Feeds:
Posts
Comments

Posts Tagged ‘Open Access Online Scientific Journal’

Science Has A Systemic Problem, Not an Innovation Problem

Curator: Stephen J. Williams, Ph.D.

    A recent email, asking me to submit a survey, got me thinking about the malaise that scientists and industry professionals frequently bemoan: that innovation has been stymied for some reason and all sorts of convuluted processes must be altered to spur this mythical void of great new discoveries…..  and it got me thinking about our current state of science, and what is the perceived issue… and if this desert of innovation actually exists or is more a fundamental problem which we have created.

The email was from an NIH committee asking for opinions on recreating the grant review process …. now this on the same day someone complained to me about a shoddy and perplexing grant review they received.

The following email, which was sent out to multiple researchers, involved in either NIH grant review on both sides, as well as those who had been involved in previous questionnaires and studies on grant review and bias.  The email asked for researchers to fill out a survey on the grant review process, and how to best change it to increase innovation of ideas as well as inclusivity.  In recent years, there have been multiple survey requests on these matters, with multiple confusing procedural changes to grant format and content requirements, adding more administrative burden to scientists.

The email from Center for Scientific Review (one of the divisions a grant will go to before review {they set up review study sections and decide what section a grant should be  assigned to} was as follows:

Update on Simplifying Review Criteria: A Request for Information

https://www.csr.nih.gov/reviewmatters/2022/12/08/update-on-simplifying-review-criteria-a-request-for-information/

NIH has issued a request for information (RFI) seeking feedback on revising and simplifying the peer review framework for research project grant applications. The goal of this effort is to facilitate the mission of scientific peer review – identification of the strongest, highest-impact research. The proposed changes will allow peer reviewers to focus on scientific merit by evaluating 1) the scientific impact, research rigor, and feasibility of the proposed research without the distraction of administrative questions and 2) whether or not appropriate expertise and resources are available to conduct the research, thus mitigating the undue influence of the reputation of the institution or investigator.

Currently, applications for research project grants (RPGs, such as R01s, R03s, R15s, R21s, R34s) are evaluated based on five scored criteria: Significance, Investigators, Innovation, Approach, and Environment (derived from NIH peer review regulations 42 C.F.R. Part 52h.8; see Definitions of Criteria and Considerations for Research Project Grant Critiques for more detail) and a number of additional review criteria such as Human Subject Protections.

NIH gathered input from the community to identify potential revisions to the review framework. Given longstanding and often-heard concerns from diverse groups, CSR decided to form two working groups to the CSR Advisory Council—one on non-clinical trials and one on clinical trials. To inform these groups, CSR published a Review Matters blog, which was cross-posted on the Office of Extramural Research blog, Open Mike. The blog received more than 9,000 views by unique individuals and over 400 comments. Interim recommendations were presented to the CSR Advisory Council in a public forum (March 2020 videoslides; March 2021 videoslides). Final recommendations from the CSRAC (report) were considered by the major extramural committees of the NIH that included leadership from across NIH institutes and centers. Additional background information can be found here. This process produced many modifications and the final proposal presented below. Discussions are underway to incorporate consideration of a Plan for Enhancing Diverse Perspectives (PEDP) and rigorous review of clinical trials RPGs (~10% of RPGs are clinical trials) within the proposed framework.

Simplified Review Criteria

NIH proposes to reorganize the five review criteria into three factors, with Factors 1 and 2 receiving a numerical score. Reviewers will be instructed to consider all three factors (Factors 1, 2 and 3) in arriving at their Overall Impact Score (scored 1-9), reflecting the overall scientific and technical merit of the application.

  • Factor 1: Importance of the Research (Significance, Innovation), numerical score (1-9)
  • Factor 2: Rigor and Feasibility (Approach), numerical score (1-9)
  • Factor 3: Expertise and Resources (Investigator, Environment), assessed and considered in the Overall Impact Score, but not individually scored

Within Factor 3 (Expertise and Resources), Investigator and Environment will be assessed in the context of the research proposed. Investigator(s) will be rated as “fully capable” or “additional expertise/capability needed”. Environment will be rated as “appropriate” or “additional resources needed.” If a need for additional expertise or resources is identified, written justification must be provided. Detailed descriptions of the three factors can be found here.

Now looking at some of the Comments were very illuminating:

I strongly support streamlining the five current main review criteria into three, and the present five additional criteria into two. This will bring clarity to applicants and reduce the workload on both applicants and reviewers. Blinding reviewers to the applicants’ identities and institutions would be a helpful next step, and would do much to reduce the “rich-getting-richer” / “good ole girls and good ole boys” / “big science” elitism that plagues the present review system, wherein pedigree and connections often outweigh substance and creativity.

I support the proposed changes. The shift away from “innovation” will help reduce the tendency to create hype around a proposed research direction. The shift away from Investigator and Environment assessments will help reduce bias toward already funded investigators in large well-known institutions.

As a reviewer for 5 years, I believe that the proposed changes are a step in the right direction, refocusing the review on whether the science SHOULD be done and whether it CAN BE DONE WELL, while eliminating burdensome and unhelpful sections of review that are better handled administratively. I particularly believe that the de-emphasis of innovation (which typically focuses on technical innovation) will improve evaluation of the overall science, and de-emphasis of review of minor technical details will, if implemented correctly, reduce the “downward pull” on scores for approach. The above comments reference blinded reviews, but I did not see this in the proposed recommendations. I do not believe this is a good idea for several reasons: 1) Blinding of the applicant and institution is not likely feasible for many of the reasons others have described (e.g., self-referencing of prior work), 2) Blinding would eliminate the potential to review investigators’ biosketches and budget justifications, which are critically important in review, 3) Making review blinded would make determination of conflicts of interest harder to identify and avoid, 4) Evaluation of “Investigator and Environment” would be nearly impossible.

Most of the Comments were in favor of the proposed changes, however many admitted that it adds additional confusion on top of many administrative changes to formats and content of grant sections.

Being a Stephen Covey devotee, and just have listened to  The Four Principles of Execution, it became more apparent that issues that hinder many great ideas coming into fruition, especially in science, is a result of these systemic or problems in the process, not at the level of individual researchers or small companies trying to get their innovations funded or noticed.  In summary, Dr. Covey states most issues related to the success of any initiative is NOT in the strategic planning, but in the failure to adhere to a few EXECUTION principles.  Primary to these failures of strategic plans is lack of accounting of what Dr. Covey calls the ‘whirlwind’, or those important but recurring tasks that take us away from achieving the wildly important goals.  In addition, lack of  determining lead and lag measures of success hinder such plans.

In this case a lag measure in INNOVATION.  It appears we have created such a whirlwind and focus on lag measures that we are incapable of translating great discoveries into INNOVATION.

In the following post, I will focus on issues relating to Open Access, publishing and dissemination of scientific discovery may be costing us TIME to INNOVATION.  And it appears that there are systemic reasons why we appear stuck in a rut, so to speak.

The first indication is from a paper published by Johan Chu and James Evans in 2021 in PNAS:

 

Slowed canonical progress in large fields of science

Chu JSG, Evans JA. Slowed canonical progress in large fields of science. Proc Natl Acad Sci U S A. 2021 Oct 12;118(41):e2021636118. doi: 10.1073/pnas.2021636118. PMID: 34607941; PMCID: PMC8522281

 

Abstract

In many academic fields, the number of papers published each year has increased significantly over time. Policy measures aim to increase the quantity of scientists, research funding, and scientific output, which is measured by the number of papers produced. These quantitative metrics determine the career trajectories of scholars and evaluations of academic departments, institutions, and nations. Whether and how these increases in the numbers of scientists and papers translate into advances in knowledge is unclear, however. Here, we first lay out a theoretical argument for why too many papers published each year in a field can lead to stagnation rather than advance. The deluge of new papers may deprive reviewers and readers the cognitive slack required to fully recognize and understand novel ideas. Competition among many new ideas may prevent the gradual accumulation of focused attention on a promising new idea. Then, we show data supporting the predictions of this theory. When the number of papers published per year in a scientific field grows large, citations flow disproportionately to already well-cited papers; the list of most-cited papers ossifies; new papers are unlikely to ever become highly cited, and when they do, it is not through a gradual, cumulative process of attention gathering; and newly published papers become unlikely to disrupt existing work. These findings suggest that the progress of large scientific fields may be slowed, trapped in existing canon. Policy measures shifting how scientific work is produced, disseminated, consumed, and rewarded may be called for to push fields into new, more fertile areas of study.

So the Summary of this paper is

  • The authors examined 1.8 billion citations among 90 million papers over 241 subjects
  • found the corpus of papers do not lead to turnover of new ideas in a field, but rather the ossification or entrenchment of canonical (or older ideas)
  • this is mainly due to older paper cited more frequently than new papers with new ideas, potentially because authors are trying to get their own papers cited more frequently for funding and exposure purposes
  • The authors suggest that “fundamental progress may be stymied if quantitative growth of scientific endeavors is not balanced by structures fostering disruptive scholarship and focusing attention of novel ideas”

The authors note that, in most cases, science policy reinforces this “more is better” philosophy”,  where metrics of publication productivity are either number of publications or impact measured by citation rankings.  However, using an analysis of citation changes occurring in large versus smaller fields, it becomes apparent that this process is favoring the older, more established papers and a recirculating of older canonical ideas.

“Rather than resulting in faster turnover of field paradigms, the massive amounts of new publications entrenches the ideas of top-cited papers.”  New ideas are pushed down to the bottom of the citation list and potentially lost in the literature.  The authors suggest that this problem will intensify as the “annual mass” of new publications in each field grows, especially in large fields.  This issue is exacerbated by the deluge on new online ‘open access’ journals, in which authors would focus on citing the more highly cited literature. 

We maybe at a critical junction, where if many papers are published in a short time, new ideas will not be considered as carefully as the older ideas.  In addition,

with proliferation of journals and the blurring of journal hierarchies due to online articles-level access can exacerbate this problem

As a counterpoint, the authors do note that even though many molecular biology highly cited articles were done in 1976, there has been extremely much innovation since then however it may take a lot more in experiments and money to gain the level of citations that those papers produced, and hence a lower scientific productivity.

This issue is seen in the field of economics as well

Ellison, Glenn. “Is peer review in decline?” Economic Inquiry, vol. 49, no. 3, July 2011, pp. 635+. Gale Academic OneFile, link.gale.com/apps/doc/A261386330/AONE?u=temple_main&sid=bookmark-AONE&xid=f5891002. Accessed 12 Dec. 2022.

Abstract

Over the past decade, there has been a decline in the fraction of papers in top economics journals written by economists from the highest-ranked economics departments. This paper documents this fact and uses additional data on publications and citations to assess various potential explanations. Several observations are consistent with the hypothesis that the Internet improves the ability of high-profile authors to disseminate their research without going through the traditional peer-review process. (JEL A14, 030)

The facts part of this paper documents two main facts:

1. Economists in top-ranked departments now publish very few papers in top field journals. There is a marked decline in such publications between the early 1990s and early 2000s.

2. Comparing the early 2000s with the early 1990s, there is a decline in both the absolute number of papers and the share of papers in the top general interest journals written by Harvard economics department faculty.

Although the second fact just concerns one department, I see it as potentially important to understanding what is happening because it comes at a time when Harvard is widely regarded (I believe correctly) as having ascended to the top position in the profession.

The “decline-of-peer-review” theory I allude to in the title is that the necessity of going through the peer-review process has lessened for high-status authors: in the old days peer-reviewed journals were by far the most effective means of reaching readers, whereas with the growth of the Internet high-status authors can now post papers online and exploit their reputation to attract readers.

Many alternate explanations are possible. I focus on four theories: the decline-in-peer-review theory and three alternatives.

1. The trends could be a consequence of top-school authors’ being crowded out of the top journals by other researchers. Several such stories have an optimistic message, for example, there is more talent entering the profession, old pro-elite biases are being broken down, more schools are encouraging faculty to do cutting-edge research, and the Internet is enabling more cutting-edge research by breaking down informational barriers that had hampered researchers outside the top schools. (2)

2. The trends could be a consequence of the growth of revisions at economics journals discussed in Ellison (2002a, 2002b). In this more pessimistic theory, highly productive researchers must abandon some projects and/or seek out faster outlets to conserve the time now required to publish their most important works.

3. The trends could simply reflect that field journals have declined in quality in some relative sense and become a less attractive place to publish. This theory is meant to encompass also the rise of new journals, which is not obviously desirable or undesirable.

The majority of this paper is devoted to examining various data sources that provide additional details about how economics publishing has changed over the past decade. These are intended both to sharpen understanding of the facts to be explained and to provide tests of auxiliary predictions of the theories. Two main sources of information are used: data on publications and data on citations. The publication data include department-level counts of publications in various additional journals, an individual-level dataset containing records of publications in a subset of journals for thousands of economists, and a very small dataset containing complete data on a few authors’ publication records. The citation data include citations at the paper level for 9,000 published papers and less well-matched data that is used to construct measures of citations to authors’ unpublished works, to departments as a whole, and to various journals.

Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship

Josh Angrist, Pierre Azoulay, Glenn Ellison, Ryan Hill, Susan Feng Lu. Inside Job or Deep Impact? Extramural Citations and the Influence of Economic Scholarship.

JOURNAL OF ECONOMIC LITERATURE

VOL. 58, NO. 1, MARCH 2020

(pp. 3-52)

So if innovation is there but it may be buried under the massive amount of heavily cited older literature, do we see evidence of this in other fields like medicine?

Why Isn’t Innovation Helping Reduce Health Care Costs?

 
 

National health care expenditures (NHEs) in the United States continue to grow at rates outpacing the broader economy: Inflation- and population-adjusted NHEs have increased 1.6 percent faster than the gross domestic product (GDP) between 1990 and 2018. US national health expenditure growth as a share of GDP far outpaces comparable nations in the Organization for Economic Cooperation and Development (17.2 versus 8.9 percent).

Multiple recent analyses have proposed that growth in the prices and intensity of US health care services—rather than in utilization rates or demographic characteristics—is responsible for the disproportionate increases in NHEs relative to global counterparts. The consequences of ever-rising costs amid ubiquitous underinsurance in the US include price-induced deferral of care leading to excess morbidity relative to comparable nations.

These patterns exist despite a robust innovation ecosystem in US health care—implying that novel technologies, in isolation, are insufficient to bend the health care cost curve. Indeed, studies have documented that novel technologies directly increase expenditure growth.

Why is our prolific innovation ecosystem not helping reduce costs? The core issue relates to its apparent failure to enhance net productivity—the relative output generated per unit resource required. In this post, we decompose the concept of innovation to highlight situations in which inventions may not increase net productivity. We begin by describing how this issue has taken on increased urgency amid resource constraints magnified by the COVID-19 pandemic. In turn, we describe incentives for the pervasiveness of productivity-diminishing innovations. Finally, we provide recommendations to promote opportunities for low-cost innovation.

 

 

Net Productivity During The COVID-19 Pandemic

The issue of productivity-enhancing innovation is timely, as health care systems have been overwhelmed by COVID-19. Hospitals in Italy, New York City, and elsewhere have lacked adequate capital resources to care for patients with the disease, sufficient liquidity to invest in sorely needed resources, and enough staff to perform all of the necessary tasks.

The critical constraint in these settings is not technology: In fact, the most advanced technology required to routinely treat COVID-19—the mechanical ventilator—was invented nearly 100 years ago in response to polio (the so-called iron lung). Rather, the bottleneck relates to the total financial and human resources required to use the technology—the denominator of net productivity. The clinical implementation of ventilators has been illustrative: Health care workers are still required to operate ventilators on a nearly one-to-one basis, just like in the mid-twentieth century. 

High levels of resources required for implementation of health care technologies constrain the scalability of patient care—such as during respiratory disease outbreaks such as COVID-19. Thus, research to reduce health care costs is the same kind of research we urgently require to promote health care access for patients with COVID-19.

Types Of Innovation And Their Relationship To Expenditure Growth

The widespread use of novel medical technologies has been highlighted as a central driver of NHE growth in the US. We believe that the continued expansion of health care costs is largely the result of innovation that tends to have low productivity (exhibit 1). We argue that these archetypes—novel widgets tacked on to existing workflows to reinforce traditional care models—are exactly the wrong properties to reduce NHEs at the systemic level.

Exhibit 1: Relative productivity of innovation subtypes

Source: Authors’ analysis.

Content Versus Process Innovation

Content (also called technical) innovation refers to the creation of new widgets, such as biochemical agents, diagnostic tools, or therapeutic interventions. Contemporary examples of content innovation include specialty pharmaceuticalsmolecular diagnostics, and advanced interventions and imaging.

These may be contrasted with process innovations, which address the organized sequences of activities that implement content. Classically, these include clinical pathways and protocols. They can address the delivery of care for acute conditions, such as central line infections, sepsis, or natural disasters. Alternatively, they can target chronic conditions through initiatives such as team-based management of hypertension and hospital-at-home models for geriatric care. Other processes include hiring staffdelegating labor, and supply chain management.

Performance-Enhancing Versus Cost-Reducing Innovation

Performance-enhancing innovations frequently create incremental outcome gains in diagnostic characteristics, such as sensitivity or specificity, or in therapeutic characteristics, such as biomarkers for disease status. Their performance gains often lead to higher prices compared to existing alternatives.  

Performance-enhancing innovations can be compared to “non-inferior” innovations capable of achieving outcomes approximating those of existing alternatives, but at reduced cost. Industries outside of medicine, such as the computing industry, have relied heavily on the ability to reduce costs while retaining performance.

In health care though, this pattern of innovation is rare. Since passage of the 2010 “Biosimilars” Act aimed at stimulating non-inferior innovation and competition in therapeutics markets, only 17 agents have been approved, and only seven have made it to market. More than three-quarters of all drugs receiving new patents between 2005 and 2015 were “reissues,” meaning they had already been approved, and the new patent reflected changes to the previously approved formula. Meanwhile, the costs of approved drugs have increased over time, at rates between 4 percent and 7 percent annually.

Moreover, the preponderance of performance-enhancing diagnostic and therapeutic innovations tend to address narrow patient cohorts (such as rare diseases or cancer subtypes), with limited clear clinical utility in broader populations. For example, the recently approved eculizimab is a monoclonal antibody approved for paroxysmal nocturnal hemoglobinuria—which effects 1 in 10 million individuals. At the time of its launch, eculizimab was priced at more than $400,000 per year, making it the most expensive drug in modern history. For clinical populations with no available alternatives, drugs such as eculizimab may be cost-effective, pending society’s willingness to pay, and morally desirable, given a society’s values. But such drugs are certainly not cost-reducing.

Additive Versus Substitutive Innovation

Additive innovations are those that append to preexisting workflows, while substitutive innovations reconfigure preexisting workflows. In this way, additive innovations increase the use of precedent services, whereas substitutive innovations decrease precedent service use.

For example, previous analyses have found that novel imaging modalities are additive innovations, as they tend not to diminish use of preexisting modalities. Similarly, novel procedures tend to incompletely replace traditional procedures. In the case of therapeutics and devices, off-label uses in disease groups outside of the approved indication(s) can prompt innovation that is additive. This is especially true, given that off-label prescriptions classically occur after approved methods are exhausted.

Eculizimab once again provides an illustrative example. As of February 2019, the drug had been used for 39 indications (it had been approved for three of those, by that time), 69 percent of which lacked any form of evidence of real-world effectiveness. Meanwhile, the drug generated nearly $4 billion in sales in 2019. Again, these expenditures may be something for which society chooses to pay—but they are nonetheless additive, rather than substitutive.

Sustaining Versus Disruptive Innovation

Competitive market theory suggests that incumbents and disruptors innovate differently. Incumbents seek sustaining innovations capable of perpetuating their dominance, whereas disruptors pursue innovations capable of redefining traditional business models.

In health care, while disruptive innovations hold the potential to reduce overall health expenditures, often they run counter to the capabilities of market incumbents. For example, telemedicine can deliver care asynchronously, remotely, and virtually, but large-scale brick-and-mortar medical facilities invest enormous capital in the delivery of synchronous, in-house, in-person care (incentivized by facility fees).

The connection between incumbent business models and the innovation pipeline is particularly relevant given that 58 percent of total funding for biomedical research in the US is now derived from private entities, compared with 46 percent a decade prior. It follows that the growing influence of eminent private organizations may favor innovations supporting their market dominance—rather than innovations that are societally optimal.

Incentives And Repercussions Of High-Cost Innovation

Taken together, these observations suggest that innovation in health care is preferentially designed for revenue expansion rather than for cost reduction. While offering incremental improvements in patient outcomes, therefore creating theoretical value for society, these innovations rarely deliver incremental reductions in short- or long-term costs at the health system level.

For example, content-based, performance-enhancing, additive, sustaining innovations tend to add layers of complexity to the health care system—which in turn require additional administration to manage. The net result is employment growth in excess of outcome improvement, leading to productivity losses. This gap leads to continuously increasing overall expenditures in turn passed along to payers and consumers.

Nonetheless, high-cost innovations are incentivized across health care stakeholders (exhibit 2). From the supply side of innovation, for academic researchers, “breakthrough” and “groundbreaking” innovations constitute the basis for career advancement via funding and tenure. This is despite stakeholders’ frequent inability to generalize early successes to become cost-effective in the clinical setting. As previously discussed, the increasing influence of private entities in setting the medical research agenda is also likely to stimulate innovation benefitting single stakeholders rather than the system.

Exhibit 2: Incentives promoting low-value innovation

Source: Authors’ analysis adapted from Hofmann BM. Too much technology. BMJ. 2015 Feb 16.

From the demand side of innovation (providers and health systems), a combined allure (to provide “cutting-edge” patient care), imperative (to leave “no stone unturned” in patient care), and profit-motive (to amplify fee-for-service reimbursements) spur participation in a “technological arms-race.” The status quo thus remains as Clay Christensen has written: “Our major health care institutions…together overshoot the level of care actually needed or used by the vast majority of patients.”

Christensen’s observations have been validated during the COVID-19 epidemic, as treatment of the disease requires predominantly century-old technology. By continually adopting innovation that routinely overshoots the needs of most patients, layer by layer, health care institutions are accruing costs that quickly become the burden of society writ large.

Recommendations To Reduce The Costs Of Health Care Innovation

Henry Aaron wrote in 2002 that “…the forces that have driven up costs are, if anything, intensifying. The staggering fecundity of biomedical research is increasing…[and] always raises expenditures.” With NHEs spiraling ever-higher, urgency to “bend the cost curve” is mounting. Yet, since much biomedical innovation targets the “flat of the [productivity] curve,” alternative forms of innovation are necessary.

The shortcomings in net productivity revealed by the COVID-19 pandemic highlight the urgent need for redesign of health care delivery in this country, and reevaluation of the innovation needed to support it. Specifically, efforts supporting process redesign are critical to promote cost-reducing, substitutive innovations that can inaugurate new and disruptive business models.

Process redesign rarely involves novel gizmos, so much as rejiggering the wiring of, and connections between, existing gadgets. It targets operational changes capable of streamlining workflows, rather than technical advancements that complicate them. As described above, precisely these sorts of “frugal innovations” have led to productivity improvements yielding lower costs in other high-technology industries, such as the computing industry.

Shrank and colleagues recently estimated that nearly one-third of NHEs—almost $1 trillion—were due to preventable waste. Four of the six categories of waste enumerated by the authors—failure in care delivery, failure in care coordination, low-value care, and administrative complexity—represent ripe targets for process innovation, accounting for $610 billion in waste annually, according to Shrank.

Health systems adopting process redesign methods such as continuous improvement and value-based management have exhibited outcome enhancement and expense reduction simultaneously. Internal processes addressed have included supply chain reconfiguration, operational redesign, outlier reconciliation, and resource standardization.

Despite the potential of process innovation, focus on this area (often bundled into “health services” or “quality improvement” research) occupies only a minute fraction of wallet- or mind-share in the biomedical research landscape, accounting for 0.3 percent of research dollars in medicine. This may be due to a variety of barriers beyond minimal funding. One set of barriers is academic, relating to negative perceptions around rigor and a lack of outlets in which to publish quality improvement research. To achieve health care cost containment over the long term, this dimension of innovation must be destigmatized relative to more traditional manners of innovation by the funders and institutions determining the conditions of the research ecosystem.

Another set of barriers is financial: Innovations yielding cost reduction are less “reimbursable” than are innovations fashioned for revenue expansion. This is especially the case in a fee-for-service system where reimbursement is tethered to cost, which creates perverse incentives for health care institutions to overlook cost increases. However, institutions investing in low-cost innovation will be well-positioned in a rapidly approaching future of value-based care—in which the solvency of health care institutions will rely upon their ability to provide economically efficient care.

Innovating For Cost Control Necessitates Frugality Over Novelty

Restraining US NHEs represents a critical step toward health promotion. Innovation for innovation’s sake—that is content-based, incrementally effective, additive, and sustaining—is unlikely to constrain continually expanding NHEs.

In contrast, process innovation offers opportunities to reduce costs while maintaining high standards of patient care. As COVID-19 stress-tests health care systems across the world, the importance of cost control and productivity amplification for patient care has become apparent.

As such, frugality, rather than novelty, may hold the key to health care cost containment. Redesigning the innovation agenda to stem the tide of ever-rising NHEs is an essential strategy to promote widespread access to care—as well as high-value preventive care—in this country. In the words of investors across Silicon Valley: Cost-reducing innovation is no longer a “nice-to-have,” but a “need-to-have” for the future of health and overall well-being this country.

So Do We Need A New Way of Disseminating Scientific Information?  Can Curation Help?

We had high hopes for Science 2.0, in particular the smashing of data and knowledge silos. However the digital age along with 2.0 platforms seemed to excaccerbate this somehow. We still are critically short on analysis!



Old Science 1.0 is still the backbone of all scientific discourse, built on the massive amount of experimental and review literature. However this literature was in analog format, and we moved to a more accesible digital open access format for both publications as well as raw data. However as there was a structure for 1.0, like the Dewey decimal system and indexing, 2.0 made science more accesible and easier to search due to the newer digital formats. Yet both needed an organizing structure; for 1.0 that was the scientific method of data and literature organization with libraries as the indexers. In 2.0 this relied on an army mostly of volunteers who did not have much in the way of incentivization to co-curate and organize the findings and massive literature.



The Intenet and the Web is rapidly adopting a new “Web 3.0” format, with decentralized networks, enhanced virtual experiences, and greater interconnection between people. Here we start the discussion what will the move from Science 2.0, where dissemination of scientific findings was revolutionized and piggybacking on Web 2.0 or social media, to a Science 3.0 format. And what will it involve or what paradigms will be turned upside down?

We have discussed this in other posts such as

Will Web 3.0 Do Away With Science 2.0? Is Science Falling Behind?

and

Curation Methodology – Digital Communication Technology to mitigate Published Information Explosion and Obsolescence in Medicine and Life Sciences

For years the pharmaceutical industry has toyed with the idea of making innovation networks and innovation hubs

It has been the main focus of whole conferences

Tales from the Translational Frontier – Four Unique Approaches to Turning Novel Biology into Investable Innovations @BIOConvention #BIO2018

However it still seems these strategies have not worked

Is it because we did not have an Execution plan? Or we did not understand the lead measures for success?

Other Related Articles on this Open Access Scientific Journal Include:

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Analysis of Utilizing LPBI Group’s Scientific Curation Platform as an Educational Tool: New Paradigm for Student Engagement

Global Alliance for Genomics and Health Issues Guidelines for Data Siloing and Sharing

Multiple Major Scientific Journals Will Fully Adopt Open Access Under Plan S

eScientific Publishing a Case in Point: Evolution of Platform Architecture Methodologies and of Intellectual Property Development (Content Creation by Curation) Business Model 

Read Full Post »

Multiple Major Scientific Journals Will Fully Adopt Open Access Under Plan S

Curator: Stephen J. Williams, PhD

More university library systems have been pressuring major scientific publishing houses to adopt an open access strategy in order to reduce the library system’s budgetary burdens.  In fact some major universities like the California system of universities (University of California and other publicly funded universities in the state as well as Oxford University in the UK, even MIT have decided to become their own publishing houses in a concerted effort to fight back against soaring journal subscription costs as well as the costs burdening individual scientists and laboratories (some of the charges to publish one paper can run as high as $8000.00 USD while the journal still retains all the rights of distribution of the information).  Therefore more and more universities, as well as concerted efforts by the European Union and the US government are mandating that scientific literature be published in an open access format.

The results of this pressure are evident now as major journals like Nature, JBC, and others have plans to go fully open access in 2021.  Below is a listing and news reports of some of these journals plans to undertake a full Open Access Format.

 

Nature to join open-access Plan S, publisher says

09 APRIL 2020 UPDATE 14 APRIL 2020

Springer Nature says it commits to offering researchers a route to publishing open access in Nature and most Nature-branded journals from 2021.

Richard Van Noorden

After a change in the rules of the bold open-access (OA) initiative known as Plan S, publisher Springer Nature said on 8 April that many of its non-OA journals — including Nature — were now committed to joining the plan, pending discussion of further technical details.

This means that Nature and other Nature-branded journals that publish original research will now look to offer an immediate OA route after January 2021 to scientists who want it, or whose funders require it, a spokesperson says. (Nature is editorially independent of its publisher, Springer Nature.)

“We are delighted that Springer Nature is committed to transitioning its journals to full OA,” said Robert Kiley, head of open research at the London-based biomedical funder Wellcome, and the interim coordinator for Coalition S, a group of research funders that launched Plan S in 2018.

But Lisa Hinchliffe, a librarian at the University of Illinois at Urbana–Champaign, says the changed rules show that publishers have successfully pushed back against Plan S, softening its guidelines and expectations — in particular in the case of hybrid journals, which publish some content openly and keep other papers behind paywalls. “The coalition continues to take actions that rehabilitate hybrid journals into compliance rather than taking the hard line of unacceptability originally promulgated,” she says.

 

 

 

 

What is Plan S?

The goal of Plan S is to make scientific and scholarly works free to read as soon as they are published. So far, 17 national funders, mostly in Europe, have joined the initiative, as have the World Health Organization and two of the world’s largest private biomedical funders — the Bill & Melinda Gates Foundation and Wellcome. The European Commission will also implement an OA policy that is aligned with Plan S. Together, this covers around 7% of scientific articles worldwide, according to one estimate. A 2019 report published by the publishing-services firm Clarivate Analytics suggested that 35% of the research content published in Nature in 2017 acknowledged a Plan S funder (see ‘Plan S papers’).

PLAN S PAPERS

Journal Total papers in 2017 % acknowledging Plan S funder
Nature 290 35%
Science 235 31%
Proc. Natl Acad. Sci. USA 639 20%

Source: The Plan S footprint: Implications for the scholarly publishing landscape (Institute for Scientific Information, 2019)

 

Source: https://www.nature.com/articles/d41586-020-01066-5

Opening ASBMB publications freely to all

 

Lila M. Gierasch, Editor-in-Chief, Journal of Biological Chemistry

Nicholas O. Davidson

Kerry-Anne Rye, Editors-in-Chief, Journal of Lipid Research and 

Alma L. Burlingame, Editor-in-Chief, Molecular and Cellular Proteomics

 

We are extremely excited to announce on behalf of the American Society for Biochemistry and Molecular Biology (ASBMB) that the Journal of Biological Chemistry (JBC), Molecular & Cellular Proteomics (MCP), and the Journal of Lipid Research (JLR) will be published as fully open-access journals beginning in January 2021. This is a landmark decision that will have huge impact for readers and authors. As many of you know, many researchers have called for journals to become open access to facilitate scientific progress, and many funding agencies across the globe are either already requiring or considering a requirement that all scientific publications based on research they support be published in open-access journals. The ASBMB journals have long supported open access, making the accepted author versions of manuscripts immediately and permanently available, allowing authors to opt in to the immediate open publication of the final version of their paper, and endorsing the goals of the larger open-access movement (1). However, we are no longer satisfied with these measures. To live up to our goals as a scientific society, we want to freely distribute the scientific advances published in JBC, MCP, and JLR as widely and quickly as possible to support the scientific community. How better can we facilitate the dissemination of new information than to make our scientific content freely open to all?

For ASBMB journals and others who have contemplated or made the transition to publishing all content open access, achieving this milestone generally requires new financial mechanisms. In the case of the ASBMB journals, the transition to open access is being made possible by a new partnership with Elsevier, whose established capabilities and economies of scale make the costs associated with open-access publication manageable for the ASBMB (2). However, we want to be clear: The ethos of ASBMB journals will not change as a consequence of this new alliance. The journals remain society journals: The journals are owned by the society, and all scientific oversight for the journals will remain with ASBMB and its chosen editors. Peer review will continue to be done by scientists reviewing the work of scientists, carried out by editorial board members and external referees on behalf of the ASBMB journal leadership. There will be no intervention in this process by the publisher.

Although we will be saying “goodbye” to many years of self-publishing (115 in the case of JBC), we are certain that we are taking this big step for all the right reasons. The goal for JBC, MCP, and JLR has always been and will remain to help scientists advance their work by rapidly and effectively disseminating their results to their colleagues and facilitating the discovery of new findings (13), and open access is only one of many innovations and improvements in science publishing that could help the ASBMB journals achieve this goal. We have been held back from fully exploring these options because of the challenges of “keeping the trains running” with self-publication. In addition to allowing ASBMB to offer all the content in its journals to all readers freely and without barriers, the new partnership with Elsevier opens many doors for ASBMB publications, from new technology for manuscript handling and production, to facilitating reader discovery of content, to deploying powerful analytics to link content within and across publications, to new opportunities to improve our peer review mechanisms. We have all dreamed of implementing these innovations and enhancements (45) but have not had the resources or infrastructure needed.

A critical aspect of moving to open access is how this decision impacts the cost to authors. Like most publishers that have made this transition, we have been extremely worried that achieving open-access publishing would place too big a financial burden on our authors. We are pleased to report the article-processing charges (APCs) to publish in ASBMB journals will be on the low end within the range of open-access fees: $2,000 for members and $2,500 for nonmembers. While slightly higher than the cost an author incurs now if the open-access option is not chosen, these APCs are lower than the current charges for open access on our existing platform.

References

1.↵ Gierasch, L. M., Davidson, N. O., Rye, K.-A., and Burlingame, A. L. (2019) For the sake of science. J. Biol. Chem. 294, 2976 FREE Full Text

2.↵ Gierasch, L. M. (2017) On the costs of scientific publishing. J. Biol. Chem. 292, 16395–16396 FREE Full Text

3.↵ Gierasch, L. M. (2020) Faster publication advances your science: The three R’s. J. Biol. Chem. 295, 672 FREE Full Text

4.↵ Gierasch, L. M. (2017) JBC is on a mission to facilitate scientific discovery. J. Biol. Chem. 292, 6853–6854 FREE Full Text

5.↵ Gierasch, L. M. (2017) JBC’s New Year’s resolutions: Check them off! J. Biol. Chem. 292, 21705–21706 FREE Full Text

 

Source: https://www.jbc.org/content/295/22/7814.short?ssource=mfr&rss=1

 

Open access publishing under Plan S to start in 2021

BMJ

2019; 365 doi: https://doi.org/10.1136/bmj.l2382 (Published 31 May 2019)Cite this as: BMJ 2019;365:l2382

From 2021, all research funded by public or private grants should be published in open access journals, according to a group of funding agencies called coALition S.1

The plan is the final version of a draft that was put to public consultation last year and attracted 344 responses from institutions, almost half of them from the UK.2 The responses have been considered and some changes made to the new system called Plan S, a briefing at the Science Media Centre in London was told on 29 May.

The main change has been to delay implementation for a year, to 1 January 2021, to allow more time for those involved—researchers, funders, institutions, publishers, and repositories—to make the necessary changes, said John-Arne Røttingen, chief executive of the Research Council of Norway.

“All research contracts signed after that date should include the obligation to publish in an open access journal,” he said. T……

(Please Note in a huge bit of irony this article is NOT Open Access and behind a paywall…. Yes an article about an announcement to go Open Access is not Open Access)

Source: https://www.bmj.com/content/365/bmj.l2382.full

 

 

Plan S

From Wikipedia, the free encyclopedia

Jump to navigationJump to search

Not to be confused with S-Plan.

Plan S is an initiative for open-access science publishing launched in 2018[1][2] by “cOAlition S”,[3] a consortium of national research agencies and funders from twelve European countries. The plan requires scientists and researchers who benefit from state-funded research organisations and institutions to publish their work in open repositories or in journals that are available to all by 2021.[4] The “S” stands for “shock”.[5]

Principles of the plan[edit]

The plan is structured around ten principles.[3] The key principle states that by 2021, research funded by public or private grants must be published in open-access journals or platforms, or made immediately available in open access repositories without an embargo. The ten principles are:

  1. authors should retain copyrighton their publications, which must be published under an open license such as Creative Commons;
  2. the members of the coalition should establish robust criteria and requirements for compliant open access journals and platforms;
  3. they should also provide incentives for the creation of compliant open access journals and platforms if they do not yet exist;
  4. publication fees should be covered by the funders or universities, not individual researchers;
  5. such publication fees should be standardized and capped;
  6. universities, research organizations, and libraries should align their policies and strategies;
  7. for books and monographs, the timeline may be extended beyond 2021;
  8. open archives and repositories are acknowledged for their importance;
  9. hybrid open-access journalsare not compliant with the key principle;
  10. members of the coalition should monitor and sanction non-compliance.

Member organisations

Organisations in the coalition behind Plan S include:[14]

International organizations that are members:

Plan S is also supported by:

 

Other articles on Open Access on this Open Access Journal Include:

MIT, guided by open access principles, ends Elsevier negotiations, an act followed by other University Systems in the US and in Europe

 

Open Access e-Scientific Publishing: Elected among 2018 Nature’s 10 Top Influencers – ROBERT-JAN SMITS: A bureaucrat launched a drive to transform science publishing

 

Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal @pharmaceuticalintelligence.com – Four Case Studies

 

Mozilla Science Lab Promotes Data Reproduction Through Open Access: Report from 9/10/2015 Online Meeting

 

Elsevier’s Mendeley and Academia.edu – How We Distribute Scientific Research: A Case in Advocacy for Open Access Journals

 

The Fatal Self Distraction of the Academic Publishing Industry: The Solution of the Open Access Online Scientific Journals
PeerJ Model for Open Access Scientific Journal
“Open Access Publishing” is becoming the mainstream model: “Academic Publishing” has changed Irrevocably
Open-Access Publishing in Genomics

 

 

 

 

 

 

 

 

 

 

 

 

Read Full Post »

Is It Time for the Virtual Scientific Conference?: Coronavirus, Travel Restrictions, Conferences Cancelled

Curator: Stephen J. Williams, PhD.

UPDATED 3/12/2020

To many of us scientists, presenting and attending scientific meetings, especially international scientific conferences, are a crucial tool for disseminating and learning new trends and cutting edge findings occurring in our respective fields.  Large international meetings, like cancer focused meetings like AACR (held in the spring time), AAAS and ASCO not only highlight the past years great discoveries but are usually the first place where breakthroughs are made known to the scientific/medical community as well as the public.  In addition these conferences allow for scientists to learn some of the newest technologies crucial for their work in vendor exhibitions.

During the coronavirus pandemic, multiple cancellations of business travel, conferences, and even university based study abroad programs are being cancelled and these cancellations are now hitting the 2020 Spring and potentially summer scientific/medical conferences.  Indeed one such conference hosted by Amgen in Massachusetts was determined as an event where some attendees tested positive for the virus, and as such, now other attendees are being asked to self quarantine.

Today I received two emails on conference cancellations, one from Experimental Biology in California and another from The Cancer Letter, highlighting other conferences, including National Cancer Coalition Network (NCCN) meetings which had been canceled.

 

Experimental Biology - San Diego 2020 - April 4-7

Dear Stephen,

After thoughtful deliberations, the leaders of the Experimental Biology host societies have made the difficult but necessary decision to cancel Experimental Biology (EB) 2020 set to take place April 4–7 in San Diego, California. We know how much EB means to everyone, and we did not make this decision in haste. The health and safety of our members, attendees, their students, our staff, partners and our communities are our top priority.

As we have previously communicated via email, on experimentalbiology.org and elsewhere, EB leadership has been closely monitoring the spread of COVID-19 (coronavirus disease). Based on the latest guidance from public health officials, the travel bans implemented by different institutions and the state of emergency declared in California less than 48 hours ago, it became clear to us that canceling was the right course of action.

We thank you and the entire EB community for understanding the extreme difficulty of this decision and for your commitment to the success of this conference – from the thousands of attendees to the presenters, exhibitors and sponsors who shared their time, expertise, collaboration and leadership. We deeply appreciate your contributions to this community.

What Happens Next?

Everyone who has registered to attend the meeting will receive a full registration refund within the next 45 days. Once your registration cancellation is processed, you will receive confirmation in a separate email. You do not need to contact anyone at EB or your host society to initiate the process. Despite the cancellation of the meeting, we are pleased to tell you that we will publish abstracts in the April 2020 issue of The FASEB Journal as originally planned. Please remember to cancel any personal arrangements you’ve made, such as travel and housing reservations. 

We ask for patience as we evaluate our next steps, and we will alert you as additional information becomes available please see our FAQs for details.

And in The Cancer Letter

Coronavirus vs. oncology: Meeting cancellations, travel restrictions, fears about drug supply chain

By Alexandria Carolan

NOTE: An earlier version of this story was published March 4 on the web and was updated March 6 to include information about restricted travel for employees of cancer centers, meeting cancellations, potential disruptions to the drug supply chain, and funds allocated by U.S. Congress for combating the coronavirus.

Further updates will be posted as the story develops.

Forecasts of the inevitable spread of coronavirus can be difficult to ignore, especially at a time when many of us are making travel plans for this spring’s big cancer meetings.

The decision was made all the more difficult earlier this week, as cancer centers and at least one biotechnology company—Amgen—implemented travel bans that are expected to last through the end of March and beyond. The Cancer Letter was able to confirm such travel bans at Fred Hutchinson Cancer Research Center, MD Anderson Cancer Center, and Dana-Farber Cancer Institute.

Meetings are getting cancelled in all fields, including oncology:

The National Comprehensive Cancer Network March 5 postponed its 2020 annual conference of about 1,500 attendees March 19-22 in Orlando, citing precautions against coronavirus.

“The health and safety of our attendees and the patients they take care of is our number one concern,” said Robert W. Carlson, chief executive officer of NCCN. “This was an incredibly difficult and disappointing decision to have to make. However, our conference attendees work to save the lives of immunocompromised people every day. Some of them are cancer survivors themselves, particularly at our patient advocacy pavilion. It’s our responsibility, in an abundance of caution, to safeguard them from any potential exposure to COVID-19.”

UPDATED 3/12/2020

And today the AACR canceled its yearly 2020 Meeting (https://www.aacr.org/meeting/aacr-annual-meeting-2020/coronavirus-information/)

The American Association for Cancer Research (AACR) Board of Directors has made the difficult decision, after careful consideration and comprehensive evaluation of currently available information related to the novel coronavirus (COVID-19) outbreak, to terminate the AACR Annual Meeting 2020, originally scheduled for April 24-29 in San Diego, California. A rescheduled meeting is being planned for later this year.

The AACR has been closely monitoring the rapidly increasing domestic and worldwide developments during the last several weeks related to COVID-19. This evidence-based decision was made after a thorough review and discussion of all factors impacting the Annual Meeting, including the U.S. government’s enforcement of restrictions on international travelers to enter the U.S.; the imposition of travel restrictions issued by U.S. government agencies, cancer centers, academic institutions, and pharmaceutical and biotech companies; and the counsel of infectious disease experts. It is clear that all of these elements significantly affect the ability of delegates, speakers, presenters of proffered papers, and exhibitors to participate fully in the Annual Meeting.

The health, safety, and security of all Annual Meeting attendees and the patients and communities they serve are the AACR’s highest priorities. While we believe that the decision to postpone the meeting is absolutely the correct one to safeguard our meeting participants from further potential exposure to the coronavirus, we also understand that this is a disappointing one for our stakeholders. There had been a great deal of excitement about the meeting, which was expected to be the largest ever AACR Annual Meeting, with more than 7,400 proffered papers, a projected total of 24,000 delegates from 80 countries and more than 500 exhibitors. We recognize that the presentation of new data, exchange of information, and opportunities for collaboration offered by the AACR Annual Meeting are highly valued by the entire cancer research community, and we are investigating options for rescheduling the Annual Meeting in the near future.

We thank all of our stakeholders for their patience and support at this time. Additional information regarding hotel reservation cancellations, registration refunds, and meeting logistics is available on the FAQ page on the AACR website. We will announce the dates and location of the rescheduled AACR Annual Meeting 2020 as soon as they are confirmed. Our heartfelt sympathies go out to everyone impacted by this global health crisis.

However,  according to both Dr. Fauci and Dr. Scott Gottlieb (former FDA director)  the outbreak may revisit the US and the world in the fall (see https://www.cnbc.com/2020/03/04/were-losing-valuable-time-ex-fda-chief-says-of-coronavirus-spread.html)  therefore these meetings may be cancelled for the whole year.

Is It Time For the Virtual (Real-Time) Conference?

Readers of this Online Access Journal are familiar with our ongoing commitment to open science and believe that forming networks of scientific experts in various fields using a social strategy is pertinent to enhancing the speed, reproducibility and novelty of important future scientific/medical discoveries.  Some of these ideas are highlighted in the following articles found on this site:

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson and others

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Twitter is Becoming a Powerful Tool in Science and Medicine

e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point

Reconstructed Science Communication for Open Access Online Scientific Curation

In addition, we understand the importance of communicating the latest scientific/medical discoveries in an open and rapid format, accessible over the social media platforms.  To this effect we have developed a methodology for real time conference coverage

see  Press and Conference Coverage

at  https://pharmaceuticalintelligence.com/press-coverage/

AND

The Process of Real Time Coverage using Social Media

at https://pharmaceuticalintelligence.com/press-coverage/part-one-the-process-of-real-time-coverage-using-social-media/

Using these strategies we are able to communicate, in real time, analysis of conference coverage for a multitude of conferences.

Has technology and social media platforms now have enabled our ability to rapidly communicate, in a more open access platform, seminal discoveries and are scientists today amenable to virtual type of meetings including displaying abstracts using a real-time online platform?

Some of the Twitter analytics we have curated from such meetings show that conference attendees are rapidly adopting such social platforms to communicate with their peers and colleagues meeting notes.

Statistical Analysis of Tweet Feeds from the 14th ANNUAL BIOTECH IN EUROPE FORUM For Global Partnering & Investment 9/30 – 10/1/2014 • Congress Center Basel – SACHS Associates, London

Word Associations of Twitter Discussions for 10th Annual Personalized Medicine Conference at the Harvard Medical School, November 12-13, 2014

Comparative Analysis of the Level of Engagement for Four Twitter Accounts: @KDNuggets (Big Data) @GilPress @Forbes @pharma_BI @AVIVA1950

Twitter Analytics on the Inside 3DPrinting Conference #I3DPConf

 

Other Twitter analyses of Conferences Covered by LPBI in Real Time have produced a similar conclusion: That conference attendees are very engaged over social media networks to discuss, share, and gain new insights into material presented at these conferences, especially international conferences.

And although attracting international conferences is lucrative to many cities, the loss in revenue to organizations, as well as the loss of intellectual capital is indeed equally as great.  

Maybe there is room for such type of conferences in the future, and attending by a vast more audience than currently capable. And perhaps the #openscience movement like @MozillaScience can collaborate with hackathons to produce the platforms for such an online movement of scientific conferences as a Plan B.

Other articles on Real Time Conference Coverage in the Online Open Access Journal Include:

Innovations in electronic Scientific Publishing (eSP): Case Studies in Marketing eContent, Curation Methodology, Categories of Research Functions, Interdisciplinary conceptual innovations by Cross Section of Categories, Exposure to Frontiers of Science by Real Time Press coverage of Scientific Conferences

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets by @pharma_BI and by @AVIVA1950: Real Time Coverage and eProceedings of The 11th Annual Personalized Medicine Conference, November 18-19, 2015, Harvard Medical School

REAL TIME Cancer Conference Coverage: A Novel Methodology for Authentic Reporting on Presentations and Discussions launched via Twitter.com @ The 2nd ANNUAL Sachs Cancer Bio Partnering & Investment Forum in Drug Development, 19th March 2014 • New York Academy of Sciences • USA

Search Results for ‘Real Time Conference’

Read Full Post »

Old Industrial Revolution Paradigm of Education Needs to End: How Scientific Curation Can Transform Education

Curator: Stephen J. Williams, PhD.

Dr. Cathy N. Davidson from Duke University gives a talk entitled: Now You See It.  Why the Future of Learning Demands a Paradigm Shift

In this talk, shown below, Dr. Davidson shows how our current education system has been designed for educating students for the industrial age type careers and skills needed for success in the Industrial Age and how this educational paradigm is failing to prepare students for the challenges they will face in their future careers.

Or as Dr. Davidson summarizes

Designing education not for your past but for their future

As the video is almost an hour I will summarize some of the main points below

PLEASE WATCH VIDEO

Summary of talk

Dr. Davidson starts the talk with a thesis: that Institutions tend to preserve the problems they were created to solve.

All the current work, teaching paradigms that we use today were created for the last information age (19th century)

Our job to to remake the institutions of education work for the future not the one we inherited

Four information ages or technologies that radically changed communication

  1. advent of writing: B.C. in ancient Mesopotamia allowed us to record and transfer knowledge and ideas
  2. movable type – first seen in 10th century China
  3. steam powered press – allowed books to be mass produced and available to the middle class.  First time middle class was able to have unlimited access to literature
  4. internet- ability to publish and share ideas worldwide

Interestingly, in the early phases of each of these information ages, the same four complaints about the new technology/methodology of disseminating information was heard

  • ruins memory
  • creates a distraction
  • ruins interpersonal dialogue and authority
  • reduces complexity of thought

She gives an example of Socrates who hated writing and frequently stated that writing ruins memory, creates a distraction, and worst commits ideas to what one writes down which could not be changed or altered and so destroys ‘free thinking’.

She discusses how our educational institutions are designed for the industrial age.

The need for collaborative (group) learning AND teaching

Designing education not for your past but for the future

In other words preparing students for THEIR future not your past and the future careers that do not exist today.

In the West we were all taught to answer silently and alone.  However in Japan, education is arranged in the han or group think utilizing the best talents of each member in the group.  In Japan you are arranged in such groups at an early age.  The concept is that each member of the group contributes their unique talent and skill for the betterment of the whole group.  The goal is to demonstrate that the group worked well together.

see https://educationinjapan.wordpress.com/education-system-in-japan-general/the-han-at-work-community-spirit-begins-in-elementary-school/ for a description of “in the han”

In the 19th century in institutions had to solve a problem: how to get people out of the farm and into the factory and/or out of the shop and into the firm

Takes a lot of regulation and institutionalization to convince people that independent thought is not the best way in the corporation

keywords for an industrial age

  • timeliness
  • attention to task
  • standards, standardization
  • hierarchy
  • specialization, expertise
  • metrics (measures, management)
  • two cultures: separating curriculum into STEM versus artistic tracts or dividing the world of science and world of art

This effort led to a concept used in scientific labor management derived from this old paradigm in education, an educational system controlled and success measured using

  • grades (A,B,C,D)
  • multiple choice tests

keywords for our age

  • workflow
  • multitasking attention
  • interactive process (Prototype, Feedback)
  • data mining
  • collaboration by difference

Can using a methodology such as scientific curation affect higher education to achieve this goal of teaching students to collaborate in an interactive process using data mining to create a new workflow for any given problem?  Can a methodology of scientific curation be able to affect such changes needed in academic departments to achieve the above goal?

This will be the subject of future curations tested using real-world in class examples.

However, it is important to first discern that scientific content curation takes material from Peer reviewed sources and other expert-vetted sources.  This is unique from other types of content curation in which take from varied sources, some of which are not expert-reviewed, vetted, or possibly ‘fake news’ or highly edited materials such as altered video and audio.  In this respect, the expert acts not only as curator but as referee.  In addition, collaboration is necessary and even compulsory for the methodology of scientific content curation, portending the curator not as the sole expert but revealing the CONTENT from experts as the main focus for learning and edification.

Other article of note on this subject in this Open Access Online Scientific Journal include:

The above articles will give a good background on this NEW Conceived Methodology of Scientific Curation and its Applicability in various areas such as Medical Publishing, and as discussed below Medical Education.

To understand the new paradigm in medical communication and the impact curative networks have or will play in this arena please read the following:

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson and others

This article discusses a history of medical communication and how science and medical communication initially moved from discussions from select individuals to the current open accessible and cooperative structure using Web 2.0 as a platform.

 

Read Full Post »

Peer Review and Health Care Issues

Larry H. Bernstein, MD, FCAP, Reporter

http://pharmaceuticalintelligence.com/12/1/2014/Peer-Review-and-Health-Care-Issues

(Medscape – Dec 1, 2014)

Peer-reviewed journals retracted 110 papers over the last 2 years. Nature reports the grim details in “Publishing: the peer review scam”.

When a handful of authors were caught reviewing their own

papers, it exposed weaknesses in modern publishing systems.

Editors are trying to plug the holes.

 

The Hill reports that the FDA may lift its ban on blood donations from gay men. The American Red Cross has voiced its support for lifting of the ban.

Advisers for the Food and Drug Administration (FDA) will meet this week to decide whether gay men should be allowed to donate blood, the agency’s biggest step yet toward changing the 30-year-old policy.

If the FDA accepts the recommendation, it would roll back a policy that has been under strong pressure from LGBT advocates and some members of Congress for more than four years.

“We’ve got the ball rolling. I feel like this is a tide-turning vote,” said Ryan James Yezak, an LGBT activist who founded the National Gay Blood Drive and will speak at the meeting. “There’s been a lot of feet dragging and I think they’re realizing it now.”

Groups such as the American Red Cross and America’s Blood Centers also voiced support of the policy change this month, calling the ban “medically and scientifically unwarranted.”

The FDA will use the group’s recommendation to decide whether to change the policy.

“Following deliberations taking into consideration the available evidence, the FDA will issue revised guidance, if appropriate,” FDA spokeswoman Jennifer Rodriguez wrote in a statement.

This reporter has more than 20 years of Blood Bank experience.  The factor in favor of the recommendation is that the HIV 1/2 and other testing is accurate enough to leave the question of donor lifestyle irrelevant.  However, it remains to be seen whether the testing turnaround time is sufficient to prevent the release of units that may be contaminated prior to transfusion, which is problematic for platelets, that have short expirations. In all cases of donor infection, regardless of whether units are released, a finding leads to not releasing the product or to recall.

 

Democrats made a strategic mistake by passing the Affordable Care Act, Sen. Charles Schumer (N.Y.), the third-ranking member of the Senate Democratic leadership, said Tuesday.

Schumer says Democrats “blew the opportunity the American people gave them” in the 2008 elections, a Democratic landslide, by focusing on healthcare reform instead of legislation to boost the middle class.

“After passing the stimulus, Democrats should have continued to propose middle class-oriented programs and built on the partial success of the stimulus,” he said in a speech at the National Press Club.

He said the plight of uninsured Americans caused by “unfair insurance company practices” needed to be addressed, but it wasn’t the change that people wanted when they elected Barack Obama as president.

“Americans were crying out for an end to the recession, for better wages and more jobs; not for changes in their healthcare,” he said.

This reader finds the observation by Senator Schumer very perceptive, regardless of whether the observation in hindsight might have had a different political outcome.  It has been noted that President Obama had a lot on his plate.  Moreover, we have not seen such a poor record of legislation in my lifetime.  There are underlying issues of worldview of elected officials that also contribute to the events.

 

THE PEER-REVIEW SCAM

BY CAT FERGUSON, ADAM MARCUS AND IVAN ORANSKY

N AT U R E |  2 7 N O V  2 0 1 4; VO L 5 1 5 : 480-82.

Most journal editors know how much effort it takes to persuade busy researchers to review a paper. That is why the editor of The Journal of Enzyme Inhibition and Medicinal Chemistry was puzzled by the reviews for manuscripts by one author — Hyung-In Moon, a medicinal-plant researcher then at Dongguk University in Gyeongju, South Korea.

The reviews themselves were not remarkable: mostly favourable, with some suggestions about how to improve the papers. What was unusual was how quickly they were completed — often within 24 hours. The turnaround was a little too fast, and Claudiu Supuran, the journal’s editor-in-chief, started to become suspicious.

In 2012, he confronted Moon, who readily admitted that the reviews had come in so quickly because he had written many of them himself. The deception had not been hard to set up. Supuran’s journal and several others published by Informa Healthcare in London
invite authors to suggest potential reviewers for their papers. So Moon provided names, sometimes of real scientists and sometimes pseudonyms, often with bogus e-mail addresses that would go directly to him or his colleagues. His confession led to the retraction of 28 papers by several Informa journals, and the resignation of an editor.

Moon’s was not an isolated case. In the past 2 years, journals have been forced to retract more than 110 papers in at least 6 instances of peer-review.

PEER-REVIEW RING
Moon’s case is by no means the most spectacular instance of peer-review rigging in recent years. That honour goes to a case that came to light in May 2013, when Ali Nayfeh, then editor-in-chief of the Journal of Vibration and Control, received some troubling news. An author who had submitted a paper to the journal told Nayfeh that he had received e-mails about it from two people claiming to be reviewers. Reviewers do not normally have direct contact with authors, and — strangely — the e-mails came from generic-looking Gmail accounts rather than from the professional institutional accounts that many academics use (see ‘Red flags in review’).
Nayfeh alerted SAGE, the company in Thousand Oaks, California, that publishes the journal. The editors there e-mailed both the Gmail addresses provided by the tipster, and the institutional addresses of the authors whose names had been used, asking for proof of identity and a list of their publications.ew rigging. What all these cases had in common was that researchers exploited vulnerabilities in the publishers’ computerized systems to dupe editors into accepting manuscripts, often by doing their own reviews. The cases involved publishing behemoths Elsevier, Springer, Taylor & Francis, SAGE and Wiley, as well as Informa, at least one of the systems — could make researchers vulnerable to even more serious identity theft. “For a piece of software that’s used by hundreds of thousands of academics worldwide, it really is appalling,” says Mark Dingemanse, a linguist at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands, who has used some of these programs to publish and review papers.

A 14-month investigation that came to involve about 20 people from SAGE’s editorial, legal and production departments. It showed that the Gmail addresses were each linked to accounts with Thomson Reuters’ ScholarOne, a publication-management system used by SAGE and several other publishers, including Informa. Editors were able to track every paper that the person or people behind these accounts had allegedly written or reviewed, says SAGE spokesperson Camille Gamboa. They also checked the wording of reviews, the details of author-nominated reviewers, reference lists and the turnaround time for reviews (in some cases, only a few minutes). This helped the investigators to ferret out further suspicious-looking accounts; they eventually found 130.

SAGE investigators came to realize that authors were both reviewing and citing each other at an anomalous rate. Eventually, 60 articles were found to have evidence of peer-review tampering, involvement in the citation ring or both. “Due to the serious nature of the findings, we wanted to ensure we had researched all avenues as carefully as possible before contacting any of the authors and reviewers,” says Gamboa. When the dust had settled, it turned out that there was one author in the centre of the ring: Peter Chen, an engineer then at the National Pingtung University of Education (NPUE) in Taiwan, who was a co-author on practically all of the papers in question.

PASSWORD LOOPHOLE
Moon and Chen both exploited a feature of ScholarOne’s automated processes. When a reviewer is invited to read a paper, he or she is sent an e-mail with login information. If that communication goes to a fake e-mail account, the recipient can sign into the system under whatever name was initially submitted, with no additional identity verification. Jasper Simons, vice-president of product and market strategy for Thomson Reuters in Charlottesville, Virginia, says that ScholarOne is a respected peer-review system and that it is the responsibility of journals and their editorial teams to invite properly qualified reviewers for their papers.

ScholarOne is not the only publishing system with vulnerabilities. Editorial Manager, built by Aries Systems in North Andover, Massachusetts, is used by many societies and publishers, including Springer and PLOS. The American Association for the Advancement of Science in Washington DC uses a system developed in-house for its journals Science, Science Translational Medicine and Science Signaling, but its open-access offering, Science Advances, uses Editorial Manager. Elsevier, based in Amsterdam, uses a branded version of the same product, called the Elsevier Editorial System.

Usually, editors in the United States and Europe know the scientific community in those regions well enough to catch potential conflicts of interest between authors and reviewers. But Lindsay says that Western editors can find this harder with authors from Asia — “where often none of us knows the suggested reviewers”. In these cases, the journal insists on at least one independent reviewer, identified and invited by the editors.

Read Full Post »

Scientific Curation Fostering Expert Networks and Open Innovation: Lessons from Clive Thompson

Life-cycle of Science 2

 

 

 

 

 

 

 

 

 

 

 

Curators and Writer: Stephen J. Williams, Ph.D. with input from Curators Larry H. Bernstein, MD, FCAP, Dr. Justin D. Pearlman, MD, PhD, FACC and Dr. Aviva Lev-Ari, PhD, RN

(this discussion is in a three part series including:

Using Scientific Content Curation as a Method for Validation and Biocuration

Using Scientific Content Curation as a Method for Open Innovation)

 

Every month I get my Wired Magazine (yes in hard print, I still like to turn pages manually plus I don’t mind if I get grease or wing sauce on my magazine rather than on my e-reader) but I always love reading articles written by Clive Thompson. He has a certain flair for understanding the techno world we live in and the human/technology interaction, writing about interesting ways in which we almost inadvertently integrate new technologies into our day-to-day living, generating new entrepreneurship, new value.   He also writes extensively about tech and entrepreneurship.

October 2013 Wired article by Clive Thompson, entitled “How Successful Networks Nurture Good Ideas: Thinking Out Loud”, describes how the voluminous writings, postings, tweets, and sharing on social media is fostering connections between people and ideas which, previously, had not existed. The article was generated from Clive Thompson’s book Smarter Than you Think: How Technology is Changing Our Minds for the Better.Tom Peters also commented about the article in his blog (see here).

Clive gives a wonderful example of Ory Okolloh, a young Kenyan-born law student who, after becoming frustrated with the lack of coverage of problems back home, started a blog about Kenyan politics. Her blog not only got interest from movie producers who were documenting female bloggers but also gained the interest of fellow Kenyans who, during the upheaval after the 2007 Kenyan elections, helped Ory to develop a Google map for reporting of violence (http://www.ushahidi.com/, which eventually became a global organization using open-source technology to affect crises-management. There are a multitude of examples how networks and the conversations within these circles are fostering new ideas. As Clive states in the article:

 

Our ideas are PRODUCTS OF OUR ENVIRONMENT.

They are influenced by the conversations around us.

However the article got me thinking of how Science 2.0 and the internet is changing how scientists contribute, share, and make connections to produce new and transformative ideas.

But HOW MUCH Knowledge is OUT THERE?

 

Clive’s article listed some amazing facts about the mountains of posts, tweets, words etc. out on the internet EVERY DAY, all of which exemplifies the problem:

  • 154.6 billion EMAILS per DAY
  • 400 million TWEETS per DAY
  • 1 million BLOG POSTS (including this one) per DAY
  • 2 million COMMENTS on WordPress per DAY
  • 16 million WORDS on Facebook per DAY
  • TOTAL 52 TRILLION WORDS per DAY

As he estimates this would be 520 million books per DAY (book with average 100,000 words).

A LOT of INFO. But as he suggests it is not the volume but how we create and share this information which is critical as the science fiction writer Theodore Sturgeon noted “Ninety percent of everything is crap” AKA Sturgeon’s Law.

 

Internet live stats show how congested the internet is each day (http://www.internetlivestats.com/). Needless to say Clive’s numbers are a bit off. As of the writing of this article:

 

  • 2.9 billion internet users
  • 981 million websites (only 25,000 hacked today)
  • 128 billion emails
  • 385 million Tweets
  • > 2.7 million BLOG posts today (including this one)

 

The Good, The Bad, and the Ugly of the Scientific Internet (The Wild West?)

 

So how many science blogs are out there? Well back in 2008 “grrlscientistasked this question and turned up a total of 19,881 blogs however most were “pseudoscience” blogs, not written by Ph.D or MD level scientists. A deeper search on Technorati using the search term “scientist PhD” turned up about 2,000 written by trained scientists.

So granted, there is a lot of

goodbadugly

 

              ….. when it comes to scientific information on the internet!

 

 

 

 

 

I had recently re-posted, on this site, a great example of how bad science and medicine can get propagated throughout the internet:

http://pharmaceuticalintelligence.com/2014/06/17/the-gonzalez-protocol-worse-than-useless-for-pancreatic-cancer/

 

and in a Nature Report:Stem cells: Taking a stand against pseudoscience

http://www.nature.com/news/stem-cells-taking-a-stand-against-pseudoscience-1.15408

Drs.Elena Cattaneo and Gilberto Corbellini document their long, hard fight against false and invalidated medical claims made by some “clinicians” about the utility and medical benefits of certain stem-cell therapies, sacrificing their time to debunk medical pseudoscience.

 

Using Curation and Science 2.0 to build Trusted, Expert Networks of Scientists and Clinicians

 

Establishing networks of trusted colleagues has been a cornerstone of the scientific discourse for centuries. For example, in the mid-1640s, the Royal Society began as:

 

“a meeting of natural philosophers to discuss promoting knowledge of the

natural world through observation and experiment”, i.e. science.

The Society met weekly to witness experiments and discuss what we

would now call scientific topics. The first Curator of Experiments

was Robert Hooke.”

 

from The History of the Royal Society

 

Royal Society CoatofArms

 

 

 

 

 

 

The Royal Society of London for Improving Natural Knowledge.

(photo credit: Royal Society)

(Although one wonders why they met “in-cognito”)

Indeed as discussed in “Science 2.0/Brainstorming” by the originators of OpenWetWare, an open-source science-notebook software designed to foster open-innovation, the new search and aggregation tools are making it easier to find, contribute, and share information to interested individuals. This paradigm is the basis for the shift from Science 1.0 to Science 2.0. Science 2.0 is attempting to remedy current drawbacks which are hindering rapid and open scientific collaboration and discourse including:

  • Slow time frame of current publishing methods: reviews can take years to fashion leading to outdated material
  • Level of information dissemination is currently one dimensional: peer-review, highly polished work, conferences
  • Current publishing does not encourage open feedback and review
  • Published articles edited for print do not take advantage of new web-based features including tagging, search-engine features, interactive multimedia, no hyperlinks
  • Published data and methodology incomplete
  • Published data not available in formats which can be readably accessible across platforms: gene lists are now mandated to be supplied as files however other data does not have to be supplied in file format

(put in here a brief blurb of summary of problems and why curation could help)

 

Curation in the Sciences: View from Scientific Content Curators Larry H. Bernstein, MD, FCAP, Dr. Justin D. Pearlman, MD, PhD, FACC and Dr. Aviva Lev-Ari, PhD, RN

Curation is an active filtering of the web’s  and peer reviewed literature found by such means – immense amount of relevant and irrelevant content. As a result content may be disruptive. However, in doing good curation, one does more than simply assign value by presentation of creative work in any category. Great curators comment and share experience across content, authors and themes. Great curators may see patterns others don’t, or may challenge or debate complex and apparently conflicting points of view.  Answers to specifically focused questions comes from the hard work of many in laboratory settings creatively establishing answers to definitive questions, each a part of the larger knowledge-base of reference. There are those rare “Einstein’s” who imagine a whole universe, unlike the three blind men of the Sufi tale.  One held the tail, the other the trunk, the other the ear, and they all said this is an elephant!
In my reading, I learn that the optimal ratio of curation to creation may be as high as 90% curation to 10% creation. Creating content is expensive. Curation, by comparison, is much less expensive.

– Larry H. Bernstein, MD, FCAP

Curation is Uniquely Distinguished by the Historical Exploratory Ties that Bind –Larry H. Bernstein, MD, FCAP

The explosion of information by numerous media, hardcopy and electronic, written and video, has created difficulties tracking topics and tying together relevant but separated discoveries, ideas, and potential applications. Some methods to help assimilate diverse sources of knowledge include a content expert preparing a textbook summary, a panel of experts leading a discussion or think tank, and conventions moderating presentations by researchers. Each of those methods has value and an audience, but they also have limitations, particularly with respect to timeliness and pushing the edge. In the electronic data age, there is a need for further innovation, to make synthesis, stimulating associations, synergy and contrasts available to audiences in a more timely and less formal manner. Hence the birth of curation. Key components of curation include expert identification of data, ideas and innovations of interest, expert interpretation of the original research results, integration with context, digesting, highlighting, correlating and presenting in novel light.

Justin D Pearlman, MD, PhD, FACC from The Voice of Content Consultant on The  Methodology of Curation in Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation The Art of Scientific & Medical Curation

 

In Power of Analogy: Curation in Music, Music Critique as a Curation and Curation of Medical Research Findings – A Comparison, Drs. Larry Bernstein and Aviva Lev-Ari likens the medical and scientific curation process to curation of musical works into a thematic program:

 

Work of Original Music Curation and Performance:

 

Music Review and Critique as a Curation

Work of Original Expression what is the methodology of Curation in the context of Medical Research Findings Exposition of Synthesis and Interpretation of the significance of the results to Clinical Care

… leading to new, curated, and collaborative works by networks of experts to generate (in this case) ebooks on most significant trends and interpretations of scientific knowledge as relates to medical practice.

 

In Summary: How Scientific Content Curation Can Help

 

Given the aforementioned problems of:

        I.            the complex and rapid deluge of scientific information

      II.            the need for a collaborative, open environment to produce transformative innovation

    III.            need for alternative ways to disseminate scientific findings

CURATION MAY OFFER SOLUTIONS

        I.            Curation exists beyond the review: curation decreases time for assessment of current trends adding multiple insights, analyses WITH an underlying METHODOLOGY (discussed below) while NOT acting as mere reiteration, regurgitation

 

      II.            Curation providing insights from WHOLE scientific community on multiple WEB 2.0 platforms

 

    III.            Curation makes use of new computational and Web-based tools to provide interoperability of data, reporting of findings (shown in Examples below)

 

Therefore a discussion is given on methodologies, definitions of best practices, and tools developed to assist the content curation community in this endeavor.

Methodology in Scientific Content Curation as Envisioned by Aviva lev-Ari, PhD, RN

 

At Leaders in Pharmaceutical Business Intelligence, site owner and chief editor Aviva lev-Ari, PhD, RN has been developing a strategy “for the facilitation of Global access to Biomedical knowledge rather than the access to sheer search results on Scientific subject matters in the Life Sciences and Medicine”. According to Aviva, “for the methodology to attain this complex goal it is to be dealing with popularization of ORIGINAL Scientific Research via Content Curation of Scientific Research Results by Experts, Authors, Writers using the critical thinking process of expert interpretation of the original research results.” The following post:

Cardiovascular Original Research: Cases in Methodology Design for Content Curation and Co-Curation

 

http://pharmaceuticalintelligence.com/2013/07/29/cardiovascular-original-research-cases-in-methodology-design-for-content-curation-and-co-curation/

demonstrate two examples how content co-curation attempts to achieve this aim and develop networks of scientist and clinician curators to aid in the active discussion of scientific and medical findings, and use scientific content curation as a means for critique offering a “new architecture for knowledge”. Indeed, popular search engines such as Google, Yahoo, or even scientific search engines such as NCBI’s PubMed and the OVID search engine rely on keywords and Boolean algorithms …

which has created a need for more context-driven scientific search and discourse.

In Science and Curation: the New Practice of Web 2.0, Célya Gruson-Daniel (@HackYourPhd) states:

To address this need, human intermediaries, empowered by the participatory wave of web 2.0, naturally started narrowing down the information and providing an angle of analysis and some context. They are bloggers, regular Internet users or community managers – a new type of profession dedicated to the web 2.0. A new use of the web has emerged, through which the information, once produced, is collectively spread and filtered by Internet users who create hierarchies of information.

.. where Célya considers curation an essential practice to manage open science and this new style of research.

As mentioned above in her article, Dr. Lev-Ari represents two examples of how content curation expanded thought, discussion, and eventually new ideas.

  1. Curator edifies content through analytic process = NEW form of writing and organizations leading to new interconnections of ideas = NEW INSIGHTS

i)        Evidence: curation methodology leading to new insights for biomarkers

 

  1. Same as #1 but multiple players (experts) each bringing unique insights, perspectives, skills yielding new research = NEW LINE of CRITICAL THINKING

ii)      Evidence: co-curation methodology among cardiovascular experts leading to cardiovascular series ebooks

Life-cycle of Science 2

The Life Cycle of Science 2.0. Due to Web 2.0, new paradigms of scientific collaboration are rapidly emerging.  Originally, scientific discovery were performed by individual laboratories or “scientific silos” where the main method of communication was peer-reviewed publication, meeting presentation, and ultimately news outlets and multimedia. In this digital era, data was organized for literature search and biocurated databases. In an era of social media, Web 2.0, a group of scientifically and medically trained “curators” organize the piles of data of digitally generated data and fit data into an organizational structure which can be shared, communicated, and analyzed in a holistic approach, launching new ideas due to changes in organization structure of data and data analytics.

 

The result, in this case, is a collaborative written work above the scope of the review. Currently review articles are written by experts in the field and summarize the state of a research are. However, using collaborative, trusted networks of experts, the result is a real-time synopsis and analysis of the field with the goal in mind to

INCREASE THE SCIENTIFIC CURRENCY.

For detailed description of methodology please see Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation The Art of Scientific & Medical Curation

 

In her paper, Curating e-Science Data, Maureen Pennock, from The British Library, emphasized the importance of using a diligent, validated, and reproducible, and cost-effective methodology for curation by e-science communities over the ‘Grid:

“The digital data deluge will have profound repercussions for the infrastructure of research and beyond. Data from a wide variety of new and existing sources will need to be annotated with metadata, then archived and curated so that both the data and the programmes used to transform the data can be reproduced for use in the future. The data represent a new foundation for new research, science, knowledge and discovery”

— JISC Senior Management Briefing Paper, The Data Deluge (2004)

 

As she states proper data and content curation is important for:

  • Post-analysis
  • Data and research result reuse for new research
  • Validation
  • Preservation of data in newer formats to prolong life-cycle of research results

However she laments the lack of

  • Funding for such efforts
  • Training
  • Organizational support
  • Monitoring
  • Established procedures

 

Tatiana Aders wrote a nice article based on an interview with Microsoft’s Robert Scoble, where he emphasized the need for curation in a world where “Twitter is the replacement of the Associated Press Wire Machine” and new technologic platforms are knocking out old platforms at a rapid pace. In addition he notes that curation is also a social art form where primary concerns are to understand an audience and a niche.

Indeed, part of the reason the need for curation is unmet, as writes Mark Carrigan, is the lack of appreciation by academics of the utility of tools such as Pinterest, Storify, and Pearl Trees to effectively communicate and build collaborative networks.

And teacher Nancy White, in her article Understanding Content Curation on her blog Innovations in Education, shows examples of how curation in an educational tool for students and teachers by demonstrating students need to CONTEXTUALIZE what the collect to add enhanced value, using higher mental processes such as:

  • Knowledge
  • Comprehension
  • Application
  • Analysis
  • Synthesis
  • Evaluation

curating-tableA GREAT table about the differences between Collecting and Curating by Nancy White at http://d20innovation.d20blogs.org/2012/07/07/understanding-content-curation/

 

 

 

 

 

 

 

 

 

 

 

University of Massachusetts Medical School has aggregated some useful curation tools at http://esciencelibrary.umassmed.edu/data_curation

Although many tools are related to biocuration and building databases but the common idea is curating data with indexing, analyses, and contextual value to provide for an audience to generate NETWORKS OF NEW IDEAS.

See here for a curation of how networks fosters knowledge, by Erika Harrison on ScoopIt

(http://www.scoop.it/t/mobilizing-knowledge-through-complex-networks)

 

“Nowadays, any organization should employ network scientists/analysts who are able to map and analyze complex systems that are of importance to the organization (e.g. the organization itself, its activities, a country’s economic activities, transportation networks, research networks).”

Andrea Carafa insight from World Economic Forum New Champions 2012 “Power of Networks

 

Creating Content Curation Communities: Breaking Down the Silos!

 

An article by Dr. Dana Rotman “Facilitating Scientific Collaborations Through Content Curation Communities” highlights how scientific information resources, traditionally created and maintained by paid professionals, are being crowdsourced to professionals and nonprofessionals in which she termed “content curation communities”, consisting of professionals and nonprofessional volunteers who create, curate, and maintain the various scientific database tools we use such as Encyclopedia of Life, ChemSpider (for Slideshare see here), biowikipedia etc. Although very useful and openly available, these projects create their own challenges such as

  • information integration (various types of data and formats)
  • social integration (marginalized by scientific communities, no funding, no recognition)

The authors set forth some ways to overcome these challenges of the content curation community including:

  1. standardization in practices
  2. visualization to document contributions
  3. emphasizing role of information professionals in content curation communities
  4. maintaining quality control to increase respectability
  5. recognizing participation to professional communities
  6. proposing funding/national meeting – Data Intensive Collaboration in Science and Engineering Workshop

A few great presentations and papers from the 2012 DICOSE meeting are found below

Judith M. Brown, Robert Biddle, Stevenson Gossage, Jeff Wilson & Steven Greenspan. Collaboratively Analyzing Large Data Sets using Multitouch Surfaces. (PDF) NotesForBrown

 

Bill Howe, Cecilia Aragon, David Beck, Jeffrey P. Gardner, Ed Lazowska, Tanya McEwen. Supporting Data-Intensive Collaboration via Campus eScience Centers. (PDF) NotesForHowe

 

Kerk F. Kee & Larry D. Browning. Challenges of Scientist-Developers and Adopters of Existing Cyberinfrastructure Tools for Data-Intensive Collaboration, Computational Simulation, and Interdisciplinary Projects in Early e-Science in the U.S.. (PDF) NotesForKee

 

Ben Li. The mirages of big data. (PDF) NotesForLiReflectionsByBen

 

Betsy Rolland & Charlotte P. Lee. Post-Doctoral Researchers’ Use of Preexisting Data in Cancer Epidemiology Research. (PDF) NoteForRolland

 

Dana Rotman, Jennifer Preece, Derek Hansen & Kezia Procita. Facilitating scientific collaboration through content curation communities. (PDF) NotesForRotman

 

Nicholas M. Weber & Karen S. Baker. System Slack in Cyberinfrastructure Development: Mind the Gaps. (PDF) NotesForWeber

Indeed, the movement of Science 2.0 from Science 1.0 had originated because these “silos” had frustrated many scientists, resulting in changes in the area of publishing (Open Access) but also communication of protocols (online protocol sites and notebooks like OpenWetWare and BioProtocols Online) and data and material registries (CGAP and tumor banks). Some examples are given below.

Open Science Case Studies in Curation

1. Open Science Project from Digital Curation Center

This project looked at what motivates researchers to work in an open manner with regard to their data, results and protocols, and whether advantages are delivered by working in this way.

The case studies consider the benefits and barriers to using ‘open science’ methods, and were carried out between November 2009 and April 2010 and published in the report Open to All? Case studies of openness in research. The Appendices to the main report (pdf) include a literature review, a framework for characterizing openness, a list of examples, and the interview schedule and topics. Some of the case study participants kindly agreed to us publishing the transcripts. This zip archive contains transcripts of interviews with researchers in astronomy, bioinformatics, chemistry, and language technology.

 

see: Pennock, M. (2006). “Curating e-Science Data”. DCC Briefing Papers: Introduction to Curation. Edinburgh: Digital Curation Centre. Handle: 1842/3330. Available online: http://www.dcc.ac.uk/resources/briefing-papers/introduction-curation– See more at: http://www.dcc.ac.uk/resources/briefing-papers/introduction-curation/curating-e-science-data#sthash.RdkPNi9F.dpuf

 

2.      cBIO -cBio’s biological data curation group developed and operates using a methodology called CIMS, the Curation Information Management System. CIMS is a comprehensive curation and quality control process that efficiently extracts information from publications.

 

3. NIH Topic Maps – This website provides a database and web-based interface for searching and discovering the types of research awarded by the NIH. The database uses automated, computer generated categories from a statistical analysis known as topic modeling.

 

4. SciKnowMine (USC)- We propose to create a framework to support biocuration called SciKnowMine (after ‘Scientific Knowledge Mine’), cyberinfrastructure that supports biocuration through the automated mining of text, images, and other amenable media at the scale of the entire literature.

 

  1. OpenWetWareOpenWetWare is an effort to promote the sharing of information, know-how, and wisdom among researchers and groups who are working in biology & biological engineering. Learn more about us.   If you would like edit access, would be interested in helping out, or want your lab website hosted on OpenWetWare, pleasejoin us. OpenWetWare is managed by the BioBricks Foundation. They also have a wiki about Science 2.0.

6. LabTrove: a lightweight, web based, laboratory “blog” as a route towards a marked up record of work in a bioscience research laboratory. Authors in PLOS One article, from University of Southampton, report the development of an open, scientific lab notebook using a blogging strategy to share information.

7. OpenScience ProjectThe OpenScience project is dedicated to writing and releasing free and Open Source scientific software. We are a group of scientists, mathematicians and engineers who want to encourage a collaborative environment in which science can be pursued by anyone who is inspired to discover something new about the natural world.

8. Open Science Grid is a multi-disciplinary partnership to federate local, regional, community and national cyberinfrastructures to meet the needs of research and academic communities at all scales.

 

9. Some ongoing biomedical knowledge (curation) projects at ISI

IICurate
This project is concerned with developing a curation and documentation system for information integration in collaboration with the II Group at ISI as part of the BIRN.

BioScholar
It’s primary purpose is to provide software for experimental biomedical scientists that would permit a single scientific worker (at the level of a graduate student or postdoctoral worker) to design, construct and manage a shared knowledge repository for a research group derived on a local store of PDF files. This project is funded by NIGMS from 2008-2012 ( RO1-GM083871).

10. Tools useful for scientific content curation

 

Research Analytic and Curation Tools from University of Queensland

 

Thomson Reuters information curation services for pharma industry

 

Microblogs as a way to communicate information about HPV infection among clinicians and patients; use of Chinese microblog SinaWeibo as a communication tool

 

VIVO for scientific communities– In order to connect this information about research activities across institutions and make it available to others, taking into account smaller players in the research landscape and addressing their need for specific information (for example, by proving non-conventional research objects), the open source software VIVO that provides research information as linked open data (LOD) is used in many countries.  So-called VIVO harvesters collect research information that is freely available on the web, and convert the data collected in conformity with LOD standards. The VIVO ontology builds on prevalent LOD namespaces and, depending on the needs of the specialist community concerned, can be expanded.

 

 

11. Examples of scientific curation in different areas of Science/Pharma/Biotech/Education

 

From Science 2.0 to Pharma 3.0 Q&A with Hervé Basset

http://digimind.com/blog/experts/pharma-3-0/

Hervé Basset, specialist librarian in the pharmaceutical industry and owner of the blog “Science Intelligence“, to talk about the inspiration behind his recent book  entitled “From Science 2.0 to Pharma 3.0″, published by Chandos Publishing and available on Amazon and how health care companies need a social media strategy to communicate and convince the health-care consumer, not just the practicioner.

 

Thomson Reuters and NuMedii Launch Ground-Breaking Initiative to Identify Drugs for Repurposing. Companies leverage content, Big Data analytics and expertise to improve success of drug discovery

 

Content Curation as a Context for Teaching and Learning in Science

 

#OZeLIVE Feb2014

http://www.youtube.com/watch?v=Ty-ugUA4az0

Creative Commons license

 

DigCCur: A graduate level program initiated by University of North Carolina to instruct the future digital curators in science and other subjects

 

Syracuse University offering a program in eScience and digital curation

 

Curation Tips from TED talks and tech experts

Steven Rosenbaum from Curation Nation

http://www.youtube.com/watch?v=HpncJd1v1k4

 

Pawan Deshpande form Curata on how content curation communities evolve and what makes a good content curation:

http://www.youtube.com/watch?v=QENhIU9YZyA

 

How the Internet of Things is Promoting the Curation Effort

Update by Stephen J. Williams, PhD 3/01/19

Up till now, curation efforts like wikis (Wikipedia, Wikimedicine, Wormbase, GenBank, etc.) have been supported by a largely voluntary army of citizens, scientists, and data enthusiasts.  I am sure all have seen the requests for donations to help keep Wikipedia and its other related projects up and running.  One of the obscure sister projects of Wikipedia, Wikidata, wants to curate and represent all information in such a way in which both machines, computers, and humans can converse in.  About an army of 4 million have Wiki entries and maintain these databases.

Enter the Age of the Personal Digital Assistants (Hellooo Alexa!)

In a March 2019 WIRED article “Encyclopedia Automata: Where Alexa Gets Its Information”  senior WIRED writer Tom Simonite reports on the need for new types of data structure as well as how curated databases are so important for the new fields of AI as well as enabling personal digital assistants like Alexa or Google Assistant decipher meaning of the user.

As Mr. Simonite noted, many of our libraries of knowledge are encoded in an “ancient technology largely opaque to machines-prose.”   Search engines like Google do not have a problem with a question asked in prose as they just have to find relevant links to pages. Yet this is a problem for Google Assistant, for instance, as machines can’t quickly extract meaning from the internet’s mess of “predicates, complements, sentences, and paragraphs. It requires a guide.”

Enter Wikidata.  According to founder Denny Vrandecic,

Language depends on knowing a lot of common sense, which computers don’t have access to

A wikidata entry (of which there are about 60 million) codes every concept and item with a numeric code, the QID code number. These codes are integrated with tags (like tags you use on Twitter as handles or tags in WordPress used for Search Engine Optimization) so computers can identify patterns of recognition between these codes.

Now human entry into these databases are critical as we add new facts and in particular meaning to each of these items.  Else, machines have problems deciphering our meaning like Apple’s Siri, where they had complained of dumb algorithms to interpret requests.

The knowledge of future machines could be shaped by you and me, not just tech companies and PhDs.

But this effort needs money

Wikimedia’s executive director, Katherine Maher, had prodded and cajoled these megacorporations for tapping the free resources of Wiki’s.  In response, Amazon and Facebook had donated millions for the Wikimedia projects.  Google recently gave 3.1 million USD$ in donations.

 

Future postings on the relevance and application of scientific curation will include:

Using Scientific Content Curation as a Method for Validation and Biocuration

 

Using Scientific Content Curation as a Method for Open Innovation

 

Other posts on this site related to Content Curation and Methodology include:

The growing importance of content curation

Data Curation is for Big Data what Data Integration is for Small Data

6 Steps to More Effective Content Curation

Stem Cells and Cardiac Repair: Content Curation & Scientific Reporting

Cancer Research: Curations and Reporting

Cardiovascular Diseases and Pharmacological Therapy: Curations

Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation The Art of Scientific & Medical Curation

Exploring the Impact of Content Curation on Business Goals in 2013

Power of Analogy: Curation in Music, Music Critique as a Curation and Curation of Medical Research Findings – A Comparison

conceived: NEW Definition for Co-Curation in Medical Research

The Young Surgeon and The Retired Pathologist: On Science, Medicine and HealthCare Policy – The Best Writers Among the WRITERS

Reconstructed Science Communication for Open Access Online Scientific Curation

 

 

Read Full Post »

 

e-Recognition via Friction-free Collaboration over the Internet: “Open Access to Curation of Scientific Research”

Curator: Aviva Lev-Ari, PhD, RN

Journal Site Statistics UPDATED on 7/22/2014

Scientific Journal Site Statistics

http://pharmaceuticalintelligence.com

415,392 Views

2,093 Posts

241 Categories

6,066 Tags

6,755 Comments

Referrer   Views
Search Engines   175,831
linkedin.com   14,321
Facebook   3,586
Twitter   1,223
investorshub.advfn.com   1,058
 3/05/2014  338,938  1,717  1,830  965

Date

Views to Date

# of articles

NIH Clicks

Nature Clicks

6/24/2013

 199,857

 1,034

 1,275

 661

 7/29/2013  217,356  1,138  1,389  705
 12/1/2013  287,645  1,428  1,676  828
 2/09/2014  325,039  1,665  1,793  892
 7/22/2014  415,392  2,093  2,014  1,132

Top Authors for all days ending 2014-03-05 (Summarized)

AUTHOR ID

VIEWS

Aviva Lev-Ari, PhD, RN [2012pharmaceutical]

131,222

larryhbern

59,751

tildabarliya

22,372

Dr. Sudipta Saha

14,737

Dror Nir

11,550

sjwilliamspa

12,059

ritusaxena

10,210

aviralvatsa

5,428

zraviv06

3,170

Demet Sag, Ph.D., CRA, GCP

3,741

anamikasarkar

2,360

pkandala

1,908

zs22

1,895

Alan F. Kaul, PharmD., MS, MBA, FCCP

1,420

megbaker58

1,107

Aashir Awan, Phd

945

jdpmdphd

569

UPDATED on 10/14/2013 

Cardiovascular Original Research: Cases in Methodology Design for Content Curation and Co-Curation

 

UPDATED on 4/8/2013

This article has three parts.

Part 1,  presents a pioneering experience in Curation of Scientific Research of three forms:

Part 2, presents Views of two Curators on the transformation of Scientific Publishing and the functioning of the Scientific AGORA (market place in the Ancient Greek CIty of Athena).

Part 3, presents the

“Beall’s list” a blacklist of “predatory” journals: Scientific Articles to be Accepted for Publications followed by a Bill to Pay for been Published

Part One

 

e-Recognition for Author Views is presented below of a pioneering launch of the ONE and ONLY web-based Open Access Online Scientific Journal on frontiers in Biomedical Technologies, Genomics, Biological SciencesHealthcare Economics, Pharmacology, Pharmaceutical & Medicine.

Friction-free Collaboration over the Internet: An Equity Sharing Venture for “Open Access to Curation of Scientific Research” launched THREE TYPES of Scientific Research Sharing

Type 1:

“Open Access to Curation of Scientific Research – Online Scientific Journal

 http://pharmaceuticalintelligence.com

The venture, Leaders in Pharmaceutical Business Intelligence, operates as an online scientific intellectual EXCHANGE – an Open Access Online Scientific Journal for curation and reporting on frontiers in Biomedical, Genomics, Biological SciencesHealthcare Economics, Pharmacology, Pharmaceutical & Medicine. The website,  http://pharmaceuticalintelligence.com , is a scientific, medical and business multi expert authoring environment  in several domains of  LIFE SCIENCES, PHARMACEUTICAL, HEALTHCARE & MEDICINE INDUSTRIES.

http://pharmaceuticalintelligence.com/open-access-scientific-journal/about/

http://pharmaceuticalintelligence.com/contributors-biographies/

http://pharmaceuticalintelligence.com/contributors-biographies/aviva-lev-ari/

Our organic in growth ONTOLOGY includes ~ 90 Research Categories, i.e.,

  •  Advanced Drug Manufacturing Technology
  •  Alzheimer’s Disease
    •  Etiology
    •  Medical Device Therapies for Altzheimer’s disease
    •  Pharmacotherapy
  •  Bio Instrumentation in Experimental Life Sciences Research
  •  Biological Networks, Gene Regulation and Evolution
  •  Biomarkers & Medical Diagnostics
  •  BioSimilars
  •  Bone Disease and Musculoskeletal Disease
  •  CANCER BIOLOGY & Innovations in Cancer Therapy
  •  Cancer Prevention: Research & Programs
  •  Cardiovascular Pharmaceutical Genomics
  •  Cell Biology, Signaling & Cell Circuits
  •  Cerebrovascular and Neurodegenerative Diseases
  •  Chemical Biology and its relations to Metabolic Disease
  •  Chemical Genetics
  •  Coagulation Therapy and Internal Bleeding
  •  Computational Biology/Systems and Bioinformatics
  •  Disease Biology, Small Molecules in Development of Therapeutic Drugs
  •  Drug Delivery Platform Technology
  •  Ecosystems & Industrial Concentration in the Medical Device Sector
    •  Cardiac & Vascular Repair Tools Subsegment
    •  Exec Compensation in the Cardiac & Vascular Repair Tools Subsegment
    •  Massachusetts Niche Suppliers and National Leaders
  •  FDA Regulatory Affairs
    •  FDA, CE Mark & Global Regulatory Affairs: process management and strategic planning – GCP, GLP, ISO 14155
    •  ISO 10993 for Product Registration: FDA & CE Mark for Development of Medical Devices and Diagnostics
  •  Frontiers in Cardiology
    •  Medical Devices
      •  Stents & Tools
      •  Valves & Tools
    •  Pharmacotherapy of Cardiovascular Disease
      •  HTN
      •  HTN in Youth
      •  Resident-cell-based
    •  Procedures
      •  Aortic Valve: TAVI, TAVI vs Open Heart Surgery
      •  CABG
      •  Mitral Valve: Repair and Replacement
      •  PCI
      •  Renal Denervation
  •  Genome Biology
  •  Genomic Endocrinology, Preimplantation Genetic Diagnosis and Reproductive Genomics
  •  Genomic Testing: Methodology for Diagnosis
  •  Glycobiology: Biopharmaceutical Production, Pharmacodynamics and Pharmacokinetics
  •  Health Economics and Outcomes Research
  •  Health Law & Patient Safety
  •  HealthCare IT
  •  Human Immune System in Health and in Disease
  •  Human Sensation and Cellular Transduction: Physiology and Therapeutics
  •  Imaging-based Cancer Patient Management
  •  Infectious Disease & New Antibiotic Targets
  •  Innovations in Neurophysiology & Neuropsychology
  •  International Global Work in Pharmaceutical
  •  Interviews with Scientific Leaders
  •  Liver & Digestive Diseases Research
  •  Medical and Population Genetics
  •  Medical Devices R&D Investment
  •  Medical Imaging Technology, Image Processing/Computing, MRI
  •  Metabolomics
  •  Molecular Genetics & Pharmaceutical
  •  Nanotechnology for Drug Delivery
  •  Nitric Oxide in Health and Disease
  •  Nutrigenomics
  •  Nutrition
    •  Nutritional Supplements: Atherogenesis, lipid metabolism
  •  Origins of Cardiovascular Disease
    •  Atherogenic Processes & Pathology
  •  Pain: Etiology, Genetics & Innovations in Treatment
  •  Patient Experience: Personal Memories of Invasive Medical Intervantion
  •  Personalized Medicine & Genomic Research
  •  Pharmaceutical Analytics
  •  Pharmaceutical Industry Competitive Intelligence
  •  Pharmaceutical R&D Investment
  •  Pharmacogenomics
  •  Population Health Management, Genetics & Pharmaceutical
  •  Population Health Management, Nutrition and Phytochemistry
  •  Proteomics
  •  Regulated Clinical Trials: Design, Methods, Components and IRB related issues
  •  Reproductive Biology & Bio Instrumentation
  •  Scientist: Career considerations
  •  Statistical Methods for Research Evaluation
  •  Stem Cells for Regenerative Medicine
  •  Systemic Inflammatory Response Related Disorders
  •  Technology Transfer: Biotech and Pharmaceutical

Open Access Online Scientific Journal Site Statistics: Site Launched in February 2012, first post Published on 4/30/2012

http://pharmaceuticalintelligence.com/2012/04/30/93/

On 4/2/2013, less then one year since the first post was published as a CURATED article, we achieved the following results:

150,339 Views

766 Posts

87 Categories

3,908 Tags

3,706 Comments

Referrer   Views
Search Engines   43,238
linkedin.com   9,865
Google   2,171
Facebook   1,591
     

URL    Clicks

ncbi.nlm.nih.gov    1,014

nature.com    513

genomeweb.com    215

medicregister.com    177

sciencedirect.com    156

pnas.org    145

nejm.org    125

 

Author        Views

 

2012pharmaceutical        51,214 <<<<—- Aviva

 

larryhbern    Following    19,819

 

tildabarliya        6,924

 

Dr. Sudipta Saha    Following    6,859

 

ritusaxena    Following    5,795

 

Dror Nir    Follow    4,190

 

sjwilliamspa    Following    3,369

 

aviralvatsa    Following    3,216

 

anamikasarkar    Following    1,682

 

pkandala    Follow    1,595

 

Alan F. Kaul, PharmD., MS, MBA, FCCP    Following    1,068

 

megbaker58    Following    826

 

zs22    Following    444

 

zraviv06    Following    438

 

Aashir Awan, Phd    Following    413

 

howarddonohue    Following    297

 

Ed Kislauskis    Following    157

 

Demet Sag    Follow    130

 

jukkakarjalainen    Follow    130

 

anayou1    Following    128

 

jdpmdphd    Follow    124

 

Dr.Sreedhar Tirunagari    Follow    92

 

S. Chakrabarti, Ph.D.    Following    49

 

apreconasia    Follow    43

Most Viewed Posts

Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? More stats 1,945
Perspectives on Nitric Oxide in Disease Mechanisms More stats 1,925
About More stats 1,836
Contributors’ Biographies More stats 1,639
Founder More stats 1,026
Future of Calcitonin…? More stats 854
Treatment of Refractory Hypertension via Percutaneous Renal Denervation More stats 851
‘Gamifying’ Drug R&D: Boehringer Ingelheim, Sanofi, Eli Lilly More stats 835
Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers More stats 824
The mechanism of action of the drug ‘Acthar’ for Systemic Lupus Erythematosus (SLE) More stats 737
Transcatheter Aortic Valve Implantation (TAVI): Risky and Costly More stats 691
Closing the Mammography gap More stats 667
Nitric Oxide has a ubiquitous role in the regulation of glycolysis -with a concomitant influence on mitochondrial function More stats 659
Assessing Cardiovascular Disease with Biomarkers More stats 629
Introduction to Tissue Engineering; Nanotechnology applications More stats 613
Novel Cancer Hypothesis Suggests Antioxidants Are Harmful More stats 602
Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine – Part 1 More stats 597
Mitochondria: Origin from oxygen free environment, role in aerobic glycolysis, metabolic adaptation More stats 593
DNA – The Next-Generation Storage Media for Digital Information More stats 588
“The Molecular pathology of Breast Cancer Progression” More stats 563
Zithromax – likely to ‘max’ Heart Attack More stats 557
TransCelerate BioPharma Inc. to Accelerate the Development of New Meds More stats 554
Sunitinib brings Adult acute lymphoblastic leukemia (ALL) to Remission – RNA Sequencing – FLT3 Receptor Blockade More stats 549
Mitochondria: More than just the “powerhouse of the cell” More stats 537
Big Data in Genomic Medicine More stats 531
Get Rid of the Randomized Trial; Here’s a Better Way More stats 522
Biosimilars: CMC Issues and Regulatory Requirements More stats 521
Biosimilars: Financials 2012 vs. 2008 More stats 513
New England Compounding Center: A Family Business More stats 507
Every sperm is sacred: Sequencing DNA from individual cells vs “humans as a whole.” More stats 501

Most Commented 

Post Comments
Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk 25
Knowing the tumor’s size and location, could we target treatment to THE ROI by applying imaging-guided intervention? 24
Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production 24
Is the Warburg Effect the cause or the effect of cancer: A 21st Century View? 23
Differentiation Therapy – Epigenetics Tackles Solid Tumors 22
Nitric Oxide and Immune Responses: Part 1 22
Nitric Oxide: Chemistry and function 22
Targeted delivery of therapeutics to bone and connective tissues: current status and challenges- Part I 21
Nano-particles as Synthetic Platelets to Stop Internal Bleeding Resulting from Trauma 21
Prostate Cancer Cells: Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition 20
Personalized medicine gearing up to tackle cancer 19

Type 2:

“Open Access to Curation of Scientific Research” – BioMed e-Books Series

http://pharmaceuticalintelligence.com/biomed-e-books/

Launch on Amazon-KINDLE, KINDLE FIRE: 2013, 2014

Eight Authors: 40 articles — Any day on Amazon’s e-Books List

Volume 1: Seven Authors, 29 articles

Volume 2: Six Authors, 28 articles

Volume 3: Eight Authors, 43 articles

Volume 1: Eight Authors, 154 articles [65 posts by Larry, 56 posts by Aviva]

Volume 2: [Work-in-Progress]

Volume 3: [Work-in-Progress]

 

Type 3:

“Open Access to Curation of Scientific Research” – Scoop.it!

medical imaging of the heart
 

Cardiovascular Disease: Pharmaco-therapy

Drug Therapy for Heart Disease 

Curated by Aviva Lev-Ari, PhD, RN

 

“Open Access to Curation of Scientific Research” – Articles on this Topic covered in http://pharmaceuticalintelligence.com

“Open Access Publishing” is becoming the mainstream model: “Academic Publishing” has changed Irrevocably

“Open Access Publishing” is becoming the mainstream model: “Academic Publishing” has changed Irrevocably

Digital Publishing Promotes Science and Popularizes it by Access to Scientific 

Open-Access Publishing in Genomics

Open-Access Publishing in Genomics

 

Part Two

Comprehensive analysis of the phenomena of “Open Access to Curation of Scientific Research” is presented below by two curated articles:

Views of Thomas Lin, NYT, 1/17/2012 – Cracking Open the Scientific Process

 
A GLOBAL FORUM Ijad Madisch, 31, a virologist and computer scientist, founded ResearchGate, a Berlin-based social networking platform for scientists that has more than 1.3 million members.
Published: January 16, 2012 

The New England Journal of Medicine marks its 200th anniversary this year with a timeline celebrating the scientific advances first described in its pages: the stethoscope (1816), the use of ether foranesthesia (1846), and disinfecting hands and instruments before surgery (1867), among others.

 
 
Timothy Fadek for The New York Times

LIKE, FOLLOW, COLLABORATE A staff meeting at ResearchGate. The networking site, modeled after Silicon Valley startups, houses 350,000 papers.

For centuries, this is how science has operated — through research done in private, then submitted to science and medical journals to be reviewed by peers and published for the benefit of other researchers and the public at large. But to many scientists, the longevity of that process is nothing to celebrate.

The system is hidebound, expensive and elitist, they say. Peer review can take months, journal subscriptions can be prohibitively costly, and a handful of gatekeepers limit the flow of information. It is an ideal system for sharing knowledge, said the quantum physicist Michael Nielsen, only “if you’re stuck with 17th-century technology.”

Dr. Nielsen and other advocates for “open science” say science can accomplish much more, much faster, in an environment of friction-free collaboration over the Internet. And despite a host of obstacles, including the skepticism of many established scientists, their ideas are gaining traction.

Open-access archives and journals like arXiv and the Public Library of Science (PLoS) have sprung up in recent years. GalaxyZoo, a citizen-science site, has classified millions of objects in space, discovering characteristics that have led to a raft of scientific papers.

On the collaborative blog MathOverflow, mathematicians earn reputation points for contributing to solutions; in another math experiment dubbed the Polymath Project, mathematicians commenting on the Fields medalistTimothy Gower’s blog in 2009 found a new proof for a particularly complicated theorem in just six weeks.

And a social networking site called ResearchGate — where scientists can answer one another’s questions, share papers and find collaborators — is rapidly gaining popularity.

Editors of traditional journals say open science sounds good, in theory. In practice, “the scientific community itself is quite conservative,” said Maxine Clarke, executive editor of the commercial journal Nature, who added that the traditional published paper is still viewed as “a unit to award grants or assess jobs and tenure.”

Dr. Nielsen, 38, who left a successful science career to write “Reinventing Discovery: The New Era of Networked Science,” agreed that scientists have been “very inhibited and slow to adopt a lot of online tools.” But he added that open science was coalescing into “a bit of a movement.”

On Thursday, 450 bloggers, journalists, students, scientists, librarians and programmers will converge on North Carolina State University (and thousands more will join in online) for the sixth annual ScienceOnline conference. Science is moving to a collaborative model, said Bora Zivkovic, a chronobiology blogger who is a founder of the conference, “because it works better in the current ecosystem, in the Web-connected world.”

Indeed, he said, scientists who attend the conference should not be seen as competing with one another. “Lindsay Lohan is our competitor,” he continued. “We have to get her off the screen and get science there instead.”

Facebook for Scientists?

“I want to make science more open. I want to change this,” said Ijad Madisch, 31, the Harvard-trained virologist and computer scientist behind ResearchGate, the social networking site for scientists.

Started in 2008 with few features, it was reshaped with feedback from scientists. Its membership has mushroomed to more than 1.3 million, Dr. Madisch said, and it has attracted several million dollars in venture capital from some of the original investors of Twitter, eBay and Facebook.

A year ago, ResearchGate had 12 employees. Now it has 70 and is hiring. The company, based in Berlin, is modeled after Silicon Valley startups. Lunch, drinks and fruit are free, and every employee owns part of the company.

The Web site is a sort of mash-up of Facebook, Twitter and LinkedIn, with profile pages, comments, groups, job listings, and “like” and “follow” buttons (but without baby photos, cat videos and thinly veiled self-praise). Only scientists are invited to pose and answer questions — a rule that should not be hard to enforce, with discussion threads about topics like polymerase chain reactions that only a scientist could love.

Scientists populate their ResearchGate profiles with their real names, professional details and publications — data that the site uses to suggest connections with other members. Users can create public or private discussion groups, and share papers and lecture materials. ResearchGate is also developing a “reputation score” to reward members for online contributions.

ResearchGate offers a simple yet effective end run around restrictive journal access with its “self-archiving repository.” Since most journals allow scientists to link to their submitted papers on their own Web sites, Dr. Madisch encourages his users to do so on their ResearchGate profiles. In addition to housing 350,000 papers (and counting), the platform provides a way to search 40 million abstracts and papers from other science databases.

In 2011, ResearchGate reports, 1,620,849 connections were made, 12,342 questions answered and 842,179 publications shared. Greg Phelan, chairman of the chemistry department at the State University of New York, Cortland, used it to find new collaborators, get expert advice and read journal articles not available through his small university. Now he spends up to two hours a day, five days a week, on the site.

Dr. Rajiv Gupta, a radiology instructor who supervised Dr. Madisch at Harvard and was one of ResearchGate’s first investors, called it “a great site for serious research and research collaboration,” adding that he hoped it would never be contaminated “with pop culture and chit-chat.”

Mike Peel

EVOLUTION Michael Nielsen, a quantum physicist, says that as online tools slowly catch on, open science is coalescing into “a bit of a movement.”

 
Travis Dove for The New York Times

COME TOGETHER Bora Zivkovic, a chronobiology blogger, is a founder of  the ScienceOnline conference.

Dr. Gupta called Dr. Madisch the “quintessential networking guy — if there’s a Bill Clinton of the science world, it would be him.”

The Paper Trade

Dr. Sönke H. Bartling, a researcher at the German CancerResearch Center who is editing a book on “Science 2.0,” wrote that for scientists to move away from what is currently “a highly integrated and controlled process,” a new system for assessing the value of research is needed. If open access is to be achieved through blogs, what good is it, he asked, “if one does not get reputation and money from them?”

Changing the status quo — opening data, papers, research ideas and partial solutions to anyone and everyone — is still far more idea than reality. As the established journals argue, they provide a critical service that does not come cheap.

“I would love for it to be free,” said Alan Leshner, executive publisher of the journal Science, but “we have to cover the costs.” Those costs hover around $40 million a year to produce his nonprofit flagship journal, with its more than 25 editors and writers, sales and production staff, and offices in North America, Europe and Asia, not to mention print and distribution expenses. (Like other media organizations, Science has responded to the decline in advertising revenue by enhancing its Web offerings, and most of its growth comes from online subscriptions.)

Similarly, Nature employs a large editorial staff to manage the peer-review process and to select and polish “startling and new” papers for publication, said Dr. Clarke, its editor. And it costs money to screen for plagiarism and spot-check data “to make sure they haven’t been manipulated.”

Peer-reviewed open-access journals, like Nature Communications and PLoS One, charge their authors publication fees — $5,000 and $1,350, respectively — to defray their more modest expenses.

The largest journal publisher, Elsevier, whose products include The Lancet, Cell and the subscription-based online archive ScienceDirect, has drawn considerable criticism from open-access advocates and librarians, who are especially incensed by its support for the Research Works Act, introduced in Congress last month, which seeks to protect publishers’ rights by effectively restricting access to research papers and data.

In an Op-Ed article in The New York Times last week,Michael B. Eisen, a molecular biologist at the University of California, Berkeley, and a founder of the Public Library of Science, wrote that if the bill passes, “taxpayers who already paid for the research would have to pay again to read the results.”

In an e-mail interview, Alicia Wise, director of universal access at Elsevier, wrote that “professional curation and preservation of data is, like professional publishing, neither easy nor inexpensive.” And Tom Reller, a spokesman for Elsevier, commented on Dr. Eisen’s blog, “Government mandates that require private-sector information products to be made freely available undermine the industry’s ability to recoup these investments.”

Mr. Zivkovic, the ScienceOnline co-founder and a blog editor for Scientific American, which is owned by Nature, was somewhat sympathetic to the big journals’ plight. “They have shareholders,” he said. “They have to move the ship slowly.”

Still, he added: “Nature is not digging in. They know it’s happening. They’re preparing for it.”

Science 2.0

Scott Aaronson, a quantum computing theorist at the Massachusetts Institute of Technology, has refused to conduct peer review for or submit papers to commercial journals. “I got tired of giving free labor,” he said, to “these very rich for-profit companies.”

Dr. Aaronson is also an active member of online science communities like MathOverflow, where he has earned enough reputation points to edit others’ posts. “We’re not talking about new technologies that have to be invented,” he said. “Things are moving in that direction. Journals seem noticeably less important than 10 years ago.”

Dr. Leshner, the publisher of Science, agrees that things are moving. “Will the model of science magazines be the same 10 years from now? I highly doubt it,” he said. “I believe in evolution.

“When a better system comes into being that has quality and trustability, it will happen. That’s how science progresses, by doing scientific experiments. We should be doing that with scientific publishing as well.”

Matt Cohler, the former vice president of product management at Facebook who now represents Benchmark Capital on ResearchGate’s board, sees a vast untapped market in online science.

“It’s one of the last areas on the Internet where there really isn’t anything yet that addresses core needs for this group of people,” he said, adding that “trillions” are spent each year on global scientific research. Investors are betting that a successful site catering to scientists could shave at least a sliver off that enormous pie.

Dr. Madisch, of ResearchGate, acknowledged that he might never reach many of the established scientists for whom social networking can seem like a foreign language or a waste of time. But wait, he said, until younger scientists weaned on social media and open-source collaboration start running their own labs.

“If you said years ago, ‘One day you will be on Facebook sharing all your photos and personal information with people,’ they wouldn’t believe you,” he said. “We’re just at the beginning. The change is coming.”

 SOURCE:
 

Views of Célya Gruson-Daniel, October 29, 2012, MyScienceWork

 
Monday, October 29, 2012 Célya Gruson-Daniel
The Internet now makes it possible to publish and share billions of data items every day, accessible to over 2 billion people worldwide.  This mass of information makes it difficult, when searching, to extract the relevant and useful information from the background noise. It should be added that these searches are time-consuming and can take much longer than the time we actually have to spend on them. Today, Google and specialized search engines such as Google Scholar are based on established algorithms. But are these algorithms sufficiently in line with users’ needs? What if the web needed a human brain to select and put forward the relevant information and not just the information based on “popularity” and lexical and semantic operations?

This article is a translation of “Science et curation : nouvelle pratique du Web 2.0” available at:http://blog.mysciencework.com/2012/02/03/science-et-curation-nouvelle-pratique-du-web-2-0.html It was translated from French into English by Mayte Perea López.

Curation on the World Wide Web ©Beboy-Fotolia

Web 2.0: New practices, new uses

To address this need, human intermediaries, empowered by the participatory wave of web 2.0, naturally started narrowing down the information and providing an angle of analysis and some context. They are bloggers, regular Internet users or community managers – a new type of profession dedicated to the web 2.0. A new use of the web has emerged, through which the information, once produced, is collectively spread and filtered by Internet users who create hierarchies of information. This “popularization of the web”therefore paves the way to a user-centered Internet that plays a more active role in finding means to improve the dissemination of information and filter it with more relevance. Today, this new practice has also been categorized and is known as curation.

The term “curation” was borrowed from the world of fine arts. Curators are responsible for the exhibitions held in museums and galleries. They build these exhibitions and act as intermediaries between the public and works of art. In contemporary art, the curator’s role is also to interpret works of art and discover new artists and trends of the moment. In a similar way on the web, the tasks performed by content curators include the search, selection, analysis, editorial work and dissemination of information. Curators can also share online the most relevant information on a specific subject. Instead of acting as mere echo chambers, they provide some context for their searches. For example, they address niche topics and themes that do not stand out in a traditional search. They prioritize the information and are able to find new means of presenting it, new types of visualizationTheir role is, therefore, to find new formats, faster and more direct means of consultation for Internet users, in a context in which the time we spend reading the information is more and more limited. Curation on the web has a social and relational dimension that plays a central role in the curator’s work. Anyone can act as a curator and personalize information, providing an angle that he or she invites us to discover. This means that curation can be carried out by individuals who do not have an institutional footing. The expression “powered by people” exemplifies this possibility of democratizing information searches.

The world of scientific research and culture is no exception to this movement. The web 2.0 offers the scientific community and its surrounding spheres the opportunity to discover new tools that transform practices and uses, not only of researchers, but also of all the actors of scientific and technical culture (STC).

 
©Zothen-Fotolia

Curation: an Essential Practice to Manage “Open Science”

The web 2.0 gave birth to new practices motivated by the will to have broader and faster cooperation in a more free and transparent environment. We have entered the era of an “open” movement: “open data”, “open software”, etc. In science, expressions like “open access” (to scientific publications and research results) and “open science” are used more and more often.

The concept of “open science” emerged from the web and created bigger and bigger niches all around the planet. Open science and its derivatives such as open access make us dream of an era of open, collective expertise and innovation on an international scale. This catalyst in the field of science is only possible on one condition: that it be accompanied by the emergence of a reflection on the new practices and uses that are essential to its conservation and progress. Sharing information and data at the international level is very demanding in terms of management and organization. As a result, curation has established itself in the realm of science and technology, both in the research community and in the world of scientific and technical culture.

Curation: Collaborative Bibliographic Management for the Researcher 2.0

In the world of research, curation appears as a logical extension of the literature review and bibliographic search, the pillars of a researcher’s work. Curation on the web has brought a new dimension to this work of organizing and prioritizing information. It makes it easier for researchers to collaborate and share, while also bringing to light some works that had previously remained in the shadows.

Mendeley and Zotero are both search and bibliographic management tools that assist you in the creation of an online library. Thus, it is possible to navigate in this mass of bibliographic data, referenced by the researcher, through multiple gateways: keywords, authors’ names, date of publication, etc. In addition, these programs make it possible to generate automatically article bibliographies in the formats specified by each scientific journal. What is new about these tools, apart from the “logistical” aid they provide, is that they are based on collaboration and sharing. Mendeley and Zotero let you create private or public groups. These groups make it possible to share a bibliography with other researchers. They also give access to discussion forums that are useful for sharing with international researchers. Other tools like EndNote and Papersexist, but these paid softwares are less collaborative.

New platforms, real scientific social networks, have also appeared. The leading platform ResearchGate was founded in 2008 and now counts 1.9 million users (august 2012). It is an online search platform, but it is used above all for social interaction. Researchers can create a profile and discussion groups, make their work available online, job hunt, etc. Other professional social networks for researchers have emerged, among them MyScienceWork, which is devoted to open access.

Curation, in the era of open science, accelerates the dissemination of information and provides access to the most relevant parts. Post-publication comments add value to the content. Apart from the benefits for the community, these new practices change the role of researchers in society by offering them new public spaces for expression. Curation on the web opens the way towards the development of an e-reputation and a new form of celebrity in the world of international science. It gives everyone the opportunity to show the cornerstones of their work in the same way that the research notebooks of Hypothèses.orgwere used in Humanities and Social Sciences. This system based on the dual role of “observer/observed” may also impose limits on researchers who would have to be more thorough in the choice of the articles they list.

Have we entered the era of the “researcher 2.0”? Undoubtedly, even if it is still limited to a small group of people. The tools described above are widely used for bibliographic management but their collaborative function is still less used. It is difficult to change researchers’ practices and attitudes. To move from a closed science to an open science in a world of cutthroat competition, researchers will have to grope their way along. These new means of sharing are still sometimes perceived as a threat to the work of researchers or as an excessively long and tedious activity.

Curation and Scientific and Technical Culture: Creating Hybrid Networks

Another area, where there are most likely fewer barriers, is scientific and technical culture. This broad term involves different actors such as associations, companies, universities’ communication departments, CCSTI (French centers for scientific, technical and industrial culture), journalists, etc. A number of these actors do not limit their work to popularizing the scientific data; they also consider they have an authentic mission of “culturing” science. The curation practice thus offers a better organization and visibility to the information. The sought-after benefits will be different from one actor to the next. University communication departments are using the web 2.0 more and more to promote their values; this is the case, for example, for the FrenchUniversité Paris 8. For companies, curation offers the opportunity to become a reference on the themes related to their corporate identity. MyScienceWork, for example, began curating three collections surrounding the key themes of its project. The key topics of its identity are essentially open accessnew uses and practices of the web 2.0 in the world of science and “women in science”. It is essential to keep abreast of the latest news coming from large institutions and traditional media, but also to take into account bloggers’ articles and links that offer a different viewpoint.

Some tools have also been developed in order to meet the expectations of these various users. Pearltreesand Scoopit are non-specialized curation tools that are widely used by the world of Scientific and Technical Culture. Pearltrees offers a visual representation in which each listed page is presented as a pearl connected to the others through branches. The result: a prioritized data tree. These mindmaps can be shared with one’s contacts. A good example of this is the work done by Sébastien Freudenthal, who uses this tool on a daily basis and offers rich content listed by theme in the field of Sciences and Web. Scoopit offers a more traditional presentation with a nice page layout that looks like a magazine. It enables you to list articles quickly and almost automatically, thanks to a plugin, and also to share them. A special tool for the “world” of Technical and Scientific Culture is the social network of scientific culture Knowtex that, in addition to its referencing and links assessment functions, seeks to create a space interconnecting journalists, artists, communicators, designers, bloggers, researchers, etc.

These different tools are used on a daily basis by various actors of technical and scientific culture, but also by researchers, teachers, etc. They gather these communities around a shared practice and favor multiple conversations. The development of these hybrid networks is surely a cornerstone in the building of open science, encouraging the creation of new ties between science and society that go beyond the traditional geographical limits.

Un grand merci à Antoine Blanchard pour sa participation et relecture de l’article.

Find out more:

« Curation is the new research, »… et le nouveau média, Benoit Raphael, 2011http://benoitraphael.com/2011/01/17/curation-is-the-new-search/

La curation : la révolution du webjournalisme?, non-fiction.fr http://www.nonfiction.fr/article-4158-la_curation__la_revolution_du_webjournalisme_.htm

La curation : les 10 raisons de s’y intéresser, Pierre Tran http://pro.01net.com/editorial/529947/la-curation-les-10-raisons-de-sy-interesser/

Curation : quelle valeur pour les entreprises, les médias, et sa « marque personnelle »?, Marie-Laure Vie http://marilor.posterous.com/curation-et-marketing-de-linformation

Cracking Open the Scientific Process, Thomas Lin, New York Times http://www.nytimes.com/2012/01/17/science/open-science-challenges-journal-tradition-with-web-collaboration.html?_r=4&pagewanted=1

La « massification » du web transforme les relations sociales, Valérie Varandat, INRIA http://www.inria.fr/actualite/actualites-inria/internet-du-futur

Internet a révolutionné le métier de chercheur, AgoraVoxhttp://www.agoravox.fr/actualites/technologies/article/internet-a-revolutionne-le-metier-103514

Gérer ses références numériques, Université de Genèvehttp://www.unige.ch/medecine/udrem/Unit/actualites/biblioManager.html

Notre liste Scoop-it : Scientific Social Network, MyScienceWork

SOURCE:

In French:
 

Summary

This article has two parts, the first presents a pioneering experience in Curation of Scientific Research in an Open Access Online Scientific Journal,  in a BioMed e-Books Series and in curation of a Scoop.it! Journal on Medical Imaging.

The second Part, presents Views of two Curators on the transformation of Scientific Publishing and the functioning of the Scientific AGORA (market place in the Ancient Greek CIty of Athena).

The CHANGES described above are irrevocable and foster progress of civilization by provision of ACCESS to the Scientific Process and Resources via collaboration among peers.

Part Three

SOURCE:

http://www.nytimes.com/2013/04/08/health/for-scientists-an-exploding-world-of-pseudo-academia.html?pagewanted=1&_r=0&emc=eta1 

 

Scientific Articles Accepted (Personal Checks, Too)

Kevin Moloney for The New York Times

Jeffrey Beall, a research librarian at the University of Colorado at Denver, has developed a blacklist of “predatory” journals.

By 

Published: April 7, 2013

The scientists who were recruited to appear at a conference called Entomology-2013 thought they had been selected to make a presentation to the leading professional association of scientists who study insects.

But they found out the hard way that they were wrong. The prestigious, academically sanctioned conference they had in mind has a slightly different name: Entomology 2013 (without the hyphen). The one they had signed up for featured speakers who were recruited by e-mail, not vetted by leading academics. Those who agreed to appear were later charged a hefty fee for the privilege, and pretty much anyone who paid got a spot on the podium that could be used to pad a résumé.

“I think we were duped,” one of the scientists wrote in an e-mail to the Entomological Society.

Those scientists had stumbled into a parallel world of pseudo-academia, complete with prestigiously titled conferences and journals that sponsor them. Many of the journals and meetings have names that are nearly identical to those of established, well-known publications and events.

Steven Goodman, a dean and professor of medicine at Stanford and the editor of the journal Clinical Trials, which has its own imitators, called this phenomenon “the dark side of open access,” the movement to make scholarly publications freely available.

The number of these journals and conferences has exploded in recent years as scientific publishing has shifted from a traditional business model for professional societies and organizations built almost entirely on subscription revenues to open access, which relies on authors or their backers to pay for the publication of papers online, where anyone can read them.

Open access got its start about a decade ago and quickly won widespread acclaim with the advent of well-regarded, peer-reviewed journals like those published by the Public Library of Science, known as PLoS. Such articles were listed in databases like PubMed, which is maintained by the National Library of Medicine, and selected for their quality.

But some researchers are now raising the alarm about what they see as the proliferation of online journals that will print seemingly anything for a fee. They warn that nonexperts doing online research will have trouble distinguishing credible research from junk. “Most people don’t know the journal universe,” Dr. Goodman said. “They will not know from a journal’s title if it is for real or not.”

Researchers also say that universities are facing new challenges in assessing the résumés of academics. Are the publications they list in highly competitive journals or ones masquerading as such? And some academics themselves say they have found it difficult to disentangle themselves from these journals once they mistakenly agree to serve on their editorial boards.

The phenomenon has caught the attention of Nature, one of the most competitive and well-regarded scientific journals. In a news report published recently, the journal noted “the rise of questionable operators” and explored whether it was better to blacklist them or to create a “white list” of those open-access journals that meet certain standards. Nature included a checklist on “how to perform due diligence before submitting to a journal or a publisher.”

Jeffrey Beall, a research librarian at the University of Colorado in Denver, has developed his own blacklist of what he calls “predatory open-access journals.” There were 20 publishers on his list in 2010, and now there are more than 300. He estimates that there are as many as 4,000 predatory journals today, at least 25 percent of the total number of open-access journals.

“It’s almost like the word is out,” he said. “This is easy money, very little work, a low barrier start-up.”

Journals on what has become known as “Beall’s list” generally do not post the fees they charge on their Web sites and may not even inform authors of them until after an article is submitted. They barrage academics with e-mail invitations to submit articles and to be on editorial boards.

One publisher on Beall’s list, Avens Publishing Group, even sweetened the pot for those who agreed to be on the editorial board of The Journal of Clinical Trails & Patenting, offering 20 percent of its revenues to each editor.

One of the most prolific publishers on Beall’s list, Srinubabu Gedela, the director of the Omics Group, has about 250 journals and charges authors as much as $2,700 per paper. Dr. Gedela, who lists a Ph.D. from Andhra University in India, says on his Web site that he “learnt to devise wonders in biotechnology.”

Another Beall’s list publisher, Dove Press, says on its Web site, “There are no limits on the number or size of the papers we can publish.”

Open-access publishers say that the papers they publish are reviewed and that their businesses are legitimate and ethical.

“There is no compromise on quality review policy,” Dr.Gedela wrote in an e-mail. “Our team’s hard work and dedicated services to the scientific community will answer all the baseless and defamatory comments that have been made aboutOmics.”

But some academics say many of these journals’ methods are little different from spam e-mails offering business deals that are too good to be true.

Paulino Martínez, a doctor in Celaya, Mexico, said he was gullible enough to send two articles in response to an e-mail invitation he received last year from The Journal of Clinical Case Reports. They were accepted. Then came a bill saying he owed $2,900. He was shocked, having had no idea there was a fee for publishing. He asked to withdraw the papers, but they were published anyway.

“I am a doctor in a hospital in the province of Mexico, and I don’t have the amount they requested,” Dr. Martínez said. The journal offered to reduce his bill to $2,600. Finally, after a year and many e-mails and a phone call, the journal forgave the money it claimed he owed.

Some professors listed on the Web sites of journals on Beall’s list, and the associated conferences, say they made a big mistake getting involved with the journals and cannot seem to escape them.

Thomas Price, an associate professor of reproductive endocrinology and fertility at the Duke University School of Medicine, agreed to be on the editorial board of The Journal of Gynecology & Obstetrics because he saw the name of a well-respected academic expert on its Web site and wanted to support open-access journals. He was surprised, though, when the journal repeatedly asked him to recruit authors and submit his own papers. Mainstream journals do not do this because researchers ordinarily want to publish their papers in the best journal that will accept them. Dr. Price, appalled by the request, refused and asked repeatedly over three years to be removed from the journal’s editorial board. But his name was still there.

“They just don’t pay any attention,” Dr. Price said.

About two years ago, James White, a plant pathologist at Rutgers, accepted an invitation to serve on the editorial board of a new journal, Plant Pathology & Microbiology, not realizing the nature of the journal. Meanwhile, his name, photograph and résumé were on the journal’s Web site. Then he learned that he was listed as an organizer and speaker on a Web site advertising Entomology-2013.

“I am not even an entomologist,” he said.

He thinks the publisher of the plant journal, which also sponsored the entomology conference, — just pasted his name, photograph and résumé onto the conference Web site. At this point, he said, outraged that the conference and journal were “using a person’s credentials to rip off other unaware scientists,” Dr. White asked that his name be removed from the journal and the conference.

Weeks went by and nothing happened, he said. Last Monday, in response to this reporter’s e-mail to the conference organizers, Jessica Lincy, who said only that she was a conference member, wrote to explain that the conference had “technical problems” removing Dr. White’s name. On Tuesday, his name was gone. But it remained on the Web site of the journal.

Dr. Gedela, the publisher of the journals and sponsor of the conference, said in an e-mail on Thursday that Dr. Price and Dr. White’s names remained on the Web sites “because of communication gap between the EB member and the editorial assistant,” referring to editorial board members. That day, their names were gone from the journals’ Web sites.

“I really should have known better,” Dr. White said of his editorial board membership, adding that he did not fully realize how the publishing world had changed. “It seems like the Wild West now.”

This article has been revised to reflect the following correction:

Correction: April 8, 2013

An earlier version of this article misstated the name of a city in Mexico that is home to a doctor who sent articles to a pseudo-academic journal. It is Celaya, not Ceyala.

SOURCE:

http://www.nytimes.com/2013/04/08/health/for-scientists-an-exploding-world-of-pseudo-academia.html?pagewanted=1&_r=0&emc=eta1 

 
 

Read Full Post »

%d bloggers like this: