Feeds:
Posts
Comments

Archive for the ‘Infectious Disease Immunodiagnostics’ Category


Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD

 

Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020

FDA STATEMENT

Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies

 

As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020

 

Recommendations for Investigational COVID-19 Convalescent Plasma

 

  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.

Background

The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.

FACT SHEET FOR PATIENTS AND PARENTS/CAREGIVERS EMERGENCY USE AUTHORIZATION (EUA) OF COVID-19 CONVALESCENT PLASMA FOR TREATMENT OF COVID-19 IN HOSPITALIZED PATIENTS

  • FDA issues fact sheet for patients on donating plasma

August 23, 2020

 

FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic

 

Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.

 

August 24, 2020

Donate COVID-19 Plasma

 

  • FDA posts video and blog about how to donate plasms if you had been infected with COVID

 

https://youtu.be/PlX15rWdBbY

 

 

Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA

 

 

August 25, 2020

 

CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download

 

And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment

 

From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html

PUBLISHED TUE, AUG 25 202010:45 AM EDTUPDATED TUE, AUG 25 20204:12 PM EDT

Berkeley Lovelace Jr.@BERKELEYJR

Will Feuer@WILLFOIA

KEY POINTS

  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter

https://twitter.com/SteveFDA/status/1298071603675373569?s=20

https://twitter.com/SteveFDA/status/1298071619236245504?s=20

August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:

https://www.bloomberg.com/news/articles/2020-08-25/fda-s-hahn-vows-to-stick-to-the-science-amid-vaccine-pressure?sref=yLCixKPR

Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency

 

For more articles on COVID19 please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Recent Grim COVID-19 Statistics in U.S. and Explanation from Dr. John Campbell: Why We Need to be More Proactive

Reporter: Stephen J. Williams, Ph.D.

In case you have not been following the excellent daily YouTube sessions on COVID-19 by Dr. John Campbell I am posting his latest video on how grim the statistics have become and the importance of using proactive measures (like consistent use of facial masks, proper social distancing) instead of relying on reactive measures (e.g. lockdowns after infection spikes).  In addition, below the video are some notes from his presentation and some links to sites discussed within the video.

 

Notes from the video:

  • approaching 5 million confirmed cases in US however is probably an underestimation
  • 160,00 deaths as of 8/08/2020

From the University of Washington Institute for Health Metrics and Evaluation in Seattle WA

  • 295,000 US COVID-19 related deaths estimated by December 1, 2020
  • however if 95% of people in US consistently and properly wear masks could save 66,000 lives
  • however this will mean a remaining 228,271 deaths which is a depressing statistic
  • Dr. John Campbell agrees with Dr. Christopher Murray, director of the Institute for Health Metrics that “people’s inconsistent use of these measures (face masks, social distancing) is a serious problem”
  • States with increasing transmission like Colorado, Idaho, Kansas, Kentucky, Mississippi, Missouri, Ohio, Oklahoma, Oregon, and Virginia are suggested to have a lockdown when death rate reaches 8 deaths per million population however it seems we should be also focusing on population densities rather than geographic states
  • Dr. Campbell and Dr. Murray stress more proactive measures than reactive ones like lockdowns
  • if mask usage were to increase to 95% usage reimposition to shutdown could be delayed 6 to 8 weeks

 

New IHME COVID-19 Forecasts See Nearly 300,000 Deaths by December 1

SEATTLE (August 6, 2020) – America’s COVID-19 death toll is expected to reach nearly 300,000 by December 1; however, consistent mask-wearing beginning today could save about 70,000 lives, according to new data from the Institute for Health Metrics and Evaluation (IHME) at the University of Washington’s School of Medicine.The US forecast totals 295,011 deaths by December. As of today, when, thus far, 158,000 have died, IHME is projecting approximately 137,000 more deaths. However, starting today, if 95% of the people in the US were to wear masks when leaving their homes, that total number would decrease to 228,271 deaths, a drop of 49%. And more than 66,000 lives would be saved.Masks and other protective measures against transmission of the virus are essential to staying COVID-free, but people’s inconsistent use of those measures is a serious problem, said IHME Director Dr. Christopher Murray.

“We’re seeing a rollercoaster in the United States,” Murray said. “It appears that people are wearing masks and socially distancing more frequently as infections increase, then after a while as infections drop, people let their guard down and stop taking these measures to protect themselves and others – which, of course, leads to more infections. And the potentially deadly cycle starts over again.”

Murray noted that there appear to be fewer transmissions of the virus in Arizona, California, Florida, and Texas, but deaths are rising and will continue to rise for the next week or two. The drop in infections appears to be driven by the combination of local mandates for mask use, bar and restaurant closures, and more responsible behavior by the public.

“The public’s behavior had a direct correlation to the transmission of the virus and, in turn, the numbers of deaths,” Murray said. “Such efforts to act more cautiously and responsibly will be an important aspect of COVID-19 forecasting and the up-and-down patterns in individual states throughout the coming months and into next year.”

Murray said that based on cases, hospitalizations, and deaths, several states are seeing increases in the transmission of COVID-19, including Colorado, Idaho, Kansas, Kentucky, Mississippi, Missouri, Ohio, Oklahoma, Oregon, and Virginia.

“These states may experience increasing cases for several weeks and then may see a response toward more responsible behavior,” Murray said.

In addition, since July 15, several states have added mask mandates. IHME’s statistical analysis suggests that mandates with no penalties increase mask wearing by 8 percentage points. But mandates with penalties increase mask wearing by 15 percentage points.

“These efforts, along with media coverage and public information efforts by state and local health agencies and others, have led to an increase in the US rate of mask wearing by about 5 percentage points since mid-July,” Murray said. Mask-wearing increases have been larger in states with larger epidemics, he said.

IHME’s model assumes that states will reimpose a series of mandates, including non-essential business closures and stay-at-home orders, when the daily death rate reaches 8 per million. This threshold is based on data regarding when states and/or communities imposed mandates in March and April, and implies that many states will have to reimpose mandates.

As a result, the model suggests which states will need to reimpose mandates and when:

  • August – Arizona, Florida, Mississippi, and South Carolina
  • September – Georgia and Texas
  • October – Colorado, Kansas, Louisiana, Missouri, Nevada, North Carolina, and Oregon.
  • November – Alabama, Arkansas, California, Iowa, New Mexico, Oklahoma, Utah, Washington, and Wisconsin.

However, if mask use is increased to 95%, the re-imposition of stricter mandates could be delayed 6 to 8 weeks on average.

Source: http://www.healthdata.org/news-release/new-ihme-covid-19-forecasts-see-nearly-300000-deaths-december-1

 

Read Full Post »


The Inequality and Health Disparity seen with the COVID-19 Pandemic Is Similar to Past Pandemics

Curator: Stephen J. Williams, PhD

2019-nCoV-CDC-23311

It has become very evident, at least in during this pandemic within the United States, that African Americans and poorer communities have been disproportionately affected by the SARS-CoV2 outbreak . However, there are many other diseases such as diabetes, heart disease, and cancer in which these specific health disparities are evident as well :

Diversity and Health Disparity Issues Need to be Addressed for GWAS and Precision Medicine Studies

Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Disease like cancer have been shown to have wide disparities based on socioeconomic status, with higher incidence rates seen in poorer and less educated sub-populations, not just here but underdeveloped countries as well (see Opinion Articles from the Lancet: COVID-19 and Cancer Care in China and Africa) and graphics below)

 

 

 

 

 

 

 

 

 

 

In an article in Science by Lizzie Wade, these disparities separated on socioeconomic status, have occurred in many other pandemics throughout history, and is not unique to the current COVID19 outbreak.  The article, entitled “An Unequal Blow”, reveal how

in past pandemics, people on the margins suffered the most.

Source: https://science.sciencemag.org/content/368/6492/700.summary

Health Disparities during the Black Death Bubonic Plague Pandemic in the 14th Century (1347-1351)

During the mid 14th century, all of Europe was affected by a plague induced by the bacterium Yersinia pestis, and killed anywhere between 30 – 60% of the European population.  According to reports by the time the Black Death had reached London by January 1349 there had already been horrendous reports coming out of Florence Italy where the deadly disease ravished the population there in the summer of 1348 (more than half of the city’s population died). And by mid 1349 the Black Death had killed more than half of Londoners.  It appeared that no one was safe from the deadly pandemic, affecting the rich, the poor, the young, the old.

However, after careful and meticulous archaeological and historical analysis in England and other sites, revealed a distinct social and economic inequalities that predominated and most likely guided the pandemics course throughout Europe.   According to Dr. Gwen Robbins Schug, a bio-archaeologist at Appalachian State University,

Bio-archaeology and other social sciences have repeatedly demonstrated that these kinds of crises play out along the preexisting fault lines of each society.  The people at greatest risk were often those already marginalized- the poor and minorities who faced discrimination in ways that damaged their health or limited their access to medical care even in pandemic times.

At the start of the Black Death, Europe had already gone under a climactic change with erratic weather.  As a result, a Great Famine struck Europe between 1315-17.  Wages fell and more people fell into poverty while the wealthiest expanded their riches, leading to an increased gap in wealth and social disparity.  In fact according to recordkeeping most of Englanders were living below the poverty line.

Author Lizzie Wade also interviewed Dr. Sharon, DeWitte, a biological anthropologist at University of South Carolina, who looks at skeletal remains of Black Death victims to get evidence on their health status, like evidence of malnutrition, osteoporosis, etc.   And it appears that most of the victims may have had preexisting health conditions indicative of poorer status.  And other evidence show that wealthy landowners had a lower mortality rate than poorer inner city dwellers.

1918 Spanish Flu

Socioeconomic and demographic studies have shown that both Native American Indians and African Americans on the lower end of the socioeconomic status were disproportionately affected by the 1918 Spanish flu pandemic.  According to census records, the poorest had a 50% higher mortality rate than wealthy areas in the city of Oslo.  In the US, minors and factory workers died at the highest rates.  In the US African Americans had already had bouts with preexisting issues like tuberculosis and may have contributed to the higher mortality.  In addition Jim Crow laws in the South, responsible for widespread discrimination, also impacted the ability of African Americans to seek proper medical care.

From the Atlantic

Source: https://www.theatlantic.com/politics/archive/2016/05/americas-health-segregation-problem/483219/

America’s Health Segregation Problem

Has the country done enough to overcome its Jim Crow health care history?

VANN R. NEWKIRK II

MAY 18, 2016

Like other forms of segregation, health-care segregation was originally a function of explicitly racist black codes and Jim Crow laws. Many hospitals, clinics, and doctor’s offices were totally segregated by race, and many more maintained separate wings or staff that could never intermingle under threat of law. The deficit of trained black medical professionals (itself caused by a number of factors including education segregation) meant that no matter where black people received health-care services, they would find their care to be subpar compared to that of whites. While there were some deaths that were directly attributable to being denied emergency service, most of the damage was done in establishing the same cumulative health disparities that plague black people today as a societal fate. The descendants of enslaved people lived much more dangerous and unhealthy lives than white counterparts, on disease-ridden and degraded environments. Within the confines of a segregated health-care system, these factors became poor health outcomes that shaped black America as if they were its genetic material.

 

https://twitter.com/time4equity/status/1175080469425266688?s=20

 

R.A.HahnaB.I.TrumanbD.R.Williamsc.Civil rights as determinants of public health and racial and ethnic health equity: Health care, education, employment, and housing in the United States.

SSM – Population Health: Volume 4, April 2018, Pages 17-24

Highlights

  • Civil rights are characterized as social determinants of health.
  • Four domains in civil rights history since 1950 are explored in—health care, education, employment, and housing.
  • Health care, education, employment show substantial benefits when civil rights are enforced.
  • Housing shows an overall failure to enforce existing civil rights and persistent discrimination.
  • Civil rights and their enforcement may be considered a powerful arena for public health theorizing, research, policy, and action.

 

For more articles on COVID-19 Please go to our Coronovirus Portal

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Placenta lacks molecules required for COVID-19 infection

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 has been found. The placenta serves as the lungs, gut, kidneys, and liver of the fetus. This fetal organ also has major endocrine actions that modulate maternal physiology and, importantly, together with the extraplacental chorioamniotic membranes shield the fetus against microbes from hematogenous dissemination and from invading the amniotic cavity.

 

Most pathogens that cause hematogenous infections in the mother are not able to reach the fetus, which is largely due to the potent protective mechanisms provided by placental cells (i.e. trophoblast cells: syncytiotrophoblasts and cytotrophoblasts). Yet, some of these pathogens such as Toxoplasma gondii, Rubella virus, herpesvirus (HSV), cytomegalovirus (CMV), and Zika virus (ZIKV), among others, are capable of crossing the placenta and infecting the fetus, causing congenital disease.

 

The placental membranes that contain the fetus and amniotic fluid lack the messenger RNA (mRNA) molecule required to manufacture the ACE2 receptor, the main cell surface receptor used by the SARS-CoV-2 virus to cause infection. These placental tissues also lack mRNA needed to make an enzyme, called TMPRSS2, that SARS-CoV-2 uses to enter a cell. Both the receptor and enzyme are present in only miniscule amounts in the placenta, suggesting a possible explanation for why SARS-CoV-2 has only rarely been found in fetuses or newborns of women infected with the virus, according to the study authors.

 

The single-cell transcriptomic analysis presented by the researchers provides evidence that SARS-CoV-2 is unlikely to infect the placenta and fetus since its canonical receptor and protease, ACE2 and TRMPSS2, are only minimally expressed by the human placenta throughout pregnancy. In addition, it was shown that the SARS-CoV-2 receptors are not expressed by the chorioamniotic membranes in the third trimester. However, viral receptors utilized by CMV, ZIKV, and others are highly expressed by the human placental tissues.

 

Transcript levels do not always correlate with protein expression, but the data of the present study indicates a low likelihood of placental infection and vertical transmission of SARS-CoV-2. However, it is still possible that the expression of these proteins is much higher in individuals with pregnancy complications related with the renin-angiotensin-aldosterone system, which can alter the expression of ACE2. The cellular receptors and mechanisms that could be exploited by SARS-CoV-2 are still under investigation.

 

References:

 

https://www.nih.gov/news-events/news-releases/placenta-lacks-major-molecules-used-sars-cov-2-virus-cause-infection

 

https://pubmed.ncbi.nlm.nih.gov/32662421/

 

https://pubmed.ncbi.nlm.nih.gov/32217113/

 

https://pubmed.ncbi.nlm.nih.gov/32161408/

 

https://pubmed.ncbi.nlm.nih.gov/32335053/

 

https://pubmed.ncbi.nlm.nih.gov/32298273/

 

Read Full Post »


From Cell Press:  New Insights on the D614G Strain of COVID: Will a New Mutated Strain Delay Vaccine Development?

Reporter: Stephen J. Williams, PhD

Two recent articles in Cell Press, both peer reviewed, discuss the emergence and potential dominance of a new mutated strain of COVID-19, in which the spike protein harbors a D614G mutation.

In the first article “Making Sense of Mutation: What D614G means for the COVID-19 pandemic Remains Unclear”[1] , authors Drs. Nathan Grubaugh, William Hanage, and Angela Rasmussen discuss the recent findings by Korber et al. 2020 [2] which describe the potential increases in infectivity and mortality of this new mutant compared to the parent strain of SARS-CoV2.  For completeness sake I will post this article as to not defer from their interpretations of this important paper by Korber and to offer some counter opinion to some articles which have surfaced this morning in the news.

Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear

 

Nathan D. Grubaugh1 *, William P. Hanage2 *, Angela L. Rasmussen3 * 1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA 2Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA 3Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA Correspondence: grubaughlab@gmail.com

 

Abstract: Korber et al. (2020) found that a SARS-CoV-2 variant in the spike protein, D614G, rapidly became dominant around the world. While clinical and in vitro data suggest that D614G changes the virus phenotype, the impact of the mutation on transmission, disease, and vaccine and therapeutic development are largely unknown.

Introduction: Following the emergence of SARS-CoV-2 in China in late 2019, and the rapid expansion of the COVID19 pandemic in 2020, questions about viral evolution have come tumbling after. Did SARS-CoV-2 evolve to become better adapted to humans? More infectious or transmissible? More deadly? Virus mutations can rise in frequency due to natural selection, random genetic drift, or features of recent epidemiology. As these forces can work in tandem, it’s often hard to differentiate when a virus mutation becomes common through fitness or by chance. It is even harder to determine if a single mutation will change the outcome of an infection, or a pandemic. The new study by Korber et al. (2020) sits at the heart of this debate. They present compelling data that an amino acid change in the virus’ spike protein, D614G, emerged early during the pandemic, and viruses containing G614 are now dominant in many places around the world. The crucial questions are whether this is the result of natural selection, and what it means for the COVID-19 pandemic. For viruses like SARS-CoV-2 transmission really is everything – if they don’t get into another host their lineage ends. Korber et al. (2020) hypothesized that the rapid spread of G614 was because it is more infectious than D614. In support of their hypothesis, the authors provided evidence that clinical samples from G614 infections have a higher levels of viral RNA, and produced higher titers in pseudoviruses from in vitro experiments; results that now seem to be corroborated by others [e.g. (Hu et al., 2020; Wagner et al., 2020)]. Still, these data do not prove that G614 is more infectious or transmissible than viruses containing D614. And because of that, many questions remain on the potential impacts, if any, that D614G has on the COVID-19 pandemic.

The authors note that this new G614 variant has become the predominant form over the whole world however in China the predominant form is still the D614 form.  As they state

“over the period that G614 became the global majority variant, the number of introductions from China where D614 was still dominant were declining, while those from Europe climbed. This alone might explain the apparent success of G614.”

Grubaugh et al. feel there is not enough evidence that infection with this new variant will lead to higher mortality.  Both Korber et al. and the Seattle study (Wagner et al) did not find that the higher viral load of this variant led to a difference in hospitalizations so apparently each variant might be equally as morbid.

In addition, Grubaugh et al. believe this variant would not have much affect on vaccine development as, even though the mutation lies within the spike protein, D614G is not in the receptor binding domain of the spike protein.  Korber suggest that there may be changes in glycosylation however these experiments will need to be performed.  In addition, antibodies from either D614 or G614 variant infected patients could cross neutralize.

 

Conclusions: While there has already been much breathless commentary on what this mutation means for the COVID19 pandemic, the global expansion of G614 whether through natural selection or chance means that this variant now is the pandemic. As a result its properties matter. It is clear from the in vitro and clinical data that G614 has a distinct phenotype, but whether this is the result of bonafide adaptation to human ACE2, whether it increases transmissibility, or will have a notable effect, is not clear. The work by Korber et al. (2020) provides an early base for more extensive epidemiological, in vivo experimental, and diverse clinical investigations to fill in the many critical gaps in how D614G impacts the pandemic.

The link to the Korber Cell paper is here: https://www.cell.com/cell/fulltext/S0092-8674(20)30820-5

Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

DOI: https://doi.org/10.1016/j.cell.2020.06.043

Keypoints

  • The consistent increase of G614 at regional levels may indicate a fitness advantage

 

  • G614 is associated with lower RT PCR Ct’s, suggestive of higher viral loads in patients

 

  • The G614 variant grows to higher titers as pseudotyped virions

Summary

A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.

 

References

  1. Grubaugh, N.D., Hanage, W.P., Rasmussen, A.L., Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear, Cell (2020), doi: https:// doi.org/10.1016/j.cell.2020.06.040.
  2. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182.
  3. Endo, A., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott, S., Kucharski, A.J., and Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 5, 67.
  4. Hu, J., He, C.-L., Gao, Q.-Z., Zhang, G.-J., Cao, X.-X., Long, Q.-X., Deng, H.-J., Huang, L.-Y., Chen, J., Wang, K., et al. (2020). The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv 2020.06.20.161323.
  5. Wagner, C., Roychoudhury, P., Hadfield, J., Hodcroft, E.B., Lee, J., Moncla, L.H., Müller, N.F., Behrens, C., Huang, M.-L., Mathias, P., et al. (2020). Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. Https://github.com/blab/ncov-D614G.

Read Full Post »


RNA from the SARS-CoV-2 virus taking over the cells it infects: Virulence – Pathogen’s ability to infect a Resistant Host: The Imbalance between Controlling Virus Replication versus Activation of the Adaptive Immune Response

Curator: Aviva Lev-Ari, PhD, RN – I added colors and bold face

 

UPDATED on 9/8/2020

What bats can teach us about developing immunity to Covid-19 | Free to read

Clive Cookson, Anna Gross and Ian Bott, London

https://www.ft.com/content/743ce7a0-60eb-482d-b1f4-d4de11182fa9?utm_source=Nature+Briefing&utm_campaign=af64422080-briefing-dy-20200908&utm_medium=email&utm_term=0_c9dfd39373-af64422080-43323101

 

UPDATED on 6/29/2020

Another duality and paradox in the Treatment of COVID-19 Patients in ICUs was expressed by Mike Yoffe, MD, PhD, David H. Koch Professor of Biology and Biological Engineering, Massachusetts Institute of Technology. Dr. Yaffe has a joint appointment in Acute Care Surgery, Trauma, and Surgical Critical Care, and in Surgical Oncology @BIDMC

on 6/29 at SOLUTIONS with/in/sight at Koch Institute @MIT

How Are Cancer Researchers Fighting COVID-19? (Part II)” Jun 29, 2020 11:30 AM EST

Mike Yoffe, MD, PhD 

In COVID-19 patients: two life threatening conditions are seen in ICUs:

  • Blood Clotting – Hypercoagulability or Thrombophilia
  • Cytokine Storm – immuno-inflammatory response
  • The coexistence of 1 and 2 – HINDERS the ability to use effectively tPA as an anti-clotting agent while the cytokine storm is present.

Mike Yoffe’s related domain of expertise:

Signaling pathways and networks that control cytokine responses and inflammation

Misregulation of cytokine feedback loops, along with inappropriate activation of the blood clotting cascade causes dysregulation of cell signaling pathways in innate immune cells (neutrophils and macrophages), resulting in tissue damage and multiple organ failure following trauma or sepsis. Our research is focused on understanding the role of the p38-MK2 pathway in cytokine control and innate immune function, and on cross-talk between cytokines, clotting factors, and neutrophil NADPH oxidase-derived ROS in tissue damage, coagulopathy, and inflammation, using biochemistry, cell biology, and mouse knock-out/knock-in models.  We recently discovered a particularly important link between abnormal blood clotting and the complement pathway cytokine C5a which causes excessive production of extracellular ROS and organ damage by neutrophils after traumatic injury.

SOURCE

https://www.bidmc.org/research/research-by-department/surgery/acute-care-surgery-trauma-and-surgical-critical-care/michael-b-yaffe

 

See

The Genome Structure of CORONAVIRUS, SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/05/04/the-genome-structure-of-coronavirus-sars-cov-2-i-awaited-for-this-article-for-60-days/

 

Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

Open Access Published:May 15, 2020DOI:https://doi.org/10.1016/j.cell.2020.04.026

Highlights

  • SARS-CoV-2 infection induces low IFN-I and -III levels with a moderate ISG response
  • Strong chemokine expression is consistent across in vitroex vivo, and in vivo models
  • Low innate antiviral defenses and high pro-inflammatory cues contribute to COVID-19

Summary

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.

Graphical Abstract

Keywords

Results

Defining the Transcriptional Response to SARS-CoV-2 Relative to Other Respiratory Viruses

To compare the transcriptional response of SARS-CoV-2 with other respiratory viruses, including MERS-CoV, SARS-CoV-1, human parainfluenza virus 3 (HPIV3), respiratory syncytial virus (RSV), and IAV, we first chose to focus on infection in a variety of respiratory cell lines (Figure 1). To this end, we collected poly(A) RNA from infected cells and performed RNA sequencing (RNA-seq) to estimate viral load. These data show that virus infection levels ranged from 0.1% to more than 50% of total RNA reads (Figure 1A).

Discussion

In the present study, we focus on defining the host response to SARS-CoV-2 and other human respiratory viruses in cell lines, primary cell cultures, ferrets, and COVID-19 patients. In general, our data show that the overall transcriptional footprint of SARS-CoV-2 infection was distinct in comparison with other highly pathogenic coronaviruses and common respiratory viruses such as IAV, HPIV3, and RSV. It is noteworthy that, despite a reduced IFN-I and -III response to SARS-CoV-2, we observed a consistent chemokine signature. One exception to this observation is the response to high-MOI infection in A549-ACE2 and Calu-3 cells, where replication was robust and an IFN-I and -III signature could be observed. In both of these examples, cells were infected at a rate to theoretically deliver two functional virions per cell in addition to any defective interfering particles within the virus stock that were not accounted for by plaque assays. Under these conditions, the threshold for PAMP may be achieved prior to the ability of the virus to evade detection through production of a viral antagonist. Alternatively, addition of multiple genomes to a single cell may disrupt the stoichiometry of viral components, which, in turn, may itself generate PAMPs that would not form otherwise. These ideas are supported by the fact that, at a low-MOI infection in A549-ACE2 cells, high levels of replication could also be achieved, but in the absence of IFN-I and -III induction. Taken together, these data suggest that, at low MOIs, the virus is not a strong inducer of the IFN-I and -III system, as opposed to conditions where the MOI is high.
Taken together, the data presented here suggest that the response to SARS-CoV-2 is imbalanced with regard to controlling virus replication versus activation of the adaptive immune response. Given this dynamic, treatments for COVID-19 have less to do with the IFN response and more to do with controlling inflammation. Because our data suggest that numerous chemokines and ILs are elevated in COVID-19 patients, future efforts should focus on U.S. Food and Drug Administration (FDA)-approved drugs that can be rapidly deployed and have immunomodulating properties.

SOURCE

https://www.cell.com/cell/fulltext/S0092-8674(20)30489-X

SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant

Yoriyuki KonnoIzumi KimuraKeiya UriuMasaya FukushiTakashi IrieYoshio KoyanagiSo NakagawaKei Sato

Abstract

One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays revealed that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of more than 15,000 SARS-CoV-2 sequences identified a natural variant, in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients, but also describe a possibility of the emergence of natural SARS-CoV-2 quasi-species with extended ORF3b that may exacerbate COVID-19 symptoms.

Highlights

  • ORF3b of SARS-CoV-2 and related bat and pangolin viruses is a potent IFN antagonist

  • SARS-CoV-2 ORF3b suppresses IFN induction more efficiently than SARS-CoV ortholog

  • The anti-IFN activity of ORF3b depends on the length of its C-terminus

  • An ORF3b with increased IFN antagonism was isolated from two severe COVID-19 cases

Competing Interest Statement

The authors have declared no competing interest.

Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv

 

SOURCE

https://www.biorxiv.org/content/10.1101/2020.05.11.088179v1

 

 

A deep dive into how the new coronavirus infects cells has found that it orchestrates a hostile takeover of their genes unlike any other known viruses do, producing what one leading scientist calls “unique” and “aberrant” changes.Recent studies show that in seizing control of genes in the human cells it invades, the virus changes how segments of DNA are read, doing so in a way that might explain why the elderly are more likely to die of Covid-19 and why antiviral drugs might not only save sick patients’ lives but also prevent severe disease if taken before infection.“It’s something I have never seen in my 20 years of” studying viruses, said virologist Benjamin tenOever of the Icahn School of Medicine at Mount Sinai, referring to how SARS-CoV-2, the virus that causes Covid-19, hijacks cells’ genomes.The “something” he and his colleagues saw is how SARS-CoV-2 blocks one virus-fighting set of genes but allows another set to launch, a pattern never seen with other viruses. Influenza and the original SARS virus (in the early 2000s), for instance, interfere with both arms of the body’s immune response — what tenOever dubs “call to arms” genes and “call for reinforcement” genes.The first group of genes produces interferons. These proteins, which infected cells release, are biological semaphores, signaling to neighboring cells to activate some 500 of their own genes that will slow down the virus’ ability to make millions of copies of itself if it invades them. This lasts seven to 10 days, tenOever said, controlling virus replication and thereby buying time for the second group of genes to act.This second set of genes produce their own secreted proteins, called chemokines, that emit a biochemical “come here!” alarm. When far-flung antibody-making B cells and virus-killing T cells sense the alarm, they race to its source. If all goes well, the first set of genes holds the virus at bay long enough for the lethal professional killers to arrive and start eradicating viruses.

“Most other viruses interfere with some aspect of both the call to arms and the call for reinforcements,” tenOever said. “If they didn’t, no one would ever get a viral illness”: The one-two punch would pummel any incipient infection into submission.

SARS-CoV-2, however, uniquely blocks one cellular defense but activates the other, he and his colleagues reported in a study published last week in Cell. They studied healthy human lung cells growing in lab dishes, ferrets (which the virus infects easily), and lung cells from Covid-19 patients. In all three, they found that within three days of infection, the virus induces cells’ call-for-reinforcement genes to produce cytokines. But it blocks their call-to-arms genes — the interferons that dampen the virus’ replication.

The result is essentially no brakes on the virus’s replication, but a storm of inflammatory molecules in the lungs, which is what tenOever calls an “unique” and “aberrant” consequence of how SARS-CoV-2 manipulates the genome of its target.

In another new study, scientists in Japan last week identified how SARS-CoV-2 accomplishes that genetic manipulation. Its ORF3b gene produces a protein called a transcription factor that has “strong anti-interferon activity,” Kei Sato of the University of Tokyo and colleagues found — stronger than the original SARS virus or influenza viruses. The protein basically blocks the cell from recognizing that a virus is present, in a way that prevents interferon genes from being expressed.

In fact, the Icahn School team found no interferons in the lung cells of Covid-19 patients. Without interferons, tenOever said, “there is nothing to stop the virus from replicating and festering in the lungs forever.”

That causes lung cells to emit even more “call-for-reinforcement” genes, summoning more and more immune cells. Now the lungs have macrophages and neutrophils and other immune cells “everywhere,” tenOever said, causing such runaway inflammation “that you start having inflammation that induces more inflammation.”

At the same time, unchecked viral replication kills lung cells involved in oxygen exchange. “And suddenly you’re in the hospital in severe respiratory distress,” he said.

In elderly people, as well as those with diabetes, heart disease, and other underlying conditions, the call-to-arms part of the immune system is weaker than in younger, healthier people, even before the coronavirus arrives. That reduces even further the cells’ ability to knock down virus replication with interferons, and imbalances the immune system toward the dangerous inflammatory response.

The discovery that SARS-CoV-2 strongly suppresses infected cells’ production of interferons has raised an intriguing possibility: that taking interferons might prevent severe Covid-19 or even prevent it in the first place, said Vineet Menachery of the University of Texas Medical Branch.

In a study of human cells growing in lab dishes, described in a preprint (not peer-reviewed or published in a journal yet), he and his colleagues also found that SARS-CoV-2 “prevents the vast amount” of interferon genes from turning on. But when cells growing in lab dishes received the interferon IFN-1 before exposure to the coronavirus, “the virus has a difficult time replicating.”

After a few days, the amount of virus in infected but interferon-treated cells was 1,000- to 10,000-fold lower than in infected cells not pre-treated with interferon. (The original SARS virus, in contrast, is insensitive to interferon.)

Ending the pandemic and preventing its return is assumed to require an effective vaccine to prevent infectionand antiviral drugs such as remdesivir to treat the very sick, but the genetic studies suggest a third strategy: preventive drugs.

It’s possible that treatment with so-called type-1 interferon “could stop the virus before it could get established,” Menachery said.

Giving drugs to healthy people is always a dicey proposition, since all drugs have side effects — something considered less acceptable than when a drug is used to treat an illness. “Interferon treatment is rife with complications,” Menachery warned. The various interferons, which are prescribed for hepatitis, cancers, and many other diseases, can cause flu-like symptoms.

But the risk-benefit equation might shift, both for individuals and for society, if interferons or antivirals or other medications are shown to reduce the risk of developing serious Covid-19 or even make any infection nearly asymptomatic.

Interferon “would be warning the cells the virus is coming,” Menachery said, so such pretreatment might “allow treated cells to fend off the virus better and limit its spread.” Determining that will of course require clinical trials, which are underway.

Read Full Post »


A Series of Recently Published Papers Report the Development of SARS-CoV2 Neutralizing Antibodies and Passive Immunity toward COVID19

Curator: Stephen J. Williams, Ph.D.

 

Passive Immunity and Treatment of Infectious Diseases

The ability of one person to pass on immunity to another person (passive immunity) is one of the chief methods we develop immunity to many antigens.  For instance, maternal antibodies are passed to the offspring in the neonatal setting as well as in a mother’s milk during breast feeding.  In the clinical setting this is achieved by transferring antibodies from one patient who has been exposed to an antigen (like a virus) to the another individual.   However, the process of purifying the most efficacious antibody as well as its mass production is limiting due to its complexity and cost and can be prohibitively long delay during a pandemic outbreak, when therapies are few and needed immediately.  Regardless, the benefits of developing neutralizing antibodies to confer passive immunity versus development of a vaccine are evident, as the former takes considerable less time than development of a safe and effective vaccine.  For a good review on the development and use of neutralizing antibodies and the use of passive immunity to treat infectious diseases please read the following review:

Margaret A. Keller1,* and E. Richard Stiehm. Passive Immunity in Prevention and Treatment of Infectious Diseases. Clin Microbiol Rev. 2000 Oct; 13(4): 602–614. doi: 10.1128/cmr.13.4.602-614.2000

ABSTRACT

Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.

TABLE 1

Summary of the efficacy of antibody in the prevention and treatment of infectious diseases

Infection
Bacterial infections
 Respiratory infections (streptococcus, Streptococcus pneumoniaeNeisseria meningitisHaemophilus influenzae)
 Diphtheria
 Pertussis
 Tetanus
 Other clostridial infections
  C. botulinum
  C. difficile
 Staphylococcal infections
  Toxic shock syndrome
  Antibiotic resistance
  S. epidermidis in newborns
 Invasive streptococcal disease (toxic shock syndrome)
 High-risk newborns
 Shock, intensive care, and trauma
Pseudomonas infection
  Cystic Fibrosis
  Burns
Viral diseases
 Hepatitis A
 Hepatitis B
 Hepatitis C
 HIV infection
 RSV infection
 Herpesvirus infections
  CMV
  EBV
  HSV
  VZV
 Parvovirus infection
 Enterovirus infection
  In newborns
 Ebola
 Rabies
 Measles
 Rubella
 Mumps
 Tick-borne encephalitis
 Vaccinia

Go to:

A Great Explanation of Active versus Passive Immunity by Dr. John Campbell, one of the pioneers in the field of immunology:Antibodies have been used for over a century in the prevention and treatment of infectious disease. They are used most commonly for the prevention of measles, hepatitis A, hepatitis B, tetanus, varicella, rabies, and vaccinia. Although their use in the treatment of bacterial infection has largely been supplanted by antibiotics, antibodies remain a critical component of the treatment of diptheria, tetanus, and botulism. High-dose intravenous immunoglobulin can be used to treat certain viral infections in immunocompromised patients (e.g., cytomegalovirus, parvovirus B19, and enterovirus infections). Antibodies may also be of value in toxic shock syndrome, Ebola virus, and refractory staphylococcal infections. Palivizumab, the first monoclonal antibody licensed (in 1998) for an infectious disease, can prevent respiratory syncytial virus infection in high-risk infants. The development and use of additional monoclonal antibodies to key epitopes of microbial pathogens may further define protective humoral responses and lead to new approaches for the prevention and treatment of infectious diseases.

 

However, developing successful neutralizing antibodies can still be difficult but with the latest monoclonal antibody technology, as highlighted by the following papers, this process has made much more efficient.  In addition, it is not feasable to isolate antibodies from the plasma of covalescent patients in a scale that is needed for a worldwide outbreak.

A good explanation of the need can be found is Dr. Irina Robu’s post Race to develop antibody drugs for COVID-19 where:

When fighting off foreign invaders, our bodies make antibodies precisely produced for the task. The reason vaccines offer such long-lasting protection is they train the immune system to identify a pathogen, so immune cells remember and are ready to attack the virus when it appears. Monoclonal antibodies for coronavirus would take the place of the ones our bodies might produce to fight the disease. The manufactured antibodies would be infused into the body to either tamp down an existing infection, or to protect someone who has been exposed to the virus. However, these drugs are synthetic versions of the convalescent plasma treatments that rely on antibodies from people who have recovered from infection. But the engineered versions are easier to scale because they’re manufactured in rats, rather than from plasma donors.

The following papers represent the latest published work on development of therapeutic and prophylactic neutralizing antibodies to the coronavirus SARS-CoV2

1.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

Pinto, D., Park, Y., Beltramello, M. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature (2020).                                                                            https://doi.org/10.1038/s41586-020-2349-y

Abstract

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of an individual who was infected with SARS-CoV in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309- and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

 

2.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells

Yunlong Cao et al.  Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell (2020).

https://doi.org/10.1016/j.cell.2020.05.025

Summary

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 ng/mL and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8Å Cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody’s epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2 neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B-cell sequencing in response to pandemic infectious diseases.

3. A human monoclonal antibody blocking SARS-CoV-2 infection

Wang, C., Li, W., Drabek, D. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251 (2020). https://doi.org/10.1038/s41467-020-16256-y

Abstract

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.

Extra References on Development of Neutralizing antibodies for COVID19 {Sars-CoV2} published this year (2020)  [1-4]

  1. Fan P, Chi X, Liu G, Zhang G, Chen Z, Liu Y, Fang T, Li J, Banadyga L, He S et al: Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. mAbs 2020, 12(1):1742457.
  2. Dussupt V, Sankhala RS, Gromowski GD, Donofrio G, De La Barrera RA, Larocca RA, Zaky W, Mendez-Rivera L, Choe M, Davidson E et al: Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature medicine 2020, 26(2):228-235.
  3. Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR et al: Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral research 2020, 174:104675.
  4. Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR, Kleanthous H, Ross TM: A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin. J Immunol 2020, 204(2):375-385.

 

For More Articles on COVID-19 Please see Our Coronavirus Portal on this Open Access Scientific Journal at:

https://pharmaceuticalintelligence.com/coronavirus-portal/

and the following Articles on  Immunity at

Race to develop antibody drugs for COVID-19
Bispecific and Trispecific Engagers: NK-T Cells and Cancer Therapy
Issues Need to be Resolved With ImmunoModulatory Therapies: NK cells, mAbs, and adoptive T cells
Antibody-bound Viral Antigens

Read Full Post »


Powerful AI Tools Being Developed for the COVID-19 Fight

Curator: Stephen J. Williams, Ph.D.

 

Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

IBM Releases Novel AI-Powered Technologies to Help Health and Research Community Accelerate the Discovery of Medical Insights and Treatments for COVID-19

April 3, 2020 | Written by: 

IBM Research has been actively developing new cloud and AI-powered technologies that can help researchers across a variety of scientific disciplines accelerate the process of discovery. As the COVID-19 pandemic unfolds, we continue to ask how these technologies and our scientific knowledge can help in the global battle against coronavirus.

Today, we are making available multiple novel, free resources from across IBM to help healthcare researchers, doctors and scientists around the world accelerate COVID-19 drug discovery: from gathering insights, to applying the latest virus genomic information and identifying potential targets for treatments, to creating new drug molecule candidates.

Though some of the resources are still in exploratory stages, IBM is making them available to qualifying researchers at no charge to aid the international scientific investigation of COVID-19.

Today’s announcement follows our recent leadership in launching the U.S. COVID-19 High Performance Computing Consortium, which is harnessing massive computing power in the effort to help confront the coronavirus.

Streamlining the Search for Information

Healthcare agencies and governments around the world have quickly amassed medical and other relevant data about the pandemic. And, there are already vast troves of medical research that could prove relevant to COVID-19. Yet, as with any large volume of disparate data sources, it is difficult to efficiently aggregate and analyze that data in ways that can yield scientific insights.

To help researchers access structured and unstructured data quickly, we are offering a cloud-based AI research resource that has been trained on a corpus of thousands of scientific papers contained in the COVID-19 Open Research Dataset (CORD-19), prepared by the White House and a coalition of research groups, and licensed databases from the DrugBankClinicaltrials.gov and GenBank. This tool uses our advanced AI and allows researchers to pose specific queries to the collections of papers and to extract critical COVID-19 knowledge quickly. Please note, access to this resource will be granted only to qualified researchers. To learn more and request access, please click here.

Aiding the Hunt for Treatments

The traditional drug discovery pipeline relies on a library of compounds that are screened, improved, and tested to determine safety and efficacy. In dealing with new pathogens such as SARS-CoV-2, there is the potential to enhance the compound libraries with additional novel compounds. To help address this need, IBM Research has recently created a new, AI-generative framework which can rapidly identify novel peptides, proteins, drug candidates and materials.

We have applied this AI technology against three COVID-19 targets to identify 3,000 new small molecules as potential COVID-19 therapeutic candidates. IBM is releasing these molecules under an open license, and researchers can study them via a new interactive molecular explorer tool to understand their characteristics and relationship to COVID-19 and identify candidates that might have desirable properties to be further pursued in drug development.

To streamline efforts to identify new treatments for COVID-19, we are also making the IBM Functional Genomics Platform available for free for the duration of the pandemic. Built to discover the molecular features in viral and bacterial genomes, this cloud-based repository and research tool includes genes, proteins and other molecular targets from sequenced viral and bacterial organisms in one place with connections pre-computed to help accelerate discovery of molecular targets required for drug design, test development and treatment.

Select IBM collaborators from government agencies, academic institutions and other organizations already use this platform for bacterial genomic study. And now, those working on COVID-19 can request the IBM Functional Genomics Platform interface to explore the genomic features of the virus. Access to the IBM Functional Genomics Platform will be prioritized for those conducting COVID-19 research. To learn more and request access, please click here.

Drug and Disease Information

Clinicians and healthcare professionals on the frontlines of care will also have free access to hundreds of pieces of evidence-based, curated COVID-19 and infectious disease content from IBM Micromedex and EBSCO DynaMed. Using these two rich decision support solutions, users will have access to drug and disease information in a single and comprehensive search. Clinicians can also provide patients with consumer-friendly patient education handouts with relevant, actionable medical information. IBM Micromedex is one of the largest online reference databases for medication information and is used by more than 4,500 hospitals and health systems worldwide. EBSCO DynaMed provides peer-reviewed clinical content, including systematic literature reviews in 28 specialties for comprehensive disease topics, health conditions and abnormal findings, to highly focused topics on evaluation, differential diagnosis and management.

The scientific community is working hard to make important new discoveries relevant to the treatment of COVID-19, and we’re hopeful that releasing these novel tools will help accelerate this global effort. This work also outlines our long-term vision for the future of accelerated discovery, where multi-disciplinary scientists and clinicians work together to rapidly and effectively create next generation therapeutics, aided by novel AI-powered technologies.

Learn more about IBM’s response to COVID-19: IBM.com/COVID19.

Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

DiA Imaging Analysis Receives Grant to Accelerate Global Access to its AI Ultrasound Solutions in the Fight Against COVID-19

Source: https://www.grantnews.com/news-articles/?rkey=20200512UN05506&filter=12337

Grant will allow company to accelerate access to its AI solutions and use of ultrasound in COVID-19 emergency settings

TEL AVIV, IsraelMay 12, 2020 /PRNewswire-PRWeb/ — DiA Imaging Analysis, a leading provider of AI based ultrasound analysis solutions, today announced that it has received a government grant from the Israel Innovation Authority (IIA) to develop solutions for ultrasound imaging analysis of COVID-19 patients using Artificial Intelligence (AI).Using ultrasound in point of care emergency settings has gained momentum since the outbreak of COVID-19 pandemic. In these settings, which include makeshift hospital COVID-19 departments and triage “tents,” portable ultrasound offers clinicians diagnostic decision support, with the added advantage of being easier to disinfect and eliminating the need to transport patients from one room to another.However, analyzing ultrasound images is a process that it is still mostly done visually, leading to a growing market need for automated solutions and decision support.As the leading provider of AI solutions for ultrasound analysis and backed by Connecticut Innovations, DiA makes ultrasound analysis smarter and accessible to both new and expert ultrasound users with various levels of experience. The company’s flagship LVivo Cardio Toolbox for AI-based cardiac ultrasound analysis enables clinicians to automatically generate objective clinical analysis, with increased accuracy and efficiency to support decisions about patient treatment and care.

The IIA grant provides a budget of millions NIS to increase access to DiA’s solutions for users in Israel and globally, and accelerate R&D with a focus on new AI solutions for COVID-19 patient management. DiA solutions are vendor-neutral and platform agnostic, as well as powered to run in low processing, mobile environments like handheld ultrasound.Recent data highlights the importance of looking at the heart during the progression of COVID-19, with one study citing 20% of patients hospitalized with COVID-19 showing signs of heart damage and increased mortality rates in those patients. DiA’s LVivo cardiac analysis solutions automatically generate objective, quantified cardiac ultrasound results to enable point-of-care clinicians to assess cardiac function on the spot, near patients’ bedside.

According to Dr. Ami Applebaum, the Chairman of the Board of the IIA, “The purpose of IIA’s call was to bring solutions to global markets for fighting COVID-19, with an emphasis on relevancy, fast time to market and collaborations promising continuity of the Israeli economy. DiA meets these requirements with AI innovation for ultrasound.”DiA has received several FDA/CE clearances and established distribution partnerships with industry leading companies including GE Healthcare, IBM Watson and Konica Minolta, currently serving thousands of end users worldwide.”We see growing use of ultrasound in point of care settings, and an urgent need for automated, objective solutions that provide decision support in real time,” said Hila Goldman-Aslan, CEO and Co-founder of DiA Imaging Analysis, “Our AI solutions meet this need by immediately helping clinicians on the frontlines to quickly and easily assess COVID-19 patients’ hearts to help guide care delivery.”

About DiA Imaging Analysis:
DiA Imaging Analysis provides advanced AI-based ultrasound analysis technology that makes ultrasound accessible to all. DiA’s automated tools deliver fast and accurate clinical indications to support the decision-making process and offer better patient care. DiA’s AI-based technology uses advanced pattern recognition and machine-learning algorithms to automatically imitate the way the human eye detects image borders and identifies motion. Using DiA’s tools provides automated and objective AI tools, helps reduce variability among users, and increases efficiency. It allows clinicians with various levels of experience to quickly and easily analyze ultrasound images.

For additional information, please visit http://www.dia-analysis.com.

Read Full Post »


Updated listing of COVID-19 vaccine and therapeutic trials from NIH Clinical Trials.gov

Curator: Stephen J. Williams, PhD

 

The following file contains an updated list (search on 4/15/2020) of COVID-19 related clinical trials from https://clinicaltrials.gov/

 

The Excel file can be uploaded here: Current Covid-19 Trials

 

Each sheet in the workbook is separated by current COVID-19 vaccine trials, currents COVID-19 trials with the IL6R (interleukin 6 receptor) antagonist tocilizumab, and all COVID related trials.  The Excel spreadsheet also contains links to more information about the trials.

 

As of April 15, 2020 the number of listed trials are as follows:

 

clinicaltrials.gov search terms Number of results Number of completed  trials Number of trials currently recruiting
COVID-19 or SARS-CoV-2 410 5 completed

5 withdrawn  

192
1st row terms + vaccine 28 0 15
1st row terms + tocilizumab 16 0 10
1st row terms + hydroxychloroquine 61 1 22

 

A few highlights of the COVID related trials on clinicaltrials.gov

 

Withdrawn trials

 

Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With COVID-19 (NCT04287686)

Study Description

Go to 

Brief Summary:

This is an open label, randomized, controlled, pilot clinical study in patients with COVID-19, to obtain preliminary biologic, physiologic, and clinical data in patients with COVID-19 treated with rhACE2 or control patients, to help determine whether a subsequent Phase 2B trial is warranted.

 

Condition or disease  Intervention/treatment  Phase 
COVID-19 Drug: Recombinant human angiotensin-converting enzyme 2 (rhACE2) Not Applicable

 

Detailed Description:

This is a small pilot study investigating whether there is any efficacy signal that warrants a larger Phase 2B trial, or any harm that suggests that such a trial should not be done. It is not expected to produce statistically significant results in the major endpoints. The investigators will examine all of the biologic, physiological, and clinical data to determine whether a Phase 2B trial is warranted.

Primary efficacy analysis will be carried only on patients receiving at least 4 doses of active drug. Safety analysis will be carried out on all patients receiving at least one dose of active drug.

It is planned to enroll more than or equal to 24 subjects with COVID-19. It is expected to have at least 12 evaluable patients in each group.

Experimental group: 0.4 mg/kg rhACE2 IV BID and standard of care Control group: standard of care

Intervention duration: up to 7 days of therapy

No planned interim analysis.

Study was withdrawn before participants were enrolled.

Washed Microbiota Transplantation for Patients With 2019-nCoV Infection (NCT04251767)

Study Description

Go to 

Brief Summary:

Gut dysbiosis co-exists in patients with coronavirus pneumonia. Some of these patients would develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with 2019-novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions.

 

Detailed Description:

An ongoing outbreak of 2019 novel coronavirus was reported in Wuhan, China. 2019-nCoV has caused a cluster of pneumonia cases, and posed continuing epidemic threat to China and even global health. Unfortunately, there is currently no specific effective treatment for the viral infection and the related serious complications. It is in urgent need to find a new specific effective treatment for the 2019-nCoV infection. According to Declaration of Helsinki and International Ethical Guidelines for Health-related Research Involving Humans, the desperately ill patients with 2019-nCov infection during disease outbreaks have a moral right to try unvalidated medical interventions (UMIs) and that it is therefore unethical to restrict access to UMIs to the clinical trial context.

There is a vital link between the intestinal tract and respiratory tract, which was exemplified by intestinal complications during respiratory disease and vice versa. Some of these patients can develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. Additionally, the recent animal study provided direct evidence supporting that antibiotics could decrease gut microbiota and the lung stromal interferon signature and facilitate early influenza virus replication in lung epithelia. Importantly, the above antibiotics caused negative effects can be reversed by fecal microbiota transplantation (FMT) which suggested that FMT might be able to induce a significant improvement in the respiratory virus infection. Another evidence is that the microbiota could confer protection against certain virus infection such as influenza virus and respiratory syncytial virus by priming the immune response to viral evasion. The above results suggested that FMT might be a new therapeutic option for the treatment of virus-related pneumonia. The methodology of FMT recently was coined as WMT, which is dependent on the automatic facilities and washing process in a laboratory room. Patients underwent WMT with the decreased rate of adverse events and unchanged clinical efficacy in ulcerative colitis and Crohn’s disease. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions.

 

Responsible Party: Faming Zhang, Director of Medical Center for Digestive Diseases, The Second Hospital of Nanjing Medical University
Identifier NCT04251767     History of Changes

Study was withdrawn before participants were enrolled.

 

Therapy for Pneumonia Patients iInfected by 2019 Novel Coronavirus (NCT04293692)

Study Description

Go to 

Brief Summary:

The 2019 novel coronavirus pneumonia outbroken in Wuhan, China, which spread quickly to 26 countries worldwide and presented a serious threat to public health. It is mainly characterized by fever, dry cough, shortness of breath and breathing difficulties. Some patients may develop into rapid and deadly respiratory system injury with overwhelming inflammation in the lung. Currently, there is no effective treatment in clinical practice. The present clinical trial is to explore the safety and efficacy of Human Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) therapy for novel coronavirus pneumonia patients.

Detailed Description:

Since late December 2019, human pneumonia cases infected by a novel coronavirus (2019-nCoV) were firstly identified in Wuhan, China. As the virus is contagious and of great epidemic, more and more cases have found in other areas of China and abroad. Up to February 24, a total of 77, 779 confirmed cases were reported in China. At present, there is no effective treatment for patients identified with novel coronavirus pneumonia. Therefore, it’s urgent to explore more active therapeutic methods to cure the patients.

Recently, some clinical researches about the 2019 novel coronavirus pneumonia published in The Lancet and The New England Journal of Medicine suggested that massive inflammatory cell infiltration and inflammatory cytokines secretion were found in patients’ lungs, alveolar epithelial cells and capillary endothelial cells were damaged, causing acute lung injury. It seems that the key to cure the pneumonia is to inhibit the inflammatory response, resulting to reduce the damage of alveolar epithelial cells and endothelial cells and repair the function of the lung.

Mesenchymal stem cells (MSCs) are widely used in basic research and clinical application. They are proved to migrate to damaged tissues, exert anti-inflammatory and immunoregulatory functions, promote the regeneration of damaged tissues and inhibit tissue fibrosis. Studies have shown that MSCs can significantly reduce acute lung injury in mice caused by H9N2 and H5N1 viruses by reducing the levels of proinflammatory cytokines and the recruitment of inflammatory cells into the lungs. Compared with MSCs from other sources, human umbilical cord-derived MSCs (UC-MSCs) have been widely applied to various diseases due to their convenient collection, no ethical controversy, low immunogenicity, and rapid proliferation rate. In our recent research, we confirmed that UC-MSCs can significantly reduce inflammatory cell infiltration and inflammatory factors expression in lung tissue, and significantly protect lung tissue from endotoxin (LPS) -induced acute lung injury in mice.

The purpose of this clinical study is to investigate safety and efficiency of UC-MSCs in treating pneumonia patients infected by 2019-nCoV. The investigators planned to recruit 48 patients aged from 18 to 75 years old and had no severe underlying diseases. In the cell treatment group, 24 patients received 0.5*10E6 UC-MSCs /kg body weight intravenously treatment 4 times every other day besides conventional treatment. In the control group, other 24 patients received conventional treatment plus 4 times of placebo intravenously. The lung CT, blood biochemical examination, lymphocyte subsets, inflammatory factors, 28-days mortality, etc will be evaluated within 24h and 1, 2, 4, 8 weeks after UC-MSCs treatment.

Sponsor:

Puren Hospital Affiliated to Wuhan University of Science and Technology

Collaborator:

Wuhan Hamilton Bio-technology Co., Ltd

Study was withdrawn before participants were enrolled.

 

Prognositc Factors in COVID-19 Patients Complicated With Hypertension (NCT04272710)

Study Description

Brief Summary:

There are currently no clinical studies reporting clinical characteristics difference between the hypertension patients with and without ACEI treatment when suffered with novel coronavirus infection in China

Detailed Description:

At present, the outbreak of the new coronavirus (2019-nCoV) infection in Wuhan and Hubei provinces has attracted great attention from the medical community across the country. Both 2019-nCoV and SARS viruses are coronaviruses, and they have a large homology.

Published laboratory studies have suggested that SARS virus infection and its lung injury are related to angiotensin-converting enzyme 2 (ACE2) in lung tissue. And ACE and ACE2 in the renin-angiotensin system (RAS) are vital central links to maintain hemodynamic stability and normal heart and kidney function in vivo.

A large amount of evidence-based medical evidence shows that ACE inhibitors are the basic therapeutic drugs for maintaining hypertension, reducing the risk of cardiovascular, cerebrovascular, and renal adverse events, improving quality of life, and prolonging life in patients with hypertension. Recent experimental studies suggest that treatment with ACE inhibitors can significantly reduce pulmonary inflammation and cytokine release caused by coronavirus infection.

 

ACEI treatment

hypertension patients with ACEI treatment when suffered with novel coronavirus infection in China

Control

hypertension patients without ACEI treatment when suffered with novel coronavirus infection in China

 

Locations

China
The First Affiliated Hospital of Chongqing Medical University Chongqing, China

Sponsors and Collaborators Chongqing Medical University

 

Responsible PI: Dongying Zhang, Associate Professor, Chongqing Medical University

Withdrawn (Similar projects have been registered, and it needs to be withdrawn.)

Read Full Post »


Actemra, immunosuppressive which was designed to treat rheumatoid arthritis but also approved in 2017 to treat cytokine storms in cancer patients SAVED the sickest of all COVID-19 patients

Reporter: Aviva Lev-Ari, PhD, RN

 

Emergency room doctor, near death with coronavirus, saved with experimental treatment

Soon after being admitted to his own hospital with a fever, cough and difficulty breathing, he was placed on a ventilator. Five days after that, his lungs and kidneys were failing, his heart was in trouble, and doctors figured he had a day or so to live.

He owes his survival to an elite team of doctors who tried an experimental treatment pioneered in China and used on the sickest of all COVID-19 patients.

Lessons from his dramatic recovery could help doctors worldwide treat other extremely ill COVID-19 patients.

Based on the astronomical level of inflammation in his body and reports written by Chinese and Italian physicians who had treated the sickest COVID-19 patients, the doctors came to believe that it was not the disease itself killing him but his own immune system.

It had gone haywire and began to attack itself — a syndrome known as a “cytokine storm.”

The immune system normally uses proteins called cytokines as weapons in fighting a disease. For unknown reasons in some COVID-19 patients, the immune system first fails to respond quickly enough and then floods the body with cytokines, destroying blood vessels and filling the lungs with fluid.

Dr. Matt Hartman, a cardiologist, said that after four days on the immunosuppressive drug, supplemented by high-dose vitamin C and other therapies, the level of oxygen in Padgett’s blood improved dramatically. On March 23, doctors were able to take him off life support.

Four days later, they removed his breathing tube. He slowly came out of his sedated coma, at first imagining that he was in the top floor of the Space Needle converted to a COVID ward.

Read Full Post »

Older Posts »