Feeds:
Posts
Comments

Archive for the ‘Treatment Protocols for COVID-19’ Category

 

 

The durability of T cells versus the triggered of high levels of antibodies: Rationale for the development of T cells focused vaccines

Reporters and Curators: Stephen J. Williams, PhD and Aviva Lev-Ari, PhD, RN

Scientists to FDA: Don’t forget about T cells

In the face of waning antibody immunity to the coronavirus, scientists demand more attention on T cell immunity which may be more durable

 

A group of nearly 70 academic scientists, doctors, and biotech leaders sent a letter with an unusual request to the US Food and Drug Administration on Thursday: Please pay more attention to T cells, an overlooked part of the immune system that helps clear up viral infections.

Read Full Post »

Updates to COVID-19 vaccine tracker

Reporter: Aviva Lev-Ari, PhD, RN

 

On LPBI Group’s 

CORONAVIRUS, SARS-CoV-2 PORTAL @LPBI

http://lnkd.in/ePwTDxm

Launched on 3/14/2020

We cover the following Eight Pages of LPBI Group’s Coronavirus PORTAL

  1. Breakthrough News Corner
  2. Development of Medical Counter-measures for 2019-nCoV, CoVid19, Coronavirus
  3. An Epidemiological Approach
  4. Community Impact
  5. Economic Impact of The Coronavirus Pandemic
  6. Voices of Global Citizens: Impact of The Coronavirus Pandemic
  7. Diagnosis of Coronavirus Infection by Medical Imaging and Cardiovascular Impacts of Viral Infection
  8. Key Opinion Leaders Followed by LPBI

https://pharmaceuticalintelligence.com/coronavirus-portal/

Lead Curators are:

UPDATED on 3/31/2020

COVID-19 Treatment and Vaccine Tracker This document contains an aggregation of publicly available information from validated sources. It is not an endorsement of one approach or treatment over another but simply a list of all treatments and vaccines currently in development.

  • Number
  • Type of Product – Treatment
  • FDA-Approved Indications (Treatments)
  • Clinical Trials
  • Ongoing for Other Diseases
  • Developer/ Researcher
  • Current Stage of Development
  • Funding Sources
  • Anticipated Timing
  • Sources

LEGEND

  1. CCHF= Crimean-Congo Haemorrhagic Fever
  2. CHIKV = Chikungunya Virus
  3. DengV = Dengue Virus
  4. FMD = Foot and Mouth Disease
  5. EBOV = Ebola Virus
  6. HAV = Hepatitis A Virus
  7. HBV = Hepatitis B Virus
  8. HIV = Human Immunodeficiency Virus
  9. HPV = Human Papilloma Virus
  10. Inf = Influenza
  11. LASV = Lassa Fever Virus
  12. MARV = Marburg Virus
  13. MenB = Mengingitis B
  14. MERS = Middle East Respiratory Syndrome
  15. NIPV = Nipah Virus
  16. NORV = Norovirus
  17. RABV = Rabies Virus
  18. RSV = Respiratory Syncytial Virus
  19. RVF = Rift Valley Fever
  20. SARS = Severe Acute Respiratory Syndrome

  21. SIV = Simian Immunodeficiency Virus
  22. TB = Tuberculosis
  23. VEE = Venezuelan Equine Encephalitis Virus
  24. VZV = Varicella Vaccine (Chickenpox)
  25. YFV = Yellow Fever Virus
  26. ZIKV = Zika Virus L

COVID-19 Treatment and Vaccine Tracker This document contains an aggregation of publicly-available information from validated sources. It is not an endorsement of one approach or treatment over another, but simply a list of all treatments and vaccines currently in development

  • Antibodies from recovered COVID-19 patients N/A Celltrion Pre-clinical Start Phase 1 ~ Sept 2020 Korea Herald 4

  • Antibodies from recovered COVID-19 patients N/A Kamada Pre-clinical BioSpace AbbVie 5

  • Antibodies from recovered COVID-19 patients N/A Vir Biotech/WuXi Biologics/Biogen Pre-clinical Stat News Vir Biotech 6

  • Antibodies from recovered COVID-19 patients N/A Lilly/Ab-Cellera (NIH Vaccines Research Center) Pre-clinical Start Phase 1 in late July 2020 Endpoints News

SOURCE

https://milkeninstitute.org/sites/default/files/2020-03/Covid19%20Tracker%20032020v3-posting.pdf

UPDATES to COVID-19 vaccine tracker

Posted 28 January 2022 | By Jeff Craven

SOURCE

https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker

COVID-19 vaccine tracker

 

The worldwide endeavor to create a safe and effective COVID-19 vaccine is bearing fruit. Dozens of vaccines now have been authorized or approved around the globe; many more remain in development.
 
To clarify the landscape for our readers, our vaccine tracker has been split in two. The first chart details vaccine candidates that are still in development to address the lack of vaccines and access in many countries around the world; the second chart lists vaccines that are authorized or approved by one or more country. To reveal in-depth information about each candidate, select the “Details” button above the chart or click on the green plus button next to each entry.
 
Information about the unprecedented public/private partnerships spawned by the COVID-19 public health emergency now can be found below the charts.
 
Our charts are updated every other week. If you wish to submit an update or notice an issue with this data, please email Focus at news@raps.org

Updated 28 January with new information on vaccines from Pfizer/BioNTech, Moderna, AstraZeneca, Gamaleya Research Institute, Janssen Vaccines, Sinovac, Bharat Biotech/Ocugen, Anhui Zhifei Longcom Biopharmaceutical, and Novavax as well as vaccine candidates from Walvax, Valneva, GSK/Sanofi, and Senai Cimatec.




 

Vaccine candidates in development

 

SHOW/HIDE DETAILS
 

Authorized/approved vaccines

 

SHOW/HIDE DETAILS
 

 

COVID-19 vaccine initiatives

OWS: Operation Warp Speed is a collaboration of several US government departments including Health and Human Services (HHS) and subagencies, Defense, Agriculture, Energy and Veterans Affairs and the private sector. OWS has funded JNJ-78436735 (Janssen), mRNA-1273 (Moderna), and NVX‑CoV2373 (Novavax), V590 (Merck/IAVI), V591 (Merck/Themis), AZD1222 (AstraZeneca/University of Oxford), and the candidate developed by Sanofi and GlaxoSmithKline.
 
OWS is “part of a broader strategy to accelerate the development, manufacturing, and distribution of COVID-19 vaccines, therapeutics, and diagnostics.” Leaders of OWS say they could vaccinate as many as 20 million people by the end of the year and 100 million people by February.  
 
ACTIV: Within OWS, the US National Institutes of Health (NIH) has partnered with more than 18 biopharmaceutical companies in an initiative called ACTIV. ACTIV aims to fast-track development of drug and vaccine candidates for COVID-19.
 
COVPN: The COVID-19 Prevention Trials Network (COVPN) combines clinical trial networks funded by the National Institute of Allergy and Infectious Diseases (NIAID): the HIV Vaccine Trials Network (HVTN), HIV Prevention Trials Network (HPTN), Infectious Diseases Clinical Research Consortium (IDCRC), and the AIDS Clinical Trials Group.
 
COVAX: The COVAX initiative, part of the World Health Organization’s (WHO) Access to COVID-19 Tools (ACT) Accelerator, is being spearheaded by the Coalition for Epidemic Preparedness Innovations (CEPI); Gavi, the Vaccine Alliance; and WHO. The goal is to work with vaccine manufacturers to offer low-cost COVID-19 vaccines to countries. CEPI’s candidates from companies Inovio, Moderna, CureVac, Institut Pasteur/Merck/Themis, AstraZeneca/University of Oxford, Novavax, University of Hong Kong, Clover Biopharmaceuticals, and University of Queensland/CSL are part of the COVAX initiative. The US joined COVAX on 21 January. The most up-to-date forecast of COVAX’s vaccine supply can be found here. An interim distribution forecast, most recently published 3 February, can be found here.
 

 

© 2022 Regulatory Affairs Professionals Society.

SOURCE

https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker

Read Full Post »

Epidemiological measurement on COVID-19 pandemic may have statistical biases which might affect next variant responses

Reporter: Stephen J. Williams Ph.D.

Source: https://www.science.org/doi/10.1126/science.abi6602

From the jounal Science

Tackling the pandemic with (biased) data

CHRISTINA PAGEL AND CHRISTIAN A. YATESSCIENCE•22 Oct 2021•Vol 374, Issue 6566•pp. 403-404•DOI: 10.1126/science.abi66027,757

Accurate and near real-time data about the trajectory of the COVID-19 pandemic have been crucial in informing mitigation policies. Because choosing the right mitigation policies relies on an accurate assessment of the current state of the local epidemic, the potential ramifications of misinterpreting data are serious. Each data source has inherent biases and pitfalls in interpretation. The more data sources that are interpreted in combination, the easier it is to detect genuine changes in an epidemic. Recently, in many countries, this has involved disentangling the varying impact of rising but heterogeneous vaccination rates, relaxation of mitigations, and the emergence of new variants such as Delta.The exact data collected and their accuracy will vary by country. Typical data common to many countries are numbers of tests, confirmed cases, hospital and intensive care unit (ICU) admissions and occupancy, deaths, and vaccinations (1). Many countries additionally sequence a proportion of new positive tests to identify and track emerging variants. Some countries also now collect and publish data on infections, hospitalizations, and deaths by vaccination status (e.g., Israel and the UK). Stratifying all available data by different demographic factors (e.g., age, location, measures of deprivation, and ethnicity) is crucial for understanding patterns of spread, potential impact of policies, and efficacy of vaccines (age, timing of breakthrough infections, and prevalent variants).It is also necessary to be aware of what data are not being collected. For example, persistent symptoms of COVID-19 (Long Covid) were recognized as a long-term adverse outcome by the autumn of 2020. However, no simple diagnostic test has been associated with the up to 200 different reported symptoms (2). Counting Long Covid relies on a clinical diagnosis, based on a history of having had COVID-19 and a failure to fully recover, with development of some characteristic symptoms and with no obvious alternative cause (3). These features make it very difficult to measure routinely, and so it rarely is. As a result, Long Covid is often neglected in decision-making. Failure to account for the disease load associated with Long Covid may lead to an unnecessary long-term societal health burden.The feedback between different types of outcomes, different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, different mitigation policies (including vaccination), and individual risks (a combination of exposure and clinical risk) is complex and must be factored into both interpretation of data and the development of policy. Using all available data to quantify transmission is crucial to ensuring rapid and effective responses to early phases of renewed exponential growth and to evaluating mitigation measures. Relying too much on a single data source, or without disaggregating data, risks fundamentally misunderstanding the state of the epidemic.The inherent biases and lags in data are particularly important to understand from the point of view of policy-makers. Because of the natural time scales of COVID-19 disease progression (see the figure), policy changes can take several weeks to show up in the data. Purely reactive policy-making is likely to be ineffective. When cases are rising, increases in hospital admissions and deaths will follow. When a new variant is outcompeting existing strains, it is likely to become dominant without action to suppress. The precautionary principle suggests acting early and emphatically. Conversely, when releasing restrictions, governments must wait long enough to assess them before continuing with re-opening.The most up-to-date indicator of the state of the epidemic is typically the number of confirmed cases, as ascertained through testing of both symptomatic individuals and those tested frequently regardless of symptoms. Symptom-based testing is likely to pick up more adults and fewer younger individuals (4). Infections in children are harder to detect: children are more likely to be asymptomatic than adults, are harder to administer tests to (particularly young children), are often exposed to other viruses with similar symptoms, and can present with symptoms that are atypical in adults (e.g., abdominal pain or nausea). Children under 12 are not routinely offered the COVID-19 vaccination, and their mixing in schools provides ongoing opportunities for the virus to circulate, so it will be important for countries to track infections in children as accurately as possible. Other testing biases include accessibility, reporting lags, and the ability to act lawfully upon receiving a positive result. Substantial changes in the number of people seeking tests may further confound case figures (5). Case positivity rates may provide a more accurate reflection of the state of the epidemic (6) but are dependent on the mix of symptomatic and asymptomatic people being tested.SARS-CoV-2 variants have been an important driver of local epidemics in 2021. The four main SARS-CoV-2 variants of concern, to date, are B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Some have been more transmissible (Alpha), some have substantial resistance to previous infection or vaccines (Beta), and some have elements of both (Gamma and Delta) (7). Currently, the high transmissibility of Delta combined with some immune evasion has made it the world’s dominant variant. Determining which variants pose a substantial threat is difficult and takes time, particularly when many variants cocirculate. This is especially true for situations in which a dominant variant is declining, and a new one growing. While the declining variant remains dominant, its decrease masks increases in the new variant because case numbers remain unchanged or fall overall. Only when a new variant becomes dominant does its growth become apparent in aggregated case data, by which time it is, by definition, too late to contain its spread. This dynamic has been observed across the world with Delta over the latter half of 2021.With multiple variants circulating, there are, effectively, multiple epidemics occurring in parallel, and they must be tracked separately. This typically requires the availability of sequencing data, which is unfortunately limited in most countries. Sequencing takes time and so is typically a few weeks out of date. These lags, and the uncertainty in sampling, can lead to hesitancy in acting. The rapid path to dominance of the Delta variant in the UK highlights the need for action when a quickly growing variant represents a few percent (or less) of overall cases.Hospital admissions or occupancy data do not suffer the same biases associated with testing behaviors and provide unequivocal evidence of widespread transmission, its geography, and demographics. However, hospital admissions lag infections more than reported cases do, rendering these data less useful for proactive decision-making. Hospital data are also biased toward older people, who are more likely to suffer severe COVID-19, and now, unvaccinated populations. ICU occupancy data show a younger age profile than admissions because younger patients have a better chance of benefitting from the invasive treatment procedures (8).Deaths are the most lagged indicator, typically occurring 3 or more weeks after infection and with an additional lag in registration and reporting. Death data should never be used to inform real-time policy decisions. Instead, death figures can act as an eventual measure of the success of a country’s epidemic strategy and implementation. The age distribution of those who eventually die from COVID-19 is different from other metrics of the epidemic—skewed furthest toward older age groups (9). Those with clinical risk factors (such as immunodeficiency, obesity, or existing lung conditions), high exposure (health care workers and low-income workers), and the unvaccinated are overrepresented in COVID-19 deaths.In countries with high vaccination rates, vaccination has had a substantial impact—reducing COVID-19 cases, hospitalizations, and deaths. However, when looking at the raw numbers in highly vaccinated populations, it can be the case that more fully vaccinated people are dying of COVID-19 than unvaccinated. If these raw statistics are misinterpreted—or worse, deliberately misused—they can damage vaccine confidence. More vaccinated people may die than unvaccinated because such a high proportion of people are vaccinated (10). This does not mean vaccines are not effective at preventing death. Looking at the rates of death in vaccinated and unvaccinated individuals separately within age groups demonstrates that vaccines provide considerable protection against severe disease and death. This example illustrates how important it is to curate and manage the way in which data are presented.

COVID-19 progressionAn approximate timeline from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to various outcomes. When current infections show up in different data sources depends on this timeline. Collecting data for Long Covid, asymptomatic infection, and vaccine history will improve understanding of the pandemic.GRAPHIC: N. CARY/SCIENCE

Each country has established its own vaccination priority lists and dosing schedules to best achieve its goals (1112). Each of these strategies will manifest differently in the data. Additionally, many countries are using multiple vaccines in tandem and administer them differently for different demographics. Some countries are vaccinating adolescents, and others are not or not offering them the full approved dose. Most vaccines require two doses, spaced between 3 and 12 weeks apart, except for the Johnson & Johnson single-dose vaccine. This matters, particularly as variants spread, because different vaccines have different effectiveness after one and two doses, different timelines to full effectiveness, and different effectiveness against variants (13).Data published on the vaccination delivery itself must thus go beyond the raw numbers of people vaccinated. Vaccine uptake must be reported by whether fully or partially (one-dose in a two-dose regimen) vaccinated and using the whole population as a denominator. It is vital to disaggregate vaccine data by age, gender, and ethnicity as well as location so that it is possible, for example, to understand the impact of deprivation on vaccine coverage or vaccine hesitancy in particular demographics. When interpreting vaccination data, it is important to remember that there is also a lag between delivery and the build-up of immunity.Data on reinfection and post-vaccination (breakthrough) infection are also important to determine the relative benefits of infection-mediated and vaccine-mediated immunity and the length of protection offered. Studies that show those who were immunized earlier were acquiring COVID-19 with higher rates than those vaccinated more recently may suggest waning vaccine protection (14). Such studies have already prompted vaccine booster programs in some countries. However, any study that suggests waning immunity must be extremely careful to ensure that the “early” and “recent” subgroups are properly controlled. Differences in prior exposure, affluence, education level, age, and other demographic factors between these cohorts may be enough to explain the disparities in SARS-CoV-2 infection rates, even in the absence of waning immunity. Waning immunity must also be reported separately for different outcomes; for example, there might be waning in terms of preventing symptomatic infection but far less or none in preventing death (15). Additionally, there are ethical concerns about mass booster programs in high-income countries while many lower-income countries have been unable to procure vaccines.Moving into the vaccination era, reported cases, hospitalizations, and deaths should also be disaggregated by vaccination status (and by which vaccine), which will be easier in countries where national linked datasets exist. Additionally, incorporating Long Covid into routine reporting and policy-making is crucial. Consistent diagnostic criteria and well-controlled studies will be vital to this effort. These elusive data will be of critical importance to navigate our way successfully out of the pandemic.

Acknowledgments

C.P. and C.A.Y. are both members of Independent SAGE: www.independentsage.org.

References and Notes

1M. Roser et al., Our World in Data (2021); https://bit.ly/3kepLgw.GO TO REFERENCEGOOGLE SCHOLAR2H. E. Davis et al., E. Clin. Med.38, 101019 (2021).GO TO REFERENCEGOOGLE SCHOLAR3M. Sivan, S. Taylor, BMJ371, m4938 (2020).GO TO REFERENCECROSSREFPUBMEDGOOGLE SCHOLAR4S. M. Moghadas et al., Proc. Natl. Acad. Sci. U.S.A.117, 17513 (2020).GO TO REFERENCECROSSREFPUBMEDGOOGLE SCHOLAR5J. Wise, BMJ370, m3678 (2020).GO TO REFERENCECROSSREFPUBMEDGOOGLE SCHOLAR6D. Dowdy, G. D’Souza, COVID-19 Testing: Understanding the “Percent Positive” (2020); https://bit.ly/3CeN8wl.GO TO REFERENCEGOOGLE SCHOLAR7C. E. Gómez et al., Vaccines (Basel)9, 243 (2021).CROSSREFPUBMEDGOOGLE SCHOLAR8A. B. Docherty et al., BMJ369, 1985 (2020).GO TO REFERENCECROSSREFPUBMEDGOOGLE SCHOLAR9Office for National Statistics, Deaths registered weekly in England and Wales by age and sex: covid-19 (2021); https://bit.ly/3Ci2obS.

For articles on Issues of Bias in Science on this Open Access Journal see

From @Harvardmed Center for Bioethics: The Medical Ethics of the Corona Virus Crisis

Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind

Read Full Post »

COVID and the brain: researchers zero in on how damage occurs

Reporter: Danielle Smolyar

Research Assistant 3 – Text Analysis for 2.0 LPBI Group’s TNS #1 – 2020/2021 Academic Internship in Medical Text Analysis (MTA)

Recent evidence has indicated that coronavirus can cause brain fog and also lead to different neurological symptoms. 

Since the beginning of the pandemic, researchers have been trying to understand how the coronavirus SARS-CoV-2 affects the brain

Image Credit: Stanislav Krasilnikov/TASS/Getty

image source:https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

New evidence has shown how coronavirus has caused much damage to the brain. There is a new evidence that shows that COVID-19 assault on the brain I has the power to be multipronged. What this means is that it can attack on certain Brain cells such as reduce the amount of blood flow that the brain needs to the brain tissue.

Along with brain damage COVID-19 has also caused strokes and memory loss. A neurologist at yell University Serena Spudich says, “Can we intervene early to address these abnormalities so that people don’t have long-term problems?”

We’re on 80% of the people who have been hospitalized due to COVID-19 have showed brain symptoms which seem to be correlated to coronavirus.

At the start of the pandemic a group of researchers speculated that coronavirus they can damage the brain by infecting the neurons in the cells which are important in the process of transmitting information. After further studies they found out that coronavirus has a harder time getting past the brains defense system and the brain barrier and that it does not affect the neurons in anyway.

An expert in this study indicated that a way in which SARS-CoV-2 may be able to get to the brain is by going through the olfactory mucosa which is the lining of the nasal cavity. It is found that this virus can be found in the nasal cavity which is why we swab the nose one getting tested for COVID-19.

Spudich quotes, “there’s not a tonne of virus in the brain”.

Recent studies indicate that SARS-CoV-2 have ability to infect astrocytes which is a type of cell found in the brain. Astrocytes do quite a lot that supports normal brain function,” including providing nutrients to neurons to keep them working, says Arnold Kriegstein, a neurologist at the University of California, San Francisco.

Astrocytes are star-shaped cells in the central nervous system that perform many functions, including providing nutrients to neurons.

Image Credit: David Robertson, ICR/SPL

image source: https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

Kriegstein and his fellow colleagues have found that SARS-CoV-2 I mostly infects the astrocytes over any of the other brain cells present. In this research they expose brain organoids which is a miniature brain that are grown from stem cells into the virus.

As quoted in the article” a group including Daniel Martins-de-Souza, head of proteomics at the University of Campinas in Brazil, reported6 in a February preprint that it had analysed brain samples from 26 people who died with COVID-19. In the five whose brain cells showed evidence of SARS-CoV-2 infection, 66% of the affected cells were astrocytes.”

The infected astrocytes could indicate the reasoning behind some of the neurological symptoms that come with COVID-19. Specifically, depression, brain fog and fatigue. Kreigstein quotes, “Those kinds of symptoms may not be reflective of neuronal damage but could be reflective of dysfunctions of some sort. That could be consistent with astrocyte vulnerability.”

A study that was published on June 21 they compared eight different brands of deceased people who did have COVID-19 along with 14 brains as the control. The results of this research were that they found that there was no trace of coronavirus Brain infected but they found that the gene expression was affected in some of the astrocytes.

As a result of doing all this research and the findings the researchers want to know more about this topic and how many brain cells need to be infected for there to be neurological symptoms says Ricardo Costa.

Further evidence has also been done on how SARS-CoV-2 can affect the brain by reducing its blood flow which impairs the neurons’ function which ends up killing them.

Pericytes can be found on the small blood vessels which are called capillaries and are found all throughout the body and in the brain. In a February pre-print there was a report about how SARS-CoV-2 can infect the pericyte in the brain organoids. 

David Atwell, a neuroscientist at the University College London, along with his other colleagues had published a pre-print which has evidence to show that SARS-CoV-2 odes In fact pericytes behavior. I researchers saw that in the different part of the hamsters brain SARS-CoV-2 blocks the function of receptors on the pericytes which ultimately causes the capillaries found inside the tissues to constrict.

As stated in the article, It’s a “really cool” study, says Spudich. “It could be something that is determining some of the permanent injury we see — some of these small- vessel strokes.”

Attwell brought to the attention that the drugs that are used to treat high blood pressure may in fact be used in some cases of COVID-19. Currently there are two clinical trials that are being done to further investigate this idea.

There is further evidence showing that the neurological symptoms and damage could in fact be happening because of the bodies on immune system reacting or misfiring after having COVID-19.

Over the past 15 years it has become evident that people’s immune system’s make auto antibodies which attack their own tissues says Harald Prüss in the article who has a Neuroimmunologist at the German Center for neurogenerative Diseases in Berlin. This may cause neuromyelitis optica which is when you can experience loss of vision or weakness in limbs. Harald Prüss summarized that the autoantibodies can pass through the blood brain barrier and ultimately impact neurological disorders such as psychosis.

Prüss and his colleagues published a study last year that focused on them isolating antibodies against SARS-CoV-2 from people. They found that one was able to protect hamsters from lung damage and other infections. The purpose of this was to come up with and create new treatments. During this research they found that some of the antibodies from people. They found that one was able to protect hamsters from lung damage and other infections. The purpose of this was to come up with and create new treatments. During this research they found that some of the antibodies can bind to the brain tissue which can ultimately damage it. Prüss states, “We’re currently trying to prove that clinically and experimentally,” says Prüss.

Was published online in December including Prüss sorry the blood and cerebrospinal fluid of 11 people who were extremely sick with COVID-19. These 11 people had neurological symptoms as well. All these people were able to produce auto antibodies which combined to neurons. There is evidence that when the patients were given intravenous immunoglobin which is a type of antibody it was successful.

Astrocytes, pericytes and autoantibodies we’re not the only  pathways. However it is likely that people with COVID-19 experience article symptoms for many reasons. As stated, In the article, Prüss says a key question is what proportion of cases is caused by each of the pathways. “That will determine treatment,” he says.

SOURCE: https://www.nature.com/articles/d41586-021-01693-6?utm_source=Nature+Briefing

Original article: 

Marshall, M. (2021, July 7). COVID and the brain: researchers zero in on how damage occurs. Nature News. https://www.nature.com/articles/d41586-021-01693-6

Other related articles published on this Open Access Online Scientific Journal include the following:

Covid-19 and its implications on pregnancy

Reporter and Curator: Mr. Srinjoy Chakraborty (Junior Research Felllow) and Dr. Sudipta Saha, Ph.D.

Nir Hacohen and Marcia Goldberg, Researchers at MGH and the Broad Institute identify protein “signature” of severe COVID-19

Reporter and Curator:2012pharmaceutical

Identification of Novel genes in human that fight COVID-19 infection

Reporter and Curator: Amandeep Kaur

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter and Curator: 2012pharmaceutical

Early Details of Brain Damage in COVID-19 Patients

Reporter and Curator: Irina Robu, PhD

Read Full Post »

Ramatroban, a Thromboxane A2/TPr and PGD2/DPr2 receptor antagonist for Acute and Long haul COVID-19

Author: Ajay Gupta, MD

From: “Gupta, Ajay” <ajayg1@hs.uci.edu>
Date: Wednesday, July 7, 2021 at 1:10 PM
To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>
Cc: “Dr. Saul Yedgar” <saulye@ekmd.huji.ac.il>
Subject: Ramatroban, a Thromboxane A2/TPr and PGD2/DPr2 receptor antagonist for Acute and Long haul COVID-19

While corticosteroids may have a role in about 5% of hospitalized patients who have the cytokine storm, currently there is no effective treatment for mild or moderate COVID and long haul COVID. Massive increase in respiratory and plasma thromboxane A2 (TxA2) plays a key role in thromboinflammation and microvascular thrombosis, while an increase in respiratory and plasma PGD2 potentially suppresses innate interferon response, and acquired Th1 anti-viral response, while promoting a maladaptive type 2, anti-helminthic like immune response. Ramatroban is a potent dual receptor antagonist of Thromboxane A2/TPr and PGD2/DPr2 that has been used in Japan for the treatment of allergic rhinitis for past 20 years (Baynas®, Bayer Japan). We first disclosed use of ramatroban for COVID in a provisional patent application filed on 31st March, 2020; followed by the publication Gupta et al, J Mol Genet Med, 2020

Several experts, as outlined below in yellow highlighted text, have supported the idea of using ramatroban as an anti-thrombotic and immunomodulator in COVID-19.

1.     Prof. Louis Flamand, Nicolas Flamand, Eric Boilard Laval Univ. Quebec, Canada: There is a lipid-mediator storm in COVID-19 characterized by massive increases in thromboxane A2 and PGD2 in the lungs and plasma.  “Blocking the deleterious effects of             PGD2 and TxA2 with the dual DPr2/TPr antagonist Ramatroban might be beneficial in COVID-19 Archambault et al, FASEB, June 2021, doi: https://doi.org/10.1096/fj.202100540R

2. Prof. Garret A FitzGerald, Univ. Of Pennsylvania, Member National Academy of Sciences.https://en.wikipedia.org/wiki/Garret_A._FitzGerald “In the current pandemic there may be utility in targeting eicosanoids with existing drugs.  These approaches would likely be most effective early in the disease before the development of ARDS, where cytokines and chemokines dominate. Dexamethasone limits COX-2 expression and might diminish COVID-19 severity and mortality at least in part, by diminishing COX metabolites… Dexamethasone might improve severe COVID-19 by diminishing the prostaglandins / thromboxane storm in the lungs”. “Treatment with a PGD2/DPr2 inhibitor decreased viral load and improved morbidity by upregulating IFN-lambda expression. …..  Antagonism of the thromboxane receptor (TPr) prevents ARDS…. Early administration of well-tolerated TPr antagonists may limit progress to severe COVID-19 (Theken and FitzGerald, Science, 2021)

4.     Prof. Simon Phipps, Univ. of Queensland, Brisbane Australia “It has been hypothesized that DP2 antagonists be repurposed as a novel immunotherapy for the treatment of COVID-19, and this may be appropriate in mild to moderate cases where Th1 immunity is impaired.” (Ullah et al, Mucosal Immunology, 2021)

5.     Prof. Bruce D. Hammock, Distinguished Professor, Univ of California DavisMember US National Academy of Sciences and National Academy of Inventors; April 25, 2021. https://www.entsoc.org/fellows/hammock “I find your idea of blocking specific thromboxane receptors in preventing or reducing some of the devastating co-morbidity of COVID-19 very compelling. … A DPr2 receptor blocker is conceptually attractive in offering the potential of effective therapy and low risk due to a high therapeutic index.” E mail dated April 25, 2021.  (https://ajp.amjpathol.org/action/showPdf?pii=S0002-9440%2820%2930332-1    and http://ucanr.edu/sites/hammocklab/files/328012.pdf)

6. Ann E Eakin, PhD, Senior Scientific Officer, NIH-NIAID “very compelling data supporting potential benefits of ramatroban in both reducing viral load as well as modulating host responses” E Mail dated Nov 20, 2020

7. Prof. James Ritter, MA, DPhil, FRCP, FMedSci, Hon FBPhS https://www.trinhall.cam.ac.uk/contact-us/contact-directory/fellows-and-academics-directory/james-ritter/ “Very impressive, and fascinating” referring to ramatroban for COVID-19 in an e-mail dated Dec 21, 2020

Ramatroban is expected to reduce lung fibrosis in COVID-19 and therefore diminish clinical manifestations of Long haul COVID. Pang et al, 2021 “examined the effect of Ramatroban, a clinical antagonist of both PGD2 and TXA2 receptors, on treating silicosis using a mouse model. The results showed that Ramatroban significantly alleviated silica-induced pulmonary inflammation, fibrosis, and cardiopulmonary dysfunction compared with the control group.” https://www.thno.org/v11p2381.htm

Unfortunately, the animal models of COVID-19 are harsh, lack microvascular thrombosis and immune perturbations characteristic of human disease. These models may be good for testing antivirals but not for testing immunomodulators or anti-thrombotics. There is highly positive anecdotal experience with use of ramatroban in moderately severe COVID-19 (https://www.researchsquare.com/article/rs-474882/v1

Additionally, Ramatroban holds great promise in sickle cell disease, cardiovascular disease https://doi.org/10.1111/j.1527-3466.2004.tb00132.x, and community acquired pneumonia.

Best regards,

Ajay

Ajay Gupta, M.B.,B.S., M.D.

Clinical Professor,

Division of Nephrology, Hypertension and Kidney Transplantation

University of California Irvine  

President & CSO, KARE Biosciences (www.karebio.com)

E-mail:     ajayg1@hs.uci.edu

Cell:         1 (562) 412-6259

Office:     1 (562) 419-7029

Please see some of our recent publications in the COVID area.  

https://assets.researchsquare.com/files/rs-474882/v1/6d209040-e94b-4adf-80a9-3a9eddf93def.pdf?c=1619795476

https://www.uni-muenster.de/Ejournals/index.php/fnp/article/view/3395

https://www.tandfonline.com/doi/full/10.1080/13543784.2021.1950687

https://www.amjmed.com/article/S0002-9343(20)30872-X/fulltext

Read Full Post »

Covid-19 and its implications on pregnancy

Reporter and Curator: Mr. Srinjoy Chakraborty (Junior Research Felllow) and Dr. Sudipta Saha, Ph.D.

Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emerged as a serious global health issue with high transmission rates affecting millions of people worldwide. The SARS-CoV-2 is known to damage cells in the respiratory system, thus causing viral pneumonia. The novel SARS-CoV-2 is a close relative to the previously identified severe acute respiratory syndrome-coronavirus (SARS-CoV) and Middle East respiratory syndrome-coronavirus (MERS-CoV) which affected several people in 2002 and 2012, respectively. Ever since the outbreak of covid-19, several reports have poured in about the impact of Covid-19 on pregnancy. A few studies have highlighted the impact of the viral infection in pregnant women and how they are more susceptible to the infection because of the various physiological changes of the cardiopulmonary and immune systems during pregnancy. It is known that SARS-CoV and MERS-CoV diseases have influenced the fatality rate among pregnant women. However, there are limited studies on the impact of the novel corona virus on the course and outcome of pregnancy.

Figure: commonly observed clinical symptoms of COVID-19 in the general population: Fever and cough, along with dyspnoea, diarrhoea, and malaise are the most commonly observed symptoms in pregnant women, which is similar to that observed in the normal population.

The WHO and the Indian Council of Medical Research (ICMR) have proposed detailed guidelines for treating pregnant women; these guidelines must be strictly followed by the pregnant individual and their families. According to the guidelines issued by the ICMR, the risk of pregnant women contracting the virus to that of the general population. However, the immune system and the body’s response to a viral infection is altered during pregnancy. This may result in the manifestation of more severe symptoms. The ICMR guidelines also state that the reported cases of COVID-19 pneumonia in pregnancy are milder and with good recovery. However, by observing the trends of the other coronavirus infection (SARS, MERS), the risks to the mother appear to increase in particular during the last trimester of pregnancy. Cases of preterm birth in women with COVID-19 have been mentioned in a few case report, but it is unclear whether the preterm birth was always iatrogenic, or whether some were spontaneous. Pregnant women with heart disease are at highest risk of acquiring the infection, which is similar to that observed in the normal population. Most importantly, the ICMR guidelines highlights the impact of the coronavirus epidemic on the mental health of pregnant women. It mentions that the since the pandemic has begun, there has been an increase in the risk of perinatal anxiety and depression, as well as domestic violence. It is critically important that support for women and families is strengthened as far as possible; that women are asked about mental health at every contact.

With the available literature available on the impact of SARS and MERS on reproductive outcome, it has been mentioned that SARS infection did increase the risk of miscarriage, preterm birth and, intrauterine foetal growth restriction. However, the same has not been demonstrated in early reports from COVID-19 infection in pregnancy. According to a study that included 8200 participants conducted by the centre for disease control and prevention, pregnant women may be at a higher risk of acquiring severe infection and need for ICU admissions as compared to their non-pregnant counterparts. However, a detailed and thorough study involving a larger proportion of the population is needed today.

References:

https://www.news-medical.net/news/20210614/COVID-19-in-pregnancy-could-be-less-severe-than-previously-thought-A-Danish-case-study.aspx

https://obgyn.onlinelibrary.wiley.com/doi/10.1111/jog.14696

https://www.nature.com/articles/s41577-021-00525-y

https://www.tandfonline.com/doi/full/10.1080/14767058.2020.1759541

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/special-populations/pregnancy-data-on-covid-19/what-cdc-is-doing.html

https://economictimes.indiatimes.com/news/india/why-is-covid-19-killing-so-many-pregnant-women-in-india/articleshow/82902194.cms?from=mdr

https://content.iospress.com/download/international-journal-of-risk-and-safety-in-medicine/jrs200060?id=international-journal-of-risk-and-safety-in-medicine%2Fjrs200060

Read Full Post »

C.D.C. Reviewing Cases of Heart Problem in Youngsters After Getting Vaccinated and AHA Reassures that Benefits Overwhelm the Risks of Vaccination

Reporter: Amandeep Kaur, B.Sc. , M.Sc.

The latest article in New York times reported by Apoorva Mandavilli outlines the statement of officials that C.D.C. agency is investigating few cases of young adults and teenagers who might have developed myocarditis after getting vaccinated. It is not confirmed by the agency that whether this condition is caused by vaccine or not.

According to the vaccine safety group of the Centers for Disease Control and Prevention, the reports of heart problems experienced by youngsters is relatively very small in number. The group stated that these cases could be unlinked to vaccination. The condition of inflammation of heart muscle which can occur due to certain infections is known as myocarditis.

Moreover, the agency still has to determine any evidence related to vaccines causing the heart issues. The C.D.C. has posted on its website the updated guidance for doctors and clinicians, urging them to be alert to uncommon symptoms related to heart cases among teenagers who are vaccine recipients.

In New York, Dr. Celine Gounder, an infectious disease specialist at Bellevue Hospital Center stated that “It may simply be a coincidence that some people are developing myocarditis after vaccination. It’s more likely for something like that to happen by chance, because so many people are getting vaccinated right now.”

The article reported that the cases appeared mainly in young adults after about four days of their second shot of mRNA vaccines, made by Moderna and Pfizer-BioNTech. Such cases are more prevalent in males as compared to females.

The vaccine safety group stated “Most cases appear to be mild, and follow-up of cases is ongoing.” It is strongly recommended by C.D.C. that American young adults from the age of 12 and above should get vaccinated against COVID-19.

Dr. Yvonne Maldonado, chair of the American Academy of Pediatrics’s Committee on Infectious Diseases stated “We look forward to seeing more data about these cases, so we can better understand if they are related to the vaccine or if they are coincidental. Meanwhile, it’s important for pediatricians and other clinicians to report any health concerns that arise after vaccination.”

Experts affirmed that the potentially uncommon side effects of myocarditis get insignificant compared to the potential risks of SARS-CoV-2 infection, including the continuous syndrome known as “long Covid.” It is reported in the article that acute Covid can lead to myocarditis.

According to the data collected by A.A.P, about 16 thousand children were hospitalized and more than 3.9 million children were infected by coronavirus till the second week of May. In the United States, about 300 children died of SARS-CoV-2 infection, which makes it among the top 10 death causes in children since the start of pandemic.

Dr. Jeremy Faust, an emergency medicine physician at Brigham and Women’s Hospital in Boston stated that “And that’s in the context of all the mitigation measures taken.”

According to researchers, about 10 to 20 of every 1 lakh people each year develop myocarditis in the general population, facing symptoms from fatigue and chest pain to arrhythmias and cardiac arrest, whereas some have mild symptoms which remain undiagnosed.

Currently, the number of reports of myocarditis after vaccination is less than that reported normally in young adults, confirmed by C.D.C. The article reported that the members of vaccine safety group felt to communicate the information about upcoming cases of myocarditis to the providers.

The C.D.C. has not yet specified the ages of the patients involved in reporting. Since December 2020, the Pfizer-BioNTech vaccine was authorized for young people of age 16 and above. The Food and Drug Administration extended the authorization to children of age 12 to 15 years, by the starting of this month.

On 14th May, the clinicians have been alerted by C.D.C. regarding the probable link between myocarditis and vaccination. Within three days, the team started reviewing data on myocarditis, reports filed with the Vaccine Adverse Event Reporting System and others from the Department of Defense.

A report on seven cases has been submitted to the journal Pediatrics for review and State health departments in Washington, Oregon and California have notified emergency providers and cardiologists about the potential problem.

In an interview, Dr. Liam Yore, past president of the Washington State chapter of the American College of Emergency Physicians detailed a case of teenager with myocarditis after vaccination. The patient was provided treatment for mild inflammation of the inner lining of the heart and was discharged afterwards. Later, the young adult returned for care due to decrease in the heart’s output. Dr. Yore reported that still he had come across worse cases in youngsters with Covid, including in a 9-year-old child who arrived at the hospital after a cardiac arrest last winter.

He stated that “The relative risk is a lot in favor of getting the vaccine, especially considering how coronavirus vaccine have been administered.”

In the United States, more than 161 million people have received their first shot of vaccine in which about 4.5 million people were between the age 12 to 18 years.

Benefits Overwhelm Risks of COVID Vaccination, AHA Reassures

The latest statement of American Heart Association (AHA)/ American Stroke Association (ASA) on May 23rd states that the benefits of COVID-19 vaccination enormously outweigh the rare risk for myocarditis cases, which followed the C.D.C. report that the agency is tracking the Vaccine Adverse Events Reporting System (VAERS) and the Vaccine Safety Datalink (VSD) for myocarditis cases linked with mRNA vaccines against coronavirus.

The myocarditis cases in young adults are more often observed after the second dose of vaccine rather than the first one, and have more cases of males than females. The CDC’s COVID-19 Vaccine Safety Technical Work Group (VaST) observed such heart complications after 4 days of vaccination.

CDC reported that “Within CDC safety monitoring systems, rates of myocarditis reports in the window following COVID-19 vaccination have not differed from expected baseline rates.”

The CDC team stated that “The evidence continues to indicate that the COVID-19 vaccines are nearly 100% effective at preventing death and hospitalization due to COVID-19 infection, and Strongly urged all young adults and children 12 years and above to get vaccinated as soon as possible.”

Even though the analysis of myocarditis reports related to coronavirus vaccine is in progress, the AHA/ASA stated that “myocarditis is typically the result of an actual viral infection, and it is yet to be determined if these cases have any correlation to receiving a COVID-19 vaccine.”

Richard Besser, MD, president and CEO of the Robert Wood Johnson Foundation (RWJF) and former acting director of the CDC stated on ABC’s Good Morning America “We’ve lost hundreds of children and there have been thousands who have been hospitalized, thousands who developed an inflammatory syndrome, and one of the pieces of that can be myocarditis.” He added “still, from my perspective, the risk of COVID is so much greater than any theoretical risk from the vaccine.”

After COVID-19 vaccination the symptoms that occur include tiredness, muscle pain, headaches, chills, nausea and fever. The AHA/ASA stated that “typically appear within 24 to 48 hours and usually pass within 36-48 hours after receiving the vaccine.”

All healthcare providers are suggested to be aware of the rare adverse symptoms such as myocarditis, low platelets, blood clots, and severe inflammation. The agency stated that “Healthcare professionals should strongly consider inquiring about the timing of any recent COVID vaccination among patients presenting with these conditions, as needed, in order to provide appropriate treatment quickly.”

President Mitchell S.V. Elkind, M.D., M.S., FAHA, FAAN, Immediate Past President Robert A. Harrington, M.D., FAHA, President-Elect Donald M. Lloyd-Jones, M.D., Sc.M., FAHA, Chief Science and Medical Officer Mariell Jessup, M.D., FAHA, and Chief Medical Officer for Prevention Eduardo Sanchez, M.D, M.P.H., FAAFP are science leaders of AHA/ASA and reflected their views in the following statements:

We strongly urge all adults and children ages 12 and older in the U.S. to receive a COVID vaccine as soon as they can receive it, as recently approved by the U.S. Food and Drug Administration and the CDC. The evidence continues to indicate that the COVID-19 vaccines are nearly 100% effective at preventing death and hospitalization due to COVID-19 infection. According to the CDC as of May 22, 2021, over 283 million doses of COVID-19 vaccines have been administered in the U.S. since December 14, 2020, and more than 129 million Americans are fully vaccinated (i.e., they have received either two doses of the Pfizer-BioNTech or Moderna COVID-19 vaccine, or the single-dose Johnson & Johnson/Janssen COVID-19 vaccine).

We remain confident that the benefits of vaccination far exceed the very small, rare risks. The risks of vaccination are also far smaller than the risks of COVID-19 infection itself, including its potentially fatal consequences and the potential long-term health effects that are still revealing themselves, including myocarditis. The recommendation for vaccination specifically includes people with cardiovascular risk factors such as high blood pressure, obesity and type 2 diabetes, those with heart disease, and heart attack and stroke survivors, because they are at much greater risk of an adverse outcome from the COVID-19 virus than they are from the vaccine.

We commend the CDC’s continual monitoring for adverse events related to the COVID-19 vaccines through VAERS and VSD, and the consistent meetings of ACIP’s VaST Work Group, demonstrating transparent and robust attention to any and all health events possibly related to a COVID-19 vaccine. The few cases of myocarditis that have been reported after COVID-19 vaccination are being investigated. However, myocarditis is usually the result of a viral infection, and it is yet to be determined if these cases have any correlation to receiving a COVID-19 vaccine, especially since the COVID-19 vaccines authorized in the U.S. do not contain any live virus.

We also encourage everyone to keep in touch with their primary care professionals and seek care immediately if they have any of these symptoms in the weeks after receiving the COVID-19 vaccine: chest pain including sudden, sharp, stabbing pains; difficulty breathing/shortness of breath; abnormal heartbeat; severe headache; blurry vision; fainting or loss of consciousness; weakness or sensory changes; confusion or trouble speaking; seizures; unexplained abdominal pain; or new leg pain or swelling.

We will stay up to date with the CDC’s recommendations regarding all potential complications related to COVID-19 vaccines, including myocarditis, pericarditis, central venous sinus thrombosis (CVST) and other blood clotting events, thrombosis thrombocytopenia syndrome (TTS), and vaccine-induced immune thrombosis thrombocytopenia (VITT).

The American Heart Associationrecommends all health care professionals be aware of these very rare adverse events that may be related to a COVID-19 vaccine, including myocarditis, blood clots, low platelets, or symptoms of severe inflammation. Health care professionals should strongly consider inquiring about the timing of any recent COVID vaccination among patients presenting with these conditions, as needed, in order to provide appropriate treatment quickly. As detailed in last month’s AHA/ASA statement, all suspected CVST or blood clots associated with the COVID-19 vaccine should be treated initially using non-heparin anticoagulants. Heparin products should not be administered in any dose if TTS/VITT is suspected, until appropriate testing can be done to exclude heparin-induced antibodies. In addition, health care professionals are required to report suspected vaccine-related adverse events to the Vaccine Adverse Event Reporting System, in accordance with federal regulations.

Individuals should refer to their local and state health departments for specific information about when and where they can get vaccinated. We implore everyone ages 12 and older to get vaccinated so we can return to being together, in person – enjoying life with little to no risk of severe COVID-19 infection, hospitalization or death.

We also support the CDC recommendations last week that loosen restrictions on mask wearing and social distancing for people who are fully vaccinated. For those who are unable to be vaccinated, we reiterate the importance of handwashing, social distancing and wearing masks, particularly for people at high risk of infection and/or severe COVID-19. These simple precautions remain crucial to protecting people who are not vaccinated from the virus that causes COVID-19.

Source:

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/05/04/thriving-vaccines-and-research-weizmann-coronavirus-research-development/

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc.

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. 

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Read Full Post »

Nir Hacohen and Marcia Goldberg, Researchers at MGH and the Broad Institute identify protein “signature” of severe COVID-19

Curator and Reporter: Aviva Lev-Ari, PhD, RN

Longitudinal proteomic analysis of plasma from patients with severe COVID-19 reveal patient survival-associated signatures, tissue-specific cell death, and cell-cell interactions

Open AccessPublished:April 30, 2021DOI:https://doi.org/10.1016/j.xcrm.2021.100287

Highlights

  • 16% of COVID-19 patients display an atypical low-inflammatory plasma proteome
  • Severe COVID-19 is associated with heterogeneous plasma proteomic responses
  • Death of virus-infected lung epithelial cells is a key feature of severe disease
  • Lung monocyte/macrophages drive T cell activation, together promoting epithelial damage

Summary

Mechanisms underlying severe COVID-19 disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNAseq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell type-specific intracellular death signatures, cellular ACE2 expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

Graphical Abstract

Figure thumbnail fx1

Image Source: DOI: https://doi.org/10.1016/j.xcrm.2021.100287

https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(21)00115-4

The quest to identify mechanisms that might be contributing to death in COVID-19: Why do some patients die from this disease, while others — who appear to be just as ill do not?

Researchers at Massachusetts General Hospital (MGH) and the Broad Institute of MIT and Harvard have identified the protein “signature” of severe COVID-19

Interest was to develop methods for studying human immune responses to infections, which they had applied to the condition known as bacterial sepsis. The three agreed to tackle this new problem with the goal of understanding how the human immune system responds to SARS-CoV-2, the novel pathogen that causes COVID-19.

How scientists launched a study in days to probe COVID-19’s unpredictability

Collecting these specimens required a large team of collaborators from many departments, which worked overtime for five weeks to amass blood samples from 306 patients who tested positive for COVID-19, as well as from 78 patients with similar symptoms who tested negative for the coronavirus.

Alexandra-Chloé Villani

Credit : Alexandra-Chloé VillaniResearch associates at Mass General who worked countless hours to process blood samples for the COVID Acute Cohort Study (from left to right: Anna Gonye, Irena Gushterova, and Tom Lasalle)By Leah Eisenstadt

https://www.broadinstitute.org/news/how-scientists-launched-study-days-probe-covid-19%E2%80%99s-unpredictability

As the COVID-19 surge began in March, Mass General and Broad researchers worked around the clock to begin learning why some patients fare worse with the disease than others

Protein signatures in the blood

https://www.broadinstitute.org/news/researchers-identify-protein-%E2%80%9Csignature%E2%80%9D-severe-covid-19

The study found that most patients with COVID-19 have a consistent protein signature, regardless of disease severity; as would be expected, their bodies mount an immune response by producing proteins that attack the virus. “But we also found a small subset of patients with the disease who did not demonstrate the pro-inflammatory response that is typical of other COVID-19 patients,” Filbin said, yet these patients were just as likely as others to have severe disease. Filbin, who is also an assistant professor of emergency medicine at Harvard Medical School (HMS), noted that patients in this subset tended to be older people with chronic diseases, who likely had weakened immune systems.

Among other revelations, this showed that the most prevalent severity-associated protein, a pro-inflammatory protein called interleukin-6 (IL-6) rose steadily in patients who died, while it rose and then dropped in those with severe disease who survived. Early attempts by other groups to treat COVID-19 patients experiencing acute respiratory distress with drugs that block IL-6 were disappointing, though more recent studies show promise in combining these medications with the steroid dexamethasone.

Hacohen, who is a professor of medicine at HMS and director of the Broad’s Cell Circuits Program:

“You can ask which of the many thousands of proteins that are circulating in your blood are associated with the actual outcome,” he said, “and whether there is a set of proteins that tell us something.”

Goldberg, who is a professor of emergency medicine at HMS:

They are highly likely to be useful in figuring out some of the underlying mechanisms that lead to severe disease and death in COVID-19,” she said, noting her gratitude to the patients involved in the study. Their samples are already being used to study other aspects of COVID-19, such as identifying the qualities of antibodies that patients form against the virus.

SOURCES

Original Research

Filbin MR, Mehta A, et al. Longitudinal proteomic analysis of plasma from patients with severe COVID-19 reveal patient survival-associated signatures, tissue-specific cell death, and cell-cell interactionsCell Reports Medicine. Online April 30, 2021. DOI: 10.1016/j.xcrm.2021.100287.

Adapted from a press release originally issued by Massachusetts General Hospital.

https://www.broadinstitute.org/news/researchers-identify-protein-%E2%80%9Csignature%E2%80%9D-severe-covid-19

https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(21)00115-4

Read Full Post »

Thriving Vaccines and Research: Weizmann Institute Coronavirus Research Development

Reporter: Amandeep Kaur, B.Sc., M.Sc.

In early February, Prof. Eran Segal updated in one of his tweets and mentioned that “We say with caution, the magic has started.”

The article reported that this statement by Prof. Segal was due to decreasing cases of COVID-19, severe infection cases and hospitalization of patients by rapid vaccination process throughout Israel. Prof. Segal emphasizes in another tweet to remain cautious over the country and informed that there is a long way to cover and searching for scientific solutions.

A daylong webinar entitled “COVID-19: The epidemic that rattles the world” was a great initiative by Weizmann Institute to share their scientific knowledge about the infection among the Israeli institutions and scientists. Prof. Gideon Schreiber and Dr. Ron Diskin organized the event with the support of the Weizmann Coronavirus Response Fund and Israel Society for Biochemistry and Molecular Biology. The speakers were invited from the Hebrew University of Jerusalem, Tel-Aviv University, the Israel Institute for Biological Research (IIBR), and Kaplan Medical Center who addressed the molecular structure and infection biology of the virus, treatments and medications for COVID-19, and the positive and negative effect of the pandemic.

The article reported that with the emergence of pandemic, the scientists at Weizmann started more than 60 projects to explore the virus from different range of perspectives. With the help of funds raised by communities worldwide for the Weizmann Coronavirus Response Fund supported scientists and investigators to elucidate the chemistry, physics and biology behind SARS-CoV-2 infection.

Prof. Avi Levy, the coordinator of the Weizmann Institute’s coronavirus research efforts, mentioned “The vaccines are here, and they will drastically reduce infection rates. But the coronavirus can mutate, and there are many similar infectious diseases out there to be dealt with. All of this research is critical to understanding all sorts of viruses and to preempting any future pandemics.”

The following are few important projects with recent updates reported in the article.

Mapping a hijacker’s methods

Dr. Noam Stern-Ginossar studied the virus invading strategies into the healthy cells and hijack the cell’s systems to divide and reproduce. The article reported that viruses take over the genetic translation system and mainly the ribosomes to produce viral proteins. Dr. Noam used a novel approach known as ‘ribosome profiling’ as her research objective and create a map to locate the translational events taking place inside the viral genome, which further maps the full repertoire of viral proteins produced inside the host.

She and her team members grouped together with the Weizmann’s de Botton Institute and researchers at IIBR for Protein Profiling and understanding the hijacking instructions of coronavirus and developing tools for treatment and therapies. Scientists generated a high-resolution map of the coding regions in the SARS-CoV-2 genome using ribosome-profiling techniques, which allowed researchers to quantify the expression of vital zones along the virus genome that regulates the translation of viral proteins. The study published in Nature in January, explains the hijacking process and reported that virus produces more instruction in the form of viral mRNA than the host and thus dominates the translation process of the host cell. Researchers also clarified that it is the misconception that virus forced the host cell to translate its viral mRNA more efficiently than the host’s own translation, rather high level of viral translation instructions causes hijacking. This study provides valuable insights for the development of effective vaccines and drugs against the COVID-19 infection.

Like chutzpah, some things don’t translate

Prof. Igor Ulitsky and his team worked on untranslated region of viral genome. The article reported that “Not all the parts of viral transcript is translated into protein- rather play some important role in protein production and infection which is unknown.” This region may affect the molecular environment of the translated zones. The Ulitsky group researched to characterize that how the genetic sequence of regions that do not translate into proteins directly or indirectly affect the stability and efficiency of the translating sequences.

Initially, scientists created the library of about 6,000 regions of untranslated sequences to further study their functions. In collaboration with Dr. Noam Stern-Ginossar’s lab, the researchers of Ulitsky’s team worked on Nsp1 protein and focused on the mechanism that how such regions affect the Nsp1 protein production which in turn enhances the virulence. The researchers generated a new alternative and more authentic protocol after solving some technical difficulties which included infecting cells with variants from initial library. Within few months, the researchers are expecting to obtain a more detailed map of how the stability of Nsp1 protein production is getting affected by specific sequences of the untranslated regions.

The landscape of elimination

The article reported that the body’s immune system consists of two main factors- HLA (Human Leukocyte antigen) molecules and T cells for identifying and fighting infections. HLA molecules are protein molecules present on the cell surface and bring fragments of peptide to the surface from inside the infected cell. These peptide fragments are recognized and destroyed by the T cells of the immune system. Samuels’ group tried to find out the answer to the question that how does the body’s surveillance system recognizes the appropriate peptide derived from virus and destroy it. They isolated and analyzed the ‘HLA peptidome’- the complete set of peptides bound to the HLA proteins from inside the SARS-CoV-2 infected cells.

After the analysis of infected cells, they found 26 class-I and 36 class-II HLA peptides, which are present in 99% of the population around the world. Two peptides from HLA class-I were commonly present on the cell surface and two other peptides were derived from coronavirus rare proteins- which mean that these specific coronavirus peptides were marked for easy detection. Among the identified peptides, two peptides were novel discoveries and seven others were shown to induce an immune response earlier. These results from the study will help to develop new vaccines against new coronavirus mutation variants.

Gearing up ‘chain terminators’ to battle the coronavirus

Prof. Rotem Sorek and his lab discovered a family of enzymes within bacteria that produce novel antiviral molecules. These small molecules manufactured by bacteria act as ‘chain terminators’ to fight against the virus invading the bacteria. The study published in Nature in January which reported that these molecules cause a chemical reaction that halts the virus’s replication ability. These new molecules are modified derivates of nucleotide which integrates at the molecular level in the virus and obstruct the works.

Prof. Sorek and his group hypothesize that these new particles could serve as a potential antiviral drug based on the mechanism of chain termination utilized in antiviral drugs used recently in the clinical treatments. Yeda Research and Development has certified these small novel molecules to a company for testing its antiviral mechanism against SARS-CoV-2 infection. Such novel discoveries provide evidences that bacterial immune system is a potential repository of many natural antiviral particles.

Resolving borderline diagnoses

Currently, Real-time Polymerase chain reaction (RT-PCR) is the only choice and extensively used for diagnosis of COVID-19 patients around the globe. Beside its benefits, there are problems associated with RT-PCR, false negative and false positive results and its limitation in detecting new mutations in the virus and emerging variants in the population worldwide. Prof. Eran Elinavs’ lab and Prof. Ido Amits’ lab are working collaboratively to develop a massively parallel, next-generation sequencing technique that tests more effectively and precisely as compared to RT-PCR. This technique can characterize the emerging mutations in SARS-CoV-2, co-occurring viral, bacterial and fungal infections and response patterns in human.

The scientists identified viral variants and distinctive host signatures that help to differentiate infected individuals from non-infected individuals and patients with mild symptoms and severe symptoms.

In Hadassah-Hebrew University Medical Center, Profs. Elinav and Amit are performing trails of the pipeline to test the accuracy in borderline cases, where RT-PCR shows ambiguous or incorrect results. For proper diagnosis and patient stratification, researchers calibrated their severity-prediction matrix. Collectively, scientists are putting efforts to develop a reliable system that resolves borderline cases of RT-PCR and identify new virus variants with known and new mutations, and uses data from human host to classify patients who are needed of close observation and extensive treatment from those who have mild complications and can be managed conservatively.

Moon shot consortium refining drug options

The ‘Moon shot’ consortium was launched almost a year ago with an initiative to develop a novel antiviral drug against SARS-CoV-2 and was led by Dr. Nir London of the Department of Chemical and Structural Biology at Weizmann, Prof. Frank von Delft of Oxford University and the UK’s Diamond Light Source synchroton facility.

To advance the series of novel molecules from conception to evidence of antiviral activity, the scientists have gathered support, guidance, expertise and resources from researchers around the world within a year. The article reported that researchers have built an alternative template for drug-discovery, full transparency process, which avoids the hindrance of intellectual property and red tape.

The new molecules discovered by scientists inhibit a protease, a SARS-CoV-2 protein playing important role in virus replication. The team collaborated with the Israel Institute of Biological Research and other several labs across the globe to demonstrate the efficacy of molecules not only in-vitro as well as in analysis against live virus.

Further research is performed including assaying of safety and efficacy of these potential drugs in living models. The first trial on mice has been started in March. Beside this, additional drugs are optimized and nominated for preclinical testing as candidate drug.

Source: https://www.weizmann.ac.il/WeizmannCompass/sections/features/the-vaccines-are-here-and-research-abounds

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/19/identification-of-novel-genes-in-human-that-fight-covid-19-infection/

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Identification of Novel genes in human that fight COVID-19 infection

Reporter: Amandeep Kaur, B.Sc., M.Sc. (ept. 5/2021)

Scientists have recognized human genes that fight against the SARS-CoV-2 viral infection. The information about genes and their function can help to control infection and aids the understanding of crucial factors that causes severe infection. These novel genes are related to interferons, the frontline fighter in our body’s defense system and provide options for therapeutic strategies.

The research was published in the journal Molecular Cell.

Sumit K. Chanda, Ph.D., professor and director of the Immunity and Pathogenesis Program at Sanford Burnham Prebys reported in the article that they focused on better understanding of the cellular response and downstream mechanism in cells to SARS-CoV-2, including the factors which causes strong or weak response to viral infection. He is the lead author of the study and explained that in this study they have gained new insights into how the human cells are exploited by invading virus and are still working towards finding any weak point of virus to develop new antivirals against SARS-CoV-2.

With the surge of pandemic, researchers and scientists found that in severe cases of COVID-19, the response of interferons to SARS-CoV-2 viral infection is low. This information led Chanda and other collaborators to search for interferon-stimulated genes (ISGs), are genes in human which are triggered by interferons and play important role in confining COVID-19 infection by controlling their viral replication in host.

The investigators have developed laboratory experiments to identify ISGs based on the previous knowledge gathered by the outbreak of SARS-CoV-1 from 2002-2004 which was similar to COVID-19 pandemic caused by SARS-CoV-2 virus.

The article reports that Chanda mentioned “we found that 65 ISGs controlled SAR-CoV-2 infection, including some that inhibited the virus’ ability to enter cells, some that suppressed manufacture of the RNA that is the virus’s lifeblood, and a cluster of genes that inhibited assembly of the virus.” They also found an interesting fact about ISGs that some of these genes revealed control over unrelated viruses, such as HIV, West Nile and seasonal flu.

Laura Martin-Sancho, Ph.D., a senior postdoctoral associate in the Chanda lab and first author of the study reported in the article that they identified 8 different ISGs that blocked the replication of both SARS-CoV-1 and CoV-2 in the subcellular compartments responsible for packaging of proteins, which provide option to exploit these vulnerable sites to restrict infection. They are further investigating whether the genetic variability within the ISGs is associated with COVID-19 severity.

The next step for researchers will be investigating and observing the biology of variants of SARS-CoV-2 that are evolving and affecting vaccine efficacy. Martin-Sancho mentioned that their lab has already started gathering all the possible variants for further investigation.

“It’s vitally important that we don’t take our foot off the pedal of basic research efforts now that vaccines are helping control the pandemic,” reported in the article by Chanda.

“We’ve come so far so fast because of investment in fundamental research at Sanford Burnham Prebys and elsewhere, and our continued efforts will be especially important when, not if, another viral outbreak occurs,” concluded Chanda.

Source: https://medicalxpress.com/news/2021-04-covid-scientists-human-genes-infection.html

Reference: Laura Martin-Sancho et al. Functional Landscape of SARS-CoV-2 Cellular Restriction, Molecular Cell (2021). DOI: 10.1016/j.molcel.2021.04.008

Other related articles were published in this Open Access Online Scientific Journal, including the following:

Fighting Chaos with Care, community trust, engagement must be cornerstones of pandemic response

Reporter: Amandeep Kaur

https://pharmaceuticalintelligence.com/2021/04/13/fighting-chaos-with-care/

Mechanism of Thrombosis with AstraZeneca and J & J Vaccines: Expert Opinion by Kate Chander Chiang & Ajay Gupta, MD

Reporter & Curator: Dr. Ajay Gupta, MD

https://pharmaceuticalintelligence.com/2021/04/14/mechanism-of-thrombosis-with-astrazeneca-and-j-j-vaccines-expert-opinion-by-kate-chander-chiang-ajay-gupta-md/

T cells recognize recent SARS-CoV-2 variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/03/30/t-cells-recognize-recent-sars-cov-2-variants/

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2021/02/12/need-for-global-response-to-sars-cov-2-viral-variants/

Mechanistic link between SARS-CoV-2 infection and increased risk of stroke using 3D printed models and human endothelial cells

Reporter: Adina Hazan, PhD

https://pharmaceuticalintelligence.com/2020/12/28/mechanistic-link-between-sars-cov-2-infection-and-increased-risk-of-stroke-using-3d-printed-models-and-human-endothelial-cells/

Read Full Post »

Older Posts »

%d