Archive for the ‘coronavirus’ Category

From Cell Press:  New Insights on the D614G Strain of COVID: Will a New Mutated Strain Delay Vaccine Development?

Reporter: Stephen J. Williams, PhD

Two recent articles in Cell Press, both peer reviewed, discuss the emergence and potential dominance of a new mutated strain of COVID-19, in which the spike protein harbors a D614G mutation.

In the first article “Making Sense of Mutation: What D614G means for the COVID-19 pandemic Remains Unclear”[1] , authors Drs. Nathan Grubaugh, William Hanage, and Angela Rasmussen discuss the recent findings by Korber et al. 2020 [2] which describe the potential increases in infectivity and mortality of this new mutant compared to the parent strain of SARS-CoV2.  For completeness sake I will post this article as to not defer from their interpretations of this important paper by Korber and to offer some counter opinion to some articles which have surfaced this morning in the news.

Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear


Nathan D. Grubaugh1 *, William P. Hanage2 *, Angela L. Rasmussen3 * 1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA 2Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA 3Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA Correspondence: grubaughlab@gmail.com


Abstract: Korber et al. (2020) found that a SARS-CoV-2 variant in the spike protein, D614G, rapidly became dominant around the world. While clinical and in vitro data suggest that D614G changes the virus phenotype, the impact of the mutation on transmission, disease, and vaccine and therapeutic development are largely unknown.

Introduction: Following the emergence of SARS-CoV-2 in China in late 2019, and the rapid expansion of the COVID19 pandemic in 2020, questions about viral evolution have come tumbling after. Did SARS-CoV-2 evolve to become better adapted to humans? More infectious or transmissible? More deadly? Virus mutations can rise in frequency due to natural selection, random genetic drift, or features of recent epidemiology. As these forces can work in tandem, it’s often hard to differentiate when a virus mutation becomes common through fitness or by chance. It is even harder to determine if a single mutation will change the outcome of an infection, or a pandemic. The new study by Korber et al. (2020) sits at the heart of this debate. They present compelling data that an amino acid change in the virus’ spike protein, D614G, emerged early during the pandemic, and viruses containing G614 are now dominant in many places around the world. The crucial questions are whether this is the result of natural selection, and what it means for the COVID-19 pandemic. For viruses like SARS-CoV-2 transmission really is everything – if they don’t get into another host their lineage ends. Korber et al. (2020) hypothesized that the rapid spread of G614 was because it is more infectious than D614. In support of their hypothesis, the authors provided evidence that clinical samples from G614 infections have a higher levels of viral RNA, and produced higher titers in pseudoviruses from in vitro experiments; results that now seem to be corroborated by others [e.g. (Hu et al., 2020; Wagner et al., 2020)]. Still, these data do not prove that G614 is more infectious or transmissible than viruses containing D614. And because of that, many questions remain on the potential impacts, if any, that D614G has on the COVID-19 pandemic.

The authors note that this new G614 variant has become the predominant form over the whole world however in China the predominant form is still the D614 form.  As they state

“over the period that G614 became the global majority variant, the number of introductions from China where D614 was still dominant were declining, while those from Europe climbed. This alone might explain the apparent success of G614.”

Grubaugh et al. feel there is not enough evidence that infection with this new variant will lead to higher mortality.  Both Korber et al. and the Seattle study (Wagner et al) did not find that the higher viral load of this variant led to a difference in hospitalizations so apparently each variant might be equally as morbid.

In addition, Grubaugh et al. believe this variant would not have much affect on vaccine development as, even though the mutation lies within the spike protein, D614G is not in the receptor binding domain of the spike protein.  Korber suggest that there may be changes in glycosylation however these experiments will need to be performed.  In addition, antibodies from either D614 or G614 variant infected patients could cross neutralize.


Conclusions: While there has already been much breathless commentary on what this mutation means for the COVID19 pandemic, the global expansion of G614 whether through natural selection or chance means that this variant now is the pandemic. As a result its properties matter. It is clear from the in vitro and clinical data that G614 has a distinct phenotype, but whether this is the result of bonafide adaptation to human ACE2, whether it increases transmissibility, or will have a notable effect, is not clear. The work by Korber et al. (2020) provides an early base for more extensive epidemiological, in vivo experimental, and diverse clinical investigations to fill in the many critical gaps in how D614G impacts the pandemic.

The link to the Korber Cell paper is here: https://www.cell.com/cell/fulltext/S0092-8674(20)30820-5

Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

DOI: https://doi.org/10.1016/j.cell.2020.06.043


  • The consistent increase of G614 at regional levels may indicate a fitness advantage


  • G614 is associated with lower RT PCR Ct’s, suggestive of higher viral loads in patients


  • The G614 variant grows to higher titers as pseudotyped virions


A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.



  1. Grubaugh, N.D., Hanage, W.P., Rasmussen, A.L., Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear, Cell (2020), doi: https:// doi.org/10.1016/j.cell.2020.06.040.
  2. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., et al. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182.
  3. Endo, A., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott, S., Kucharski, A.J., and Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 5, 67.
  4. Hu, J., He, C.-L., Gao, Q.-Z., Zhang, G.-J., Cao, X.-X., Long, Q.-X., Deng, H.-J., Huang, L.-Y., Chen, J., Wang, K., et al. (2020). The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv 2020.06.20.161323.
  5. Wagner, C., Roychoudhury, P., Hadfield, J., Hodcroft, E.B., Lee, J., Moncla, L.H., Müller, N.F., Behrens, C., Huang, M.-L., Mathias, P., et al. (2020). Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. Https://github.com/blab/ncov-D614G.

Read Full Post »

National Cancer Institute Director Neil Sharpless says mortality from delays in cancer screenings due to COVID19 pandemic could result in tens of thousands of extra deaths in next decade

Reporter: Stephen J Williams, PhD

Source: https://cancerletter.com/articles/20200619_1/

NCI Director’s Report

Sharpless: COVID-19 expected to increase mortality by at least 10,000 deaths from breast and colorectal cancers over 10 years

By Matthew Bin Han Ong

This story is part of The Cancer Letter’s ongoing coverage of COVID-19’s impact on oncology. A full list of our coverage, as well as the latest meeting cancellations, is available here.

The COVID-19 pandemic will likely cause at least 10,000 excess deaths from breast cancer and colorectal cancer over the next 10 years in the United States.

Scenarios run by NCI and affiliated modeling groups predict that delays in screening for and diagnosis of breast and colorectal cancers will lead to a 1% increase in deaths through 2030. This translates into 10,000 additional deaths, on top of the expected one million deaths resulting from these two cancers.

“For both these cancer types, we believe the pandemic will influence cancer deaths for at least a decade,” NCI Director Ned Sharpless said in a virtual joint meeting of the Board of Scientific Advisors and the National Cancer Advisory Board June 15. “I find this worrisome as cancer mortality is common. Even a 1% increase every decade is a lot of cancer suffering.

“And this analysis, frankly, is pretty conservative. We do not consider cancers other than those of breast and colon, but there is every reason to believe the pandemic will affect other types of cancer, too. We did not account for the additional non-lethal morbidity from upstaging, but this could also be significant and burdensome.”

An editorial by Sharpless on this subject appears in the journal Science.

The early analyses, conducted by the institute’s Cancer Intervention and Surveillance Modeling Network, focused on breast and colorectal cancers, because these are common, with relatively high screening rates.

CISNET modelers created four scenarios to assess long-term increases in cancer mortality rates for these two diseases:

  1. The pandemic has no effect on cancer mortality


  1. Delayed screening—with 75% reduction in mammography and, colorectal screening and adenoma surveillance for six months


  1. Delayed diagnosis—with one-third of people delaying follow-up after a positive screening or diagnostic mammogram, positive FIT or clinical symptoms for six months during a six-month period


  1. Combination of scenarios two and three


Treatment scenarios after diagnosis were not included in the model. These would be: delays in treatment, cancellation of treatment, or modified treatment.

“What we did is show the impact of the number of excess deaths per year for 10 years for each year starting in 2020 for scenario four versus scenario one,” Eric “Rocky” Feuer, chief of the NCI’s Statistical Research and Applications Branch in the Surveillance Research Program, said to The Cancer Letter.

Feuer is the overall project scientist for CISNET, a collaborative group of investigators who use simulation modeling to guide public health research and priorities.

“The results for breast cancer were somewhat larger than for colorectal,” Feuer said. “And that’s because breast cancer has a longer preclinical natural history relative to colorectal cancer.”

Modelers in oncology are creating a global modeling consortium, COVID-19 and Cancer Taskforce, to “support decision-making in cancer control both during and after the crisis.” The consortium is supported by the Union for International Cancer Control, The International Agency for Research on Cancer, The International Cancer Screening Network, the Canadian Partnership Against Cancer, and Cancer Council NSW, Australia.

A spike in cancer mortality rates threatens to reverse or slow down—at least in the medium term—the steady trend of reduction of cancer deaths. On Jan. 8, the American Cancer Society published its annual estimates of new cancer cases and deaths, declaring that the latest data—from 2016 to 2017—show the “largest ever single-year drop in overall cancer mortality of 2.2%.” Experts say that innovation in lung cancer treatment and the success of smoking cessation programs are driving the sharp decrease (The Cancer LetterFeb. 7, 2020).

The pandemic is expected to have broader impact, including increases in mortality rates for other cancer types. Also, variations in severity of COVID-19 in different regions in the U.S. will influence mortality metrics.

“There’s some other cancers that might have delays in screening—for example cervical, prostate, and lung cancer, although lung cancer screening rates are still quite low and prostate cancer screening should only be conducted on those who determine that the benefits outweigh the harms,” Feuer said. “So, those are the major screening cancers, but impacts of delays in treatment, canceling treatment or alternative treatments—could impact a larger range of cancer sites.

“This model assumes a moderate disruption which resolves after six months, and doesn’t consider non-lethal morbidities associated with the delay. One thing I think probably is occurring is regional variation in these impacts,” Feuer said. “If you’re living in New York City where things were ground zero for some of the worst impact early on, probably delays were larger than other areas of the country. But now, as we’re seeing upticks in other areas of the country, there may be in impact in these areas as well”

How can health care providers mitigate some of these harms? For example, for people who delayed screening and diagnosis, are providers able to perform triage, so that those at highest risk are prioritized?

“From a strictly cancer control point of view, let’s get those people who delayed screening, or followup to a positive test, or treatment back on schedule as soon as possible,” Feuer said. “But it’s not a simple calculus, because in every situation, we have to weigh the harms and benefits. As we come out of the pandemic, it tips more and more to, ‘Let’s get back to business with respect to cancer control.’

“Telemedicine doesn’t completely substitute for seeing patients in person, but at least people could get the advice they need, and then are triaged through their health care providers to indicate if they really should prioritize coming in. That helps the individual and the health care provider  weigh the harms and benefits, and try to strategize about what’s best for any individual.”

If the pandemic continues to disrupt routine care, cancer-related mortality rates would rise beyond the predictions in this model.

“I think this analysis begins to help us understand the costs with regard to cancer outcomes of the pandemic,” Sharpless said. “Let’s all agree we will do everything in our power to minimize these adverse effects, to protect our patients from cancer suffering.”


For more Articles on COVID-19 please see our Coronavirus Portal at



Read Full Post »

Crowdsourcing Difficult-to-Collect Epidemiological Data in Pandemics: Lessons from Ebola to the current COVID-19 Pandemic


Curator: Stephen J. Williams, Ph.D.


At the onset of the COVID-19 pandemic, epidemiological data from the origin of the Sars-Cov2 outbreak, notably from the Wuhan region in China, was sparse.  In fact, official individual patient data rarely become available early on in an outbreak, when that data is needed most. Epidemiological data was just emerging from China as countries like Italy, Spain, and the United States started to experience a rapid emergence of the outbreak in their respective countries.  China, made of 31 geographical provinces, is a vast and complex country, with both large urban and rural areas.




As a result of this geographical diversity and differences in healthcare coverage across the country, epidemiological data can be challenging.  For instance, cancer incidence data for regions and whole country is difficult to calculate as there are not many regional cancer data collection efforts, contrasted with the cancer statistics collected in the United States, which is meticulously collected by cancer registries in each region, state and municipality.  Therefore, countries like China must depend on hospital record data and autopsy reports in order to back-extrapolate cancer incidence data.  This is the case in some developed countries like Italy where cancer registry is administered by a local government and may not be as extensive (for example in the Napoli region of Italy).







Population density China by province. Source https://www.unicef.cn/en/figure-13-population-density-province-2017




Epidemiologists, in areas in which data collection may be challenging, are relying on alternate means of data collection such as using devices connected to the internet-of-things such as mobile devices, or in some cases, social media is becoming useful to obtain health related data.  Such as effort to acquire pharmacovigilance data, patient engagement, and oral chemotherapeutic adherence using the social media site Twitter has been discussed in earlier posts: (see below)

Twitter is Becoming a Powerful Tool in Science and Medicine at https://pharmaceuticalintelligence.com/2014/11/06/twitter-is-becoming-a-powerful-tool-in-science-and-medicine/






Now epidemiologists are finding crowd-sourced data from social media and social networks becoming useful in collecting COVID-19 related data in those countries where health data collection efforts may be sub-optimal.  In a recent paper in The Lancet Digital Health [1], authors Kaiyuan Sun, Jenny Chen, and Cecile Viboud present data from the COVID-19 outbreak in China using information collected over social network sites as well as public news outlets and find strong correlations with later-released government statistics, showing the usefulness in such social and crowd-sourcing strategies to collect pertinent time-sensitive data.  In particular, the authors aim was to investigate this strategy of data collection to reduce the time delays between infection and detection, isolation and reporting of cases.

The paper is summarized below:

Kaiyuan Sun, PhD Jenny Chen, BScn Cécile Viboud, PhD . (2020).  Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study.  The Lancet: Digital Health; Volume 2, Issue 4, E201-E208.



As the outbreak of coronavirus disease 2019 (COVID-19) progresses, epidemiological data are needed to guide situational awareness and intervention strategies. Here we describe efforts to compile and disseminate epidemiological information on COVID-19 from news media and social networks.


In this population-level observational study, we searched DXY.cn, a health-care-oriented social network that is currently streaming news reports on COVID-19 from local and national Chinese health agencies. We compiled a list of individual patients with COVID-19 and daily province-level case counts between Jan 13 and Jan 31, 2020, in China. We also compiled a list of internationally exported cases of COVID-19 from global news media sources (Kyodo News, The Straits Times, and CNN), national governments, and health authorities. We assessed trends in the epidemiology of COVID-19 and studied the outbreak progression across China, assessing delays between symptom onset, seeking care at a hospital or clinic, and reporting, before and after Jan 18, 2020, as awareness of the outbreak increased. All data were made publicly available in real time.


We collected data for 507 patients with COVID-19 reported between Jan 13 and Jan 31, 2020, including 364 from mainland China and 143 from outside of China. 281 (55%) patients were male and the median age was 46 years (IQR 35–60). Few patients (13 [3%]) were younger than 15 years and the age profile of Chinese patients adjusted for baseline demographics confirmed a deficit of infections among children. Across the analysed period, delays between symptom onset and seeking care at a hospital or clinic were longer in Hubei province than in other provinces in mainland China and internationally. In mainland China, these delays decreased from 5 days before Jan 18, 2020, to 2 days thereafter until Jan 31, 2020 (p=0·0009). Although our sample captures only 507 (5·2%) of 9826 patients with COVID-19 reported by official sources during the analysed period, our data align with an official report published by Chinese authorities on Jan 28, 2020.


News reports and social media can help reconstruct the progression of an outbreak and provide detailed patient-level data in the context of a health emergency. The availability of a central physician-oriented social network facilitated the compilation of publicly available COVID-19 data in China. As the outbreak progresses, social media and news reports will probably capture a diminishing fraction of COVID-19 cases globally due to reporting fatigue and overwhelmed health-care systems. In the early stages of an outbreak, availability of public datasets is important to encourage analytical efforts by independent teams and provide robust evidence to guide interventions.

A Few notes on Methodology:

  • The authors used crowd-sourced reports from DXY.cn, a social network for Chinese physicians, health-care professionals, pharmacies and health-care facilities. This online platform provides real time coverage of the COVID-19 outbreak in China
  • More data was curated from news media, television and includes time-stamped information on COVID-19 cases
  • These reports are publicly available, de-identified patient data
  • No patient consent was needed and no ethics approval was required
  • Data was collected between January 20, 2020 and January 31,2020
  • Sex, age, province of identification, travel history, dates of symptom development was collected
  • Additional data was collected for other international sites of the pandemic including Cambodia, Canada, France, Germany, Hong Kong, India, Italy, Japan, Malaysia, Nepal, Russia, Singapore, UK, and USA
  • All patients in database had laboratory confirmation of infection



  • 507 patient data was collected with 153 visited and 152 resident of Wuhan
  • Reported cases were skewed toward males however the overall population curve is skewed toward males in China
  • Most cases (26%) were from Beijing (urban area) while an equal amount were from rural areas combined (Shaanzi and Yunnan)
  • Age distribution of COVID cases were skewed toward older age groups with median age of 45 HOWEVER there were surprisingly a statistically high amount of cases less than 5 years of age
  • Outbreak progression based on the crowd-sourced patient line was consistent with the data published by the China Center for Disease Control
  • Median reporting delay in the authors crowd-sourcing data was 5 days
  • Crowd-sourced data was able to detect apparent rapid growth of newly reported cases during the collection period in several provinces outside of Hubei province, which is consistent with local government data

The following graphs show age distribution for China in 2017 and predicted for 2050.

projected age distribution China 2050. Source https://chinapower.csis.org/aging-problem/













The authors have previously used this curation of news methodology to analyze the Ebola outbreak[2].

A further use of the crowd-sourced database was availability of travel histories for patients returning from Wuhan and onset of symptoms, allowing for estimation of incubation periods.

The following published literature has also used these datasets:

Backer JA, Klinkenberg D, Wallinga J: Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020, 25(5).

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J: The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of internal medicine 2020, 172(9):577-582.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine 2020, 382(13):1199-1207.

Dataset is available on the Laboratory for the Modeling of Biological and Socio-technical systems website of Northeastern University at https://www.mobs-lab.org/.


  1. Sun K, Chen J, Viboud C: Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital health 2020, 2(4):e201-e208.
  2. Cleaton JM, Viboud C, Simonsen L, Hurtado AM, Chowell G: Characterizing Ebola Transmission Patterns Based on Internet News Reports. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2016, 62(1):24-31.

Read Full Post »

Powerful AI Tools Being Developed for the COVID-19 Fight

Curator: Stephen J. Williams, Ph.D.


Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

IBM Releases Novel AI-Powered Technologies to Help Health and Research Community Accelerate the Discovery of Medical Insights and Treatments for COVID-19

April 3, 2020 | Written by: 

IBM Research has been actively developing new cloud and AI-powered technologies that can help researchers across a variety of scientific disciplines accelerate the process of discovery. As the COVID-19 pandemic unfolds, we continue to ask how these technologies and our scientific knowledge can help in the global battle against coronavirus.

Today, we are making available multiple novel, free resources from across IBM to help healthcare researchers, doctors and scientists around the world accelerate COVID-19 drug discovery: from gathering insights, to applying the latest virus genomic information and identifying potential targets for treatments, to creating new drug molecule candidates.

Though some of the resources are still in exploratory stages, IBM is making them available to qualifying researchers at no charge to aid the international scientific investigation of COVID-19.

Today’s announcement follows our recent leadership in launching the U.S. COVID-19 High Performance Computing Consortium, which is harnessing massive computing power in the effort to help confront the coronavirus.

Streamlining the Search for Information

Healthcare agencies and governments around the world have quickly amassed medical and other relevant data about the pandemic. And, there are already vast troves of medical research that could prove relevant to COVID-19. Yet, as with any large volume of disparate data sources, it is difficult to efficiently aggregate and analyze that data in ways that can yield scientific insights.

To help researchers access structured and unstructured data quickly, we are offering a cloud-based AI research resource that has been trained on a corpus of thousands of scientific papers contained in the COVID-19 Open Research Dataset (CORD-19), prepared by the White House and a coalition of research groups, and licensed databases from the DrugBankClinicaltrials.gov and GenBank. This tool uses our advanced AI and allows researchers to pose specific queries to the collections of papers and to extract critical COVID-19 knowledge quickly. Please note, access to this resource will be granted only to qualified researchers. To learn more and request access, please click here.

Aiding the Hunt for Treatments

The traditional drug discovery pipeline relies on a library of compounds that are screened, improved, and tested to determine safety and efficacy. In dealing with new pathogens such as SARS-CoV-2, there is the potential to enhance the compound libraries with additional novel compounds. To help address this need, IBM Research has recently created a new, AI-generative framework which can rapidly identify novel peptides, proteins, drug candidates and materials.

We have applied this AI technology against three COVID-19 targets to identify 3,000 new small molecules as potential COVID-19 therapeutic candidates. IBM is releasing these molecules under an open license, and researchers can study them via a new interactive molecular explorer tool to understand their characteristics and relationship to COVID-19 and identify candidates that might have desirable properties to be further pursued in drug development.

To streamline efforts to identify new treatments for COVID-19, we are also making the IBM Functional Genomics Platform available for free for the duration of the pandemic. Built to discover the molecular features in viral and bacterial genomes, this cloud-based repository and research tool includes genes, proteins and other molecular targets from sequenced viral and bacterial organisms in one place with connections pre-computed to help accelerate discovery of molecular targets required for drug design, test development and treatment.

Select IBM collaborators from government agencies, academic institutions and other organizations already use this platform for bacterial genomic study. And now, those working on COVID-19 can request the IBM Functional Genomics Platform interface to explore the genomic features of the virus. Access to the IBM Functional Genomics Platform will be prioritized for those conducting COVID-19 research. To learn more and request access, please click here.

Drug and Disease Information

Clinicians and healthcare professionals on the frontlines of care will also have free access to hundreds of pieces of evidence-based, curated COVID-19 and infectious disease content from IBM Micromedex and EBSCO DynaMed. Using these two rich decision support solutions, users will have access to drug and disease information in a single and comprehensive search. Clinicians can also provide patients with consumer-friendly patient education handouts with relevant, actionable medical information. IBM Micromedex is one of the largest online reference databases for medication information and is used by more than 4,500 hospitals and health systems worldwide. EBSCO DynaMed provides peer-reviewed clinical content, including systematic literature reviews in 28 specialties for comprehensive disease topics, health conditions and abnormal findings, to highly focused topics on evaluation, differential diagnosis and management.

The scientific community is working hard to make important new discoveries relevant to the treatment of COVID-19, and we’re hopeful that releasing these novel tools will help accelerate this global effort. This work also outlines our long-term vision for the future of accelerated discovery, where multi-disciplinary scientists and clinicians work together to rapidly and effectively create next generation therapeutics, aided by novel AI-powered technologies.

Learn more about IBM’s response to COVID-19: IBM.com/COVID19.

Source: https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/

DiA Imaging Analysis Receives Grant to Accelerate Global Access to its AI Ultrasound Solutions in the Fight Against COVID-19

Source: https://www.grantnews.com/news-articles/?rkey=20200512UN05506&filter=12337

Grant will allow company to accelerate access to its AI solutions and use of ultrasound in COVID-19 emergency settings

TEL AVIV, IsraelMay 12, 2020 /PRNewswire-PRWeb/ — DiA Imaging Analysis, a leading provider of AI based ultrasound analysis solutions, today announced that it has received a government grant from the Israel Innovation Authority (IIA) to develop solutions for ultrasound imaging analysis of COVID-19 patients using Artificial Intelligence (AI).Using ultrasound in point of care emergency settings has gained momentum since the outbreak of COVID-19 pandemic. In these settings, which include makeshift hospital COVID-19 departments and triage “tents,” portable ultrasound offers clinicians diagnostic decision support, with the added advantage of being easier to disinfect and eliminating the need to transport patients from one room to another.However, analyzing ultrasound images is a process that it is still mostly done visually, leading to a growing market need for automated solutions and decision support.As the leading provider of AI solutions for ultrasound analysis and backed by Connecticut Innovations, DiA makes ultrasound analysis smarter and accessible to both new and expert ultrasound users with various levels of experience. The company’s flagship LVivo Cardio Toolbox for AI-based cardiac ultrasound analysis enables clinicians to automatically generate objective clinical analysis, with increased accuracy and efficiency to support decisions about patient treatment and care.

The IIA grant provides a budget of millions NIS to increase access to DiA’s solutions for users in Israel and globally, and accelerate R&D with a focus on new AI solutions for COVID-19 patient management. DiA solutions are vendor-neutral and platform agnostic, as well as powered to run in low processing, mobile environments like handheld ultrasound.Recent data highlights the importance of looking at the heart during the progression of COVID-19, with one study citing 20% of patients hospitalized with COVID-19 showing signs of heart damage and increased mortality rates in those patients. DiA’s LVivo cardiac analysis solutions automatically generate objective, quantified cardiac ultrasound results to enable point-of-care clinicians to assess cardiac function on the spot, near patients’ bedside.

According to Dr. Ami Applebaum, the Chairman of the Board of the IIA, “The purpose of IIA’s call was to bring solutions to global markets for fighting COVID-19, with an emphasis on relevancy, fast time to market and collaborations promising continuity of the Israeli economy. DiA meets these requirements with AI innovation for ultrasound.”DiA has received several FDA/CE clearances and established distribution partnerships with industry leading companies including GE Healthcare, IBM Watson and Konica Minolta, currently serving thousands of end users worldwide.”We see growing use of ultrasound in point of care settings, and an urgent need for automated, objective solutions that provide decision support in real time,” said Hila Goldman-Aslan, CEO and Co-founder of DiA Imaging Analysis, “Our AI solutions meet this need by immediately helping clinicians on the frontlines to quickly and easily assess COVID-19 patients’ hearts to help guide care delivery.”

About DiA Imaging Analysis:
DiA Imaging Analysis provides advanced AI-based ultrasound analysis technology that makes ultrasound accessible to all. DiA’s automated tools deliver fast and accurate clinical indications to support the decision-making process and offer better patient care. DiA’s AI-based technology uses advanced pattern recognition and machine-learning algorithms to automatically imitate the way the human eye detects image borders and identifies motion. Using DiA’s tools provides automated and objective AI tools, helps reduce variability among users, and increases efficiency. It allows clinicians with various levels of experience to quickly and easily analyze ultrasound images.

For additional information, please visit http://www.dia-analysis.com.

Read Full Post »

via Special COVID-19 Christopher Magazine

Special COVID-19 Christopher Magazine

Christopher-coverAntonio Giordano, MD, PhD. explains what COVID is and how to contain the infection, pointing also to what will require attention next.

Please see this special release at http://online.fliphtml5.com/qlnw/zgau/#p=1


Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Reporter: Stephen J. Williams, PhD

NCI Activities: COVID-19 and Cancer Research

Dinah S. Singer. NCI-DCB, Bethesda, MD @theNCI

  • at the NCI they are pivoting some of their clinical trials to address COVID related issues like trials on tocilizumab and producing longitudinal cohorts of cancer patients and COVID for further analysis and studies
  • vaccine and antibody efforts at NCI and they are asking all their cancer centers (Cancer COVID Consortium) collecting data
  • Moonshot is collecting metadata but now COVID data from cellular therapy patients
  • they are about to publish new grants related to COVID and adding option to investigators to use current funds to do COVID related options
  • she says if at home take the time to think, write manuscripts, analyze data BE A REVIEWER FOR JOURNALS,
  • SSMMART project from Moonshot is still active
  • so far NCI and NIH grant process is ongoing although the peer review process is slower
  • they have extended deadlines with NO justification required (extend 90 days)
  • also allowing flexibility on use of grant money and allowing more early investigator rules and lax on those rules
  • non competitive renewals (type 5) will allow restructuring of project; contact program administrator
  • she and NCI heard rumors of institutions shutting down cancer research she is stressing to them not to do that
  • non refundable travel costs may be charged to the grant
  • NCI contemplating on extending the early investigator time
  • for more information go to NIH and NCI COVID-19 pages which have more guidances updated regularly

Follow on Twitter at:








Read Full Post »

e-Proceedings 2020 World Medical Innovation Forum – COVID-19, AI and the Future of Medicine, Featuring Harvard and Industry Leader Insights – MGH & BWH, Virtual Event: Monday, May 11, 8:15 a.m. – 5:15 p.m. ET


Featuring Clinical, Scientific, Tech, AI and Venture Experts



2020 WMIF | Welcome

34 views1 hour ago


2020 WMIF | Disruptive Dozen #1

122 views1 day ago



2020 WMIF | Disruptive Dozen #4

57 views2 days ago




THIS IS THE EVENT I COVERED on 5/11/2020  BY INVITATION AS MEDIA for Mass General Brigham


From: “Coburn, Christopher Mark” <CMCOBURN@PARTNERS.ORG>

Date: Tuesday, May 12, 2020 at 6:48 AM

To: “Coburn, Christopher Mark” <CMCOBURN@PARTNERS.ORG>

Subject: REGISTRANT RECAP | World Medical Innovation Forum  


Dear World Forum Attendee, 

On behalf of Mass General Brigham CEO Anne Klibanski MD and Forum co-Chairs Gregg Meyer MD and Ravi Thadhani MD, many thanks for being among the nearly 11,000 registrants representing 93 countries, 46 states and 3200 organizations yesterday. A community was established around many pressing topics that  will continue long into the future. We hope you have a chance to examine the attached survey results. There are several revealing items that should be the basis for ongoing discussion. We expect to be in touch regularly during the year. Among the plans is a “First Look” video series highlighting top Mass General Brigham Harvard faculty as well as emerging Harvard investigators.  As promised, we  wanted to also share visual Forum session summaries.  You will be able to access the recordings on the Forum’s YouTube page . The first set will go up this morning

We hope you will join us for the 2021 Forum!  

Thanks again, Chris


Mass General Brigham (formerly Partners Healthcare) is pleased to invite media to attend the World Medical Innovation Forum (WMIF) virtual event on Monday, May 11. Our day-long interactive web event features expert discussions of COVID-related infectious disease innovation and the pandemic’s impact on transforming medicine, plus insights on how care may be radically transformed post-COVID. The agenda features nearly 70 executive speakers from the healthcare industry, venture, start-ups, consumer health and the front lines of COVID care, including many of our Harvard Medical School-affiliated researchers and clinicians. The event replaces our annual in-person conference, which we plan to resume in 2021.


Aviva Lev-Ari, PhD, RN, Editor-in Chief, Leaders in Pharmaceutical Business Intelligence (LPBI) Group, Boston will cover the event in Real Time as MEDIA for our Coronavirus Portal



Launched on 3/14/2020

8:15 – 8:25 AM
Opening Remarks

Dr. Klibanski will welcome participants to the 2020 World Medical Innovation Forum, a global — and this year, virtual — gathering of more than 5,000 senior health care leaders. This annual event was established to respond to the intensifying transformation of health care and its impact on innovation. The Forum is rooted in the belief that no matter the magnitude of that change, the center of health care needs to be a shared, fundamental commitment to collaborative innovation – industry and academia working together to improve patient lives. No collaborative endeavor is more pressing than responding to the COVID-19 pandemic.

Scott Sperling, Co-President, Thomas H. Lee Partners; Chairman of the Board of Directors, Mass General Brigham

  • Introducing Anne Klibanski – Leadership at its best for breakthroughs in the entire system when return to normalcy

Anne Klibanski, MD, President & CEO, Mass General Brigham

  • Collaborative innovation between Industry and Hospitals and Government
  • Expediting innovations: Prophylactic, Diagnostics, research and care delivery
  • COVID caregivers contribution to this battle, patient experience and outcome

Add Panel to Calendar

8:25 – 8:50 AM
Care in the Next 18 Months – Routine, Elective, Remote

Hospital chief executives reflect on how health care will evolve over the next 18 months in the face of COVID-19. What will routine health care look like? What about elective surgeries and other interventions? And will care-at-a-distance continue to be an essential component? Simply put, how will we provide manage, and pay for health care in a world forever changed by COVID-19?

Gregg Meyer, MD, Chief Clinical Officer, Mass General Brigham; Interim President, NWH; Professor of Medicine, HMS

John Fernandez,  President, Mass Eye and Ear and Mass General Brigham Ambulatory Care

  • Out patients decrease in volume now social distancing enabled by using parking lot as waiting rooms
  • Pre visit and post visit websites will become places of touch – patients accessing via website

Elizabeth Nabel, MD, President, Brigham Health; Professor of Medicine, HMS

  • Support to frontline care
  • Old normal will not be the new normal
  • Telehealth and digital health, work force, healthcare experience, improve access
  • lower medical expense
  • Patients were afraid
  • deferred cancer operation and treatment
  • Cath Lab less 50% occupied
  • Hospitals are safe and patients must come back for procedures
  • COVID-19 only 20% of all patients
  • ICU and OR Scheduling rethink procedure digital care delivers procedures
  • deploy workforce work across repurposed units hybrids, talent acquisition new strategy
  • COVID-19 will have distinct areas
  • BWH – Patient-Nurse-Doctor relations in healing Healthcare team became the Family of the Patients

Peter Slavin, MD, President, MGH; Professor, Health Care Policy, HMS

  • Reemerging more complicated
  • In patients and Out patient realigned with care for COVID-19
  • Telemedicine 85% of outpatients visits at MGH
  • virtual care will dominate the future of care
  • disadvantaged populations suffered more in the pandemic Communities in Chelsea and Revere household received kits social determinants of illness

Add Panel to Calendar

8:50 – 9:15 AM
COVID-19: Technology Solutions Now and in the Future

Experts leading large teams at the epicenter of the coronavirus outbreak discuss how technology is shaping the pandemic response today and in the coming years. What technology categories are most important? What tools are healthcare organizations, biopharmaceutical companies, and other organizations leveraging to battle this crisis? How will those tools evolve? And, importantly, how can technology inform the medical response to future pandemics? What were the biggest technology surprises in the current response?

Alice Park, Senior Writer, Time

Stephane Bancel, CEO, Moderna

  • mRNA synthetic RNA of Spike protein injected to stir immune response
  • Phase II working with FDA starting Phase III early Summer
  • 15 mcg dose available in 2020
  • using own capital to invest to scale up manufacturing no help from Gov’t Grant for clinical trial not for manufacturing

Paul Biddinger, MD, Medical Director for Emergency Preparedness, MGH; Associate Professor of Emergency Medicine, HMS

  • Sharing information across the system aggregate data technologies
  • ML as Guidance in resource coordination

David Kaufman, MD, PhD, Head of Translational Development, Bill & Melinda Gates Medical Research Institute

  • drug development, clinical operations remote monitoring
  • repurpose compounds usinf libraries
  • scalability and Global vaccine cheap and available globally
  • complexity is in coordinations – toolset  biology tool RNA mapping viral screening primaru cells and organoids
  • Outcomes: Aging and co-morbidities
  • Discovery effort using tools infrastructure maintained between pandemics

Rochelle Walensky, MDChief, Infectious Disease, Steve and Deborah Gorlin MGH Research Scholar, MGH; Professor of Medicine, HMS

  • shared photos important for Public health, using iPhone distribution Demedicalize Testic – not only at clinics but at many placed contact tracing and diagnosis in 24 hours – iPhone is invaluable GPS capability – privacy issues
  • detect patients with high risk and existing infection monitoring
  • Public Health – Thermometer given to Patients – data collected centrally any spike and pulse oximeter given to home – remote
  • Anxiety in opening the economy requires a bit of giving up on privacy
  • TeleHealth and monitoring remotely
  • Pharmacy and workplace as points to start Testing vs Order and a nurse call

Add Panel to Calendar

9:15 – 9:40 AM
Digital Health Becomes a Pillar: Tools, Payment, Data

Deployed in the crucible of the coronavirus pandemic, digital health has now become an essential pillar in the delivery of care. Why is that significant? How and why did it happen? What are the essential tools and components? How is the electronic health record and other health data contributing to this digital movement?

Are there novel use cases for telehealth that arose during the first phase of the COVID-19 pandemic? How can digital technologies help enable a full return to work. Thinking ahead to the fall and a possible second wave, are there things we should be doing today to ensure this technology to better detect and profile a resurgence and enhance the patient benefit.

David Louis, MD, Pathologist-in-Chief, MGH; Benjamin Castleman Professor of Pathology, HMS

  • DIgitsl technologies – boostong and innovating
  • upscale activity
  • risk of upscaling on Providers
  • Adaptations of innovation

Alistair Erskine, MD, Chief Digital Health Officer, Mass General Brigham

Adam Landman, MD, VP, Chief Information and Digital Innovation Officer, BH; Associate Professor of Emergency Medicine, HMS

  • COVID-19 call center across Partners, Chat bots automated screening tools, Microsoft assisted 60,000 users of chat bots triaging by screening calls of the Hotline
  • TeleHealth transformation may be lost due to reimbursement which may not be reimburse after the emergency is over Insurers to incentivize use of of TeleHealth
  • In person care: Redesign and how to provide In care for the staff and for the Patients

Brooke LeVasseur, CEO, AristaMD

  • Access problem due to care shortage of specialty care
  • technology better allocate resources
  • Industry and Hospital Institutions populations they serve
  • innovations needs a sustainable economic model for reimbursement
  • Inequity issues How Telehealth can benefit all of Society, potential for future solutions

Lee Schwamm, MD, Director, Center for TeleHealth and Exec Vice Chair, Neurology, MGH; Vice President, Virtual Care/Digital Health, Mass General Brigham; Professor, Neurology, HMS

  • Surge capabilities
  • generate insight
  • Research and Innovation needs embedding in the enterprise
  • technical gap in maintenance
  • supply chain disrupted

Add Panel to Calendar

9:40 – 9:45 AM
9:45 – 10:05 AM
Bayer Pharma Reflections on Innovation: Creating, Collaborating, and Accelerating Discovery During and After a Pandemic

Dr. Moeller will reflect on how Bayer is weathering the organizational challenges posed by the COVID-19 pandemic. How does a global pharmaceutical company continue to drive drug development when its labs are shut down? What are the critical elements needed to keep the engines of innovation firing even in the face of a global public health crisis? How does a global r&d enterprise plan for an uncertain fall 2020 given a potential return of the virus.

John Fish, CEO, Suffolk; Chairman of Board Trustees, Brigham Health

  • COPD

Janet Wu, Bloomberg

Joerg Moeller, MD, PhD, Head of Research & Development, Pharmaceuticals Division, Bayer AG

  • led team of 9 products
  • Unprecedented is COVID-19: effect on work, travel, life
  • Anti-Malaria vs COVID-19: In China testing early chloroquine approved for RA and anti Malaria Government in China experimental and Bayer supports Clinical Trials by Bill & Melinda Foundation
  • In 8 weeks most Scientist work from home – amazed what was accomplished by 80% of Bayer working from home
  • production is kept ongoing anti-infective for Pneumonia
  • focus on most critical and keep experiment critical and push out studies run Globally – No pre-maturely study was interrupted completely
  • Great collaboration Flexibility with regulatory agencies in Europe and with FDA – levels not seen before
  • R&D in Pharma – when out different point than when we started: Opportunities- Compound libraries OPEN after the COVID Pandemic, speed of decision making, team spirit outstanding – levels not seen before
  • Partnerships: Bayer testing machines and ventilators shared, accelerate mechanisms for new drug development
  • evidence for repurposing drugs: Chloroquine
  • Solidarity – everyone are in it TOGETHER, keep that after the Pandemic is over – levels not seen before

Add Panel to Calendar

10:05 – 10:30 AM
The Patient Experience During the Pandemic

The coronavirus outbreak is not only testing health care staff and resources, it is also having an overwhelming impact on patients. This panel will focus on the approach and technologies providers are using to address the patient experience along the continuum of care.

Thomas Sequist, MD, Chief Patient Experience and Equity Officer, Mass General Brigham; Professor of Medicine and Health Care Policy, HMS

Anjali Kataria, CEO, Mytonomy

  • Video overcome illiteracy and provide personal engagement without the negative
  • Home health will be the shift – a human component will not go away – sensor technology in car, bathroom
  • COVID-19 accelerated user adoption of Telehealth
  • Digital technologies as an equailizer Hispanic patients consumed for information with the new technologies

Daniel Kuritzkes, MD, Chief, Division of Infectious Diseases, BH; Harriet Ryan Albee Professor of Medicine, HMS

  • conserve PPE impacted Physicians ability to see Patients, Nurses meet patients vs Physicians that delivered care remotely – laying on hands was missing in the care
  • Masks will not come off but in a while, can’t allow the infection to surge and curtail hospitals from functioning, use mask for the foreseable future


Peter Lee, PhD, Corporate Vice President, Microsoft Research and Incubation

  • Interactive Chat bots 1 out of 500 hospitals around the Globe adopted the Chat Bot for Patient Intake
  • Scaling telemetry with feedback loop
  • iPad at bedside, platform orchestration, new workflows for COVID-19 patients in the backend guiding Patients in the Process was new infrastructure was in the front line
  • preparing for a game change in Medicine: Patients demanding new experience
  • Historical context for physicians contribution to care and bridge the digital divide

Jag Singh, MD, PhD, Cardiologist & Founding Director, Resynchronization and Advanced Cardiac Therapeutics Program, MGH; Professor of Medicine, HMS

  • Isolation is unbearable
  • Predictive analytics
  • no going back to before Pandemic
  • COVID-19 only severe go to hospital
  • Human contact enhanced interaction with families and Docs

Add Panel to Calendar

10:30 – 10:55 AM
The Role of AI and Big Data in Fighting COVID-19 and the Next Global Crisis – Successes and Aspirations

AI is a key weapon used to fight COVID-19. What are the biggest successes so far? Which applications show the most promise for the future? Can it help a return to work? Can AI help predict and even prevent the next global health care crisis?

Alice Park, Senior Writer, Time

Mike Devoy, MD, EVP, Medical Affairs & Pharmacovigilance and CMO, Bayer AG

  • AI allows speeding up Genome of Spike Proteins sequencing
  • Partnership with Academia help focus effort
  • openness and willingness to collaborate and take risk in Therapeutics

Karen DeSalvo, MD,  Chief Health Officer, Google Health

  • Partnership with Apple on Contact Tracing System – BLE – only for Health applications
  • Public Health as driver as consumer Privacy preserving
  • Individual level data collection for AI applications, privacy giving up for public good
  • Trust component – in sharing data

Keith Dreyer, DO, PhD, Chief Data Science Officer, Mass General Brigham; Vice Chairman, Radiology, MGH; Associate Professor, Radiology, HMS

  • COVID allowed data on contact tracing
  • AI in image capturing for Public health – target Imaging use data to be equivalent to Human Testing at Home va in ER 1 in 10, 000 vs all populations
  • Data to AI application SW providers are stewards Open source , no conflict of interest and no discussion on profits
  • Each country will have own lessens

Add Panel to Calendar

10:55 – 11:20 AM
Designing for Infection Prevention: Innovation and Investment in Personal Protective Equipment and Facility Design

As with many pathogens, prevention is the best defense against SARS-CoV2, the virus that causes COVID-19. Panelists will discuss the insights, design strategies, technologies, and practices that are emerging to guard against infection and how those innovations are being applied to protect health care providers and their patients.
Based on what was learned during the spring of 2020, are there specific changes that will lessen morbidity and mortality in a potential a second wave?

Erica Shenoy, MD, PhD, Associate Chief, Infection Control Unit, MGH; Assistant Professor, HMS

Shelly AndersonSVP, Strategic Initiatives and Partnerships, & Chief Strategy Officer, BH

  • How to establish the New normal
  • Surveillence for new sources of infection
  • Operations under uncertainty
  • learned to be effective with data monitoring, training, facility adaptation to new roles
  • Investments in new materials to stabilize the supply chain: Additional suppliers,
  • Extend internal supply work with R&D on alternative materials

Michele Holcomb, PhD, EVP, Strategy and Corporate Development, Cardinal Health

  • Optimize toward lower cost vs availability of supply
  • Diverting supply chain to manufacturing not in PPE business


Guillermo Tearney, MD, PhD, Remondi Family Endowed MGH Research Institute Chair, Mike and Sue Hazard MGH Research Scholar, MGH; Professor, Pathology, HMS

  • 3D Printing innovations for filtration capacity of particles, respirators decontaminated, prevention of patient transmission
  • Negative pressure applied on materials as second line of protection beyond PPE
  • CPAP to be used
  • weaning from Ventilators to CPAP
  • Environment to be protected from air born pathogens

Teresa Wilson, Director/Architect, Colliers Project Leaders

  • Physical Design of the facility and rooms – use design to minimize Hospital infections principals of location of clean vs dirty functions
  • room kept cleaned, how long it takes to clean, where is the sink, hands free, modular construction plug & play design of rooms functions

Add Panel to Calendar

11:20 – 11:25 AM
11:25 – 11:45 AM
Preparing for Fall 2020 and Beyond: Production, Innovation, Optimization

How does a global medical technology and life sciences company respond to the health challenges posed by COVID-19? Mr. Murphy will reflect on how his organization is working to meet the unprecedented demand for life-saving medical equipment for diagnosing, treating, and managing coronavirus patients. How does a large manufacturer make adjustments to FDA regulated products and supply chains in time to help lessen the impact of a second wave of COVID-19 infections.

Jonathan Kraft, President, The Kraft Group; Chair, Mass General Hospital Board of Trustees

  • 90 countries around the Globe – collaborative innovations partnership with GE Health – all assets around the World
  • Academic with GE Health AI, Diagnostics, data set for ML for Health care

Timothy Ferris, MD, CEO, MGPO; Professor, HMS

Kieran Murphy, CEO, GE Healthcare

  • Partnership GE Health & MGH
  • COVID-19 Innovations and Customers needs: Ventilators and
  • ICU Cloud application with Microsoft to save PPE and Labor, monitor several ICU rooms at once by technology
  • Quadruple the production and enter new contracts, crisis exposed weaknesses in supply chain of many products
  • Shortage of PPE was not expected, flexibility and trusted relations with GE Health Suppliers
  • CT in a BOX – 42 Slices in a container – no exposure to radiation in prefabricated rooms in field hospital requiring no contact with clinicians and rapid response
  • Command control center with John Hopkins University
  • Manufacturing facilities in China communicate the situation of the business and the customers needs buyers in the Health care industry
  • Future for Biotech industry: Modular systems deploy rapidly, test vaccine, SPEED is everything productivity & Speed
  • Productivity will increase collaboration and speed like partnership with FORD and MIcrosoft

Add Panel to Calendar

11:45 AM – 12:10 PM
Big Tech and Digital Health

Tech giants are dedicating their vast resources to aid in the global response to the coronavirus. This panel will highlight how the big data and computational power of major tech companies is being deployed to help contain the current pandemic through new technologies and services, enable return to work, and how it could help prevent future ones.

Natasha Singer, Reporter, New York Times

Amanda Goltz, Principal, Business Development, Alexa Health & Wellness, Amazon

Michael Mina, MD, PhD, Associate Medical Director, Molecular Virology, BH; Assistant Professor, Epidemiology, Immunology and Infectious Diseases, Harvard Chan School

  • Limitations on Viral Testing
  • Shortage of Swabs for testing
  • Tech giant: Amazon, Walmart – global reach in supply chain
  • new collaborations formed on super charge
  • Antigen test for home administration consumerization of the Testing
  • Walmart can be positioned for blood tests
  • Not only Physicians can order tests
  • Microsoft and Amazon can help in interpretation of the Test using Alexa

Marcus Osborne, VP, Walmart Health, Walmart

Jim Weinstein, MD, SVP, Microsoft

Add Panel to Calendar

12:10 – 12:35 PM
12:35 – 12:55PM
Insights on Pandemics and Health Care from the National Security Community

General Alexander, a renowned expert on national security as well as pandemics and health care, will reflect on how AI can help identify and predict future global disease outbreaks and enable fully reopening commerce. He will also discuss what health care systems can learn from the response to COVID-19 to ensure preparedness for the next infectious disease challenge.

Gregg Meyer, MD, Chief Clinical Officer, Mass General Brigham; Interim President, NWH; Professor of Medicine, HMS

General (Ret) Keith Alexander, Co-CEO, IronNet Cybersecurity

Add Panel to Calendar

12:55 – 1:20 PM
Calibrating Innovation Opportunity and Urgency: Medical and Social

The social and medical needs of patients are deeply intertwined, yet there are significant gaps in the tools and technologies being developed to help address those needs. These are especially apparent in the non-uniform impact of COVID-19. Harnessing opportunities, particularly for patients whose needs fall into the low medical complexity/high social complexity category — a group often overlooked by health care innovators.

Natasha Singer, Reporter, New York Times

Giles Boland, MD, Chair, Department of Radiology, BH; Philip H. Cook Professor of Radiology, HMS

  • Boston Hope: 1400 patients were treated at Boston Convention Center, 700 COVID -19 patients and 700 post acute after release from ICUs
  • Policy makers to address social determinants of Health

Amit Phadnis, Chief Digital Officer and GE Company Officer, GE Healthcare

  • Crisis will go away the innovations will stay and develop
  • Population Health to benefit from iPhone in Africa and in India mapping hotspots in populations
  • Multi channels TV, Phones and other devices – social disparities – no app to address social inequality

Krishna Yeshwant, MD, General Partner, GV; Instructor in Medicine, BH

  • communities most affected by social determinants of Health like in Chelsea in MA, a hotspot for COVID-19
  • Google Ventures – social issues are most complex invest in underprivileged

Add Panel to Calendar

1:20 – 1:45 PM
FDA Role in Managing Crisis and Anticipating the Next

The FDA and other regulatory bodies have played a key role in managing the coronavirus pandemic. How will the agency’s priorities shift in the coming months as community transmission (ideally) slows? What is the FDA’s role in return to work? What is the FDA doing to anticipate future health crises? How will these drive new tools and effect that rate of innovation?

Ravi Thadhani, MD, CAO, Mass General Brigham; Professor of Medicine and Faculty Dean for Academic Programs, HMS

Amy Abernethy, MD, PhD, Principal Deputy Commissioner & Acting CIO, FDA

  • Future – common tools, more efficient studies study protocols and study design evaluation
  • Learned what need to be put in place to move fast learn what is not in place
  • post pandemic regulatories lessons for being ready for the next one

Lindsey Baden, MD, Director, Clinical Research, Division of Infectious Diseases, BH; Associate Professor, HMS

  • Identify diagnostics for clinical definition of a virus unknown
  • treatment to be developed
  • Sick patients in need for treatment, researchers and clinicians need the best available FDA and the hospitals are flexible in responding
  • Spread globally like a respiratory virus
  • IRB – fast than ever before FDA and Pharma, DSMB – speed

Add Panel to Calendar

1:45– 2:05 PM
Keeping Priority on the Biggest Diseases

Biogen CEO Michel Vounatsos will discuss how Biogen is tackling some of society’s most devastating neurological and neurodegenerative disorders, and share his perspective on the impact the global COVID-19 pandemic is having on the biopharmaceutical industry.

Jean-François Formela, MD, Partner, Atlas Venture

  • Testing programs – lack of government cooordination

Michel Vounatsos, CEO, Biogen

  • Venture community supportive
  • to be on the safe side
  • employees tested every evenings to prevent rebound of the pandemic
  • Pandemic is acceleration progress that was only dreamt about
  • Opportunities in technologies new drugs,
  • Biogen will lead the new model
  • ALS – rare genetic expression Phase I encouraging
  • Neuro-immunology – MS phase III Parkinson drug
  • Lessons from COVID-19: Delay in clinical trials because Patients are fearing Hospital admission – Stroke patient did not go to Hospital
  • Biogen is joining the fight against COVID
  • Neuroimmunology is the strength – remain focus


Add Panel to Calendar

2:05 – 2:30 PM
Building the Plane While Flying: The Experience of Real-Time Innovation from the Front Line

The COVID-19 crisis has required continuous, real time innovation, impacting the way care is delivered on the front lines and across care continuum. This panel will present the perspective, innovations and experiences of care givers interacting directly with patients across the continuum of care – acute, post-acute, rehab and home care.

Ann Prestipino, SVP; Incident Commander, MGH; Teaching Associate, HMS

  • coming out of crisis
  • the New normal will be diferent

Theresa Gallivan, RN, Associate Chief Nurse, MGH

  • Ambulatory procedures
  • 700 nurses were deployed
  • 164 ICU beds increase of 90%
  • Health care demand will change in the future
  • focussed problem alarms from ventilators were not coordinated till biomed engineers arrives to device a solution


Karen Reilly, DNP, RN, Associate Chief Nursing Officer, Critical Care, Cardiovascular and Surgical Services, BH

  • Collaborate and move forward
  • Interdisciplinary team: Physical therapy help quickly
  • tech to communicate with families
  • Ready – I wish I had information to stay ahead of the curve
  • New normal ability to expand and contract

Ross Zafonte, DO, SVP, Research Education and Medical Affairs, SRN; Earle P. and Ida S. Charlton Professor of Physical Medicine and Rehabilitation, HMS

  • Rehabilitation in Cambridge Spaulding Brighton
  • Off loading to rehab from other units
  • Flexibility MGH Brigham – learn to be a new organization
  • Hotspots optimal mapping
  • Right person at right challenge
  • Stay ready for catastrophies
  • Telecare and Tele rehabilitation – greater benefit on TeleHealth or not who will not benefit from Rehab

Add Panel to Calendar

2:30 – 2:55 PM
CEO Roundtable: Will the Innovation Model Remain as It Was

As we envision a post-COVID-19 world, how will the model for biomedical innovation change? What lessons have been learned? Was this pandemic a once-in-a-lifetime event or should organizations begin to weave pandemic planning into their business and operations strategies? Panelists will discuss these and other related questions.

Janet Wu, Bloomberg

Mike Mahoney, CEO, Boston Scientific

  • China 6% of Sales
  • Employees – 148 Counties
  • support hospitals – 57% of volume
  • Resilience for liquidity Variable cost needed be removes partially
  • How will the company come out stronger
  • Innovations by business model innovations – Remote physicians in Japan by European experts in OR
  • Next week 10% of Product management and Quality are priority to come back
  • working remotely works very well except for R&S who needs Labs

Bernd Montag, PhD, CEO, Siemens Healthineers

  • Keep present business and the emerging needs for technologies
  • Serology Test
  • Antibody Test genomic testing
  • Company is Global but Health care is local

Add Panel to Calendar

2:55 – 3:05 PM
3:05 – 3:30 PM
Emergency and Urgent Care: How COVID-19 Vulnerabilities and Solutions Will Change the Model

How are the roles of emergency medicine and urgent care changing in light of the COVID-19 pandemic? Panelists will discuss this topic as well as how current and anticipated new technologies can aid in the delivery of community, urgent, and emergency care now and in the future.

Given a false negative at the point of care has consequences well beyond the patient being treated, does this change what can be offered in the various patient care settings?

Ron Walls, MD, EVP and Chief Operating Officer, BH; Neskey Family Professor of Emergency Medicine, HMS

Troyen Brennan, MD, EVP and CMO, CVS Health

  • Labs – Quest Diagnostics
  • Point of care – Tests will move to Home will replace Labs
  • Pandemic heated hard people of color and comorbidities

David Brown, MD, Chair, Department of Emergency Medicine, MGH; MGH Trustees Professor of Emergency Medicine, HMS

  • Tele Urgent care
  • EMS Providers using TeleHealth
  • Scaled up capability needed administered by Governmental agency
  • new surges of some disease after Re-opening
  • Sensitivity of test for ill patient
  • Demand for Urgent Care will decline higher acuity will increase

Julie Lankiewicz, Head, Clinical Affairs & Health Economics Outcomes Research, Bose Health

  • Management of care with VRE other microbial agents
  • Vulnerable populations EKG between patients no more
  • mitigation of care – Brand new prescriptions for Anxiety and burnout
  • Digital solution to replace medications – audio content to avoid pharmacology by other methods of relaxation
  • Herd immunity  – Digital transformation

Michael VanRooyen, MD, Chairman, Department of Emergency Medicine, BH; Director, Humanitarian Initiative, Harvard University; Professor, HMS

  •  Separate Patients from Providers
  • Infection threat – Intubation – Tent for airsolize – trap air in the hood
  • manage Emergence Health OUT side of EM at Hospital
  • Rapid testing will continue to be central in Emergency Care

Add Panel to Calendar

3:30 – 3:55 PM
Accelerating Diagnostics – Maintaining the Priority: Lab, Home and Digital

COVID-19 diagnostics, a linchpin in controlling viral spread — what caused testing in the U.S. to fall so far behind and how can those missteps be prevented in the future? How do the diagnostics industry, and academic medicine, develop the tests that enable group activities including businesses sports, and community? What is the profile of diagnostic tests coming online in the coming months and into next year? What lessons can be learned to guide the global health community in future disease outbreaks? Given the biological complexity, required performance standards, and immense volume is a simple DTC assays possible on a greatly accelerated timeline.

Jeffrey Golden, MD, Chair, Department of Pathology, BH; Ramzi S. Cotran Professor of Pathology, HMS

James Brink, MD, Chief, Department of Radiology, MGH; Juan M. Taveras Professor of Radiology, HMS

  • social determinant of care – communities not able to social distance, multiple languages
  • Radiology: Rapid evolution of pandemic
  • MGB – Standardizations

John Iafrate, MD, PhD, Vice Chair, Academic Affairs, MGH; Professor, Pathology, HMS

  • Ability for Rapid testing was not in existence in the US
  • CDC Test deployed
  • BD and Roche diagnostics will
  • recipients and donors of antibodies

Celine Roger-Dalbert, VP Diagnostic Assays R&D – Integrated Diagnostic Solutions, BD Life Sciences

  • Telemedicine collection of samples outside the hospital
  • Testing if a patient had – serology – antibody – past exposure after day 14
  • Testing if a patient has – PCR after 10 days the virus is not infectious but it is present
  • antigen detection testing
  • molecular test

Matt Sause, President and CEO, Roche Diagnostics Corporation

  • Serology – more people become infected
  • active infection
  • Partnership between FDA and the manufactures
  • In the US scaling – infrastructure in place is a must


Add Panel to Calendar

3:55 – 4:15 PM
Return to Work: Understanding the Technologies and Strategies

Diagnostic testing is a linchpin of the worldwide response to the coronavirus. How does a global leader pivot to develop molecular diagnostics for a novel global pathogen? How does it scale, including managing international supply chains, to provide unprecedented levels of products and services. What are the expectations for return to work and a possible disease spike in fall 2020 or beyond. How will the diagnostics industry be permanently changed.

Peter Markell, EVP, Finance and Administration, CFO & Treasurer, Mass General Brigham

Marc Casper, Chairman, President and CEO, Thermo Fisher Scientific

  • Re-opening the economy requires Testing for certification of health
  • Testing bringing confidence
  • PCR – have or have not viral proteins: 5Millions a week, June 10 million tests
  • antibody testing will also become available in massive scale
  • Supply chain, more preparedness, robustness of the supply chain
  • Buying supply in China vs US based
  • stockpiling by governments not only at the Hospital level vs JIT shocks to the system
  • Work from home – productivity is good, work from home not ideal environment
  • Transportation and elevators – social distancing – impossible
  • Global change enormous Telemedicine ramp up Academic center Telemedicine will prevail
  • more resilient Health care system dialogue and communications across countries technology will play a role it will improve Health care every where

Add Panel to Calendar

4:15 – 4:40 PM
Digital Therapeutics: Current and Future Opportunities

Digital therapeutics (DTx) represents an emerging class of therapies that is poised for significant growth. Yet already, these software-driven, evidence-based tools for the prevention, management, and/or treatment of disease are already changing patients’ lives. This panel will address how existing DTx are having an early impact — in the COVID-19 pandemic and — and where current development efforts are headed in the coming years especially if there is a aggressive return of the virus in the fall 2020 or later.

Hadine Joffe, MD, Vice Chair for Research, Department of Psychiatry, Executive Director, Mary Horrigan Connors Center for Women’s Health and Gender Biology, BH; Paula A. Johnson Professor, Women’s Health, HMS

Priya Abani, CEO, AliveCor

  • Medical grade EKG devices
  • Telemedicine on the rise

Julia Hu, CEO, Lark Health

  • AI 24×7 counseling data streaming in data
  • TeleHealth
  • VirtualHealth Provider – working hard to scale
  • Patients @Home work at their schedule 9PM – midnight text messaging
  • 70% in employment reported stress experienced by employees

Dawn Sugarman, PhD, Assistant Psychologist, Division of Alcohol, Drugs, and Addiction, McLean; Assistant Professor, Psychiatry, HMS

  • Opioid & substance abuse
  • Treatment gap for women – gender specific Programs online gender specific  treatment

Add Panel to Calendar

4:40 – 5:05 PM
Investing During and After the Coronavirus Crisis

The investment environment in life sciences and health care overall was at record levels for most of the last decade. What will this environment look like in the wake of the COVID-19 pandemic – especially over the near to mid-term? Will investor priorities and enthusiasm shift? What is the investor role in developing new coronavisurs tests, vaccines, and therapeutics?

Roger Kitterman, VP, Venture and Managing Partner, Partners Innovation Fund, Mass General Brigham

Jan Garfinkle, Founder & Manager Partner, Arboretum Ventures

  • Can you close a deal with out meeting management team
  • Known funds will prevail vs new funds Parma adjacencies vs medical devices
  • Telehealth is of interest GI, Cardiovascular
  • Mental health with TeleHealth

Phillip Gross, Managing Director, Adage Capital Management

  • Clinical Trial issues
  • Inflating value of Biotech because therapeutic related to COVID gives a boost
  • 90 programs in clinical trials on Vaccine

Christopher Viehbacher, Managing Partner, Gurnet Point Capital

  • Health care was great investment because prople will get sick.
  • deal making switch to zoom meeting, no site visit, banking is adapting
  • relationship with people you do not know will be very hard
  • early stage if the cloud exist
  • Medical profession: Healthcare system is hurting revenue loss new technologies
  • clinical trials will be changing like for COVID
  • Sharing data will accelerate science

Add Panel to Calendar

5:05 – 5:10 PM
Closing Remarks
Gregg Meyer, MDChief Clinical Officer, Mass General Brigham; Interim President, NWH; Professor of Medicine, HMS
Ravi Thadhani, MD, CAO, Mass General Brigham; Professor of Medicine and Faculty Dean for Academic Programs, HMS

Mass General Brigham (formerly Partners Healthcare) is pleased to invite media to attend the World Medical Innovation Forum (WMIF) virtual event on Monday, May 11. Our day-long interactive web event features expert discussions of COVID-related infectious disease innovation and the pandemic’s impact on transforming medicine, plus insights on how care may be radically transformed post-COVID. The agenda features nearly 70 executive speakers from the healthcare industry, venture, start-ups, consumer health and the front lines of COVID care, including many of our Harvard Medical School-affiliated researchers and clinicians. The event replaces our annual in-person conference, which we plan to resume in 2021.

Read Full Post »

US Responses to Coronavirus Outbreak Expose Many Flaws in Our Medical System

US Responses to Coronavirus Outbreak Expose Many Flaws in Our Medical System

Curator: Stephen J. Williams, Ph.D.

The  coronavirus pandemic has affected almost every country in every continent however, after months of the novel advent of novel COVID-19 cases, it has become apparent that the varied clinical responses in this epidemic (and outcomes) have laid bare some of the strong and weak aspects in, both our worldwide capabilities to respond to infectious outbreaks in a global coordinated response and in individual countries’ response to their localized epidemics.


Some nations, like Israel, have initiated a coordinated government-private-health system wide action plan and have shown success in limiting both new cases and COVID-19 related deaths.  After the initial Wuhan China outbreak, China closed borders and the government initiated health related procedures including the building of new hospitals. As of writing today, Wuhan has experienced no new cases of COVID-19 for two straight days.


However, the response in the US has been perplexing and has highlighted some glaring problems that have been augmented in this crisis, in the view of this writer.    In my view, which has been formulated after social discussion with members in the field ,these issues can be centered on three major areas of deficiencies in the United States that have hindered a rapid and successful response to this current crisis and potential future crises of this nature.



  1. The mistrust or misunderstanding of science in the United States
  2. Lack of communication and connection between patients and those involved in the healthcare industry
  3. Socio-geographical inequalities within the US healthcare system


1. The mistrust or misunderstanding of science in the United States


For the past decade, anyone involved in science, whether directly as active bench scientists, regulatory scientists, scientists involved in science and health policy, or environmental scientists can attest to the constant pressure to not only defend their profession but also to defend the entire scientific process and community from an onslaught of misinformation, mistrust and anxiety toward the field of science.  This can be seen in many of the editorials in scientific publications including the journal Science and Scientific American (as shown below)


Stepping Away from Microscopes, Thousands Protest War on Science

Boston rally coincides with annual American Association for the Advancement of Science (AAAS) conference and is a precursor to the March for Science in Washington, D.C.

byLauren McCauley, staff writer

Responding to the troubling suppression of science under the Trump administration, thousands of scientists, allies, and frontline communities are holding a rally in Boston’s Copley Square on Sunday.

#standupforscience Tweets


“Science serves the common good,” reads the call to action. “It protects the health of our communities, the safety of our families, the education of our children, the foundation of our economy and jobs, and the future we all want to live in and preserve for coming generations.”

It continues: 

But it’s under attack—both science itself, and the unalienable rights that scientists help uphold and protect. 

From the muzzling of scientists and government agencies, to the immigration ban, the deletion of scientific data, and the de-funding of public science, the erosion of our institutions of science is a dangerous direction for our country. Real people and communities bear the brunt of these actions.

The rally was planned to coincide with the annual American Association for the Advancement of Science (AAAS) conference, which draws thousands of science professionals, and is a precursor to the March for Science in Washington, D.C. and in cities around the world on April 22.


Source: https://www.commondreams.org/news/2017/02/19/stepping-away-microscopes-thousands-protest-war-science






The American Association for Cancer Research (AACR) also had marches for public awareness of science and meaningful science policy at their annual conference in Washington, D.C. in 2017 (see here for free recordings of some talks including Joe Biden’s announcement of the Cancer Moonshot program) and also sponsored events such as the Rally for Medical Research.  This patient advocacy effort is led by the cancer clinicians and scientific researchers to rally public support for cancer research for the benefit of those affected by the disease.

Source: https://leadingdiscoveries.aacr.org/cancer-patients-front-and-center/



     However, some feel that scientists are being too sensitive and that science policy and science-based decision making may not be under that much of a threat in this country. Yet even as some people think that there is no actual war on science and on scientists they realize that the public is not engaged in science and may not be sympathetic to the scientific process or trust scientists’ opinions. 



From Scientific American: Is There Really a War on Science? People who oppose vaccines, GMOs and climate change evidence may be more anxious than antagonistic


Certainly, opponents of genetically modified crops, vaccinations that are required for children and climate science have become louder and more organized in recent times. But opponents typically live in separate camps and protest single issues, not science as a whole, said science historian and philosopher Roberta Millstein of the University of California, Davis. She spoke at a standing-room only panel session at the American Association for the Advancement of Science’s annual meeting, held in Washington, D.C. All the speakers advocated for a scientifically informed citizenry and public policy, and most discouraged broadly applied battle-themed rhetoric.


Source: https://www.scientificamerican.com/article/is-there-really-a-war-on-science/


      In general, it appears to be a major misunderstanding by the public of the scientific process, and principles of scientific discovery, which may be the fault of miscommunication by scientists or agendas which have the goals of subverting or misdirecting public policy decisions from scientific discourse and investigation.


This can lead to an information vacuum, which, in this age of rapid social media communication,

can quickly perpetuate misinformation.


This perpetuation of misinformation was very evident in a Twitter feed discussion with Dr. Eric Topol, M.D. (cardiologist and Founder and Director of the Scripps Research Translational  Institute) on the US President’s tweet on the use of the antimalarial drug hydroxychloroquine based on President Trump referencing a single study in the International Journal of Antimicrobial Agents.  The Twitter thread became a sort of “scientific journal club” with input from international scientists discussing and critiquing the results in the paper.  


Please note that when we scientists CRITIQUE a paper it does not mean CRITICIZE it.  A critique is merely an in depth analysis of the results and conclusions with an open discussion on the paper.  This is part of the normal peer review process.


Below is the original Tweet by Dr. Eric Topol as well as the ensuing tweet thread




Within the tweet thread it was discussed some of the limitations or study design flaws of the referenced paper leading the scientists in this impromptu discussion that the study could not reasonably conclude that hydroxychloroquine was not a reliable therapeutic for this coronavirus strain.


The lesson: The public has to realize CRITIQUE does not mean CRITICISM.


Scientific discourse has to occur to allow for the proper critique of results.  When this is allowed science becomes better, more robust, and we protect ourselves from maybe heading down an incorrect path, which may have major impacts on a clinical outcome, in this case.



2.  Lack of communication and connection between patients and those involved in the healthcare industry


In normal times, it is imperative for the patient-physician relationship to be intact in order for the physician to be able to communicate proper information to their patient during and after therapy/care.  In these critical times, this relationship and good communication skills becomes even more important.


Recently, I have had multiple communications, either through Twitter, Facebook, and other social media outlets with cancer patients, cancer advocacy groups, and cancer survivorship forums concerning their risks of getting infected with the coronavirus and how they should handle various aspects of their therapy, whether they were currently undergoing therapy or just about to start chemotherapy.  This made me realize that there were a huge subset of patients who were not receiving all the information and support they needed; namely patients who are immunocompromised.


These are patients represent

  1. cancer patient undergoing/or about to start chemotherapy
  2. Patients taking immunosuppressive drugs: organ transplant recipients, patients with autoimmune diseases, multiple sclerosis patients
  3. Patients with immunodeficiency disorders


These concerns prompted me to write a posting curating the guidance from National Cancer Institute (NCI) designated cancer centers to cancer patients concerning their risk to COVID19 (which can be found here).


Surprisingly, there were only 14 of the 51 US NCI Cancer Centers which had posted guidance (either there own or from organizations like NCI or the National Cancer Coalition Network (NCCN).  Most of the guidance to patients had stemmed from a paper written by Dr. Markham of the Fred Hutchinson Cancer Center in Seattle Washington, the first major US city which was impacted by COVID19.


Also I was surprised at the reactions to this posting, with patients and oncologists enthusiastic to discuss concerns around the coronavirus problem.  This led to having additional contact with patients and oncologists who, as I was surprised, are not having these conversations with each other or are totally confused on courses of action during this pandemic.  There was a true need for each party, both patients/caregivers and physicians/oncologists to be able to communicate with each other and disseminate good information.


Last night there was a Tweet conversation on Twitter #OTChat sponsored by @OncologyTimes.  A few tweets are included below





The Lesson:  Rapid Communication of Vital Information in times of stress is crucial in maintaining a good patient/physician relationship and preventing Misinformation.


3.  Socio-geographical Inequalities in the US Healthcare System

It has become very clear that the US healthcare system is fractioned and multiple inequalities (based on race, sex, geography, socio-economic status, age) exist across the whole healthcare system.  These inequalities are exacerbated in times of stress, especially when access to care is limited.


An example:


On May 12, 2015, an Amtrak Northeast Regional train from Washington, D.C. bound for New York City derailed and wrecked on the Northeast Corridor in the Port Richmond neighborhood of Philadelphia, Pennsylvania. Of 238 passengers and 5 crew on board, 8 were killed and over 200 injured, 11 critically. The train was traveling at 102 mph (164 km/h) in a 50 mph (80 km/h) zone of curved tracks when it derailed.[3]

Some of the passengers had to be extricated from the wrecked cars. Many of the passengers and local residents helped first responders during the rescue operation. Five local hospitals treated the injured. The derailment disrupted train service for several days. 

(Source Wikipedia https://en.wikipedia.org/wiki/2015_Philadelphia_train_derailment)

What was not reported was the difficulties that first responders, namely paramedics had in finding an emergency room capable of taking on the massive load of patients.  In the years prior to this accident, several hospitals, due to monetary reasons, had to close their emergency rooms or reduce them in size. In addition only two in Philadelphia were capable of accepting gun shot victims (Temple University Hospital was the closest to the derailment but one of the emergency rooms which would accept gun shot victims. This was important as Temple University ER, being in North Philadelphia, is usually very busy on any given night.  The stress to the local health system revealed how one disaster could easily overburden many hospitals.


Over the past decade many hospitals, especially rural hospitals, have been shuttered or consolidated into bigger health systems.  The graphic below shows this

From Bloomberg: US Hospital Closings Leave Patients with Nowhere to go





Note the huge swath of hospital closures in the midwest, especially in rural areas.  This has become an ongoing problem as the health care system deals with rising costs.


Lesson:  Epidemic Stresses an already stressed out US healthcare system


Please see our Coronavirus Portal at



for more up-to-date scientific, clinical information as well as persona stories, videos, interviews and economic impact analyses

and @pharma_BI

Read Full Post »