Mechanism of thrombosis with AstraZeneca and J & J vaccines: Expert Opinion by Kate Chander Chiang & Ajay Gupta, MD
UPDATED on 4/15/2021
Why wait for more info? A new case of cerebral sinus venus thrombosis was reported in a 25 year old man who became critically ill from a cerebral hemorrhage. And for women age 20-50, CSVT occurred in 1 in 13,000, or 4-15X higher than background.
UPDATED on 4/14/2021
How UK doctor linked rare blood-clotting to AstraZeneca Covid jab
From: “Gupta, Ajay” <ajayg1@hs.uci.edu>
Date: Wednesday, April 14, 2021 at 10:33 AM
To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>
Cc: Kate Chiang <kcscience777@gmail.com>
Subject: Mechanism of thrombosis with AstraZeneca and J & J vaccines
We have put together the following mechanism for thrombosis including central vein sinus thrombosis as a complication of both J&J and the AstraZeneca vaccines. This unifying mechanism explains the predilection of cerebral veins and higher risk in younger women. Please share your thoughts on the proposed mechanism.
We have submitted the attached manuscript to SSRN. Sharing this promptly considering the public health significance.
Thanks

Figure 1. AstraZeneca or Janssen COVID-19 vaccine induced thromboinflammation and cerebral venous sinus thrombosis (CVST)-Proposed Mechanisms: Adenovirus carrier delivers SARS-CoV-2 DNA encoding the Spike (S) protein to the lung megakaryocytes via the coxsackie-adenovirus receptor (CAR). Spike protein induces COX-2 expression in megakaryocytes leading to megakaryocyte activation, biogenesis of activated platelets that express COX-2 and generate thromboxane A2 (TxA2). Cerebral vein sinus endothelial cells express podoplanin, a natural ligand for CLEC2 receptors on platelets. Platelets traversing through the cerebral vein sinuses would be further activated by TxA2 dependent podoplanin-CLEC2 signaling, leading to release of extracellular vesicles, thereby promoting CLEC5A and TLR2 mediated neutrophil activation, thromboinflammation, CVST, and thromboembolism in other vascular beds. Young age and female gender are associated with increased TxA2 generation and platelet activation respectively, and hence increased risk of thromboembolic complications following vaccination.
Best regards,
Ajay
Ajay Gupta, M.B.,B.S., M.D.
Clinical Professor,
Division of Nephrology, Hypertension and Kidney Transplantation
University of California Irvine
President & CSO, KARE Biosciences (www.karebio.com)
E-mail: ajayg1@hs.uci.edu
Cell: 1 (562) 412-6259
Office: 1 (562) 419-7029
PERSPECTIVE
Title: SARS-CoV-2 vaccination induced thrombosis: Is chemoprophylaxis with antiplatelet agents warranted?
Guest Authors:
Kate Chander Chiang1
Ajay Gupta, MBBS, MD1,2
Affiliations
(1) KARE Biosciences, Orange, CA 92869
(2) Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA 92868
*Corresponding author:
Ajay Gupta, MBBS, MD
Clinical Professor of Medicine,
Division of Nephrology, Hypertension and Kidney Transplantation
University of California Irvine (UCI) School of Medicine,
Orange, CA 92868
Tel: +1 (562) 412-6259
E-mail: ajayg1@hs.uci.edu
Word Count
Abstract: 359
Main Body: 1,648
Funding: No funding was required.
Conflict of Interest: AG and KCC have filed a patent for use of Ramatroban as an anti-thrombotic and immune modulator in SARS-CoV-2 infection. The patents have been licensed to KARE Biosciences. KCC is an employee of KARE Biosciences.
Author Contributions: AG and KCC conceptualized, created the framework, wrote and reviewed the manuscript.
Abbreviations: TxA2, thromboxane A2; DIC, disseminated intravascular coagulopathy; COX, cyclooxygenase; TTP, thrombotic thrombocytopenic purpura; CVST, cerebral venous sinus thrombosis; CLEC, C-type lectin-like receptor; TLR, toll-like receptor; CAR, coxsackievirus and adenovirus receptor; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 2
ABSTRACT
The COVID-19 vaccines, Vaxzevria® (AstraZeneca) and the Janssen vaccine (Johnson & Johnson) are highly effective but associated with rare thrombotic complications. These vaccines are comprised of recombinant, replication incompetent, chimpanzee adenoviral vectors encoding the Spike (S) glycoprotein of SARS-CoV-2. The adenovirus vector infects epithelial cells expressing the coxsackievirus and adenovirus receptor (CAR). The S glycoprotein of SARS-CoV-2 is expressed locally stimulating neutralizing antibody and cellular immune responses, which protect against COVID-19. The immune responses are highly effective in preventing symptomatic disease in adults irrespective of age, gender or ethnicity. However, both vaccines have been associated with thromboembolic events including cerebral venous sinus thrombosis (CVST). Megakaryocytes also express CAR, leading us to postulate adenovirus vector uptake and expression of spike glycoprotein by megakaryocytes. Spike glycoprotein induces expression of cyclooxygenase -2 (COX-2), leading to generation of thromboxane A2 (TxA2). TxA2 promotes megakaryocyte activation, biogenesis of activated platelets and thereby increased thrombogenicity. Cerebral vein sinus endothelial cells express podoplanin, a natural ligand for CLEC2 receptors on platelets. Platelets traversing through the cerebral vein sinuses would be further activated by TxA2 dependent podoplanin-CLEC2 signaling, leading to CVST. The mechanisms proposed are consistent with the following clinical observations. First, a massive increase in TxA2 generation promotes platelet activation and thromboinflammation in COVID-19 patients. Second, TxA2 generation and platelet activation is increased in healthy women compared to men, and in younger mice compared to older mice; and, younger age and female gender appear to be associated with increased risk of thromboembolism as a complication of adenoviral vector based COVID-19 vaccine. The roll out of both AstraZeneca and Janssen vaccines has been halted for adults under 30-60 years of age in many countries. We propose that antiplatelet agents targeting TxA2 receptor signaling should be considered for chemoprophylaxis when administering the adenovirus based COVID-19 vaccines to adults under 30-60 years of age. In many Asian and African countries, only adenovirus-based COVID-19 vaccines are available at present. A short course of an antiplatelet agent such as aspirin could allow millions to avail of the benefits of the AstraZeneca and Janssen COVID-19 vaccines which could be otherwise either denied to them or put them at undue risk of thromboembolic complications.
Keywords: SARS-CoV-2, COVID-19, Vaxzevria, COVISHIELD, Janssen COVID-19 vaccine, Johnson & Johnson vaccine, AstraZeneca vaccine, AZD1222, thrombosis, cerebral venous sinus thrombosis, thromboembolism, aspirin, antiplatelet agents, thromboxane, COX-2, disseminated intravascular coagulation, thrombocytopenia, thrombotic thrombocytopenia, CLEC2, megakaryocyte 3
COVID-19 disease is caused by a novel positive-strand RNA coronavirus (SARS-CoV-2), which belongs to the Coronaviridae family, along with the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) coronaviruses.1 The genome of these viruses encodes several non-structural and structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins.2 The majority of the vaccines for COVID-19 that employ administration of viral antigens or viral gene sequences aim to induce neutralizing antibodies against the viral spike protein (S), preventing uptake through the ACE2 receptor, and thereby blocking infection.3
The Janssen COVID-19 vaccine (Johnson & Johnson) is comprised of a recombinant, replication- incompetent Ad26 vector, encoding a stabilized variant of the SARS-CoV-2 Spike (S) protein. The ChAdOx1 nCoV-19 vaccine (AZD1222, Vaxzevria®) was developed at Oxford University and consists of a replication-deficient chimpanzee adenoviral vector ChAdOx1, encoding the S protein.4 In US Phase III trials, Vaxzevria has been demonstrated to have 79% efficacy at preventing symptomatic COVID-19, and 100% efficacy against severe or critical disease and hospitalization, with comparable efficacy across ethnicity, gender and age.5 However, Vaxzevria has been associated with thrombotic and embolic events including disseminated intravascular coagulation (DIC) and cerebral venous sinus thrombosis (CVST), occurring within 14 days after vaccination, mostly in people under 55 years of age, the majority of whom have been women.6 Data from Europe suggests that the event rate for thromboembolic events may be about 10 per million vaccinated. Antibodies to platelet factor 4/heparin complexes have been recently reported in a few patients.7 However, the significance of this finding remains to be established. As of April 12, 2021, about 6.8 million doses of the Janssen vaccine have been administered in the U.S.8 CDC and FDA are reviewing data involving six reported U.S. cases of CVST in combination with thrombocytopenia.8 All six cases occurred among women between the ages of 18 and 48, and symptoms occurred 6 to 13 days after vaccination.8
SARS-CoV-2 is known to cause thromboinflammation leading to thrombotic microangiopathy, pulmonary thrombosis, pedal acro-ischemia (“COVID-toes”), arterial clots, strokes, cardiomyopathy, coronary and systemic vasculitis, deep venous thrombosis, pulmonary embolism, and microvascular thrombosis in renal, cardiac and brain vasculature.9-14 Cerebral venous sinus thrombosis (CVST) has also been reported in COVID-19 patients.15 Amongst 34,331 hospitalized COVID-19 patients, CVST was diagnosed in 28.16 In a multicenter, multinational, cross sectional, retrospective study of 8 patients diagnosed with CVST and COVID-19, seven were women.17 In another series of 41 patients with COVID-19 and CVST, the average age was about 50 years (SD, 16.5 years).17 The pathobiology of thrombotic events associated with the AstraZeneca vaccine should be viewed in the context of mechanisms underlying thromboinflammation that complicates SARS-CoV-2 infection and COVID-19 disease.
A. Role of COX-2 and thromboxane A2 in thromboinflammation complicating adenovirus based COVID-19 vaccine encoding the Spike protein of SARS-CoV-2
Thromboinflammation in COVID-19 seems to be primarily caused by endothelial, platelet and neutrophil activation, platelet-neutrophil aggregates and release of neutrophil extracellular traps (NETs).13,18 Platelet activation in COVID-19 is fueled by a lipid storm characterized by massive increases in thromboxane A2 (TxA2) levels in the blood and bronchoalveolar lavage fluid.19,20 Cyclooxygenase (COX) enzymes catalyze the first step in the biosynthesis of TxA2 from arachidonic acid, and COX-2 expression is induced by the spike (S) protein of coronaviruses.21 We postulate that an aberrant increase in TxA2 generation induced by the spike protein expression from the AstraZeneca vaccine leads to thromboinflammation, thromboembolism and CVST. 4
The support for the above proposed mechanism comes from the following observations. First, when mice of different age groups were infected with SARS-CoV virus, the generation of TxA2 was markedly increased in younger mice compared to middle aged mice.22 Furthermore, in children with asymptomatic or mildly symptomatic SARS-CoV-2 infection, microvascular thrombosis and thrombotic microangiopathy occur early in infection.20 These observations are consistent with the higher risk for thrombosis in adults under 60 years of age, compared with the older age group.6,7 Second, platelets from female mice are much more reactive than from male mice.23 Furthermore, TxA2 generation, TxA2-platelet interaction and activation is increased in women compared to men.24,25 These observations are consistent with disproportionately increased risk of thrombosis in women following AstraZeneca and Janssen COVID-19 vaccines.
The adenoviral vector ChAdOx1, containing nCoV-19 spike protein gene, infects host cells through the coxsackievirus and adenovirus receptor (CAR).26 CAR-dependent cell entry of the viral vector allows insertion of the SARS-CoV-2 spike protein gene and expression of Spike protein by host cells (Figure 1). CAR is primarily expressed on epithelial tight junctions.27 CAR expression has also been reported in platelets,28 and since platelets are anucleate cells CAR expression by megakaryocytes can be inferred. Therefore, AstraZeneca and Janssen vaccines would be expected to induce expression of Spike protein in megakaryocytes and platelets (Figure 1).
Spike protein of coronaviruses in known to induce COX-2 gene expression.21,29 COX-2 expression is induced during normal human megakaryopoiesis and characterizes newly formed platelets.30 While in healthy controls <10% of circulating platelets express COX-2, in patients with high platelet generation, up to 60% of platelets express COX-2.30 Generation of TxA2 by platelets is markedly suppressed by COX-2 inhibition in patients with increased megakaryopoiesis versus healthy subjects.30 Therefore, we postulate that expression of Spike protein induces COX-2 expression and generation of thromboxane A2 by megakaryocytes. TxA2 promotes biogenesis of activated platelets expressing COX-2. Platelet TxA2 generation leads to platelet activation and aggregation, and thereby thromboinflammation (Figure 1).
Extravascular spaces of the lungs comprise populations of mature and immature megakaryocytes that originate from the bone marrow, such that lungs are a major site of platelet biogenesis, accounting for approximately 50% of total platelet production or about 10 million platelets per hour.31 More than 1 million extravascular megakaryocytes have been observed in each lung of transplant mice.31 Following intramuscular injection of the AstraZeneca and Janssen vaccines, the adenovirus vector will traverse the veins and lymphatics to be delivered to the pulmonary circulation thereby exposing lung megakaryocytes in the first pass. Interestingly, under thrombocytopenic conditions, haematopoietic progenitors migrate out of the lung to repopulate the bone marrow and completely reconstitute blood platelet counts.31
B. Predilection of cerebral venous sinuses for thrombosis following vaccination
Recent studies have demonstrated that arterial, venous and sinusoidal endothelial cells in the brain uniquely express markers of the lymphatic endothelium including podoplanin.32 Podoplanin serves as a ligand for CLEC2 receptors on platelets.33 Thromboxane A2 dependent CLEC2 signaling leads to platelet activation (Figure 1), while a TxA2 receptor antagonist nearly abolish CLEC2 signaling and platelet activation.33 TxA2 dependent CLEC2 signaling promotes release of exosomes and microvesicles from platelets, leading to activation of CLEC5A and TLR2 receptors respectively on neutrophils, neutrophil activation and release of neutrophil extracellular traps (NETs) (Figure 1).34 Neutrophil activation, more than platelet activation, is associated with thrombotic complications in COVID-19.13,18,35 As proposed above, the expression of podoplanin, a unique molecular signature of cerebral endothelial cells, may be responsible for the predilection of brain vascular bed to thromboinflammation and CVST as a complication of COVID-19 vaccines. 5
C. Chemoprophylaxis with antiplatelet agents
In animal models of endotoxin mediated endothelial injury and thromboinflammation, antagonism of TxA2 signaling prevents ARDS, reduces myocardial damage and increases survival.36-38
Considering the key role played by platelets in thromboinflammation, we propose consideration of antiplatelet agents, either aspirin or TxA2 receptor antagonists, as chemoprophylactic agents when the AstraZeneca vaccine is administered to adults between 18 and 60 years of age.39 High bleeding risk because of another medical condition or medication would be contraindications to use of antiplatelet agents.39 Medical conditions that increase bleeding risk include previous gastrointestinal bleeding, peptic ulcer disease, blood clotting problems, and kidney disease.39 Medications that increase bleeding risk include nonsteroidal anti-inflammatory drugs, steroids, and other anticoagulants or anti-platelet agents.39 Aspirin appears to be safe in COVID-19. In a retrospective observational study in hospitalized patients with COVID-19, low-dose aspirin was found to be effective in reducing morbidity and mortality; and was not associated with any safety issues including major bleeding.40 Therefore, aspirin is likely to be safe as an adjunct to COVID-19 vaccines even in the event of a subsequent infection with SARS-CoV-2 virus.
Can aspirin influence the host immune response to the COVID-19 vaccines? This issue merits further investigation. When healthy adults > 65 years of age were given influenza vaccine and randomized to receive 300 mg aspirin or placebo on days 1, 2, 3, 5 and 7, the aspirin group showed 4-fold or greater rise in influenza specific antibodies.41 The risk-benefit analysis, based on above information, suggests that a one to three week course of low-dose aspirin merits consideration in order to prevent the thromboembolic events associated with the AstraZeneca vaccine.
SUMMARY
Thromboembolic disease including disseminated intravascular coagulation and cerebral venous sinus thrombosis have been reported in association with AstraZeneca and Janssen COVID-19 vaccines. Many countries have halted use of these vaccines either entirely or for adults under 30 to 60 years of age. European and North American countries generally have access to mRNA vaccines. However, in Asian and African countries the choices are limited to adenovirus based COVID-19 vaccines. The governments in such countries are forging ahead with vaccinating all adults, including those under 60 years of age, with Vaxzevria, Covishield (the version of Vaxzevria manufactured by the Serum Institute of India) or the Janssen vaccines. This has led to grave concern and anxiety amongst the citizens and medical professionals. Considering the profound global public health implications of limiting the use of these vaccines, it is critical to understand the pathobiology of vaccination induced thrombotic events in order to guide strategies aimed at prevention. In this regard, studies are urgently needed to examine lipid mediators and thromboxane A2 – platelet axis following vaccination with these vaccines, compared with mRNA vaccines. The risk-benefit analysis based on information presented here suggests that chemoprophylaxis using a short course of low-dose aspirin in adults under 60 years of age may be justified in conjunction with adenovirus based COVID-19 vaccines in order to prevent thromboembolic events and enhance safety. 6

Figure 1. AstraZeneca or Janssen COVID-19 vaccine induced thromboinflammation and cerebral venous sinus thrombosis (CVST)-Proposed Mechanisms: Adenovirus carrier delivers SARS-CoV-2 DNA encoding the Spike (S) protein to the lung megakaryocytes via the coxsackie-adenovirus receptor (CAR). Spike protein induces COX-2 expression in megakaryocytes leading to megakaryocyte activation, biogenesis of activated platelets that express COX-2 and generate thromboxane A2 (TxA2). Cerebral vein sinus endothelial cells express podoplanin, a natural ligand for CLEC2 receptors on platelets. Platelets traversing through the cerebral vein sinuses would be further activated by TxA2 dependent podoplanin-CLEC2 signaling, leading to release of extracellular vesicles, thereby promoting CLEC5A and TLR2 mediated neutrophil activation, thromboinflammation, CVST, and thromboembolism in other vascular beds. Young age and female gender are associated with increased TxA2 generation and platelet activation respectively, and hence increased risk of thromboembolic complications following vaccination.
REFERENCES
1. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis. 2020;98(1):115094.
2. Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nature Reviews Microbiology. 2009;7(3):226-236. 7
3. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 2021;6(1).
4. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021;397(10269):99-111.
5. AstraZeneca. AZD1222 US Phase III trial met primary efficacy endpoint in preventing COVID-19 at interim analysis. https://www.astrazeneca.com/media-centre/press-releases/2021/astrazeneca-us-vaccine-trial-met-primary-endpoint.html. Published 2021. Accessed April 5, 2021.
6. European Medicines Agency. COVID-19 vaccine safety update VAXZEVRIA. https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-previously-covid-19-vaccine-astrazeneca-29-march-2021_en.pdf. Published 2021. Accessed April 4, 2021.
7. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine. 2021.
8. CDC. Joint CDC and FDA Statement on Johnson & Johnson COVID-19 Vaccine. https://www.cdc.gov/media/releases/2021/s0413-JJ-vaccine.html. Published 2021. Accessed April 13, 2021.
9. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020.
10. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374.
11. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708-1720.
12. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood. 2020.
13. Nicolai L, Leunig A, Brambs S, et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia is Associated with Respiratory Failure and Coagulopathy. Circulation. 2020.
14. Song W-C, Fitzgerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. Journal of Clinical Investigation. 2020.
15. Mowla A, Shakibajahromi B, Shahjouei S, et al. Cerebral venous sinus thrombosis associated with SARS-CoV-2; a multinational case series. J Neurol Sci. 2020;419:117183.
16. Baldini T, Asioli GM, Romoli M, et al. Cerebral venous thrombosis and severe acute respiratory syndrome coronavirus-2 infection: A systematic review and meta-analysis. Eur J Neurol. 2021.
17. Abdalkader M, Shaikh SP, Siegler JE, et al. Cerebral Venous Sinus Thrombosis in COVID-19 Patients: A Multicenter Study and Review of Literature. J Stroke Cerebrovasc Dis. 2021;30(6):105733.
18. Petito E, Falcinelli E, Paliani U, et al. Association of Neutrophil Activation, More Than Platelet Activation, With Thrombotic Complications in Coronavirus Disease 2019. The Journal of Infectious Diseases. 2020. 8
19. Archambault A-S, Zaid Y, Rakotoarivelo V, et al. Lipid storm within the lungs of severe COVID-19 patients: Extensive levels of cyclooxygenase and lipoxygenase-derived inflammatory metabolites. medRxiv. 2020:2020.2012.2004.20242115.
20. Diorio C, McNerney KO, Lambert M, et al. Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Advances. 2020;4(23):6051-6063.
21. Liu M, Gu C, Wu J, Zhu Y. Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2. Virus Genes. 2006;33(3):309-317.
22. Vijay R, Hua X, Meyerholz DK, et al. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection. J Exp Med. 2015;212(11):1851-1868.
23. Leng X-H, Hong SY, Larrucea S, et al. Platelets of Female Mice Are Intrinsically More Sensitive to Agonists Than Are Platelets of Males. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(2):376-381.
24. Kim BS, Auerbach DA, Sadhra H, et al. A Sex-Specific Switch in Platelet Receptor Signaling Following Myocardial Infarction. In: Cold Spring Harbor Laboratory; 2019.
25. Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105(14):1650-1655.
26. Cohen CJ, Xiang ZQ, Gao G-P, Ertl HCJ, Wilson JM, Bergelson JM. Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor. Journal of General Virology. 2002;83(1):151-155.
27. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A. 2001;98(26):15191-15196.
28. Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol. 2014;5:649.
29. Yan X, Hao Q, Mu Y, et al. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol. 2006;38(8):1417-1428.
30. Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A. 2002;99(11):7634-7639.
31. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105-109.
32. Mezey É, Szalayova I, Hogden CT, et al. An immunohistochemical study of lymphatic elements in the human brain. Proceedings of the National Academy of Sciences. 2021;118(3):e2002574118.
33. Badolia R, Inamdar V, Manne BK, Dangelmaier C, Eble JA, Kunapuli SP. G(q) pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. J Biol Chem. 2017;292(35):14516-14531. 9
34. Sung P-S, Huang T-F, Hsieh S-L. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nature Communications. 2019;10(1).
35. Ng H, Havervall S, Rosell A, et al. Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in Patients With COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology. 2021;41(2):988-994.
36. Carey MA, Bradbury JA, Seubert JM, Langenbach R, Zeldin DC, Germolec DR. Contrasting Effects of Cyclooxygenase-1 (COX-1) and COX-2 Deficiency on the Host Response to Influenza A Viral Infection. The Journal of Immunology. 2005;175(10):6878-6884.
37. Kuhl PG, Bolds JM, Loyd JE, Snapper JR, FitzGerald GA. Thromboxane receptor-mediated bronchial and hemodynamic responses in ovine endotoxemia. Am J Physiol. 1988;254(2 Pt 2):R310-319.
38. Altavilla D, Canale P, Squadrito F, et al. Protective effects of BAY U 3405, a thromboxane A2 receptor antagonist, in endotoxin shock. Pharmacol Res. 1994;30(2):137-151.
39. Peters AT, Mutharasan RK. Aspirin for Prevention of Cardiovascular Disease. JAMA. 2020;323(7):676.
40. Chow JH, Khanna AK, Kethireddy S, et al. Aspirin Use Is Associated With Decreased Mechanical Ventilation, Intensive Care Unit Admission, and In-Hospital Mortality in Hospitalized Patients With Coronavirus Disease 2019. Anesthesia & Analgesia. 2021;132(4).
41. Saleh E, Moody MA, Walter EB. Effect of antipyretic analgesics on immune responses to vaccination. Human Vaccines & Immunotherapeutics. 2016;12(9):2391-2402.
SOURCE
From: “Gupta, Ajay” <ajayg1@hs.uci.edu>
Date: Wednesday, April 14, 2021 at 10:33 AM
To: “Aviva Lev-Ari, PhD, RN” <AvivaLev-Ari@alum.berkeley.edu>
This EXPERT OPINION is in response to:
From: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>
Date: Tuesday, April 13, 2021 at 9:03 AM
To: “Joel Shertok, PhD” <jshertok@yahoo.com>, “Stephen Williams, PhD” <sjwilliamspa@comcast.net>, “Prof. Marcus W Feldman” <mfeldman@stanford.edu>, “Irina Robu, PhD” <irina.stefania@gmail.com>, “Dr. Sudipta Saha” <sudiptasaha1977@gmail.com>, Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>, “Dr. Larry Bernstein” <larry.bernstein@gmail.com>, “Ofer Markman, PhD” <oferm2020@gmail.com>, “Daniel Menzin (gmail)” <dmenzin@gmail.com>, Pnina Abir-Am <pnina.abiram@gmail.com>, Alan <alanalanf@gmail.com>, Justin MDMEPhD <jdpmdphd@gmail.com>, Inbar Ofer <ofer.i@northeastern.edu>, Aviva Lev-Ari <aviva.lev-ari@comcast.net>, Madison Davis <madisond2302@gmail.com>, Danielle Smolyar <dsmolyar@syr.edu>, “Adina Hazan, PhD” <adinathazan@gmail.com>, Gail Thornton <gailsthornton@yahoo.com>, Amandeep kaur <662amandeep@gmail.com>, Premalata Pati <premalata09@gmail.com>, “Ajay Gupta, MD” <charaklabs@outlook.com>, Saul Yedgar <saulye@ekmd.huji.ac.il>, Yigal Blum <yigalblum@gmail.com>, a el <AElRoeiy@gmail.com>, “Dr. Raphael Nir” <rnir@sbhsciences.com>, “George Tetz, MD, PhD” <gtetz@clstherapeutics.com>, “Dr. Martin R Schiller (CEO, Heligenics)” <heligenics@gmail.com>, “Jea Asio (Heligenics)” <JAsio@Heligenics.com>, Yakov Kogan <ykogan@tgv-biomed.com>, Haim Levkowitz <haim@cs.UML.edu>
Subject: APRIL 13. 2021 – J&J Statement – Out of an abundance of caution, the CDC and FDA have recommended a pause in the use of our vaccine. ->> Are there relations between these FINDINGS?
Johnson & Johnson Statement on COVID-19 Vaccine
NEW BRUNSWICK, N.J., April 13, 2021– The safety and well-being of the people who use our products is our number one priority. We are aware of an extremely rare disorder involving people with blood clots in combination with low platelets in a small number of individuals who have received our COVID-19 vaccine. The United States Centers for Disease Control (CDC) and Food and Drug Administration (FDA) are reviewing data involving six reported U.S. cases out of more than 6.8 million doses administered. Out of an abundance of caution, the CDC and FDA have recommended a pause in the use of our vaccine.
In addition, we have been reviewing these cases with European health authorities. We have made the decision to proactively delay the rollout of our vaccine in Europe.
We have been working closely with medical experts and health authorities, and we strongly support the open communication of this information to healthcare professionals and the public.
The CDC and FDA have made information available about proper recognition and management due to the unique treatment required with this type of blood clot. The health authorities advise that people who have received our COVID-19 vaccine and develop severe headache, abdominal pain, leg pain, or shortness of breath within three weeks after vaccination should contact their health care provider.
For more information on the Janssen COVID-19 vaccine, click here.
Please All send me your Expert Opinion on the relations between these FINDINGS?
Linking Thrombotic Thrombocytopenia to ChAdOx1 nCov-19 Vaccination, AstraZeneca | Leaders in Pharmaceutical Business Intelligence (LPBI) Group
Reporter: Aviva Lev-Ari, PhD, RN
Is SARS-COV2 Hijacking the Complement and Coagulation Systems?
Reporter: Stephen J. Williams, PhD
SAR-Cov-2 is probably a vasculotropic RNA virus affecting the blood vessels: Endothelial cell infection and endotheliitis in COVID-19
Reporter: Aviva Lev-Ari, PhD, RN
THANK YOU
Best regards,
Aviva
Aviva Lev-Ari, PhD, RN
Director & Founder
Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston, MA, NJ, CA, PA, ME, DE, India, Israel & Canada
Editor-in-Chief
http://pharmaceuticalintelligence.com
e-Mail: avivalev-ari@alum.berkeley.edu
(M) 617-775-0451
Leave a Reply