which Bina placed 1st in indel calling and 2nd in SNV calling in stage 5
  • Creation of a new SomaticSeq classifier utilizing your own dataset
  • Review of the somatic workflow within the Bina Genomic Management Solution

Speakers:

Li Tai Fang

Li Tai Fang
Sr. Bioinformatics Scientist
Bina Technologies, Part of
Roche Sequencing

Anoop Grewal

Anoop Grewal
Product Marketing Manager
Bina Technologies, Part of
Roche Sequencing

<Read full speaker bios here>

Cost: No cost!

Schedule conflict? Register now and you’ll receive a copy of the recording.

This webinar is compliments of: 

Bio-ITWorld.com/Bio-IT-Webinars

Read Full Post »


Invivoscribe, Thermo Fisher Ink Cancer Dx Development Deal

Reporter: Stephen J. Williams, PhD

 

NEW YORK (GenomeWeb) – Invivoscribe Technologies announced today that it has formed a strategic partnership with Thermo Fisher Scientific to develop multiple next-generation sequencing-based in vitro cancer diagnostics.

Under the deal, Invivoscribe will develop and commercialize immune-oncology molecular diagnostics that run on Thermo’s Ion PGM Dx system, as well as associated bioinformatics software for applications in liquid biopsies. The tests will be specifically designed for both the diagnosis and minimal residual disease (MRD) monitoring of various hematologic cancers.

Additional terms of the arrangement were not disclosed.

“We are … very excited to provide our optimized NGS tests with comprehensive bioinformatics software so our customers can perform the entire testing and reporting process, including MRD testing, within their laboratories,” Invivoscribe CEO Jeffrey Miller said in a statement.

Read Full Post »


Cambridge Healthtech Institute’s Third Annual

Clinical NGS Assays

Addressing Validation, Standards, and Clinical Relevance for Improved Outcomes

August 23-24, 2016 | Grand Hyatt Hotel | Washington, DC


View Preliminary Agenda

Molecular diagnostics, particularly next-generation sequencing (NGS), have become an integral component of disease diagnosis. Still, there is work to be done to establish these tools as the standard of care. The Third Annual Clinical NGS Assays event will address NGS assay validation, establishing NGS standards, and determining clinical relevance. The pros and cons of various techniques such as gene panels, whole exome, and whole genome sequencing will also be debated with regards to depth of coverage, clinical utility, and reimbursement. Overall, this event will address the needs of both researchers and clinicians while exploring strategies to increase collaboration for improved patient outcomes.

Special Early Registration Savings Available
Register Now to Save up to $450

Preliminary Agenda

ASSAY VALIDATION AND ANALYSIS

Best Practices for Using Genome in a Bottle Reference Materials to Benchmark Variant Calls
Justin Zook, National Institute of Standards and Technology

NGS in Clinical Diagnosis: Aspects of Quality Management
Pinar Bayrak-Toydemir, M.D., Ph.D., FACMG, Associate Professor, Pathology, University of Utah; Medical Director, Molecular Genetics and Genomics, ARUP Laboratories

Thorough Validation and Implementation of Preimplantation Genetic Screening for Aneuploidy by NGS
Rebekah Zimmerman, Ph.D., Laboratory Director, Clinical Genetics, Foundation for Embryonic Competence

EXOME INTERPRETATION CHALLENGES

Are We There Yet? The Odyssey of Exome Analysis and Interpretation
Avni B. Santani, Ph.D., Director, Genomic Diagnostics, Pathology and Lab Medicine, The Children’s Hospital of Philadelphia

Challenges in Exome Interpretation: Intronic Variants
Rong Mao, M.D., Associate Professor, Pathology, University of Utah; Medical Director, Molecular Genetics and Genomics, ARUP Laboratories

Exome Sequencing: Case Studies of Diagnostic and Ethical Challenges
Lora J. H. Bean, Ph.D., Assistant Professor, Human Genetics, Emory University

ESTABLISHING STANDARDS

Implementing Analytical and Process Standards
Karl V. Voelkerding, M.D., Professor, Pathology, University of Utah; Medical Director for Genomics and Bioinformatics, ARUP Laboratories

Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice
Shashikant Kulkarni, M.S., Ph.D., Professor, Pathology and Immunology; Head of Clinical Genomics, Genomics and Pathology Services; Director, Cytogenomics and Molecular Pathology, Washington University at St. Louis

Sponsored Presentation to be Announced by Genection

PANEL DISCUSSION: GENE PANEL VS. WHOLE EXOME VS. WHOLE GENOME

Panelists:
John Chiang, Ph.D., Director, Casey Eye Institute, Oregon Health & Science University
Avni B. Santani, Ph.D., Director, Genomic Diagnostics, Pathology and Lab Medicine, The Children’s Hospital of Philadelphia
Additional Panelist to be Announced

DETERMINING CLINICAL SIGNIFICANCE AND RETURNING RESULTS

Utility of Implementing Clinical NGS Assays as Standard-of-Care in Oncology
Helen Fernandes, Ph.D., Pathology & Laboratory Medicine, Weill Cornell Medical College

An NGS Inter-Laboratory Study to Assess Performance and QC – Sponsored by Seracare
Andrea Ferreira-Gonzalez, Ph.D., Chair, Molecular Diagnostics Division, Pathology, Virginia Commonwealth University Medical School

This conference is part of the Eighth Annual Next-Generation Dx Summit.


Track Sponsor: SeraCare


For exhibit & sponsorship opportunities, please contact:

Joseph Vacca, M.Sc.
Associate Director, Business Development
Cambridge Healthtech Institute
T: (+1) 781-972-5431
E: jvacca@healthtech.com

Read Full Post »


Roche is developing a high-throughput low cost sequencer for NGS

Reporter: Stephen J. Williams, PhD

 

Reported from Diagnostic World News

Long-Read Sequencing in the Age of Genomic Medicine

 

 

By Aaron Krol

December 16, 2015 | This September, Pacific Biosciences announced the creation of the Sequel, a DNA sequencer half the cost and seven times as powerful as its previous RS II instrument. PacBio, with its unique long-read sequencing technology, had already secured a place in high-end research labs, producing finished, highly accurate genomes and helping to explore the genetic “dark matter” that other next-generation sequencing (NGS) instruments miss. Now, in partnership with Roche Diagnostics, PacBio is repositioning itself as a company that can serve hospitals as well.

“Pseudogenes, large structural variants, validation, repeat disorders, polymorphic regions of the genome―all those are categories where you practically need PacBio,” says Bobby Sebra, Director of Technology Development at the Icahn School of Medicine at Mount Sinai. “Those are gaps in the system right now for short-read NGS.”

Mount Sinai’s genetic testing lab owns three RS II sequencers, running almost around the clock, and was the first lab to announce it had bought a Sequel just weeks after the new instruments were launched. (It arrived earlier this month and has been successfully tested.) Sebra’s group uses these sequencers to read parts of the genome that, thanks to their structural complexity, can only be assembled from long, continuous DNA reads.

There are a surprising number of these blind spots in the human genome. “HLA is a huge one,” Sebra says, referring to a highly variable region of the genome involved in the immune system. “It impacts everything from immune response, to pharmacogenomics, to transplant medicine. It’s a pretty important and really hard-to-genotype locus.”

Nonetheless, few clinical organizations are studying PacBio or other long-read technologies. PacBio’s instruments, even the Sequel, come with a relatively high price tag, and research on their value in treating patients is still tentative. Mount Sinai’s confidence in the technology is surely at least partly due to the influence of Sebra―an employee of PacBio for five years before coming to New York―and Genetics Department Chair Eric Schadt, at one time PacBio’s Chief Scientific Officer.

Even here, the sequencers typically can’t be used to help treat patients, as the instruments are sold for research use only. Mount Sinai is still working on a limited number of tests to submit as diagnostics to New York State regulators.

Physician Use

Roche Diagnostics, which invested $75 million in the development of the Sequel, wants to change that. The company is planning to release its own, modified version of the instrument in the second half of 2016, specifically for diagnostic use. Roche will initially promote the device for clinical studies, and eventually seek FDA clearance to sell it for routine diagnosis of patients.

In an email to Diagnostics World, Paul Schaffer, Lifecycle Leader for Roche’s sequencing platforms division, wrote that the new device will feature an integrated software pipeline to interpret test results, in support of assays that Roche will design and validate for clinical indications. The instrument will also have at least minor hardware modifications, like near field communication designed to track Roche-branded reagents used during sequencing.

This new version of the Sequel will probably not be the first instrument clinical labs turn to when they decide to start running NGS. Short-read sequencers are sure to outcompete the Roche machine on price, and can offer a pretty useful range of assays, from co-diagnostics in cancer to carrier testing for rare genetic diseases. But Roche can clear away some of the biggest barriers to entry for hospitals that want to pursue long-read sequencing.

Today, institutions like Mount Sinai that use PacBio typically have to write a lot of their own software to interpret the data that comes off the machines. Off-the-shelf analysis, with readable diagnostic reports for doctors, will make it easier for hospitals with less research focus to get on board. To this end, Roche acquired Bina, an NGS analysis company that handles structural variants and other PacBio specialties, in late 2014.

The next question will be whether Roche can design a suite of tests that clinical labs will want to run. Long-read sequencing is beloved by researchers because it can capture nearly complete genomes, finding the correct order and orientation of DNA reads. “The long-read technologies like PacBio’s are going to be, in the future, the showcase that ties it all together,” Sebra says. “You need those long reads as scaffolds to bring it together.”

But that envisions a future in which doctors will want to sequence their patients’ entire genomes. When it comes to specific medical tests, targeting just a small part of the genome connected to disease, Roche will have to content itself with some niche applications where PacBio stands out.

Early Applications

“At this time we are not releasing details regarding the specific assays under development,” Schaffer told Diagnostics World in his email. “However, virology and genetics are a key focus, as they align with other high-priority Roche Diagnostics products.”

Genetic disease is the obvious place to go with any sequencing technology. Rare hereditary disorders are much easier to understand on a genetic level than conditions like diabetes or heart disease; typically, the pathology can be traced back to a single mutation, making it easy to interpret test results.

Some of these mutations are simply intractable for short-read sequencers. A whole class of diseases, the PolyQ disorders and other repeat disorders, develop when a patient has too many copies of a single, repetitive sequence in a gene region. The gene Huntingtin, for example, contains a long stretch of the DNA code CAG; people born with 40 or more CAG repeats in a row will develop Huntington’s disease as they reach early adulthood.

These disorders would be a prime target for Roche’s sequencer. The Sequel’s long reads, spanning thousands of DNA letters at a stretch, can capture the entire repeat region of Huntingtin at a stretch, unlike short-read sequencers that would tend to produce a garbled mess of CAG reads impossible to count or put in order.

Nonetheless, the length of reads is not the only obstacle to understanding these very obstinate diseases. “The entire category of PolyQ disorders, and Fragile X and Huntington’s, is really important,” says Sebra. “But to be frank, they’re the most challenging even with PacBio.” He suggests that, even without venturing into the darkest realms of the genome, a long-read sequencer might actually be useful for diagnosing many of the same genetic diseases routinely covered by other instruments.

That’s because, even when the gene region involved in a disease is well known, there’s rarely only one way for it to go awry. “An example of that is Gaucher’s disease, in a gene called GBA,” Sebra says. “In that gene, there are hundreds of known mutations, some of which you can absolutely genotype using short reads. But others, you would need to phase the entire block to really understand.” Long-read sequencing, which is better at distinguishing maternal from paternal DNA and highlighting complex rearrangements within a gene, can offer a more thorough look at diseases with many genetic permutations, especially when tracking inheritance through a family.

“You can think of long-read sequencing as a really nice way to supplement some of the inherited panels or carrier screening panels,” Sebra says. “You can also use PacBio to verify variants that are called with short-read sequencing.”

Virology is, perhaps, a more surprising focus for Roche. Diagnosing a viral (or bacterial, or fungal) infection with NGS only requires finding a DNA read unique to a particular species or strain, something short-read sequencers are perfectly capable of.

But Mount Sinai, which has used PacBio in pathogen surveillance projects, has seen advantages to getting the full, completely assembled genomes of the organisms it’s tracking. With bacteria, for instance, key genes that confer resistance to antibiotics might be found either in the native genome, or inside plasmids, small packets of DNA that different species of bacteria freely pass between each other. If your sequencer can assemble these plasmids in one piece, it’s easier to tell when there’s a risk of antibiotic resistance spreading through the hospital, jumping from one infectious species to another.

Viruses don’t share their genetic material so freely, but a similar logic can still apply to viral infections, even in a single person. “A virus is really a mixture of different quasi-species,” says Sebra, so a patient with HIV or influenza likely has a whole constellation of subtly different viruses circulating in their body. A test that assembles whole viral genomes—which, given their tiny size, PacBio can often do in a single read—could give physicians a more comprehensive view of what they’re dealing with, and highlight any quasi-species that affect the course of treatment or how the virus is likely to spread.

The Broader View

These applications are well suited to the diagnostic instrument Roche is building. A test panel for rare genetic diseases can offer clear-cut answers, pointing physicians to any specific variants linked to a disorder, and offering follow-up information on the evidence that backs up that call.

That kind of report fits well into the workflows of smaller hospital labs, and is relatively painless to submit to the FDA for approval. It doesn’t require geneticists to puzzle over ambiguous results. As Schaffer says of his company’s overall NGS efforts, “In the past two years, Roche has been actively engaged in more than 25 partnerships, collaborations and acquisitions with the goal of enabling us to achieve our vision of sample in to results out.”

But some of the biggest ways medicine could benefit from long-read sequencing will continue to require the personal touch of labs like Mount Sinai’s.

Take cancer, for example, a field in which complex gene fusions and genetic rearrangements have been studied for decades. Tumors contain multitudes of cells with unique patchworks of mutations, and while long-read sequencing can pick up structural variants that may play a role in prognosis and treatment, many of these variants are rarely seen, little documented, and hard to boil down into a physician-friendly answer.

An ideal way to unravel a unique cancer case would be to sequence the RNA molecules produced in the tumor, creating an atlas of the “transcriptome” that shows which genes are hyperactive, which are being silenced, and which have been fused together. “When you run something like IsoSeq on PacBio and you can see truly the whole transcriptome, you’re going to figure out all possible fusions, all possible splicing events, and the true atlas of reads,” says Sebra. “Cancer is so diverse that it’s important to do that on an individual level.”

Occasionally, looking at the whole transcriptome, and seeing how a mutation in one gene affects an entire network of related genes, can reveal an unexpected treatment option―repurposing a drug usually reserved for other cancer types. But that takes a level of attention and expertise that is hard to condense into a mass-market assay.

And, Sebra suggests, there’s another reason for medical centers not to lean too heavily on off-the-shelf tests from vendors like Roche.

Devoted as he is to his onetime employer, Sebra is also a fan of other technologies now emerging to capture some of the same long-range, structural information on the genome. “You’ve now got 10X Genomics, BioNano, and Oxford Nanopore,” he says. “Often, any two or even three of those technologies, when you merge them together, can get you a much more comprehensive story, sometimes faster and sometimes cheaper.” At Mount Sinai, for example, combining BioNano and PacBio data has produced a whole human genome much more comprehensive than either platform can achieve on its own.

The same is almost certainly true of complex cases like cancer. Yet, while companies like Roche might succeed in bringing NGS diagnostics to a much larger number of patients, they have few incentives to make their assays work with competing technologies the way a research-heavy institute like Mount Sinai does.

“It actually drives the commercialization of software packages against the ability to integrate the data,” Sebra says.

Still, he’s hopeful that the Sequel can lead the industry to pay more attention to long-read sequencing in the clinic. “The RS II does a great job of long-read sequencing, but the throughput for the Sequel is so much higher that you can start to achieve large genomes faster,” he says. “It makes it more accessible for people who don’t own the RS II to get going.” And while the need for highly specialized genetics labs won’t be falling off anytime soon, most patients don’t have the luxury of being treated in a hospital with the resources of Mount Sinai. NGS companies increasingly see physicians as some of their most important customers, and as our doctors start checking into the health of our genomes, it would be a shame if ubiquitous short-read sequencing left them with blind spots.

Source: http://diagnosticsworldnews.com/2015/12/16/long-read-sequencing-age-genomic-medicine.aspx

 

 

Read Full Post »


How Will FDA’s new precisionFDA Science 2.0 Collaboration Platform Protect Data?

Reporter: Stephen J. Williams, Ph.D.

As reported in MassDevice.com

FDA launches precisionFDA to harness the power of scientific collaboration

FDA VoiceBy: Taha A. Kass-Hout, M.D., M.S. and Elaine Johanson

Imagine a world where doctors have at their fingertips the information that allows them to individualize a diagnosis, treatment or even a cure for a person based on their genes. That’s what President Obama envisioned when he announced his Precision Medicine Initiative earlier this year. Today, with the launch of FDA’s precisionFDA web platform, we’re a step closer to achieving that vision.

PrecisionFDA is an online, cloud-based, portal that will allow scientists from industry, academia, government and other partners to come together to foster innovation and develop the science behind a method of “reading” DNA known as next-generation sequencing (or NGS). Next Generation Sequencing allows scientists to compile a vast amount of data on a person’s exact order or sequence of DNA. Recognizing that each person’s DNA is slightly different, scientists can look for meaningful differences in DNA that can be used to suggest a person’s risk of disease, possible response to treatment and assess their current state of health. Ultimately, what we learn about these differences could be used to design a treatment tailored to a specific individual.

The precisionFDA platform is a part of this larger effort and through its use we want to help scientists work toward the most accurate and meaningful discoveries. precisionFDA users will have access to a number of important tools to help them do this. These tools include reference genomes, such as “Genome in the Bottle,” a reference sample of DNA for validating human genome sequences developed by the National Institute of Standards and Technology. Users will also be able to compare their results to previously validated reference results as well as share their results with other users, track changes and obtain feedback.

Over the coming months we will engage users in improving the usability, openness and transparency of precisionFDA. One way we’ll achieve that is by placing the code for the precisionFDA portal on the world’s largest open source software repository, GitHub, so the community can further enhance precisionFDA’s features.Through such collaboration we hope to improve the quality and accuracy of genomic tests – work that will ultimately benefit patients.

precisionFDA leverages our experience establishing openFDA, an online community that provides easy access to our public datasets. Since its launch in 2014, openFDA has already resulted in many novel ways to use, integrate and analyze FDA safety information. We’re confident that employing such a collaborative approach to DNA data will yield important advances in our understanding of this fast-growing scientific field, information that will ultimately be used to develop new diagnostics, treatments and even cures for patients.

fda-voice-taha-kass-1x1Taha A. Kass-Hout, M.D., M.S., is FDA’s Chief Health Informatics Officer and Director of FDA’s Office of Health Informatics. Elaine Johanson is the precisionFDA Project Manager.

 

The opinions expressed in this blog post are the author’s only and do not necessarily reflect those of MassDevice.com or its employees.

So What Are the Other Successes With Such Open Science 2.0 Collaborative Networks?

In the following post there are highlighted examples of these Open Scientific Networks and, as long as

  • transparancy
  • equal contributions (lack of heirarchy)

exists these networks can flourish and add interesting discourse.  Scientists are already relying on these networks to collaborate and share however resistance by certain members of an “elite” can still exist.  Social media platforms are now democratizing this new science2.0 effort.  In addition the efforts of multiple biocurators (who mainly work for love of science) have organized the plethora of data (both genomic, proteomic, and literature) in order to provide ease of access and analysis.

Science and Curation: The New Practice of Web 2.0

Curation: an Essential Practice to Manage “Open Science”

The web 2.0 gave birth to new practices motivated by the will to have broader and faster cooperation in a more free and transparent environment. We have entered the era of an “open” movement: “open data”, “open software”, etc. In science, expressions like “open access” (to scientific publications and research results) and “open science” are used more and more often.

Curation and Scientific and Technical Culture: Creating Hybrid Networks

Another area, where there are most likely fewer barriers, is scientific and technical culture. This broad term involves different actors such as associations, companies, universities’ communication departments, CCSTI (French centers for scientific, technical and industrial culture), journalists, etc. A number of these actors do not limit their work to popularizing the scientific data; they also consider they have an authentic mission of “culturing” science. The curation practice thus offers a better organization and visibility to the information. The sought-after benefits will be different from one actor to the next.

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson and others

  • Using Curation and Science 2.0 to build Trusted, Expert Networks of Scientists and Clinicians

Given the aforementioned problems of:

        I.            the complex and rapid deluge of scientific information

      II.            the need for a collaborative, open environment to produce transformative innovation

    III.            need for alternative ways to disseminate scientific findings

CURATION MAY OFFER SOLUTIONS

        I.            Curation exists beyond the review: curation decreases time for assessment of current trends adding multiple insights, analyses WITH an underlying METHODOLOGY (discussed below) while NOT acting as mere reiteration, regurgitation

 

      II.            Curation providing insights from WHOLE scientific community on multiple WEB 2.0 platforms

 

    III.            Curation makes use of new computational and Web-based tools to provide interoperability of data, reporting of findings (shown in Examples below)

 

Therefore a discussion is given on methodologies, definitions of best practices, and tools developed to assist the content curation community in this endeavor

which has created a need for more context-driven scientific search and discourse.

However another issue would be Individual Bias if these networks are closed and protocols need to be devised to reduce bias from individual investigators, clinicians.  This is where CONSENSUS built from OPEN ACCESS DISCOURSE would be beneficial as discussed in the following post:

Risk of Bias in Translational Science

As per the article

Risk of bias in translational medicine may take one of three forms:

  1. a systematic error of methodology as it pertains to measurement or sampling (e.g., selection bias),
  2. a systematic defect of design that leads to estimates of experimental and control groups, and of effect sizes that substantially deviate from true values (e.g., information bias), and
  3. a systematic distortion of the analytical process, which results in a misrepresentation of the data with consequential errors of inference (e.g., inferential bias).

This post highlights many important points related to bias but in summarry there can be methodologies and protocols devised to eliminate such bias.  Risk of bias can seriously adulterate the internal and the external validity of a clinical study, and, unless it is identified and systematically evaluated, can seriously hamper the process of comparative effectiveness and efficacy research and analysis for practice. The Cochrane Group and the Agency for Healthcare Research and Quality have independently developed instruments for assessing the meta-construct of risk of bias. The present article begins to discuss this dialectic.

  • Information dissemination to all stakeholders is key to increase their health literacy in order to ensure their full participation
  • threats to internal and external validity  represent specific aspects of systematic errors (i.e., bias)in design, methodology and analysis

So what about the safety and privacy of Data?

A while back I did a post and some interviews on how doctors in developing countries are using social networks to communicate with patients, either over established networks like Facebook or more private in-house networks.  In addition, these doctor-patient relationships in developing countries are remote, using the smartphone to communicate with rural patients who don’t have ready access to their physicians.

Located in the post Can Mobile Health Apps Improve Oral-Chemotherapy Adherence? The Benefit of Gamification.

I discuss some of these problems in the following paragraph and associated posts below:

Mobile Health Applications on Rise in Developing World: Worldwide Opportunity

According to International Telecommunication Union (ITU) statistics, world-wide mobile phone use has expanded tremendously in the past 5 years, reaching almost 6 billion subscriptions. By the end of this year it is estimated that over 95% of the world’s population will have access to mobile phones/devices, including smartphones.

This presents a tremendous and cost-effective opportunity in developing countries, and especially rural areas, for physicians to reach patients using mHealth platforms.

How Social Media, Mobile Are Playing a Bigger Part in Healthcare

E-Medical Records Get A Mobile, Open-Sourced Overhaul By White House Health Design Challenge Winners

In Summary, although there are restrictions here in the US governing what information can be disseminated over social media networks, developing countries appear to have either defined the regulations as they are more dependent on these types of social networks given the difficulties in patient-physician access.

Therefore the question will be Who Will Protect The Data?

For some interesting discourse please see the following post

Atul Butte Talks on Big Data, Open Data and Clinical Trials

 

Read Full Post »


Reproductive Genetic Dx | Nov. 18-19 | Boston, MA
Reporter: Stephen J. Williams, Ph.D.
Reproductive Genetic Diagnostics
Advances in Carrier Screening, Preimplantation Diagnostics, and POC Testing
November 18-19, 2015  |  Boston, MA
healthtech.com/reproductive-genetic-diagnosticsMount Sinai Hospital’s Dr. Tanmoy Mukherjee to Present at Reproductive Genetic Diagnostics ConferenceTanmoy MukherjeePodcastNumerical Chromosomal Abnormalities after PGS and D&C
Tanmoy Mukherjee, M.D., Assistant Clinical Professor, Obstetrics, Gynecology and Reproductive Science, Mount Sinai Hospital
This review provides an analysis of the most commonly identified numerical chromosome abnormalities following PGS and first trimester D&C samples in an infertile population utilizing ART. Although monosomies comprised >50% of all cytogenetic anomalies identified following PGS, there were very few identified in the post D&C samples. This suggests that while monosomies occur frequently in the IVF population, they commonly do not implant.

In a CHI podcast, Dr. Mukherjee discusses the current challenges facing reproductive specialists in regards to genetic diagnosis of recurrent pregnancy loss, as well as how NGS is affecting this type of testing > Listen to Podcast

Register  SAVE up to $200, Register by October 9

Learn More  |  Present a Poster  |  Sponsorship & Exhibit Information  |  View Brochure

CONFERENCE-AT-A-GLANCE

ADVANCES IN NGS AND OTHER TECHNOLOGIES

Keynote Presentation: Current and Expanding Invitations for Preimplantation Genetic Diagnosis (PGD)
Joe Leigh Simpson, MD, President for Research and Global Programs, March of Dimes Foundation

Next-Generation Sequencing: Its Role in Reproductive Medicine
Brynn Levy, Professor of Pathology & Cell Biology, CUMC; Director, Clinical Cytogenetics Laboratory, Co-Director, Division of Personalized Genomic Medicine, College of Physicians and Surgeons, Columbia University Medical Center, and the New York Presbyterian Hospital

CCS without WGA
Nathan Treff, Director, Molecular Biology Research, Reproductive Medicine Associates of New Jersey, Associate Professor, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers-Robert Wood Johnson Medical School, Adjunct Faculty Member, Department of Genetics, Rutgers-The State University of New Jersey

Concurrent PGD for Single Gene Disorders and Aneuploidy on a Single Trophectoderm Biopsy
Rebekah S. Zimmerman, Ph.D., FACMG, Director, Clinical Genetics, Foundation for Embryonic Competence

Live Birth of Two Healthy Babies with Monogenic Diseases and Chromosome Abnormality Simultaneously Avoided by MALBAC-based Combined PGD and PGS
Xiaoliang Sunney Xie, Ph.D., Mallinckrodt Professor of Chemistry and Chemical Biology, Department of Chemistry and Chemical Biology, Harvard University

Good Start GeneticsAnalytical Validation of a Novel NGS-Based Pre-implantation Genetic Screening Technology
Mark Umbarger, Ph.D., Director, Research and Development, Good Start Genetics


CLINICAL APPLICATIONS FOR ADVANCED TESTING TECHNOLOGIES

Expanded Carrier Screening for Monogenic Disorders
Peter Benn, Professor, Department of Genetics and Genome Sciences, University of Connecticut Health Center

Oocyte Mitochondrial Function and Testing: Implications for Assisted Reproduction
Emre Seli, MD, Yale School of Medicine

Preventing the Transmission of Mitochondrial Diseases through Germline Genome Editing
Alejandro Ocampo, Ph.D., Research Associate, Gene Expression Laboratory – Belmonte, Salk Institute for Biological Studies

Silicon BiosystemsRecovery and Analysis of Single (Fetal) Cells: DEPArray Based Strategy to Examine CPM and POC
Farideh Bischoff, Ph.D., Executive Director, Scientific Affairs, Silicon Biosystems, Inc.

> Sponsored Presentation (Opportunities Available)

Numerical Chromosomal Abnormalities after PGS and D&C
Tanmoy Mukherjee, M.D., Assistant Clinical Professor, Obstetrics, Gynecology and Reproductive Science, Mount Sinai Hospital

EMBRYO PREPARATION, ASSESSMENT, AND TREATMENT

Guidelines and Standards for Embryo Preparation: Embryo Culture, Growth and Biopsy Guidelines for Successful Genetic Diagnosis
Michael A. Lee, MS, TS, ELD (ABB), Director, Laboratories, Fertility Solutions

Current Status of Time-Lapse Imaging for Embryo Assessment and Selection in Clinical IVF
Catherine Racowsky, Professor, Department of Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School; Director, IVF Laboratory, Brigham & Women’s Hospital

The Curious Case of Fresh versus Frozen Transfer
Denny Sakkas, Ph.D., Scientific Director, Boston IVF

Why Does IVF Fail? Finding a Single Euploid Embryo is Harder than You Think
Jamie Grifo, M.D., Ph.D., Program Director, New York University Fertility Center; Professor, New York University Langone Medical Center

BEST PRACTICES AND ETHICS

Genetic Counseling Bridges the Gap between Complex Genetic Information and Patient Care
MaryAnn W. Campion, Ed.D., MS, CGC; Director, Master’s Program in Genetic Counseling; Assistant Dean, Graduate Medical Sciences; Assistant Professor, Obstetrics and Gynecology, Boston University School of Medicine

Ethical Issues of Next-Generation Sequencing and Beyond
Eugene Pergament, M.D., Ph.D., FACMG, Professor, Obstetrics and Gynecology, Northwestern; Attending, Northwestern University Medical School Memorial Hospital

Closing Panel: The Future of Reproductive Genetic Diagnostics: Is Reproductive Technology Straining the Seams of Ethics?
Moderator:
Mache Seibel, M.D., Professor, OB/GYN, University of Massachusetts Medical School; Editor, My Menopause Magazine; Author, The Estrogen Window
Panelists:
Rebekah S. Zimmerman, Ph.D., FACMG, Director, Clinical Genetics, Foundation for Embryonic Competence
Denny Sakkas, Ph.D., Scientific Director, Boston IVF
Michael A. Lee, MS, TS, ELD (ABB), Director of Laboratories, Fertility Solutions
Nicholas Collins, MS, CGC, Manager, Reproductive Health Specialists, Counsyl

Arrive Early and Attend Advances in Prenatal Molecular Diagnostics – Register for Both Events and SAVE!

Prenatal Molecular Dx | Nov. 16-18 | Boston, MA

CHI, 250 First Avenue, Suite 300, Needham, MA, 02494, Tel: 781-972-5400 | Fax: 781-972-5425

 

 

Read Full Post »


Icelandic Population Genomic Study Results by deCODE Genetics come to Fruition: Curation of Current genomic studies

Reporter/Curator: Stephen J. Williams, Ph.D.

 

UPDATED on 9/6/2017

On 9/6/2017, Aviva Lev-Ari, PhD, RN had attend a talk by Paul Nioi, PhD, Amgen, at HMS, Harvard BioTechnology Club (GSAS).

Nioi discussed his 2016 paper in NEJM, 2016, 374:2131-2141

Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease

Paul Nioi, Ph.D., Asgeir Sigurdsson, B.Sc., Gudmar Thorleifsson, Ph.D., Hannes Helgason, Ph.D., Arna B. Agustsdottir, B.Sc., Gudmundur L. Norddahl, Ph.D., Anna Helgadottir, M.D., Audur Magnusdottir, Ph.D., Aslaug Jonasdottir, M.Sc., Solveig Gretarsdottir, Ph.D., Ingileif Jonsdottir, Ph.D., Valgerdur Steinthorsdottir, Ph.D., Thorunn Rafnar, Ph.D., Dorine W. Swinkels, M.D., Ph.D., Tessel E. Galesloot, Ph.D., Niels Grarup, Ph.D., Torben Jørgensen, D.M.Sc., Henrik Vestergaard, D.M.Sc., Torben Hansen, Ph.D., Torsten Lauritzen, D.M.Sc., Allan Linneberg, Ph.D., Nele Friedrich, Ph.D., Nikolaj T. Krarup, Ph.D., Mogens Fenger, Ph.D., Ulrik Abildgaard, D.M.Sc., Peter R. Hansen, D.M.Sc., Anders M. Galløe, Ph.D., Peter S. Braund, Ph.D., Christopher P. Nelson, Ph.D., Alistair S. Hall, F.R.C.P., Michael J.A. Williams, M.D., Andre M. van Rij, M.D., Gregory T. Jones, Ph.D., Riyaz S. Patel, M.D., Allan I. Levey, M.D., Ph.D., Salim Hayek, M.D., Svati H. Shah, M.D., Muredach Reilly, M.B., B.Ch., Gudmundur I. Eyjolfsson, M.D., Olof Sigurdardottir, M.D., Ph.D., Isleifur Olafsson, M.D., Ph.D., Lambertus A. Kiemeney, Ph.D., Arshed A. Quyyumi, F.R.C.P., Daniel J. Rader, M.D., William E. Kraus, M.D., Nilesh J. Samani, F.R.C.P., Oluf Pedersen, D.M.Sc., Gudmundur Thorgeirsson, M.D., Ph.D., Gisli Masson, Ph.D., Hilma Holm, M.D., Daniel Gudbjartsson, Ph.D., Patrick Sulem, M.D., Unnur Thorsteinsdottir, Ph.D., and Kari Stefansson, M.D., Ph.D.

N Engl J Med 2016; 374:2131-2141June 2, 2016DOI: 10.1056/NEJMoa1508419

Abstract
Article
References
Citing Articles (22)
Metrics

BACKGROUND

Several sequence variants are known to have effects on serum levels of non–high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease.

METHODS

We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability.

RESULTS

We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10−16), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10−6). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10−3).

CONCLUSIONS

ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.)

 

Amgen’s deCODE Genetics Publishes Largest Human Genome Population Study to Date

Mark Terry, BioSpace.com Breaking News Staff reported on results of one of the largest genome sequencing efforts to date, sequencing of the genomes of 2,636 people from Iceland by deCODE genetics, Inc., a division of Thousand Oaks, Calif.-based Amgen (AMGN).

Amgen had bought deCODE genetics Inc. in 2012, saving the company from bankruptcy.

There were a total of four studies, published on March 25, 2015 on the online version of Nature Genetics; titled “Large-scale whole-genome sequencing of the Icelandic population[1],” “Identification of a large set of rare complete human knockouts[2],” “The Y-chromosome point mutation rate in humans[3]” and “Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease[4].”

The project identified some new genetic variants which increase risk of Alzheimer’s disease and confirmed some variants known to increase risk of diabetes and atrial fibrillation. A more in-depth post will curate these findings but there was an interesting discrete geographic distribution of certain rare variants located around Iceland. The dataset offers a treasure trove of meaningful genetic information not only about the Icelandic population but offers numerous new targets for breast, ovarian cancer as well as Alzheimer’s disease.

View Mark Terry’s article here on Biospace.com.

“This work is a demonstration of the unique power sequencing gives us for learning more about the history of our species,” said Kari Stefansson, founder and chief executive officer of deCode and one of the lead authors in a statement, “and for contributing to new means of diagnosing, treating and preventing disease.”

The scale and ambition of the study is impressive, but perhaps more important, the research identified a new genetic variant that increases the risk of Alzheimer’s disease and already had identified an APP variant that is associated with decreased risk of Alzheimer’s Disease. It also confirmed variants that increase the risk of diabetes and a variant that results in atrial fibrillation.
The database of human genetic variation (dbSNP) contained over 50 million unique sequence variants yet this database only represents a small proportion of single nucleotide variants which is thought to exist. These “private” or rare variants undoubtedly contribute to important phenotypes, such as disease susceptibility. Non-SNV variants, like indels and structural variants, are also under-represented in public databases. The only way to fully elucidate the genetic basis of a trait is to consider all of these types of variants, and the only way to find them is by large-scale sequencing.

Curation of Population Genomic Sequencing Programs/Corporate Partnerships

Click on “Curation of genomic studies” below for full Table

Curation of genomic studies
Study Partners Population Enrolled Disease areas Analysis
Icelandic Genome

Project

deCODE/Amgen Icelandic 2,636 Variants related to: Alzheimer’s, cardiovascular, diabetes WES + EMR; blood samples
Genome Sequencing Study Geisinger Health System/Regeneron Northeast PA, USA 100,000 Variants related to hypercholestemia, autism, obesity, other diseases WES +EMR +MyCode;

– Blood samples

The 100,000 Genomes Project National Health Service/NHS Genome Centers/ 10 companies forming Gene Consortium including Abbvie, Alexion, AstraZeneca, Biogen, Dimension, GSK, Helomics, Roche,   Takeda, UCB Rare disorders population UK Starting to recruit 100,000 Initially rare diseases, cancer, infectious diseases WES of blood, saliva and tissue samples

Ref paper

Saudi Human Genome Program 7 centers across Saudi Arabia in conjunction with King Abdulaziz City Science & Tech., King Faisal Hospital & Research Centre/Life Technologies General population Saudi Arabia 20,000 genomes over three years First focus on rare severe early onset diseases: diabetes, deafness, cardiovascular, skeletal deformation Whole genome sequence blood samples + EMR
Genome of the Netherlands (GoNL) Consortium consortium of the UMCG,LUMCErasmus MCVU university and UMCU. Samples where contributed by LifeLinesThe Leiden Longevity StudyThe Netherlands Twin Registry (NTR), The Rotterdam studies, and The Genetic Research in Isolated Populations program. All the sequencing work is done by BGI Hong Kong. Families in Netherlands 769 Variants, SNV, indels, deletions from apparently healthy individuals, family trios Whole genome NGS of whole blood no EMR

Ref paper in Nat. Genetics

Ref paper describing project

Faroese FarGen project Privately funded Faroe Islands Faroese population 50,000 Small population allows for family analysis Combine NGS with EMR and genealogy reports
Personal Genome Project Canada $4000.00 fee from participants; collaboration with University of Toronto and SickKids Organization; technical assistance with Harvard Canadian Health System Goal: 100,000 ? just started no defined analysis goals yet Whole exome and medical records
Singapore Sequencing Malay Project (SSMP) Singapore Genome Variation Project

Singapore Pharmacogenomics Project

Malaysian 100 healthy Malays from Singapore Pop. Health Study Variant analysis Deep whole genome sequencing
GenomeDenmark four Danish universities (KU, AU, DTU and AAU), two hospitals (Herlev and Vendsyssel) and two private firms (Bavarian Nordic and BGI-Europe). 150 complete genomes; first 30 published in Nature Comm. ? See link
Neuromics Consortium University of Tübingen and 18 academic and industrial partners (see link for description) European and Australian 1,100 patients with neuro-

degenerative and neuro-

muscular disease

Moved from SNP to whole exome analysis Whole Exome, RNASeq

References

  1. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E et al: Large-scale whole-genome sequencing of the Icelandic population. Nature genetics 2015, advance online publication.
  2. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A et al: Identification of a large set of rare complete human knockouts. Nature genetics 2015, advance online publication.
  3. Helgason A, Einarsson AW, Gumundsdottir VB, Sigursson A, Gunnarsdottir ED, Jagadeesan A, Ebenesersdottir SS, Kong A, Stefansson K: The Y-chromosome point mutation rate in humans. Nature genetics 2015, advance online publication.
  4. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U et al: Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nature genetics 2015, advance online publication.

Other post related to DECODE, population genomics, and NGS on this site include:

Illumina Says 228,000 Human Genomes Will Be Sequenced in 2014

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics

CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics and Computational Genomics – Part IIB

Human genome: UK to become world number 1 in DNA testing

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

Sequencing the exomes of 1,100 patients with neurodegenerative and neuromuscular diseases: A consortium of 18 European and Australian institutions

University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations

Three Ancestral Populations Contributed to Modern-day Europeans: Ancient Genome Analysis

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Read Full Post »


Genomics in Medicine – Establishing a Patient-Centric View of Genomic Data

Reporter: Aviva Lev-Ari, PhD, RN

UPDATED on 12/13, 2013

Second  Annual
Genomics in Medicine
Establishing a Patient-Centric View of  Genomic Data
February 13-14, 2014 | San Francisco,  CA

Dr. Michael Christman, President and CEO of the  Coriell Institute for Medical Research, to Present “Using a  Patient’s Genetic Information in the Real World” at the Second  Annual Genomics in Medicine  Symposium

When  a patient needs a new prescription, it will be necessary for the  physician to quickly and securely access his/her genetic data to  understand drug efficacy prior to dosing. Who will patients and  doctors trust to store and interpret the data? Coriell and the CPMC  research study have defined several of the key barriers to  accelerate the adoption and routine use of genomics in medicine and  have proposed solutions that are generally  applicable.

Dr.  Christman is an expert in genetics and genomics, with a focus on the  integration of genome information into the delivery of clinical  care. In 2007, he joined Coriell and initiated the Coriell  Personalized Medicine Collaborative® (CPMC®), a research study  evaluating the utility of using the knowledge of genetics in  medicine. Prior to joining Coriell, he served as professor and  founding chair of the Department of Genetics and Genomics for Boston  University School of Medicine. There he led an international team of  scientists in one of the first genome-wide association studies using  the Framingham Heart Study cohort, published in Science magazine.  Dr. Christman received his bachelor’s degree in chemistry with  honors from the University of North Carolina, Chapel Hill, his  doctorate in biochemistry from the University of California,  Berkeley, and was a Jane Coffin Childs postdoctoral fellow at the  Massachusetts Institute of Technology.

FINAL AGENDA

RETURNING GENOMIC INFORMATION TO THE  PATIENT

KEYNOTE  PRESENTATION
Incidental Findings in Genomic  Medicine: The Debate and the Data
Robert C.  Green, M.D., MPH, Director, G2P Research Program; Associate  Director, Research, Partners Center for Personalized Genetic  Medicine, Division of Genetics, Department of Medicine, Brigham and  Women’s Hospital and Harvard Medical  School

Genomic Medicine Implementations for  Primary Care
Erwin Bottinger, M.D., The Irene and  Dr. Arthur Fishberg Professor of Medicine; Director, The Charles  Bronfman Institute for Personalized Medicine, Icahn School of  Medicine, Mount Sinai

Ethical Issues Related to the  Return of Incidental Findings in  Children/Families
Ingrid A. Holm, M.D., MPH,  Director, Phenotyping Core, Program in Genomics, Divisions of  Genetics and Endocrinology, Boston Children’s  Hospital

EMERGING TOOLS TO ENABLE  PHYSICIAN USE

Reducing the Complexity of  Clinical Omics Reporting for Clinicians and  Laboratories   [Listen  to Podcast <http://www.chicorporate.com/click-thru/131500/?email=avivalev-ari@alum.berkeley.edu> ]
Jonathan Hirsch, Founder &  President, Syapse

Beyond Sequence: Integration of Full-Genome  Technologies for Personalized Medicine in the  Clinic
Raphael Lehrer, Founder and Chief Scientist,  GeneKey

Targeted NGS of Clinical Samples:  Overcoming the Challenges of Obtaining High Quality Data from Low  Quality DNA
Diane Ilsley, Ph.D., Marketing Manager,  Genomic Services, Asuragen
Sponsored  by:
<http://www.asuragen.com/>

BRIDGING THE  GAP BETWEEN RESEARCH AND  TREATMENT

Genome Sequencing in the Clinic:  Found the Variants – Now What?
Jennifer Friedman,  M.D., Associate Clinical Professor, Neurosciences and Pediatrics,  UCSD/Rady Children’s Hospital San Diego

The  Answer is There, but I Don’t Understand It: Solutions from the Front  Line
Vanya Gant, Ph.D., FRCP, FRCPath, Divisional  Clinical Director for Infection, The Department of Microbiology,  UCLH NHS Foundation Trust

Using a Patient’s  Genetic Information in the Real World
Michael F.  Christman, Ph.D., President and CEO, Coriell Institute for Medical  Research

Developing Clinical Sequencing Assays  at Einstein-Montefiore
Cristina Montagna, Ph.D.,  Associate Professor, Genetics, Albert Einstein College of  Medicine

THE IMPACT OF DTC  TESTING

Direct-to-Consumer Genetic  Testing: Balancing the Good and the Bad
Nazneen  Aziz, Ph.D., Director, Molecular Medicine, Transformation Program  Office, College of American  Pathologists

Crowdsourcing Genetic  Discovery
Nicholas Eriksson, Ph.D., Principal  Scientist, Statistical Genetics,  23andMe

Personal Genomics through Smart Digital  Media
Patrick Merel, Ph.D., Founder & CEO,  Portable Genomics

> Sponsored Presentation  (Opportunities  Available
<http://www.triconference.com/click-thru/127354/?email=avivalev-ari@alum.berkeley.edu> )

The Ethical and Social  Implications of Direct-to-Consumer Genetic  Testing
Sandra Soo-Jin Lee, Ph.D., Senior Research  Fellow, Center for Biomedical Ethics, Stanford University Medical  School

THE IMPACT AND EVOLVING ROLE OF  GENETIC COUNSELING

Next-Generation Genetic  Counseling
Ramji Srinivasan, CEO & Co-Founder,  Counsyl

TDTC(CC) – Consumers, Clinicians and  Counseling
Erica Ramos, MS, CGC, Clinical Genomics  Specialist, Certified Genetic Counselor, Translational and Consumer  Genomics, Illumina, Inc.

For  exhibit and sponsorship information, including sponsored  podium presentations <http://www.triconference.com/click-thru/127354/?email=avivalev-ari@alum.berkeley.edu> , please  contact:

Jon Stroup  (Companies A-K)
Manager, Business  Development
Cambridge Healthtech Institute
T: (+1)  781-972-5483
E: jstroup@healthtech.com

Joseph Vacca (Companies  L-Z)
Manager, Business Development
Cambridge Healthtech  Institute
T: (+1) 781-972-5431
E: jvacca@healthtech.com 

Cambridge Healthtech Institute’s Second Annual

Part of the 21st Annual Molecular Medicine Tri-Conference
February 13-14, 2014 | Westin St. Francis | San Francisco, CA

Cambridge Healthtech Institute’s Second Annual Genomics in Medicine symposium will provide insight into common implementation issues as they relate to practicing clinicians, as well as address the evolving role of genomics in guiding diagnoses and treatments. Special focus will be given to processing and delivering complex data to the practicing physician. Integration of decision-making tools with existing patient records will also be discussed. This symposium will provide a forum for those hoping to learn more about genomic medicine as well as those currently practicing and looking for an update on the field’s latest advances.

Thursday, February 13

7:30 am Registration and Morning Coffee

RETURNING GENOMIC INFORMATION TO THE PATIENT

9:00 Chairperson’s Opening Remarks

9:05 KEYNOTE PRESENTATION:

Incidental Findings in Genomic Medicine: The Debate and the Data

Robert C. Green, M.D., MPH, Director, G2P Research Program; Associate Director, Research, Partners Center for Personalized Genetic Medicine, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School

Genomics is being rapidly integrated into medicine with many unanswered questions about how and how much risk information should be communicated, and how such information will influence physician and patient behaviors, health outcomes and health care costs. This presentation will summarize data from over 10 years of experimental work in translational genomics and health outcomes, discuss recent ACMG recommendations for incidental findings and preview results from our newest NIH-funded studies, the ongoing MedSeq Project and the recently funded BabySeq Project.

9:35 Genomic Medicine Implementations for Primary Care

Erwin Bottinger, M.D., The Irene and Dr. Arthur Fishberg Professor of Medicine; Director, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine, Mount Sinai

Increasingly, genomic discoveries provide opportunities to personalize medication use and prediction and prevention of common chronic diseases. However, effective integration of genomic medicine in busy primary care practices is hampered by multiple barriers, including provider education gaps and negative impact on clinical workflow. Innovative programs for real-time, point-of-care integration of genomic medicine for primary care providers through genome-informed clinical decision support enabled in electronic health records will be presented.

10:05 Ethical Issues Related to the Return of Incidental Findings in Children/Families

Ingrid A. Holm, M.D., MPH, Director, Phenotyping Core, Program in Genomics, Divisions of Genetics and Endocrinology, Boston Children’s Hospital

10:35 Coffee Break with Exhibit and Poster Viewing

EMERGING TOOLS TO ENABLE PHYSICIAN USE

11:05 Reducing the Complexity of Clinical Omics Reporting for Clinicians and Laboratories

Jonathan Hirsch, Founder & President, Syapse

Syapse has built a cloud-based software platform that enables the use of omics at the point of care through an interactive web portal. We will describe how clinical omics labs use the Syapse platform to maintain an evolving omics knowledgebase which drives updated clinical reporting through interactive, intuitive interfaces designed for ease of use and comprehension. We will describe how hospitals use the Syapse platform to place omics results in the context of clinical guidelines, enabling physicians to easily adopt and integrate omics into their clinical workflow.

11:35 Beyond Sequence: Integration of Full-Genome Technologies for Personalized Medicine in the Clinic

Raphael Lehrer, Founder and Chief Scientist, GeneKey

Here we describe how we have used a combination of multiple full genome technologies to triangulate on key dysregulated mechanisms in a patient’s sample. By using a combination of systems biology and statistical analysis, we are able to draw conclusions far more precise than one could from sequence alone. We describe how we have applied in the clinic with patients and their oncologists and what we have seen/learned to date, including cases where the dysfunction is not mutation-based.

Sponsored by

Asuragen

12:05 pm Targeted NGS of Clinical Samples: Overcoming the Challenges of Obtaining High Quality Data from Low Quality DNA

Diane Ilsley, Ph.D., Marketing Manager, Genomic Services, Asuragen

12:35 Luncheon Presentation (Sponsorship Opportunity Available) or Lunch on Your Own

1:05 Session Break

BRIDGING THE GAP BETWEEN RESEARCH AND TREATMENT

1:50 Chairperson’s Remarks

1:55 Genome Sequencing in the Clinic: Found the Variants – Now What?

Jennifer Friedman, M.D., Associate Clinical Professor, Neurosciences and Pediatrics, UCSD/Rady Children’s Hospital San Diego

Advances in genome sequencing hold tremendous promise for providing answers and tailored therapies for undiagnosed patients. How to interpret, transmit and act upon volumes of complex data remains a challenge for sequencing providers, physicians and their patients. This presentation will use case-based examples to demonstrate promises and pitfalls encounter along the way.

2:25 The Answer is There but I Don’t Understand It: Solutions from the Front Line

Vanya Gant, Ph.D., FRCP, FRCPath, Divisional Clinical Director for Infection, The Department of Microbiology, UCLH NHS Foundation Trust

This talk will introduce the concept and fundamental problem of how to present complex NGS datasets to clinicians – and how this will be critical for rapid uptake. A case study outlining the principles behind a very new and innovative pathology project and way of delivering healthcare diagnostics will also be presented.

2:55 Refreshment Break with Exhibit and Poster Viewing

3:25 Using a Patient’s Genetic Information in the Real World

Michael F. Christman, Ph.D., President and CEO, Coriell Institute for Medical Research

When a patient needs a new prescription, it will be necessary for the physician to quickly and securely access his/her genetic data to understand drug efficacy prior to dosing. Who will patients and doctors trust to store and interpret the data? Coriell and the CPMC research study have defined several of the key barriers to accelerate the adoption and routine use of genomics in medicine and have proposed solutions that are generally applicable.

3:55 Developing Clinical Sequencing Assays at Einstein-Montefiore

Cristina Montagna, Ph.D., Associate Professor, Genetics, Albert Einstein College of Medicine

We developed a program to introduce Next-Generation Sequencing (NGS) to address the needs of individuals receiving clinical care at Montefiore Medical Center. After extensive dialogue with clinicians, we designed a custom gene panel, spanning 5Mb and consisting of 650 genes targeting known Mendelian loci, some pediatric diseases and several hotspot genes in various cancer types. By building a basic infrastructure for transitioning NSG in the clinic we have encountered roadblocks and established protocols to overcome these.

4:25 Breakout Discussions (see website for details)

5:25 Close of Day

Read Full Post »


 

Reporter: Aviva Lev-Ari, PhD, RN

J Cardiovasc Transl Res. 2012 Sep 7. [Epub ahead of print]

Next Generation Diagnostics in Inherited Arrhythmia Syndromes : A Comparison of Two Approaches.

Ware JSJohn SRoberts AMBuchan RGong SPeters NSRobinson DOLucassen ABehr ERCook SA.

Source

MRC Clinical Sciences Centre, Imperial College London, London, UK, j.ware@imperial.ac.uk.

Abstract

Next-generation sequencing (NGS) provides an unprecedented opportunity to assess genetic variation underlying human disease. Here, we compared two NGS approaches for diagnostic sequencing in inherited arrhythmia syndromes. We compared PCR-based target enrichment and long-read sequencing (PCR-LR) with in-solution hybridization-based enrichment and short-read sequencing (Hyb-SR). The PCR-LR assay comprehensively assessed five long-QT genes routinely sequenced in diagnostic laboratories and “hot spots” in RYR2. The Hyb-SR assay targeted 49 genes, including those in the PCR-LR assay. The sensitivity for detection of control variants did not differ between approaches. In both assays, the major limitation was upstream target capture, particular in regions of extreme GC content. These initial experiences with NGS cardiovascular diagnostics achieved up to 89 % sensitivity at a fraction of current costs. In the next iteration of these assays we anticipate sensitivity above 97 % for all LQT genes. NGS assays will soon replace conventional sequencing for LQT diagnostics and molecular pathology.

PMID: 22956155 [PubMed]
Source: 
http://www.ncbi.nlm.nih.gov/pubmed/22956155

Researchers in the UK have compared a PCR-based and a capture hybridization-based assay for sequencing panels of inherited cardiovascular disease genes and have found both to be suitable for diagnostics in principle, though their sensitivity needs to be optimized.

According to James Ware, a clinical lecturer at Imperial College London, the purpose of the study, published online this month in the Journal of Cardiovascular Translational Research, was to evaluate different approaches for sequencing cardiovascular disease genes, both for molecular diagnosis and for large-scale resequencing research studies.

His group, in the National Institute for Health Research Royal Brompton Cardiovascular Biomedical Research Unit, is interested in a range of inherited heart disease types, including cardiomyopathies and inherited arrhythmia syndromes such as long QT syndrome.

For their study, they compared two next-gen sequencing assays: a PCR-based approach that uses Fluidigm’s Access Array to amplify 96 amplicons in five LQT genes and one other gene, followed by sequencing on the 454 GS Junior; and an in-solution hybridization approach that uses Agilent’s SureSelect to target 49 inherited arrhythmia genes and sequences them on Life Technologies’ SOLiD 4.

The study focused on the sensitivity of the assays, or how well they were able to capture their intended targets, rather than their specificity, or their ability to avoid false positives.

Ware said that at the time of the study, PCR and in-solution capture were the two main target selection methods available. The researchers are still using both approaches but are now employing “a wide range of sequencers” from various providers for both types of assays, including Illumina instruments and Life Tech’s Ion Torrent.

For their comparison, they analyzed 48 samples, of which they sequenced 33 with both approaches and 15 using either one or the other.

The samples included 19 known variants in three disease genes, of which the hybridization-SOLiD method detected 17 and the PCR-454 method 14. Undetected variants were generally in areas that were not well covered, either due to a failure in enrichment, sequencing, or because the alignment was not unique. One variant that was missed by both approaches fell in a very GC-rich region.

Consumables costs for both assays were considerably lower than with Sanger sequencing: While sequencing five genes by Sanger costs more than $700 in consumables, the five-gene PCR/454 assay cost about $55 and the 49-gene hybridization/SOLiD assay cost about $200, according to the study.

Turnaround time is the shortest for Sanger sequencing, which, according to the study, can be done in one day for five genes and 17 samples, not including sample prep. The PCR/454 assay takes about two days for target enrichment and sequencing 48 samples, and the hybridization/SOLiD assay takes about two weeks for sequencing alone, they wrote.

Overall, Ware said, both sequencing approaches performed “reasonably well” and are significantly cheaper than Sanger sequencing. He said that in the UK, molecular diagnosis for inherited cardiovascular disease has traditionally been performed by Sanger, at a cost of approximately £500 to £1,000 ($800 to $1,600) for several genes involved in a clinical condition. However, for cost reasons, not all relevant genes are usually sequenced.

Target selection was the performance-limiting step for both approaches, a result the researchers expected. “It sounds obvious, but not all genes are equally easy to target,” Ware said. For example, in the hybridization assay, the overall target coverage was about 98 percent, but for some genes, it was only 80 percent or 90 percent. The two most important genes in long QT syndrome, KCNQ1 and KCNH2, “proved to be the hardest to sequence.”

Thus, for diagnostic use of NGS gene panels, “it’s important to know not just how the system performs overall but really how it’s performing for the specific genes you’re interested in,” he said.

To use either approach in diagnostics, the target selection step would need to be optimized. Ware’s team has already improved both assays and is now trying them in a number of fully Sanger-sequenced samples to study both sensitivity and specificity.

Longer term, the sensitivity of next-gen sequencing could approach that of Sanger sequencing, he said. And even if it does not reach 100 percent, because NGS approaches can target so many more genes, “maybe you can afford a very slight tradeoff in the per-gene sensitivity if the overall diagnostic sensitivity of the panel goes up,” he said. “At the moment, because we don’t have that much experience in sequencing the less-common genes, we don’t exactly know where that tradeoff lies.” In addition, any gaps could be filled by Sanger sequencing, while the test would probably still be cost effective.

Each approach also has some features that make it more suitable for certain applications. The PCR-based method has a fast turnaround and an “extremely user-friendly workflow,” Ware said, but it can only accommodate a small number of genes at the moment. His team also found it to be easier to optimize and improve. Thus, in the short term, PCR and sequencing “is probably closer to providing a diagnostic solution,” he said, especially for conditions where only a few genes are causative.

The hybridization-based approach, on the other hand, has much greater capacity, and there are advantages in “having a single assay that covers everything,” he said. It might also be possible to detect copy number variants using this approach, but not the more limited PCR method, he added.

Ware and his colleagues are currently using the hybridization approach to study a large panel of genes in 2,000 well-phenotyped volunteers, both healthy individuals and heart disease patients.

They have also started to use the hybridization method to sequence the TTN gene, truncating mutations in which were recently found to be a common cause of dilated cardiomyopathy. They are running the TTN test routinely for patients consented for research diagnostic testing that is not available anywhere else. Because this gene is so large, it is “completely impractical to be sequenced by conventional Sanger,” Ware said.

Julia Karow tracks trends in next-generation sequencing for research and clinical applications for GenomeWeb’s In Sequenceand Clinical Sequencing News. E-mail her here or follow her GenomeWeb Twitter accounts at @InSequence and@ClinSeqNews.

 

Read Full Post »

Older Posts »