Advertisements
Feeds:
Posts
Comments

Archive for the ‘Infectious Disease Immunodiagnostics’ Category


NEW Book #InfectiousDiseases #Immunology #StressSignaling #Therapeutics check https://www.amazon.com/dp/B075CXHY1B

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

 

Includes FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, Viral Infection, Fungal Infection, Allergy-related Infections and Other, 1995 – 2016

VOLUME 2: covers the frontier of research on Infectious Diseases and the Human Immune System. The Immune Response, Disease Specific Immune Response, Immunodiagnostics and Immunotherapy, Immunotherapy and Autoimmunity,
Bacterial Infections, Bacteria Types, Antibactirial Therapeutics, FDA Approved Drugs for Infections and Infectious Diseases: Bacterial Infection, 1995 – 2016. Viral Infection: Virus Types, Antiviral Therapeutics, and FDA Approved Drugs for Infections and Infectious Diseases: Viral Infection, Fungal Infections, Allergy-related Infections, Other Infections,1995 – 2016,

VOLUME 3: covers the state of Science on the Historical Perspective of Immunology, Development of the Immune System, Signaling and Immunology, Cellular Immunity, Immunology and Inflammatory Response. Antibody-based Immunity, Vaccines and Microbiome, Immuno-Pharmaceutics, Cancer Immunotherapy, Immunomodulation and Neuro-Immunology.

Volume 2: Summary
The material that has been covered is a considerable material on the basic types of infections – bacterial, viral, and fungal, and diseases related to immune mechanisms. There has been a substantial coverage of the drugs and the manufacturers. This material brings to the discussion an international problem of drug resistance that applies much to bacteria, and a considerable amount of material on advances in drug development that takes into consideration protein structure and protein-protein interactions. The coverage of virus diseases brings to the forefront vaccines. However, in such cases as the influenza virus, a rapid genetic change of the virus makes the use of vaccines an issue for continuing revision.

Volume 3: Summary
The second volume is only concerned with the pathobiology of the inflammatory response, including sepsis, and it does not leave out hematopoiesis, and it lays out the difference between the B-clles and the T-cells that are related to the Toll receptor. Here we have looked closely at two immune disorders, Inflammatory Bowel Disease (Crohn’s Disease) and Rheumatoid Arthritis. Here we have discussed immunomodulation and signaling of the pathways involved, and the programmed cell death response. We have also covered the relationship of the immune response to autoimmune disorders and to cancer. The treatment of cancer now heavily leans toward the blocking of destructive processes in the immunomodulatory pathways.

Epilogue – Volume 2
Volume 2 has covered the most common bacterial and viral diseases that we find widely, or sporadically. It detailed the development of sepsis, and the immune response factor. The immune response involves local cellular invasion of lymphocytes related to initiation of T-cells and macrophages, and also the proteomic generated B-cell antibodies. These reactions are both local and systemic, as bacterial invasion is local and usually related to the tissue of residence (large intestine, oral, lung, genital). In the case of virus, the site of entry is often respiratory or by food intake, but these agents may rapidly become systemic. The other matter of the immune response is autoimmune, a reaction against the self. It is not entirely clear how this is initiated, but it has been related to failure to develop immunity in the prenatal or postnatal period. The only other possibility that might be considered would be by the mechanism of cell remodeling by an apoptotic related mechanism. The other chapters deal with therapeutics.

Epilogue – Volume 3
These two volumes have traversed a large knowledge-base. The first was directed largely at the well known bacterial, virus, fungal diseases, as well as autoimmunity. It specified recent FDA approved recommendations of pharmaceutics for these conditions. It also gives some attention to the immune response in inflammatory and autoimmune diseases, but not cancer. The second volume gives a concise history of development of Leukemias, Lymphomas pathology.

Advertisements

Read Full Post »


Announcing our 10th e-Book on Amazon.com – 1st day, 9/4/2017

Editor-in-Chief: Aviva Lev-Ari, PhD, RN

 

On our Book Shelf on Amazon.com

WE ARE ON AMAZON.COM

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_9?ie=UTF8&text=Aviva+Lev-Ari&search-alias=digital-text&field-author=Aviva+Lev-Ari&sort=relevancerank

http://www.amazon.com/dp/B00DINFFYC

http://www.amazon.com/dp/B018Q5MCN8

http://www.amazon.com/dp/B018PNHJ84

http://www.amazon.com/dp/B018DHBUO6

http://www.amazon.com/dp/B013RVYR2K

http://www.amazon.com/dp/B012BB0ZF0

http://www.amazon.com/dp/B019UM909A

http://www.amazon.com/dp/B019VH97LU

http://www.amazon.com/dp/B071VQ6YYK

https://www.amazon.com/dp/B075CXHY1B

 

The Immune System, Stress Signaling, Infectious Diseases and Therapeutic Implications: VOLUME 2: Infectious Diseases and Therapeutics and VOLUME 3: The Immune System and Therapeutics (Series D: BioMedicine & Immunology) Kindle Edition – on Amazon.com since 9/4/2017

by Larry H. Bernstein (Author), Aviva Lev-Ari (Author), Stephen J. Williams (Author), Demet Sag (Author), Irina Robu (Author), Tilda Barliya (Author), David Orchard-Webb (Author), Alan F. Kaul (Author), Danut Dragoi (Author), Sudipta Saha (Editor)

https://www.amazon.com/dp/B075CXHY1B

 

Product details

  • File Size:21832 KB
  • Print Length:3747 pages
  • Publisher:Leaders in Pharmaceutical Business Intelligence (LPBI) Group; 1 edition (September 4, 2017)
  • Publication Date:September 4, 2017
  • Sold by:Amazon Digital Services LLC
  • Language:English
  • ASIN:B075CXHY1B
  • Text-to-Speech: Enabled 
  • X-Ray: Not Enabled 
  • Word Wise:Not Enabled
  • Lending:Enabled
  • Enhanced Typesetting:Not Enabled 

Read Full Post »


Curator: Aviva Lev-Ari, PhD, RN

 

Transcriptomic Biomarkers to Discriminate Bacterial from Nonbacterial Infection in Adults Hospitalized with Respiratory Illness

Published online: 26 July 2017

URMC Researchers Developing New Tool to Fight Antibiotic Resistance

Goal is to Distinguish Between Viral and Bacterial Infections, Reduce Unnecessary Use of Antibiotics

Friday, July 28, 2017

“It’s extremely difficult to interpret what’s causing a respiratory tract infection, especially in very ill patients who come to the hospital with a high fever, cough, shortness of breath and other concerning symptoms,” said Ann R. Falsey, M.D., lead study author, professor and interim chief of the Infectious Diseases Division at UR Medicine’s Strong Memorial Hospital.

“My goal is to develop a tool that physicians can use to rule out a bacterial infection with enough certainty that they are comfortable, and their patients are comfortable, foregoing an antibiotic.”

Lead researcher Ann Falsey, M.D.

Ann R. Falsey, M.D.

Falsey’s project caught the attention of the federal government; she’s one of 10 semifinalists in the Antimicrobial Resistance Diagnostic Challenge, a competition sponsored by NIH and the Biomedical Advanced Research and Development Authority to help combat the development and spread of drug resistant bacteria. Selected from among 74 submissions, Falsey received $50,000 to continue her research and develop a prototype diagnostic test, such as a blood test, using the genetic markers her team identified.

SOURCE

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

Lower respiratory tract infection (LRTI)

We enrolled 94 subjects who were microbiologically classified; 53 as “non-bacterial” and 41 as “bacterial”. RNAseq and qPCR confirmed significant differences in mean expression for 10 genes previously identified as discriminatory for bacterial LRTI. A novel dimension reduction strategy selected three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation) including eleven genes as optimal markers for discriminating bacterial infection (naïve AUC = 0.94; nested CV-AUC = 0.86). Using these genes, we constructed a classifier for bacterial LRTI with 90% (79% CV) sensitivity and 83% (76% CV) specificity. This novel, pathway-based gene set displays promise as a method to distinguish bacterial from nonbacterial LRTI.

https://www.nature.com/articles/s41598-017-06738-3#Sec8

IMAGE SOURCE

https://www.nature.com/articles/s41598-017-06738-3#Sec8

 

SOURCES

http://sciencemission.com/site/index.php?page=news&type=view&id=microbiology-virology%2Fnew-tool-to-distinguish&filter=8%2C9%2C10%2C11%2C12%2C13%2C14%2C16%2C17%2C18%2C19%2C20%2C27&redirected=1&redirected=1

https://www.urmc.rochester.edu/news/story/5108/urmc-researchers-developing-new-tool-to-fight-antibiotic-resistance.aspx

https://www.nature.com/articles/s41598-017-06738-3

Bacterial or Viral Infection? A New Study May Help Physicians …

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Series D, VOLUME 2:

Infectious Diseases and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP and CuratorSudipta Saha, PhD

 

Series D, VOLUME 3:

The Immune System and Therapeutics

Author, Curator and Editor: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/biomed-e-books/series-d-e-books-on-biomedicine/human-immune-system-in-health-and-in-disease/

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

During pregnancy, the baby is mostly protected from harmful microorganisms by the amniotic sac, but recent research suggests the baby could be exposed to small quantities of microbes from the placenta, amniotic fluid, umbilical cord blood and fetal membranes. One theory is that any possible prenatal exposure could ‘pre-seed’ the infant microbiome. In other words, to set the right conditions for the ‘main seeding event’ for founding the infant microbiome.

When a mother gives birth vaginally and if she breastfeeds, she passes on colonies of essential microbes to her baby. This continues a chain of maternal heritage that stretches through female ancestry for thousands of generations, if all have been vaginally born and breastfed. This means a child’s microbiome, that is the trillions of microorganisms that live on and in him or her, will resemble the microbiome of his/her mother, the grandmother, the great-grandmother and so on, if all have been vaginally born and breastfed.

As soon as the mother’s waters break, suddenly the baby is exposed to a wave of the mother’s vaginal microbes that wash over the baby in the birth canal. They coat the baby’s skin, and enter the baby’s eyes, ears, nose and some are swallowed to be sent down into the gut. More microbes form of the mother’s gut microbes join the colonization through contact with the mother’s faecal matter. Many more microbes come from every breath, from every touch including skin-to-skin contact with the mother and of course, from breastfeeding.

With formula feeding, the baby won’t receive the 700 species of microbes found in breast milk. Inside breast milk, there are special sugars called human milk oligosaccharides (HMO’s) that are indigestible by the baby. These sugars are designed to feed the mother’s microbes newly arrived in the baby’s gut. By multiplying quickly, the ‘good’ bacteria crowd out any potentially harmful pathogens. These ‘good’ bacteria help train the baby’s naive immune system, teaching it to identify what is to be tolerated and what is pathogen to be attacked. This leads to the optimal training of the infant immune system resulting in a child’s best possible lifelong health.

With C-section birth and formula feeding, the baby is not likely to acquire the full complement of the mother’s vaginal, gut and breast milk microbes. Therefore, the baby’s microbiome is not likely to closely resemble the mother’s microbiome. A baby born by C-section is likely to have a different microbiome from its mother, its grandmother, its great-grandmother and so on. C-section breaks the chain of maternal heritage and this break can never be restored.

The long term effect of an altered microbiome for a child’s lifelong health is still to be proven, but many studies link C-section with a significantly increased risk for developing asthma, Type 1 diabetes, celiac disease and obesity. Scientists might not yet have all the answers, but the picture that is forming is that C-section and formula feeding could be significantly impacting the health of the next generation. Through the transgenerational aspect to birth, it could even be impacting the health of future generations.

References:

https://blogs.scientificamerican.com/guest-blog/shortchanging-a-babys-microbiome/

https://www.ncbi.nlm.nih.gov/pubmed/23926244

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/25290507

https://www.ncbi.nlm.nih.gov/pubmed/25974306

https://www.ncbi.nlm.nih.gov/pubmed/24637604

https://www.ncbi.nlm.nih.gov/pubmed/22911969

https://www.ncbi.nlm.nih.gov/pubmed/25650398

https://www.ncbi.nlm.nih.gov/pubmed/27362264

https://www.ncbi.nlm.nih.gov/pubmed/27306663

http://www.mdpi.com/1099-4300/14/11/2036

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665/

https://www.ncbi.nlm.nih.gov/pubmed/24848255

https://www.ncbi.nlm.nih.gov/pubmed/26412384

https://www.ncbi.nlm.nih.gov/pubmed/28112736

http://ndnr.com/gastrointestinal/the-infant-microbiome-how-environmental-maternal-factors-influence-its-development/

Read Full Post »


FDA cleared Clever Culture Systems’ artificial intelligence tech for automated imaging, analysis and interpretation of microbiology culture plates speeding up Diagnostics

Reporter: Aviva Lev-Ari, PhD, RN

 

 

FDA clears automated imaging AI that speeds up infectious disease Dx

Read Full Post »


Global Health Impacts of Vector-Borne Diseases: Workshop Summary | The National Academies Press

 

https://www.nap.edu/catalog/21792/global-health-impacts-of-vector-borne-diseases-workshop-summary?utm_source=NAP+Newsletter&utm_campaign=33f32c57d9-NAP_mail_new_2016_09_27&utm_medium=email&utm_term=0_96101de015-33f32c57d9-102340421&goal=0_96101de015-33f32c57d9-102340421&mc_cid=33f32c57d9&mc_eid=92753afd43

Read Full Post »


On its way for an IPO: mRNA platform, Moderna, Immune Oncology is recruiting 100 new Life Scientists in Cambridge, MA

Curator: Aviva Lev-Ari, PhD, RN

 

Deals:

Moderna has now raised $1.9 billion from investors like AstraZeneca – 9% stack [AstraZeneca’s Pascal Soriot helped get that all started with a whopping $240 million upfront in its 2013 deal, which was tied to $180 million in milestones.], with another $230 million on the table from grants. In addition to the financing announcement this morning, Moderna is also unveiling a pact to develop a new Zika vaccine, with BARDA putting up $8 million to get the program started while offering an option on $117 million more to get through a successful development program.

Novel Strategy in Biotech:

in biotech. Instead of grabbing one or two new drugs and setting out to gather proof-of-concept data to help establish its scientific credibility, the company has harvested a huge windfall of cash and built a large organization before even entering the clinic. And it did that without turning to an IPO.

Pipeline include:

  • The deal with AstraZeneca covers new drugs for cardiovascular, metabolic and renal diseases as well as cancer.
  • partners filed a European application to start a Phase I study of AZD8601, an investigational mRNA-based therapy that encodes for vascular endothelial growth factor-A (VEGF-A)
  • Moderna CEO spelled out plans to get the first 6 new drugs in the clinic by the end of 2016.
  • The first human study was arranged for the infectious disease drug mRNA 1440, which began an early stage study in 2015.
  • Moderna built up a range of big preclinical partnerships.
  • CEO Bancel says the number of drugs in development has swelled to 11, with the first set of data slated to be released in 2017.
  • Moderna also plans to add about 10 drugs to the clinic by next summer,

 

SOURCES

UPDATED: Booming Moderna is raising $600M while ramping up manufacturing and clinical studies

$1.9B in: Moderna blueprints $100M facility, plans to double the pipeline after a $474M megaround

http://endpts.com/moderna-blueprints-100m-facility-plans-to-double-the-pipeline-after-a-474m-megaround/?utm_source=Sailthru&utm_medium=email&utm_campaign=Issue:%202016-09-07%20BioPharma%20Dive%20%5Bissue:7155%5D&utm_term=BioPharma%20Dive

 

Moderna Therapeutics Deal with Merck: Are Personalized Vaccines here?

Curator & Reporter: Stephen J. Williams, PhD – August 11, 2016

https://pharmaceuticalintelligence.com/2016/08/11/moderna-therapeutics-deal-with-merck-are-personalized-vaccines-here/

 

at #JPM16 – Moderna Therapeutics turns away an extra $200 million: with AstraZeneca (collaboration) & with Merck ($100 million investment)

Reporter: Aviva Lev-Ari, PhD, RN – January 13, 2016

https://pharmaceuticalintelligence.com/2016/01/13/at-jpm16-moderna-therapeutics-turns-away-an-extra-200-million-with-astrazeneca-collaboration-with-merck-100-million-investment/

Read Full Post »

Older Posts »