Will Web 3.0 Do Away With Science 2.0? Is Science Falling Behind?
Curator: Stephen J. Williams, Ph.D.
UPDATED 4/06/2022
A while back (actually many moons ago) I had put on two posts on this site:
Twitter is Becoming a Powerful Tool in Science and Medicine
Each of these posts were on the importance of scientific curation of findings within the realm of social media and the Web 2.0; a sub-environment known throughout the scientific communities as Science 2.0, in which expert networks collaborated together to produce massive new corpus of knowledge by sharing their views, insights on peer reviewed scientific findings. And through this new media, this process of curation would, in itself generate new ideas and new directions for research and discovery.
The platform sort of looked like the image below:

This system lied above a platform of the original Science 1.0, made up of all the scientific journals, books, and traditional literature:

Previous image source: PeerJ.com
To index the massive and voluminous research and papers beyond the old Dewey Decimal system, a process of curation was mandatory. The dissemination of this was a natural for the new social media however the cost had to be spread out among numerous players. Journals, faced with the high costs of subscriptions and their only way to access this new media as an outlet was to become Open Access, a movement first sparked by journals like PLOS and PeerJ but then begrudingly adopted throughout the landscape. But with any movement or new adoption one gets the Good the Bad and the Ugly (as described in my cited, above, Clive Thompson article). The bad side of Open Access Journals were
- costs are still assumed by the individual researcher not by the journals
- the arise of the numerous Predatory Journals
Even PeerJ, in their column celebrating an anniversary of a year’s worth of Open Access success stories, lamented the key issues still facing Open Access in practice
- which included the cost and the rise of predatory journals.
In essence, Open Access and Science 2.0 sprung full force BEFORE anyone thought of a way to defray the costs
Can Web 3.0 Finally Offer a Way to Right the Issues Facing High Costs of Scientific Publishing?
What is Web 3.0?
From Wikipedia: https://en.wikipedia.org/wiki/Web3
Web 1.0 and Web 2.0 refer to eras in the history of the Internet as it evolved through various technologies and formats. Web 1.0 refers roughly to the period from 1991 to 2004, where most websites were static webpages, and the vast majority of users were consumers, not producers, of content.[6][7] Web 2.0 is based around the idea of “the web as platform”,[8] and centers on user-created content uploaded to social-networking services, blogs, and wikis, among other services.[9] Web 2.0 is generally considered to have begun around 2004, and continues to the current day.[8][10][4]
Terminology[edit]
The term “Web3”, specifically “Web 3.0”, was coined by Ethereum co-founder Gavin Wood in 2014.[1] In 2020 and 2021, the idea of Web3 gained popularity[citation needed]. Particular interest spiked towards the end of 2021, largely due to interest from cryptocurrency enthusiasts and investments from high-profile technologists and companies.[4][5] Executives from venture capital firm Andreessen Horowitz travelled to Washington, D.C. in October 2021 to lobby for the idea as a potential solution to questions about Internet regulation with which policymakers have been grappling.[11]
Web3 is distinct from Tim Berners-Lee‘s 1999 concept for a semantic web, which has also been called “Web 3.0”.[12] Some writers referring to the decentralized concept usually known as “Web3” have used the terminology “Web 3.0”, leading to some confusion between the two concepts.[2][3] Furthermore, some visions of Web3 also incorporate ideas relating to the semantic web.[13][14]
Concept[edit]
Web3 revolves around the idea of decentralization, which proponents often contrast with Web 2.0, wherein large amounts of the web’s data and content are centralized in the fairly small group of companies often referred to as Big Tech.[4]
Specific visions for Web3 differ, but all are heavily based in blockchain technologies, such as various cryptocurrencies and non-fungible tokens (NFTs).[4] Bloomberg described Web3 as an idea that “would build financial assets, in the form of tokens, into the inner workings of almost anything you do online”.[15] Some visions are based around the concepts of decentralized autonomous organizations (DAOs).[16] Decentralized finance (DeFi) is another key concept; in it, users exchange currency without bank or government involvement.[4] Self-sovereign identity allows users to identify themselves without relying on an authentication system such as OAuth, in which a trusted party has to be reached in order to assess identity.[17]
Reception[edit]
Technologists and journalists have described Web3 as a possible solution to concerns about the over-centralization of the web in a few “Big Tech” companies.[4][11] Some have expressed the notion that Web3 could improve data security, scalability, and privacy beyond what is currently possible with Web 2.0 platforms.[14] Bloomberg states that sceptics say the idea “is a long way from proving its use beyond niche applications, many of them tools aimed at crypto traders”.[15] The New York Times reported that several investors are betting $27 billion that Web3 “is the future of the internet”.[18][19]
Some companies, including Reddit and Discord, have explored incorporating Web3 technologies into their platforms in late 2021.[4][20] After heavy user backlash, Discord later announced they had no plans to integrate such technologies.[21] The company’s CEO, Jason Citron, tweeted a screenshot suggesting it might be exploring integrating Web3 into their platform. This led some to cancel their paid subscriptions over their distaste for NFTs, and others expressed concerns that such a change might increase the amount of scams and spam they had already experienced on crypto-related Discord servers.[20] Two days later, Citron tweeted that the company had no plans to integrate Web3 technologies into their platform, and said that it was an internal-only concept that had been developed in a company-wide hackathon.[21]
Some legal scholars quoted by The Conversation have expressed concerns over the difficulty of regulating a decentralized web, which they reported might make it more difficult to prevent cybercrime, online harassment, hate speech, and the dissemination of child abuse images.[13] But, the news website also states that, “[decentralized web] represents the cyber-libertarian views and hopes of the past that the internet can empower ordinary people by breaking down existing power structures.” Some other critics of Web3 see the concept as a part of a cryptocurrency bubble, or as an extension of blockchain-based trends that they see as overhyped or harmful, particularly NFTs.[20] Some critics have raised concerns about the environmental impact of cryptocurrencies and NFTs. Others have expressed beliefs that Web3 and the associated technologies are a pyramid scheme.[5]
Kevin Werbach, author of The Blockchain and the New Architecture of Trust,[22] said that “many so-called ‘web3’ solutions are not as decentralized as they seem, while others have yet to show they are scalable, secure and accessible enough for the mass market”, adding that this “may change, but it’s not a given that all these limitations will be overcome”.[23]
David Gerard, author of Attack of the 50 Foot Blockchain,[24] told The Register that “web3 is a marketing buzzword with no technical meaning. It’s a melange of cryptocurrencies, smart contracts with nigh-magical abilities, and NFTs just because they think they can sell some monkeys to morons”.[25]
Below is an article from MarketWatch.com Distributed Ledger series about the different forms and cryptocurrencies involved
by Frances Yue, Editor of Distributed Ledger, Marketwatch.com
Clayton Gardner, co-CEO of crypto investment management firm Titan, told Distributed Ledger that as crypto embraces broader adoption, he expects more institutions to bypass bitcoin and invest in other blockchains, such as Ethereum, Avalanche, and Terra in 2022. which all boast smart-contract features.
Bitcoin traditionally did not support complex smart contracts, which are computer programs stored on blockchains, though a major upgrade in November might have unlocked more potential.
“Bitcoin was originally seen as a macro speculative asset by many funds and for many it still is,” Gardner said. “If anything solidifies its use case, it’s a store of value. It’s not really used as originally intended, perhaps from a medium of exchange perspective.”
For institutions that are looking for blockchains that can “produce utility and some intrinsic value over time,” they might consider some other smart contract blockchains that have been driving the growth of decentralized finance and web 3.0, the third generation of the Internet, according to Gardner.
“Bitcoin is still one of the most secure blockchains, but I think layer-one, layer-two blockchains beyond Bitcoin, will handle the majority of transactions and activities from NFT (nonfungible tokens) to DeFi,“ Gardner said. “So I think institutions see that and insofar as they want to put capital to work in the coming months, I think that could be where they just pump the capital.”
Decentralized social media?
The price of Decentralized Social, or DeSo, a cryptocurrency powering a blockchain that supports decentralized social media applications, surged roughly 74% to about $164 from $94, after Deso was listed at Coinbase Pro on Monday, before it fell to about $95, according to CoinGecko.
In the eyes of Nader Al-Naji, head of the DeSo foundation, decentralized social media has the potential to be “a lot bigger” than decentralized finance.
“Today there are only a few companies that control most of what we see online,” Al-Naji told Distributed Ledger in an interview. But DeSo is “creating a lot of new ways for creators to make money,” Al-Naji said.
“If you find a creator when they’re small, or an influencer, you can invest in that, and then if they become bigger and more popular, you make money and they make and they get capital early on to produce their creative work,” according to AI-Naji.
BitClout, the first application that was created by AI-Naji and his team on the DeSo blockchain, had initially drawn controversy, as some found that they had profiles on the platform without their consent, while the application’s users were buying and selling tokens representing their identities. Such tokens are called “creator coins.”
AI-Naji responded to the controversy saying that DeSo now supports more than 200 social-media applications including Bitclout. “I think that if you don’t like those features, you now have the freedom to use any app you want. Some apps don’t have that functionality at all.”
But Before I get to the “selling monkeys to morons” quote,
I want to talk about
THE GOOD, THE BAD, AND THE UGLY
THE GOOD
My foray into Science 2.0 and then pondering what the movement into a Science 3.0 led me to an article by Dr. Vladimir Teif, who studies gene regulation and the nucleosome, as well as creating a worldwide group of scientists who discuss matters on chromatin and gene regulation in a journal club type format.
For more information on this Fragile Nucleosome journal club see https://generegulation.org/fragile-nucleosome/.
Fragile Nucleosome is an international community of scientists interested in chromatin and gene regulation. Fragile Nucleosome is active in several spaces: one is the Discord server where several hundred scientists chat informally on scientific matters. You can join the Fragile Nucleosome Discord server. Another activity of the group is the organization of weekly virtual seminars on Zoom. Our webinars are usually conducted on Wednesdays 9am Pacific time (5pm UK, 6pm Central Europe). Most previous seminars have been recorded and can be viewed at our YouTube channel. The schedule of upcoming webinars is shown below. Our third activity is the organization of weekly journal clubs detailed at a separate page (Fragile Nucleosome Journal Club).
His lab site is at https://generegulation.org/ but had published a paper describing what he felt what the #science2_0 to #science3_0 transition would look like (see his blog page on this at https://generegulation.org/open-science/).
This concept of science 3.0 he had coined back in 2009. As Dr Teif had mentioned
So essentially I first introduced this word Science 3.0 in 2009, and since then we did a lot to implement this in practice. The Twitter account @generegulation is also one of examples
This is curious as we still have an ill defined concept of what #science3_0 would look like but it is a good read nonetheless.
His paper, entitled “Science 3.0: Corrections to the Science 2.0 paradigm” is on the Cornell preprint server at https://arxiv.org/abs/1301.2522
Abstract
Science 3.0: Corrections to the Science 2.0 paradigm
The concept of Science 2.0 was introduced almost a decade ago to describe the new generation of online-based tools for researchers allowing easier data sharing, collaboration and publishing. Although technically sound, the concept still does not work as expected. Here we provide a systematic line of arguments to modify the concept of Science 2.0, making it more consistent with the spirit and traditions of science and Internet. Our first correction to the Science 2.0 paradigm concerns the open-access publication models charging fees to the authors. As discussed elsewhere, we show that the monopoly of such publishing models increases biases and inequalities in the representation of scientific ideas based on the author’s income. Our second correction concerns post-publication comments online, which are all essentially non-anonymous in the current Science 2.0 paradigm. We conclude that scientific post-publication discussions require special anonymization systems. We further analyze the reasons of the failure of the current post-publication peer-review models and suggest what needs to be changed in Science 3.0 to convert Internet into a large journal club. [bold face added]
In this paper it is important to note the transition of a science 1.0, which involved hard copy journal publications usually only accessible in libraries to a more digital 2.0 format where data, papers, and ideas could be easily shared among networks of scientists.
As Dr. Teif states, the term “Science 2.0” had been coined back in 2009, and several influential journals including Science, Nature and Scientific American endorsed this term and suggested scientists to move online and their discussions online. However, even at present there are thousands on this science 2.0 platform, Dr Teif notes the number of scientists subscribed to many Science 2.0 networking groups such as on LinkedIn and ResearchGate have seemingly saturated over the years, with little new members in recent times.
The consensus is that science 2.0 networking is:
- good because it multiplies the efforts of many scientists, including experts and adds to the scientific discourse unavailable on a 1.0 format
- that online data sharing is good because it assists in the process of discovery (can see this evident with preprint servers, bio-curated databases, Github projects)
- open-access publishing is beneficial because free access to professional articles and open-access will be the only publishing format in the future (although this is highly debatable as many journals are holding on to a type of “hybrid open access format” which is not truly open access
- only sharing of unfinished works and critiques or opinions is good because it creates visibility for scientists where they can receive credit for their expert commentary
There are a few concerns on Science 3.0 Dr. Teif articulates:
A. Science 3.0 Still Needs Peer Review
Peer review of scientific findings will always be an imperative in the dissemination of well-done, properly controlled scientific discovery. As Science 2.0 relies on an army of scientific volunteers, the peer review process also involves an army of scientific experts who give their time to safeguard the credibility of science, by ensuring that findings are reliable and data is presented fairly and properly. It has been very evident, in this time of pandemic and the rapid increase of volumes of preprint server papers on Sars-COV2, that peer review is critical. Many of these papers on such preprint servers were later either retracted or failed a stringent peer review process.
Now many journals of the 1.0 format do not generally reward their peer reviewers other than the self credit that researchers use on their curriculum vitaes. Some journals, like the MDPI journal family, do issues peer reviewer credits which can be used to defray the high publication costs of open access (one area that many scientists lament about the open access movement; where the burden of publication cost lies on the individual researcher).
An issue which is highlighted is the potential for INFORMATION NOISE regarding the ability to self publish on Science 2.0 platforms.
The NEW BREED was born in 4/2012
An ongoing effort on this platform, https://pharmaceuticalintelligence.com/, is to establish a scientific methodology for curating scientific findings where one the goals is to assist to quell the information noise that can result from the massive amounts of new informatics and data occurring in the biomedical literature.
B. Open Access Publishing Model leads to biases and inequalities in the idea selection
The open access publishing model has been compared to the model applied by the advertising industry years ago and publishers then considered the journal articles as “advertisements”. However NOTHING could be further from the truth. In advertising the publishers claim the companies not the consumer pays for the ads. However in scientific open access publishing, although the consumer (libraries) do not pay for access the burden of BOTH the cost of doing the research and publishing the findings is now put on the individual researcher. Some of these publishing costs can be as high as $4000 USD per article, which is very high for most researchers. However many universities try to refund the publishers if they do open access publishing so it still costs the consumer and the individual researcher, limiting the cost savings to either.
However, this sets up a situation in which young researchers, who in general are not well funded, are struggling with the publication costs, and this sets up a bias or inequitable system which rewards the well funded older researchers and bigger academic labs.
C. Post publication comments and discussion require online hubs and anonymization systems
Many recent publications stress the importance of a post-publication review process or system yet, although many big journals like Nature and Science have their own blogs and commentary systems, these are rarely used. In fact they show that there are just 1 comment per 100 views of a journal article on these systems. In the traditional journals editors are the referees of comments and have the ability to censure comments or discourse. The article laments that comments should be easy to do on journals, like how easy it is to make comments on other social sites, however scientists are not offering their comments or opinions on the matter.
In a personal experience,
a well written commentary goes through editors which usually reject a comment like they were rejecting an original research article. Thus many scientists, I believe, after fashioning a well researched and referenced reply, do not get the light of day if not in the editor’s interests.
Therefore the need for anonymity is greatly needed and the lack of this may be the hindrance why scientific discourse is so limited on these types of Science 2.0 platforms. Platforms that have success in this arena include anonymous platforms like Wikipedia or certain closed LinkedIn professional platforms but more open platforms like Google Knowledge has been a failure.
A great example on this platform was a very spirited conversation on LinkedIn on genomics, tumor heterogeneity and personalized medicine which we curated from the LinkedIn discussion (unfortunately LinkedIn has closed many groups) seen here:
Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn
In this discussion, it was surprising that over a weekend so many scientists from all over the world contributed to a great discussion on the topic of tumor heterogeneity.
But many feel such discussions would be safer if they were anonymized. However then researchers do not get any credit for their opinions or commentaries.
A Major problem is how to take the intangible and make them into tangible assets which would both promote the discourse as well as reward those who take their time to improve scientific discussion.
This is where something like NFTs or a decentralized network may become important!
See
https://pharmaceuticalintelligence.com/portfolio-of-ip-assets/
UPDATED 5/09/2022
Below is an online @TwitterSpace Discussion we had with some young scientists who are just starting out and gave their thoughts on what SCIENCE 3.0 and the future of dissemination of science might look like, in light of this new Meta Verse. However we have to define each of these terms in light of Science and not just the Internet as merely a decentralized marketplace for commonly held goods.
This online discussion was tweeted out and got a fair amount of impressions (60) as well as interactors (50).
Set a reminder for my upcoming Space! https://t.co/7mOpScZfGN @Pharma_BI @PSMTempleU #science3_0 @science2_0
— Stephen J Williams (@StephenJWillia2) April 28, 2022
For the recording on both Twitter as well as on an audio format please see below
<blockquote class=”twitter-tweet”><p lang=”en” dir=”ltr”>Set a reminder for my upcoming Space! <a href=”https://t.co/7mOpScZfGN”>https://t.co/7mOpScZfGN</a> <a href=”https://twitter.com/Pharma_BI?ref_src=twsrc%5Etfw”>@Pharma_BI</a> <a href=”https://twitter.com/PSMTempleU?ref_src=twsrc%5Etfw”>@PSMTempleU</a> <a href=”https://twitter.com/hashtag/science3_0?src=hash&ref_src=twsrc%5Etfw”>#science3_0</a> <a href=”https://twitter.com/science2_0?ref_src=twsrc%5Etfw”>@science2_0</a></p>— Stephen J Williams (@StephenJWillia2) <a href=”https://twitter.com/StephenJWillia2/status/1519776668176502792?ref_src=twsrc%5Etfw”>April 28, 2022</a></blockquote> <script async src=”https://platform.twitter.com/widgets.js” charset=”utf-8″></script>
To introduce this discussion first a few startoff material which will fram this discourse

The Intenet and the Web is rapidly adopting a new “Web 3.0” format, with decentralized networks, enhanced virtual experiences, and greater interconnection between people. Here we start the discussion what will the move from Science 2.0, where dissemination of scientific findings was revolutionized and piggybacking on Web 2.0 or social media, to a Science 3.0 format. And what will it involve or what paradigms will be turned upside down?

Old Science 1.0 is still the backbone of all scientific discourse, built on the massive amount of experimental and review literature. However this literature was in analog format, and we moved to a more accesible digital open access format for both publications as well as raw data. However as there was a structure for 1.0, like the Dewey decimal system and indexing, 2.0 made science more accesible and easier to search due to the newer digital formats. Yet both needed an organizing structure; for 1.0 that was the scientific method of data and literature organization with libraries as the indexers. In 2.0 this relied on an army mostly of volunteers who did not have much in the way of incentivization to co-curate and organize the findings and massive literature.

Each version of Science has their caveats: their benefits as well as deficiencies. This curation and the ongoing discussion is meant to solidy the basis for the new format, along with definitions and determination of structure.

We had high hopes for Science 2.0, in particular the smashing of data and knowledge silos. However the digital age along with 2.0 platforms seemed to excaccerbate this somehow. We still are critically short on analysis!

We really need people and organizations to get on top of this new Web 3.0 or metaverse so the similar issues do not get in the way: namely we need to create an organizing structure (maybe as knowledgebases), we need INCENTIVIZED co-curators, and we need ANALYSIS… lots of it!!

There were a few overarching themes whether one was talking about AI, NLP, Virtual Reality, or other new technologies with respect to this new meta verse and a concensus of Decentralized, Incentivized, and Integrated was commonly expressed among the attendees
The Following are some slides from representative Presentations
Other article of note on this topic on this Open Access Scientific Journal Include:
Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal @pharmaceuticalintelligence.com – Four Case Studies
@PharmaceuticalIntelligence.com – A Case Study on the LEADER in Curation of Scientific Findings
This is OUTSTANDING.
Now we need a “shortcliff” post to follow one chart that traces the dynamic process, no reader shall get lost inside any of the process boxes.
Really nice overview and very interesting metabolic changes.
However, related to the title, the cancerous changes- event always comes first before lactate preferred metabolism comes into place. Right?
This is what has been inferred. So if that is the premise, then the mutation would be the first event. That position has been successfully challenged and also poses a challenge to the proper view of genomic discovery. The real event may very well be the ongoing oxidative stress with aging, and decreased physiochemical reserve.
I haven’t developed the whole picture. Nitric oxide and nitrosylation contribute to both vascular relaxation and vasoconstriction, which is also different in major organs. The major carriers of H+ are NADH and FADH2. Electron transport is in the ETC in mitochondria. I called attention to the “escape” of energy in aerobic glycolysis. As disease ensues, it appears that lactate generation is preferential as the mitochondrion takes up substrate from gluconeogenesis. Whether it is an endotoxic shock or a highly malignant fast growing tumor, the body becomes trapped in “autocatabolism”. So the tumor progresses, apoptosis is suppressed, and there is a loss of lean body mass.
All of this is tied to genetic instability.
We see the genetic instability as first because of the model DNA–RNA–protein. We don’t have a map.
It is a very nice report. I did work for a short time to develop compounds to block the glucose uptake especially using glucose-mimics. I wonder is there any research on this area going on now?
High dose IV vitamin C may be an excellent choice since its structure is similar to glucose and utilizes the same transport system.
Thanks. I have been researching this exhaustively. There are even many patents trying to damp this down. You were on the right track. The biggest problem has been multidrug resistance and tumor progression.
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? (pharmaceuticalintelligence.com) […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? (pharmaceuticalintelligence.com) […]
Martin Canizales • Warburg effect (http://www.cellsignal.com/reference/pathway/warburg_effect.html), is responsible of overactivation of the PI3K… the produced peroxide via free radicals over activate the cyclooxigenase and consequently the PI3K pathway activating there, the most important protein-kinase ever described in the last mmmh, 60-70 years? maybe… to broke the Warburg effect, will stop the PI3K activation (http://www.cellsignal.com/reference/pathway/Akt_PKB.html) then all the cancer protein related with the generation of tumor (pAKT,pP70S6K, Cyclin D1, HIF1, VEGF, EGFrc, GSK, Myc, etc, etc, etc), will get down regulation. That is what happen, when I knock down the new protein-kinase in pancreatic cancer cell lines… stable KD of pancreatic cancer cell lines divide very-very-veeeery slow (by Western blotting, cyclin D1 disapear, VEGF, HIF1a, MyC, pAKT, pP70S6K, GSK, and more and more also has, very-very few consume of glucose [diabetes and cancer]. Stable cells can be without change the media for 3 weeks and the color doesn’t change, cells divide but VERY slow and are alive [longevity]) are not able to generate xenograft tumors related, to scramble shRNA stable cell lines. When, we broke the warburg effect, the protein kinase get’s down as well all the others. Is the same, with bacteria infections…. bacteria infections, has many things to teach us about cancer and cell proliferation (http://www.ncbi.nlm.nih.gov/pubmed/22750098)
research paper, should be ready (writing) very soon and must be submmited before end this year. Hee hee! you know… end of the world is in December 21 2012
The emphasis on p13 and the work on pancreatic cancer is very interesting. I’ll check the references you give. The Warburg effect is still metabolic, and it looks like you are able to suppress the growth of either cancer cells or bacteria. The outstanding question is whether you can get a head start on the SIR transition to sepsis to severe sepsis to MODS, to shock.
It looks like an article will be necessary after your work is accepted for publication. Thanks a lot for the response.
Also, when this protein-kinase is over expressed… UCP1 get down..then, less mitochondria, consequently less aerobic cell functions…in adipose tissue, less mitochondria promote the differentiation of BAT (Brown Adipose Tissue) to, WAT (White Agipose Tissue). Has relation with AS160 phosphorylation, Glut4 membrane translocation, promote the GABA phosphorylation (schizophrenia-autism), neuronal differentiation (NPCs:Neural Progenitor Cells), dopaminergic cell differentiation….
Larry, all comments are part of the second paper.
When you publish the paper can yuo be so kind to send me a copy of the series? My email is michael.gonzalez5@upr.edu
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
Larry please take a look at Gonzalez et al. The Bioenergetic theory of Carcinogenesis. Med Hypotheses 2012; 79: 433-439 and let me know your thoughts.
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? Lhb https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… […]
[…] The Initiation and Growth of Molecular Biology and Genomics, Part I […]
[…] https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… Promising New Approach To Preventing Progression Of Breast Cancer (medicalnewstoday.com) […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
[…] https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… […]
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
Thank you!
[…] Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? […]
[…] https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… […]
Informative article especially concerning activation of HIF under normoxic conditions. Recently, a paper has come out showing patients showing symptoms of mood disorder having increased expression of Hif1a. Also, there are reports that Hif1a is important in development of certain tissue types.
[…] https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… […]
COLOURS AND LIFE. The basic idea of this theory is that the oxidation of hydrogen and carbon atoms, arising from the degradation of carbohydrates, is by two distinct processes based on oxidation-reduction electron transfer and photochemical process of energy release on the basis of color complementary, predominance of one or another depending on intracellular acid-base balance. I can not understand why nobody wants to do this experiment. I’m sure this assumption hides a truth. Before considering it a fiction to be checked experimentally. I would like to present a research project that concerns me for a long time that I can not experience myself.
Involuntarily, after many years of searching, I have concluded that in the final biological oxidation, in addition to the oxidation-reduction electron transfer occurs photo-chemical process, accordance to the principle of color complementary energy transfer. I imagine an experiment that might be relevant (sure it can be improved). In my opinion, if this hypothesis proves true, one can control the energy metabolism of the cell by chromotherapy, as the structures involved are photosensitive and colorful. I would be very happy if this experiment were done under your leadership. Sincerely yours Dr. Viorel Bungau
INNER LIGHT – LIGHT OF LIFE.
CHROMOTHERAPY AND THE IMPLICATIONS IN THE METABOLISM OF THE NORMAL AND NEOPLASTIC CELL. “Chlorophyll and hemoglobin pigments of life porphyrin structure differs only in that chlorophyll is green because of magnesium atoms in the structure, and hemoglobin in red because of iron atoms in the structure. This is evidence of the common origin of life.” (Heilmeyer) We propose an experiment to prove that the final biological oxidation, in addition to its oxidation-reduction, with formation of H2O and CO2, there is a photochemical effect, by which energy is transferred from the H atom, or C, process is done selct, the colors, complementary colors on the basis of the structures involved are colored (red hemoglobin Fe, Mg chlorophyll green, blue ceruloplasmin Cu, Fe cytochrome oxidase red, green cytochrome oxidase with Cu etc.). The basic idea is that if life pigments (chlorophyll, hemoglobin, cytochromes), which provides energy metabolism of the cell, are colored, we can control their activities through chromotherapy, on the basis of complementary color and energy rebalance the body, with a figured X- body-colored-ray.
In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. “Duality of cytochrome oxidase. Proliferation (growth) and Differentiation (maturation) cell.” Cytochrome oxidase is present in two forms, depending on the context of acid-base internal environment : 1.- Form acidic (acidosis), which contains two Iron atoms, will be red, will absorb the additional green energy of the hydrogen atom, derived from carbohydrates, with formation of H2O, metabolic context that will promote cell proliferation. 2.-Form alkaline (alkalosis), containing two copper atoms, will be green, will absorb the additional red energy of the carbon atom, derived from carbohydrates, with formation of CO2, metabolic context that will promote cell differentiation. Cytochrome oxidase structure has two atoms of copper. It is known that in conditions of acidosis (oxidative potential), the principle electronegativity metals, copper is removed from combinations of the Iron. So cytochrome oxidase will contain two atoms of iron instead of copper atoms, which changes its oxidation-reduction potential, but (most important), and color. If the copper was green, the iron is red, which radically change its absorption spectrum, based on the principle of complementary colors.
“Inner Light- Light of Life. Endogenous monochromatic irradiation. Red ferment of Warburg – Green ferment of Warburg.”
In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. If the structures involved in biological oxidation finals are colored, then their energy absorption is made based on the principle of complementary colors. If we can determine the absorption spectrum at different levels, we can control energy metabolism by chromotherapy – EXOGENOUS MONOCHROMATIC IRRADIATION . Energy absorption in biological oxidation process itself, based on complementary colors, the structures involved (cytochromes), is the nature of porphyrins, in combination with a metal becomes colored, will absorb the complementary color, corresponding to a specific absorption spectrum, it will be in – ENDOGENOUS MONOCHROMATIC IRRADIATION.
This entitles us to believe that: In photosynthesis, light absorption and its storage form of carbohydrates, are selected, the colors, as in cellular energy metabolism, absorption of energy by the degradation of carbohydrates, is also done selectively, based on complementary colors. In the final biological oxidation, in addition to an oxidation-reduction process takes place and a photo-chemical process,based on complementary colors, the first in the electron transfer, the second in the energy transfer. So, in the mitochondria is a process of oxidation of atoms C and H, derived from carbohydrates, with energy release and absorption of its selection (the color), by the structures involved, which is the nature of porphyrins, are photosensitive and colorful, if we accept as coenzymes involved, containing a metal atom gives them a certain color, depending on the state of oxidation or reduction (red ferment of Warburg with iron, all copper cerloplasmin blue, green chlorophyll magnesium, red iron hemoglobin, green cytochrome oxidase with copper, etc.)
According to the principle electronegativity metals, under certain conditions the acid-base imbalance (acidosis), iron will replace copper in combination , cytocromoxidase became inactive, leading to changing oxidation-reduction potential, BUT THE COLOR FROM GREEN, TO REED, to block the final biological oxidation and the appearance of aerobic glycolysis. In connection with my research proposal, to prove that the final biological oxidation, in addition to an oxidation-reduction process takes place and a photo-chemical process, the first in the electron transfer, the second in the energy transfer.
I SUGGEST TO YOU AN EXPERIMENT:
TWO PLANTS, A RED (CORAILLE) LIGHT ONLY, IN BASIC MEDIUM, WITH ADDED COPPER, WILL GROW, FLOWER AND FRUIT WILL SHORT TIME, AND THE OTHER ONLY GREEN LIGHT (TOURQUOISE), IN AN ACID MEDIUM, WITH ADDED COPPER CHELATOR , WHICH GROWS THROUGHOUT WILL NOT GROW FLOWERS AND FRUIT WILL DO.
CULTURE OF NEOPLASTIC TISSUE, IRRADIATED WITH MONOCHROMATIC GREEN ( TOURQUOISE) LIGHT, IN AN ALKALINE MEDIUM, WITH ADDED COPPER, WILL IN REGRESSION OF THE TISSUE CULTURE.
CULTURE OF NEOPLASTIC TISSUE, IRRADIATED WITH RED ( CORAILLE) LIGHT, IN AN ACID MEDIUM, WITH ADDED COPPER CHELATOR, WILL LEAD TO EXAGERATED AND ANARCHICAL MULTIPLICATION.
If in photosynthesis is the direct effect of monochromatic irradiation, in the final biological oxidation effect is reversed. Exogenous irradiation with green, induces endogenous irradiation with red, and vice versa. A body with cancer disease will become chemically color “red”- Acid -(pH, Rh, pCO2, alkaline reserve), and in terms of energy, green (X-body-colored-ray). A healthy body will become chemically color “green”-Alkaline – (as evidenced by laboratory), and in terms of energy, red (visible by X-body-colored-ray). Sincerely, Dr. Viorel Bungau
-In addition-
“Life balance: Darkness and Light – Water and Fire – Inn and Yang.”
Cytochrome oxidase structure has two atoms of copper. It is known that in conditions of acidosis (oxidative potential), the principle electronegativity metals, copper is removed from combinations of the Iron. So cytochrome oxidase will contain two atoms of iron instead of copper atoms, which changes its oxidation-reduction potential, but (most important), and color. If the copper was green, the iron is red, which radically change its absorption spectrum, based on the principle of complementary colors. If neoplastic cells, because acidosis is overactive acid form of cytochrome oxidase (red with iron atoms), which will absorb the additional green energy hydrogen atom (exclusively), the production of H20 , so water will prevail, in Schizophrenia , neuronal intracellular alkaline environment, will promote the basic form of cytochrome oxidase (green with copper atoms), which will oxidize only carbon atoms, the energy absorption of red (complementary) and production of CO2, so the fire will prevail. Drawn from this theory interdependent relationship between water and fire, of hydrogen(H2O) and carbon(CO2) ,in a controlled relationship with oxygen (O2). If photosynthesis is a process of reducing carbon oxide(CO2) and hydrogen oxide(H2O), by increasing electronegativity of C and H atoms, with the electrons back to oxygen, which will be released in the mitochondria is a process of oxidation of atoms C and H, derived from carbohydrates, with energy release and absorption of its selection (the color), by the structures involved, which is the nature of porphyrins, are photosensitive and colorful. It means that matter and energy in the universe are found in a relationship based on complementary colors, each color of energy, corresponding with a certain chemical structure. In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. The final biological oxidation is achieved through a process of oxidation-reduction, while a photochemical process, based on the principle of complementary colors, if we accept as coenzymes involved, containing a metal atom gives them a certain color, depending on the state of oxidation or reduction (red ferment of Warburg with copper, all copper cerloplasmin blue, green chlorophyll magnesium, red iron hemoglobin,etc. If satisfied, the final biological oxidation is achieved by a photochemical mechanism (besides the oxidation-reduction), that energy is released based on complementary colors, means that we can control the final biological oxidation mechanism, irreversibly disrupted in cancer, by chromotherapy and correction of acid-base imbalance that underlies this disorder.We reached this conclusions studying the final biological oxidation, for understanding the biochemical mechanism of aerobic glycolysis in cancer. We found that cancer cell, energy metabolism is almost exclusively on hydrogen by oxidative dehydrogenation, due to excessive acidosis , coenzymes which makes carbon oxidation, as dormant (these coenzymes have become inactive). If we accept the nature of these coenzymes chloride (see Warburg ferment red), could be rectivate, by correcting acidosis (because that became leucoderivat), and by chromoterapie, on the basis of complementary colors. According to the principle electronegativity metals, under certain conditions the acid-base imbalance (acidosis), iron will replace copper in combination , cytocromoxidase became inactive (it contains two copper atoms) leading to changing oxidation-reduction potential, BUT THE COLOR FROM GREEN, TO REED, to block the final biological oxidation and the appearance of aerobic glycolysis.
Malignant transformation occurs by energy metabolism imbalance in power generation purposes in the predominantly (exclusively) of the hydrogen atom of carbon oxidation is impossible. Thus at the cellular level will produce a multiplication (growth) exaggerated (exclusive), energy from hydrogen favoring growth, multiplication, at the expense of differentiation (maturation). Differentiation is achieved by energy obtained by oxidation of the carbon atom can not take, leading to carcinogenesis . The energy metabolism of the cell, an energy source is carbohydrate degradation, which is done by OXIDATIVE DEHYDROGENATION AND OXIDATIVE DECARBOXYLATION , to obtain energy and CO2 and H2O. In normal cells there is a balance between the two energy sources. If cancer cells, oxidation of the carbon atom is not possible, the cell being forced to summarize the only energy source available, of hydrogen. This disorder underlying malignant transformation of cells and affect the whole body, in various degrees, often managing to rebalance process, until at some point it becomes irreversible. The exclusive production of hydrogen energy will cause excessive multiplication, of immature cells, without functional differentiation. Exclusive carbon energy production will lead to hyperdifferentiation, hyperfunctional, multiplication is impossible. Normal cell is between two extremes, between some limits depending on the adjustment factors of homeostasis. Energy from energy metabolism is vital for cell (body). If the energy comes predominantly (or exclusively) by oxidation of the hydrogen atom, green energy, will occur at the structural level (biochemical), acidification of the cellular structures that will turn red, so WE HAVE MORPHOLOGICAL AND CHEMICAL STRUCTURES “RED”, WITH “GREEN” ENERGY. This background predisposes to accelerated growth, without differentiation, reaching up uncontrolled, anarchical. ENERGY STRUCTURE OF THE CELL BODY WOULD BE INN. If necessary energy cell derived mainly by oxidation of the carbon atom, red energy,cell structures will be colored green, will be alkaline(basic), so WE HAVE MORPHOLOGICAL AND CHEMICAL STRUCTURES “GREEN”, WITH “RED” ENERGY, on the same principle of complementarity. This context will lead hyperdifferentiation, hyperfunctional ,maturation, and grouth stops. ENERGY STRUCTURE OF THE CELL BODY WOULD BE YANG. If in photosynthesis, porphyrins chemicals group, whic be photosensitivity (their first feature), shows and a great affinity for metals with chelate forming and becoming colored (pigments of life), can absorb monochromatic light complementary, so if these pigments, which constitutes the group of chromoprotheine, in photosynthesis will achieve CO2 and H2O reduction the recovery of C, H respectively, and the issuance of and release of O, atoms as H and C that reduced the energy load, representing carbohydrates, is in the form of solar energy storage, in cellular energy metabolism, processes necessary life, energy will come from the degradation of substances produced in photosynthesis, the carbohydrates, by oxidative dehydrogenation and oxidative decarboxylation, through like substances, which form chelates with the metals, are colored, metals contained in the form of oxides of various colors(green Mg, red Fe, blue Cu,etc.),suffering from complementary color absorption process of reduction with H in case,if the oxidative dehydrogenation, when chelated metal pigment is red, becoming leucoderivat (colorless) by absorbing complementary color (green) of hydrogen, formation of H2O, or C, if the oxidative decarboxylation when chelated metallic pigment is green, energy absorbing additional, red energy of atom C, CO2 production, the process is identical. The process that lies at base cellular energy metabolism, takes place in the final biological oxidation, reducing the O atom in the form of metal oxide, in combination with photosensitive substance, porohyrin, colorful,absorbing complementary color, will reduce the O atom, with H and C, with the production of H2O and CO2. Green energy release of H atom in the oxidative dehydrogenation process, it is a process of”IRRADIATION MONOCHROMATIC ENDOGENOUS WITH GREEN”, and red energy release of C atom in the oxidative decarboxylation process, consists in an “IRRADIATION MONOCHROMATIC ENDOGENOUS WITH RED”. Porphyrin-metal combination in photosynthesis, the chelated form, by absorbing light in the visible spectrum, will be able to reduce to low and turn, C and H respectively, the state of oxide (CO2 and H2O),release of O. The final biological oxidation, the combination of metal-porphyrins in aerobically in the absence of light, will find in the oxidized state, so in the form of porphyrins and metal-oxide, will oxidize to C and H atom of hydrocarbonates, with formation of CO2 and H2O, or rather, will be reduced by C and H atom of hydrocarbonates,formation of CO2 and H2O, by absorbing energy produced by photosynthesis. If we can control the final biological oxidation, we can control cellular growth, thus multiplying, and on the other hand, maturation, so differentiation. Green energy will prevail if the cell (body) which multiplies (during growth), will in case of adult cell (functional) will prevail red energy . The two types of energy, that obtained by oxidative dehydrogenation , which will cause cell multiplication without differentiation , and that obtained by oxidative decarboxylation , which will be to stop proliferation, and will determine the differentiation (maturity, functionality). This process is carried out based on complementary colors, which are coenzymes oxidative dehydrogenation and oxidative decarboxylation is colored . It reveals the importance of acid-base balance, the predominance of the acidic or basic, as an acid structure (red), not only can gain energy from the carbon atom red (the principle of complementarity), but can not assimilate ( under the same principle). It must therefore acid-base balance of internal environment, and alkalinization his intake of organic substances by the electron donor. By alkalinization (addition of electrons) will occur neutralize acid structures, the red, they become leucoderivat, colorless, and inactive, while the basic, which because of acidosis became neutral, colorless and inactive, will be alkaline in electron contribution, will be in green, and will absorb red energy from the carbon atom. So, on two kinds of vital energy, it is clear correlation between the chemical structure of the cell(body),and type of energy that can produce and use. Thus a cell with acidic chemical structure, can produce only energy by oxidative dehydrogenation (green energy), because the acid can only be active coenzymes with acid chemical structure, red, will absorb the complementarity only green energy of hydrogen. Basic structures which should absorb red energy from carbon , are inactive due to acid environment, which in turn chemically in leucoderivat, so colorless structures, inactive. Conversion of these structures to normal, operation by alkalinization could be a long lasting process, therefore, we use parallel chromotherapy, based on the fact that these COENZYMES INVOLVED IN BIOLOGICAL OXIDATION FINALS ARE COLORED AND PHOTOSENSITIVE. Thus, exogenous irradiation with monochromatic green will neutralize, by complementarity, coenzymes red, acidic. In will reactivate alkaline coenzymes, which have become due acidosis leucoderivat, so colorless and inactive. Without producing CO2, carbonic anhydrase can not form H2CO3, severable and thus transferred through mitochondrial membrane. Will accumulate in the respiratory Flavin, OH groups, leading to excessive hydroxylation, followed by consecutive inclusion of amino (NH2). It is thus an imbalance between the hydrogenation-carboxylation and hydroxylation-amination, in favor of the latter. This will predominate AMINATION and HYDROXYLATION at the expense CARBOXYLATION and HYDROGENATION, leading to CONVERSION OF STRUCTURAL PROTEINS IN NUCLEIC ACIDS. Meanwhile, after chemical criteria not genetic, it synthesizes the remaining unoxidized carbon atoms, nucleic bases “de novo” by the same process of hydroxylation-amination, leading to THE SYNTHESIS OF NUCLEIC ACIDS “DE NOVO”. Sincerely yours, Dr. Viorel Bungau viorelbungau20@yahoo.com
Dr. Viorel Bungau,
Your comment is beautiful, clorful, insightful, magestic.
This article has drawn 3007 views
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
2012 242 362 247 851
2013 283 330 465 390 288 208 187 164 255 274 163 3,007
Dear Mr. Professor, Please join me in this research proposal, as leader, because I can not go alone.
The basic idea of this theory is that the oxidation of hydrogen and carbon atoms, arising from the degradation of carbohydrates, is by two distinct processes based on oxidation-reduction electron transfer and photochemical process of energy release on the basis of color complementary, predominance of one or another depending on intracellular acid-base balance. I can not understand why nobody wants to do this experiment. I’m sure this assumption hides a truth. Before considering it a fiction to be checked experimentally. I would like to present a research project that concerns me for a long time that I can not experience myself.
Involuntarily, after many years of searching, I have concluded that in the final biological oxidation, in addition to the oxidation-reduction electron transfer occurs photo-chemical process, accordance to the principle of color complementary energy transfer. I imagine an experiment that might be relevant (sure it can be improved). In my opinion, if this hypothesis proves true, one can control the energy metabolism of the cell by chromotherapy, as the structures involved are photosensitive and colorful. I would be very happy if this experiment were done under your leadership. Sincerely yours, Dr. Viorel Bungau
INNER LIGHT – LIGHT OF LIFE.
CHROMOTHERAPY AND THE IMPLICATIONS IN THE METABOLISM OF THE NORMAL AND NEOPLASTIC CELL. “Chlorophyll and hemoglobin pigments of life porphyrin structure differs only in that chlorophyll is green because of magnesium atoms in the structure, and hemoglobin in red because of iron atoms in the structure. This is evidence of the common origin of life.” (Heilmeyer) We propose an experiment to prove that the final biological oxidation, in addition to its oxidation-reduction, with formation of H2O and CO2, there is a photochemical effect, by which energy is transferred from the H atom, or C, process is done selct, the colors, complementary colors on the basis of the structures involved are colored (red hemoglobin Fe, Mg chlorophyll green, blue ceruloplasmin Cu, Fe cytochrome oxidase red, green cytochrome oxidase with Cu etc.). The basic idea is that if life pigments (chlorophyll, hemoglobin, cytochromes), which provides energy metabolism of the cell, are colored, we can control their activities through chromotherapy, on the basis of complementary color and energy rebalance the body, with a figured X- body-colored-ray.
In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. “Duality of cytochrome oxidase. Proliferation (growth) and Differentiation (maturation) cell.” Cytochrome oxidase is present in two forms, depending on the context of acid-base internal environment : 1.- Form acidic (acidosis), which contains two Iron atoms, will be red, will absorb the additional green energy of the hydrogen atom, derived from carbohydrates, with formation of H2O, metabolic context that will promote cell proliferation. 2.-Form alkaline (alkalosis), containing two copper atoms, will be green, will absorb the additional red energy of the carbon atom, derived from carbohydrates, with formation of CO2, metabolic context that will promote cell differentiation. Cytochrome oxidase structure has two atoms of copper. It is known that in conditions of acidosis (oxidative potential), the principle electronegativity metals, copper is removed from combinations of the Iron. So cytochrome oxidase will contain two atoms of iron instead of copper atoms, which changes its oxidation-reduction potential, but (most important), and color. If the copper was green, the iron is red, which radically change its absorption spectrum, based on the principle of complementary colors.
“Inner Light- Light of Life. Endogenous monochromatic irradiation. Red ferment of Warburg – Green ferment of Warburg.”
In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. If the structures involved in biological oxidation finals are colored, then their energy absorption is made based on the principle of complementary colors. If we can determine the absorption spectrum at different levels, we can control energy metabolism by chromotherapy – EXOGENOUS MONOCHROMATIC IRRADIATION . Energy absorption in biological oxidation process itself, based on complementary colors, the structures involved (cytochromes), is the nature of porphyrins, in combination with a metal becomes colored, will absorb the complementary color, corresponding to a specific absorption spectrum, it will be in – ENDOGENOUS MONOCHROMATIC IRRADIATION.
This entitles us to believe that: In photosynthesis, light absorption and its storage form of carbohydrates, are selected, the colors, as in cellular energy metabolism, absorption of energy by the degradation of carbohydrates, is also done selectively, based on complementary colors. In the final biological oxidation, in addition to an oxidation-reduction process takes place and a photo-chemical process,based on complementary colors, the first in the electron transfer, the second in the energy transfer. So, in the mitochondria is a process of oxidation of atoms C and H, derived from carbohydrates, with energy release and absorption of its selection (the color), by the structures involved, which is the nature of porphyrins, are photosensitive and colorful, if we accept as coenzymes involved, containing a metal atom gives them a certain color, depending on the state of oxidation or reduction (red ferment of Warburg with iron, all copper cerloplasmin blue, green chlorophyll magnesium, red iron hemoglobin, green cytochrome oxidase with copper, etc.)
According to the principle electronegativity metals, under certain conditions the acid-base imbalance (acidosis), iron will replace copper in combination , cytocromoxidase became inactive, leading to changing oxidation-reduction potential, BUT THE COLOR FROM GREEN, TO REED, to block the final biological oxidation and the appearance of aerobic glycolysis. In connection with my research proposal, to prove that the final biological oxidation, in addition to an oxidation-reduction process takes place and a photo-chemical process, the first in the electron transfer, the second in the energy transfer.
I SUGGEST TO YOU AN EXPERIMENT:
TWO PLANTS, A RED (CORAILLE) LIGHT ONLY, IN BASIC MEDIUM, WITH ADDED COPPER, WILL GROW, FLOWER AND FRUIT WILL SHORT TIME, AND THE OTHER ONLY GREEN LIGHT (TOURQUOISE), IN AN ACID MEDIUM, WITH ADDED COPPER CHELATOR , WHICH GROWS THROUGHOUT WILL NOT GROW FLOWERS AND FRUIT WILL DO.
CULTURE OF NEOPLASTIC TISSUE, IRRADIATED WITH MONOCHROMATIC GREEN ( TOURQUOISE) LIGHT, IN AN ALKALINE MEDIUM, WITH ADDED COPPER, WILL IN REGRESSION OF THE TISSUE CULTURE.
CULTURE OF NEOPLASTIC TISSUE, IRRADIATED WITH RED ( CORAILLE) LIGHT, IN AN ACID MEDIUM, WITH ADDED COPPER CHELATOR, WILL LEAD TO EXAGERATED AND ANARCHICAL MULTIPLICATION.
If in photosynthesis is the direct effect of monochromatic irradiation, in the final biological oxidation effect is reversed. Exogenous irradiation with green, induces endogenous irradiation with red, and vice versa. A body with cancer disease will become chemically color “red”- Acid -(pH, Rh, pCO2, alkaline reserve), and in terms of energy, green (X-body-colored-ray). A healthy body will become chemically color “green”-Alkaline – (as evidenced by laboratory), and in terms of energy, red (visible by X-body-colored-ray). Sincerely yours, Dr. Viorel Bungau
-In addition-
Life balance: Darkness and Light – Water and Fire – Inn and Yang.
Cytochrome oxidase structure has two atoms of copper. It is known that in conditions of acidosis (oxidative potential), the principle electronegativity metals, copper is removed from combinations of the Iron. So cytochrome oxidase will contain two atoms of iron instead of copper atoms, which changes its oxidation-reduction potential, but (most important), and color. If the copper was green, the iron is red, which radically change its absorption spectrum, based on the principle of complementary colors. If neoplastic cells, because acidosis is overactive acid form of cytochrome oxidase (red with iron atoms), which will absorb the additional green energy hydrogen atom (exclusively), the production of H20 , so water will prevail, in Schizophrenia , neuronal intracellular alkaline environment, will promote the basic form of cytochrome oxidase (green with copper atoms), which will oxidize only carbon atoms, the energy absorption of red (complementary) and production of CO2, so the fire will prevail. Drawn from this theory interdependent relationship between water and fire, of hydrogen(H2O) and carbon(CO2) ,in a controlled relationship with oxygen (O2). If photosynthesis is a process of reducing carbon oxide(CO2) and hydrogen oxide(H2O), by increasing electronegativity of C and H atoms, with the electrons back to oxygen, which will be released in the mitochondria is a process of oxidation of atoms C and H, derived from carbohydrates, with energy release and absorption of its selection (the color), by the structures involved, which is the nature of porphyrins, are photosensitive and colorful. It means that matter and energy in the universe are found in a relationship based on complementary colors, each color of energy, corresponding with a certain chemical structure. In my opinion, at the basis of malign transformation is a disturbance of energetical metabolism, which reached a level that cell can not correct (after having succeeded before, many times), disturbance that affects the whole body in different degrees and requires corection from outside starting from the ideea that the final biological oxidizing takes place through photochemical process with releasing and receieving energy. The final biological oxidation is achieved through a process of oxidation-reduction, while a photochemical process, based on the principle of complementary colors, if we accept as coenzymes involved, containing a metal atom gives them a certain color, depending on the state of oxidation or reduction (red ferment of Warburg with copper, all copper cerloplasmin blue, green chlorophyll magnesium, red iron hemoglobin,etc. If satisfied, the final biological oxidation is achieved by a photochemical mechanism (besides the oxidation-reduction), that energy is released based on complementary colors, means that we can control the final biological oxidation mechanism, irreversibly disrupted in cancer, by chromotherapy and correction of acid-base imbalance that underlies this disorder.We reached this conclusions studying the final biological oxidation, for understanding the biochemical mechanism of aerobic glycolysis in cancer. We found that cancer cell, energy metabolism is almost exclusively on hydrogen by oxidative dehydrogenation, due to excessive acidosis , coenzymes which makes carbon oxidation, as dormant (these coenzymes have become inactive). If we accept the nature of these coenzymes chloride (see Warburg ferment red), could be rectivate, by correcting acidosis (because that became leucoderivat), and by chromoterapie, on the basis of complementary colors. According to the principle electronegativity metals, under certain conditions the acid-base imbalance (acidosis), iron will replace copper in combination , cytocromoxidase became inactive (it contains two copper atoms) leading to changing oxidation-reduction potential, BUT THE COLOR FROM GREEN, TO REED, to block the final biological oxidation and the appearance of aerobic glycolysis.
Malignant transformation occurs by energy metabolism imbalance in power generation purposes in the predominantly (exclusively) of the hydrogen atom of carbon oxidation is impossible. Thus at the cellular level will produce a multiplication (growth) exaggerated (exclusive), energy from hydrogen favoring growth, multiplication, at the expense of differentiation (maturation). Differentiation is achieved by energy obtained by oxidation of the carbon atom can not take, leading to carcinogenesis . The energy metabolism of the cell, an energy source is carbohydrate degradation, which is done by OXIDATIVE DEHYDROGENATION AND OXIDATIVE DECARBOXYLATION , to obtain energy and CO2 and H2O. In normal cells there is a balance between the two energy sources. If cancer cells, oxidation of the carbon atom is not possible, the cell being forced to summarize the only energy source available, of hydrogen. This disorder underlying malignant transformation of cells and affect the whole body, in various degrees, often managing to rebalance process, until at some point it becomes irreversible. The exclusive production of hydrogen energy will cause excessive multiplication, of immature cells, without functional differentiation. Exclusive carbon energy production will lead to hyperdifferentiation, hyperfunctional, multiplication is impossible. Normal cell is between two extremes, between some limits depending on the adjustment factors of homeostasis. Energy from energy metabolism is vital for cell (body). If the energy comes predominantly (or exclusively) by oxidation of the hydrogen atom, green energy, will occur at the structural level (biochemical), acidification of the cellular structures that will turn red, so WE HAVE MORPHOLOGICAL AND CHEMICAL STRUCTURES “RED”, WITH “GREEN” ENERGY. This background predisposes to accelerated growth, without differentiation, reaching up uncontrolled, anarchical. ENERGY STRUCTURE OF THE CELL BODY WOULD BE INN. If necessary energy cell derived mainly by oxidation of the carbon atom, red energy,cell structures will be colored green, will be alkaline(basic), so WE HAVE MORPHOLOGICAL AND CHEMICAL STRUCTURES “GREEN”, WITH “RED” ENERGY, on the same principle of complementarity. This context will lead hyperdifferentiation, hyperfunctional ,maturation, and grouth stops. ENERGY STRUCTURE OF THE CELL BODY WOULD BE YANG. If in photosynthesis, porphyrins chemicals group, whic be photosensitivity (their first feature), shows and a great affinity for metals with chelate forming and becoming colored (pigments of life), can absorb monochromatic light complementary, so if these pigments, which constitutes the group of chromoprotheine, in photosynthesis will achieve CO2 and H2O reduction the recovery of C, H respectively, and the issuance of and release of O, atoms as H and C that reduced the energy load, representing carbohydrates, is in the form of solar energy storage, in cellular energy metabolism, processes necessary life, energy will come from the degradation of substances produced in photosynthesis, the carbohydrates, by oxidative dehydrogenation and oxidative decarboxylation, through like substances, which form chelates with the metals, are colored, metals contained in the form of oxides of various colors(green Mg, red Fe, blue Cu,etc.),suffering from complementary color absorption process of reduction with H in case,if the oxidative dehydrogenation, when chelated metal pigment is red, becoming leucoderivat (colorless) by absorbing complementary color (green) of hydrogen, formation of H2O, or C, if the oxidative decarboxylation when chelated metallic pigment is green, energy absorbing additional, red energy of atom C, CO2 production, the process is identical. The process that lies at base cellular energy metabolism, takes place in the final biological oxidation, reducing the O atom in the form of metal oxide, in combination with photosensitive substance, porohyrin, colorful,absorbing complementary color, will reduce the O atom, with H and C, with the production of H2O and CO2. Green energy release of H atom in the oxidative dehydrogenation process, it is a process of”IRRADIATION MONOCHROMATIC ENDOGENOUS WITH GREEN”, and red energy release of C atom in the oxidative decarboxylation process, consists in an “IRRADIATION MONOCHROMATIC ENDOGENOUS WITH RED”. Porphyrin-metal combination in photosynthesis, the chelated form, by absorbing light in the visible spectrum, will be able to reduce to low and turn, C and H respectively, the state of oxide (CO2 and H2O),release of O. The final biological oxidation, the combination of metal-porphyrins in aerobically in the absence of light, will find in the oxidized state, so in the form of porphyrins and metal-oxide, will oxidize to C and H atom of hydrocarbonates, with formation of CO2 and H2O, or rather, will be reduced by C and H atom of hydrocarbonates,formation of CO2 and H2O, by absorbing energy produced by photosynthesis. If we can control the final biological oxidation, we can control cellular growth, thus multiplying, and on the other hand, maturation, so differentiation. Green energy will prevail if the cell (body) which multiplies (during growth), will in case of adult cell (functional) will prevail red energy . The two types of energy, that obtained by oxidative dehydrogenation , which will cause cell multiplication without differentiation , and that obtained by oxidative decarboxylation , which will be to stop proliferation, and will determine the differentiation (maturity, functionality). This process is carried out based on complementary colors, which are coenzymes oxidative dehydrogenation and oxidative decarboxylation is colored . It reveals the importance of acid-base balance, the predominance of the acidic or basic, as an acid structure (red), not only can gain energy from the carbon atom red (the principle of complementarity), but can not assimilate ( under the same principle). It must therefore acid-base balance of internal environment, and alkalinization his intake of organic substances by the electron donor. By alkalinization (addition of electrons) will occur neutralize acid structures, the red, they become leucoderivat, colorless, and inactive, while the basic, which because of acidosis became neutral, colorless and inactive, will be alkaline in electron contribution, will be in green, and will absorb red energy from the carbon atom. So, on two kinds of vital energy, it is clear correlation between the chemical structure of the cell(body),and type of energy that can produce and use. Thus a cell with acidic chemical structure, can produce only energy by oxidative dehydrogenation (green energy), because the acid can only be active coenzymes with acid chemical structure, red, will absorb the complementarity only green energy of hydrogen. Basic structures which should absorb red energy from carbon , are inactive due to acid environment, which in turn chemically in leucoderivat, so colorless structures, inactive. Conversion of these structures to normal, operation by alkalinization could be a long lasting process, therefore, we use parallel chromotherapy, based on the fact that these COENZYMES INVOLVED IN BIOLOGICAL OXIDATION FINALS ARE COLORED AND PHOTOSENSITIVE. Thus, exogenous irradiation with monochromatic green will neutralize, by complementarity, coenzymes red, acidic. In will reactivate alkaline coenzymes, which have become due acidosis leucoderivat, so colorless and inactive. Without producing CO2, carbonic anhydrase can not form H2CO3, severable and thus transferred through mitochondrial membrane. Will accumulate in the respiratory Flavin, OH groups, leading to excessive hydroxylation, followed by consecutive inclusion of amino (NH2). It is thus an imbalance between the hydrogenation-carboxylation and hydroxylation-amination, in favor of the latter. This will predominate AMINATION and HYDROXYLATION at the expense CARBOXYLATION and HYDROGENATION, leading to CONVERSION OF STRUCTURAL PROTEINS IN NUCLEIC ACIDS. Meanwhile, after chemical criteria not genetic, it synthesizes the remaining unoxidized carbon atoms, nucleic bases “de novo” by the same process of hydroxylation-amination, leading to THE SYNTHESIS OF NUCLEIC ACIDS “DE NOVO”. Sincerely yours, Dr. Viorel Bungau viorelbungau20@yahoo.com
[…] Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View? Author: Larry H. Bernstein, MD, FCAP https://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-ca… […]