Feeds:
Posts
Comments

Archive for the ‘Immune-Mediation (independent immunopathology: lung and reticuloendothelial system)’ Category


Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN

 

The UK’s COVID-19 vaccine rollout commenced in December, and requires an individual to receive two doses of the same vaccine, either Pfizer/BioNTech’s BNT162b2 or AstraZeneca/Oxford’s ChAdOx1, with a maximum interval of 12 weeks between doses. As of February 3, 10 million first doses have been administered.

Com-COV has been classified as an “Urgent Public Health” study by the National Institutes for Health and Research (NIHR), and it’s hoped that the data produced may offer greater flexibility for vaccine delivery going forward.

“Given the inevitable challenges of immunizing large numbers of the population against COVID-19 and potential global supply constraints, there are definitely advantages to having data that could support a more flexible immunization program, if ever needed and approved by the medicines regulator,” Jonathan Van-Tam, deputy chief medical officer and senior responsible officer for the study, said in a press release.

The study will run for a 13-month period and will recruit over 800 patients across eight sites in the UK, including London – St George’s and UCL, Oxford, Southampton, Birmingham, Bristol, Nottingham and Liverpool.

Com-COV has eight different arms that will test eight different combinations of doses and dose intervals. This is tentative and subject to change should more COVID-19 vaccines be approved for use in the UK. The eight arms include the following dose combinations:

  • Pfizer/BioNTech and Pfizer/BioNTech – 28 days apart
  • Pfizer/BioNTech and Pfizer/BioNTech – 12 weeks apart – (control group)
  • Oxford/AstraZeneca and Oxford/AstraZeneca – 28 days apart
  • Oxford/AstraZeneca and Oxford/AstraZeneca – 12 weeks apart – (control group)
  • Oxford/AstraZeneca and Pfizer/BioNTech – 28 days apart
  • Oxford/AstraZeneca and Pfizer/BioNTech – 12 weeks apart
  • Pfizer/BioNTech and Oxford/AstraZeneca – 28 days apart
  • Pfizer/BioNTech and Oxford/AstraZeneca – 12 weeks apart

Aside from the logistical benefits of using alternative vaccines, there is scientific value to exploring how different vaccines and doses affect the human immune system.

Dr Peter English, consultant in communicable disease control, pointed out that the antigen used across the currently authorized COVID-19 vaccines is the same Spike protein. Therefore, the immune system can be expected to respond just as well if a different product is used for boosting. “It is also the case that many vaccines work better if a different vaccine is used for boosting – an approach described as heterologous boosting,” English said, referencing previously successful trials using Hepatitis B vaccines.

“It is also even possible that by combining vaccines, the immune response could be enhanced giving even higher antibody levels that last longer; unless this is evaluated in a clinical trial we just won’t know,” added Van-Tam.

If warranted by the study data, the Medicines and Healthcare products Regulatory Agency may consider reviewing and authorizing modifications to the UK’s vaccine regimen approach – but only time will tell.

“We need people from all backgrounds to take part in this trial, so that we can ensure we have vaccine options suitable for all. Signing up to volunteer for vaccine studies is quick and easy via the NHS Vaccine Research Registry,” Professor Andrew Ustianowski, national clinical lead for the NIHR COVID Vaccine Research Program, said

SOURCE

First-of-its-Kind Study Will Test Combination of Different COVID-19 Vaccines | Technology Networks

https://www.technologynetworks.com/biopharma/news/first-of-its-kind-study-will-test-combination-of-different-covid-19-vaccines-345245?utm_campaign=NEWSLETTER_TN_Biopharma

WATCH VIDEO

Different Types of COVID-19 Vaccines With Dr Seth Lederman Video | Technology Networks

https://www.technologynetworks.com/biopharma/videos/different-types-of-covid-19-vaccines-with-dr-seth-lederman-345207

Read Full Post »


Inflammation and potential links with the microbiome: Mechanisms of infection by SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome

Published Online:https://doi.org/10.2217/fvl-2020-0310

Human coronaviruses (HCoVs) were first isolated from patients with the common cold in the 1960s [1–3]. Seven HCoVs known to cause disease in humans have since been identified: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, the SARS coronavirus (SARS-CoV), the Middle East respiratory syndrome coronavirus and the novel SARS-CoV-2 [4]. The latter was identified after a spike in cases of pneumonia of unknown etiology in Wuhan, Hubei Province, China during December 2019 and was initially named novel coronavirus (2019-nCoV) [5,6]. The virus was renamed SARS-CoV-2 according to the International Committee on Taxonomy of Viruses classification criteria due to its genomic closeness to SARS-CoV; the disease caused by this virus was named coronavirus disease (COVID-19) according to the WHO criteria for naming emerging diseases [7]. SARS-CoV-2 belongs to the genera Betacoronavirus and shares a different degree of genomic similarity with the other two epidemic coronaviruses: SARS-CoV (∼79%) and Middle East respiratory syndrome coronavirus (∼50%) [8].

COVID-19 has caused considerable morbidity and mortality worldwide and has become the central phenomenon that is shaping our current societies. Human-to-human transmission is the main route of spread of the virus, mainly through direct contact, respiratory droplets and aerosols [9–12]. Management of COVID-19 has been extremely challenging due to its high infectivity, lack of effective therapeutics and potentially small groups of individuals (i.e., asymptomatic or mild disease) rapidly spreading the disease [13–17]. Although research describing COVID-19 and the mechanisms of infection by SARS-CoV-2 and its pathogenesis has expanded rapidly, there is still much to be learnt. Important gaps in knowledge which remain to be elucidated are the dynamic and complex interactions between the virus and the host’s immune system, as well as the potential interspecies communications occurring between ecological niches encompassing distinct microorganisms in both healthy individuals and persons living with chronic diseases, and how these interactions could determine or modulate disease progression and outcomes.

In this review, we describe recent insights into these topics, as well as remaining questions whose answers will allow us to understand how interactions between the virus, the immune system and microbial components could possibly be related to disease states in patients with COVID-19, as well as existing studies of the microbiome in patients with COVID-19.

SOURCE

Read Full Post »


Miniproteins against the COVID-19 Spike protein may be therapeutic

Reporter: Stephen J. Williams, PhD

Computer-designed proteins may protect against coronavirus

At a Glance

  • Researchers designed “miniproteins” that bound tightly to the SARS-CoV-2 spike protein and prevented the virus from infecting human cells in the lab.
  • More research is underway to test the most promising of the antiviral proteins.

 

 

 

 

 

 

 

An artist’s conception of computer-designed miniproteins (white) binding coronavirus spikes. UW Institute for Protein Design

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered with spike proteins. These proteins latch onto human cells, allowing the virus to enter and infect them. The spike binds to ACE2 receptors on the cell surface. It then undergoes a structural change that allows it to fuse with the cell. Once inside, the virus can copy itself and produce more viruses.

Blocking entry of SARS-CoV-2 into human cells can prevent infection. Researchers are testing monoclonal antibody therapies that bind to the spike protein and neutralize the virus. But these antibodies, which are derived from immune system molecules, are large and not ideal for delivery through the nose. They’re also often not stable for long periods and usually require refrigeration.

Researchers led by Dr. David Baker of the University of Washington set out to design synthetic “miniproteins” that bind tightly to the coronavirus spike protein. Their study was funded in part by NIH’s National Institute of General Medical Sciences (NIGMS) and National Institute of Allergy and Infectious Diseases (NIAID). Findings appeared in Science on September 9, 2020.

The team used two strategies to create the antiviral miniproteins. First, they incorporated a segment of the ACE2 receptor into the small proteins. The researchers used a protein design tool they developed called Rosetta blueprint builder. This technology allowed them to custom build proteins and predict how they would bind to the receptor.

The second approach was to design miniproteins from scratch, which allowed for a greater range of possibilities. Using a large library of miniproteins, they identified designs that could potentially bind within a key part of the coronavirus spike called the receptor binding domain (RBD). In total, the team produced more than 100,000 miniproteins.

Next, the researchers tested how well the miniproteins bound to the RBD. The most promising candidates then underwent further testing and tweaking to improve binding.

Using cryo-electron microscopy, the team was able to build detailed pictures of how two of the miniproteins bound to the spike protein. The binding closely matched the predictions of the computational models.

Finally, the researchers tested whether three of the miniproteins could neutralize SARS-CoV-2. All protected lab-grown human cells from infection. Candidates LCB1 and LCB3 showed potent neutralizing ability. These were among the designs created from the miniprotein library. Tests suggested that these miniproteins may be more potent than the most effective antibody treatments reported to date.

“Although extensive clinical testing is still needed, we believe the best of these computer-generated antivirals are quite promising,” says Dr. Longxing Cao, the study’s first author. “They appear to block SARS-CoV-2 infection at least as well as monoclonal antibodies but are much easier to produce and far more stable, potentially eliminating the need for refrigeration.”

Notably, this study demonstrates the potential of computational models to quickly respond to future viral threats. With further development, researchers may be able to generate neutralizing designs within weeks of obtaining the genome of a new virus.

—by Erin Bryant

Source: https://www.nih.gov/news-events/nih-research-matters/computer-designed-proteins-may-protect-against-coronavirus

Original article in Science

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

 

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

RESEARCH ARTICLE

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

  1. View ORCID ProfileLongxing Cao1,2
  2. Inna Goreshnik1,2
  3. View ORCID ProfileBrian Coventry1,2,3
  4. View ORCID ProfileJames Brett Case4
  5. View ORCID ProfileLauren Miller1,2
  6. Lisa Kozodoy1,2
  7. Rita E. Chen4,5
  8. View ORCID ProfileLauren Carter1,2
  9. View ORCID ProfileAlexandra C. Walls1
  10. Young-Jun Park1
  11. View ORCID ProfileEva-Maria Strauch6
  12. View ORCID ProfileLance Stewart1,2
  13. View ORCID ProfileMichael S. Diamond4,7
  14. View ORCID ProfileDavid Veesler1
  15. View ORCID ProfileDavid Baker1,2,8,*

See all authors and affiliations

Science  09 Sep 2020:
eabd9909
DOI: 10.1126/science.abd9909

Abstract

Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.

 

SARS-CoV-2 infection generally begins in the nasal cavity, with virus replicating there for several days before spreading to the lower respiratory tract (1). Delivery of a high concentration of a viral inhibitor into the nose and into the respiratory system generally might therefore provide prophylactic protection and/or therapeutic benefit for treatment of early infection, and could be particularly useful for healthcare workers and others coming into frequent contact with infected individuals. A number of monoclonal antibodies are in development as systemic treatments for COVID-19 (26), but these proteins are not ideal for intranasal delivery as antibodies are large and often not extremely stable molecules and the density of binding sites is low (two per 150 KDa. antibody); antibody-dependent disease enhancement (79) is also a potential issue. High-affinity Spike protein binders that block the interaction with the human cellular receptor angiotensin-converting enzyme 2 (ACE2) (10) with enhanced stability and smaller sizes to maximize the density of inhibitory domains could have advantages over antibodies for direct delivery into the respiratory system through intranasal administration, nebulization or dry powder aerosol. We found previously that intranasal delivery of small proteins designed to bind tightly to the influenza hemagglutinin can provide both prophylactic and therapeutic protection in rodent models of lethal influenza infection (11).

Design strategy

We set out to design high-affinity protein minibinders to the SARS-CoV-2 Spike RBD that compete with ACE2 binding. We explored two strategies: first we incorporated the alpha-helix from ACE2 which makes the majority of the interactions with the RBD into small designed proteins that make additional interactions with the RBD to attain higher affinity (Fig. 1A). Second, we designed binders completely from scratch without relying on known RBD-binding interactions (Fig. 1B). An advantage of the second approach is that the range of possibilities for design is much larger, and so potentially a greater diversity of high-affinity binding modes can be identified. For the first approach, we used the Rosetta blueprint builder to generate miniproteins which incorporate the ACE2 helix (human ACE2 residues 23 to 46). For the second approach, we used RIF docking (12) and design using large miniprotein libraries (11) to generate binders to distinct regions of the RBD surface surrounding the ACE2 binding site (Fig. 1 and fig. S1).

 

 

 

 

 

 

 

 

 

 

 

Download high-res image

Fig. 1 Overview of the computational design approaches.

(A) Design of helical proteins incorporating ACE2 helix. (B) Large scale de novo design of small helical scaffolds (top) followed by rotamer interaction field (RIF) docking to identify shape and chemically complementary binding modes.

For full article please  go to Science at https://science.sciencemag.org/content/early/2020/09/08/science.abd9909

 

Read Full Post »


Bradykinin Hypothesis: Potential Explanation for COVID-19

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 9/14/2020

First Randomized Trial Backs Safety of ACE and ARB Heart Drugs in COVID-19 Patients

BRACE CORONA trial presented in a Hot Line Session at ESC Congress 2020

September 8, 2020 – Heart patients hospitalized with COVID-19 (SARS-CoV-2) can safely continue taking angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), according to the BRACE CORONA trial presented in a Hot Line session at the virtual European Society of Cardiology (ESC) Congress 2020.[1]

ACE inhibitors and ARBs are commonly taken by heart patients to reduce blood pressure and to treat heart failure. There is conflicting observational evidence about the potential clinical impact of ACE inhibitors and ARBs on patients with COVID-19.[2] Select preclinical investigations have raised concerns about their safety in patients with COVID-19. Preliminary data hypothesize that renin-angiotensin-aldosterone system (RAAS) inhibitors could benefit patients with COVID-19 by decreasing acute lung damage and preventing angiotensin-II-mediated pulmonary inflammation.

Given the frequent use of these agents worldwide, randomized clinical trial evidence is urgently needed to guide the management of patients with COVID-19.

SOURCE

https://www.dicardiology.com/content/first-randomized-trial-backs-safety-ace-and-arb-heart-drugs-covid-19-patients

Related ACE and ARB Content Related to COVID-19:

ESC Council on Hypertension Says ACE-I and ARBs Do Not Increase COVID-19 Mortality

AHA Explains Severe COVID-19 is Closely Associated With Heart Issues

 

The Voice of Dr. Justin D. Pearlman, MD, PhD, FACC

Justin D. Pearlman, MD, PhD, FACC – Scientific Expert & Key Opinion Leader on Cardiovascular Diseases, Cardiac Imaging & Complex Diagnosis in Cardiology: Senior Editor & Author

The BRACE CORONA TRIAL compared outcomes for COVID19 patients previously on ACE inhibitor or ARB of holding the medication for a month, or not, and saw no significant benefit from withholding either class of medication. The basis for specific concern is the fact that the COVID19 virus utilizes ACE2 receptors for its invasion, and that disturbances in the renin-angiotensin and bradykinin levels and capillary leak have been observed with COVID19 infections. ACEI and ARB medications both modulate the renin angiotensin system, but with different impact on bradykinin levels. Changes in bradykinin levels cause for dry cough seen with ACE inhibitors like lisinopril that are not seen with angiotensin receptor blockers (ARB) such as Losartan. The absence of significant differences in outcome measures by holding either drug weakens the Jacobson’s bradykinin hypothesis based on a cascade of observations related to the ACE2 receptor and downstream effects. The new observations on safety of both ACEI and ARB weaken Jacobson’s hypothesis of a primary importance of renin angiotensin and bradykinin changes in the course and complications of COVID19 infection.

The ACE gene product degrades bradykinin. Jacobson’s bradykinin hypothesis suggested that the observations of capillary leak and disturbances in the renal angiotensin system may be prime factors rather than bystanders. Jacobson made strong statements from associations, but the lack of impact of stoppage of either ACE inhibitors or Angiotensin Receptor Blockers (ARB) argues that his observations are not major in determination of outcomes.

Bradykinin Hypothesis: Potential Explanation for COVID-19

The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2.

critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomesexplain many of the symptoms being observed in COVID-19.

Jacobson says, “What we’ve found is that the imbalance in the renin-angiotensin system (RAS) pathway that appeared to be present in Covid-19 patients could be responsible for constantly resensitizing bradykinin receptors. So, this imbalance in the RAS pathways will take the brakes off the bottom of the bradykinin pathway at the receptor level. In addition, the downregulation of the ACE gene in Covid-19 patients, which usually degrades bradykinin, is another key imbalance in the regulation of bradykinin levels. We have also observed that the key negative regulator at the top of the bradykinin pathway is dramatically down-regulated. Thus, you likely have an increase in bradykin production as well, stopping many of the braking mechanisms usually in place, so the bradykinin signal spirals out of control.”

The bradykinin hypothesis also extends to many of Covid-19’s effects on the heart. About one in five hospitalized Covid-19 patients have damage to their hearts, even if they never had cardiac issues before. Some of this is likely due to the virus infecting the heart directly through its ACE2 receptors. But the RAS also controls aspects of cardiac contractions and blood pressure. According to the researchers, bradykinin storms could create arrhythmias and low blood pressure, which are often seen in Covid-19 patients.

“the pathology of Covid-19 is likely the result of Bradykinin Storms rather than cytokine storms,” which had been previously identified in Covid-19 patients, but that “the two may be intricately linked.”

According to Jacobson and his team, MRI studies in France revealed that many Covid-19 patients have evidence of leaky blood vessels in their brains.

bradykinin would indeed be likely to increase the permeability of the blood-brain barrier. In addition, similar neurological symptoms have been observed in other diseases that result from an excess of bradykinin.”

Increased bradykinin levels could also account for other common Covid-19 symptoms. ACE inhibitors — a class of drugs used to treat high blood pressure — have a similar effect on the RAS system as Covid-19, increasing bradykinin levels. In fact, Jacobson and his team note in their paper that “the virus… acts pharmacologically as an ACE inhibitor” — almost directly mirroring the actions of these drugs.

SOURCE

https://elifesciences.org/articles/59177?utm_source=Unknown+List&utm_campaign=7a5785d58d-EMAIL_CAMPAIGN_2020_07_27_02_37&utm_medium=email&utm_term=0_-7a5785d58d-

Potential therapeutic development path is to

  • repurpose existing FDA approved drugs such as Danazol, Stanasolol, Icatibant, Ecallantide, Berinert, Cynryze, Haegarda, etc.. to reduce the amount of bradykinin signaling to prevent the escalation of the bradykinin storm.
  • Partnerships with pharmaceutical companies and clinical research are needed to design and implement the right clinical trials to see how these types of treatments can be applied.
  • Systems biology perspective and think that attempts to inhibit the virus itself will also probably require a combinatorial strategy it’s possible that we will need a combinatorial approach to therapies both on the human side and on the viral side
  • Other compounds could treat symptoms associated with bradykinin storms. Hymecromone, for example, could reduce hyaluronic acid levels, potentially stopping deadly hydrogels from forming in the lungs. And timbetasin could mimic the mechanism that the researchers believe protects women from more severe Covid-19 infections

https://www.forbes.com/sites/cognitiveworld/2020/08/05/your-lungs-can-fill-up-with-jell-o-scientists-discover-a-new-pathway-for-covid-19-inflammatory-response/#7a80ff4c24be

 

A Supercomputer Analyzed Covid-19 — and an Interesting New Theory Has Emerged

A closer look at the Bradykinin hypothesis

Thomas Smith Sep 1, 2020

Earlier this summer, the Summit supercomputer at Oak Ridge National Lab in Tennessee set about crunching data on more than 40,000 genes from 17,000 genetic samples in an effort to better understand Covid-19. Summit is the second-fastest computer in the world, but the process — which involved analyzing 2.5 billion genetic combinations — still took more than a week.

When Summit was done, researchers analyzed the results. It was, in the words of Dr. Daniel Jacobson, lead researcher and chief scientist for computational systems biology at Oak Ridge, a “eureka moment.” The computer had revealed a new theory about how Covid-19 impacts the body: the bradykinin hypothesis. The hypothesis provides a model that explains many aspects of Covid-19, including some of its most bizarre symptoms. It also suggests 10-plus potential treatments, many of which are already FDA approved. Jacobson’s group published their results in a paper in the journal eLife in early July.

According to the team’s findings, a Covid-19 infection generally begins when the virus enters the body through ACE2 receptors in the nose, (The receptors, which the virus is known to target, are abundant there.) The virus then proceeds through the body, entering cells in other places where ACE2 is also present: the intestines, kidneys, and heart. This likely accounts for at least some of the disease’s cardiac and GI symptoms.

https://elemental.medium.com/a-supercomputer-analyzed-covid-19-and-an-interesting-new-theory-has-emerged-31cb8eba9d63

Researchers Use Supercomputers To Discover New Pathway For Covid-19 Inflammation

COGNITIVE WORLD

A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm

  1. Michael R Garvin
  2. Christiane Alvarez
  3. J Izaak Miller
  4. Erica T Prates
  5. Angelica M Walker
  6. B Kirtley Amos
  7. Alan E Mast
  8. Amy Justice
  9. Bruce Aronow
  10. Daniel JacobsonIs a corresponding author
  1. Oak Ridge National Laboratory, Biosciences Division, United States
  2. University of Tennessee Knoxville, The Bredesen Center for Interdisciplinary Research and Graduate Education, United States
  3. University of Kentucky, Department of Horticulture, United States
  4. Versiti Blood Research Institute, Medical College of Wisconsin, United States
  5. VA Connecticut Healthcare/General Internal Medicine, Yale University School of Medicine, United States
  6. University of Cincinnati, United States
  7. Biomedical Informatics, Cincinnati Children’s Hospital Research Foundation, United States
  8. University of Tennessee Knoxville, Department of Psychology, Austin Peay Building, United States

Abstract

Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2.Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.

https://elifesciences.org/articles/59177?utm_source=Unknown+List&utm_campaign=7a5785d58d-EMAIL_CAMPAIGN_2020_07_27_02_37&utm_medium=email&utm_term=0_-7a5785d58d-

Short Report 

https://www.forbes.com/sites/cognitiveworld/2020/08/05/your-lungs-can-fill-up-with-jell-o-scientists-discover-a-new-pathway-for-covid-19-inflammatory-response/#7a80ff4c24be

A hypothesized role for dysregulated bradykinin signaling in COVID‐19 respiratory complications

1 Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit MI, USA,
2 College of Health and Human Services, Eastern Michigan University, Ypsilanti MI, USA,
Joseph A. Roche, ude.enyaw@ehcor.hpesoj.
corresponding authorCorresponding author.
*Correspondence
Joseph A. Roche, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
Email: ude.enyaw@ehcor.hpesoj,

Abstract

As of April 20, 2020, over time, the COVID‐19 pandemic has resulted in 157 970 deaths out of 2 319 066 confirmed cases, at a Case Fatality Rate of ~6.8%. With the pandemic rapidly spreading, and health delivery systems being overwhelmed, it is imperative that safe and effective pharmacotherapeutic strategies are rapidly explored to improve survival. In this paper, we use established and emerging evidence to propose a testable hypothesis that, a vicious positive feedback loop of des‐Arg(9)‐bradykinin‐ and bradykinin‐mediated inflammation → injury → inflammation, likely precipitates life threatening respiratory complications in COVID‐19. Through our hypothesis, we make the prediction that the FDA‐approved molecule, icatibant, might be able to interrupt this feedback loop and, thereby, improve the clinical outcomes. This hypothesis could lead to basic, translational, and clinical studies aimed at reducing COVID‐19 morbidity and mortality.

Keywords: bradykinin, bradykinin receptor, coronavirus, icatibant, inflammation, injury

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267506/

 

 

Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome

Frank L van de Veerdonk1*, Mihai G Netea1,2, Marcel van Deuren1,

Jos WM van der Meer1, Quirijn de Mast1, Roger J Bru¨ggemann3,

Hans van der Hoeven4

van de Veerdonk et al. eLife 2020;9:e57555. DOI: https://doi.org/10.7554/eLife.57555 1 of 9

Abstract

COVID-19 patients can present with pulmonary edema early in disease. We propose that this is due to a local vascular problem because of activation of bradykinin 1 receptor (B1R) and B2R on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2 that next to its role in RAAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the B1R. Without ACE2 acting as a guardian to inactivate the ligands of B1R, the lung environment is prone for local vascular leakage leading to angioedema. Here, we hypothesize that a kinin-dependent local lung angioedema via B1R and eventually B2R is an important feature of COVID-19. We propose that blocking the B2R and inhibiting plasma kallikrein activity might have an ameliorating effect on early disease caused by COVID-19 and might prevent acute respiratory distress syndrome (ARDS). In addition, this pathway might indirectly be responsive to anti-inflammatory agents.

 

Kinins and cytokines in COVID-19: a comprehensive pathophysiological approach

Frank L. van de Veerdonk1*, Mihai G. Netea1,2, Marcel van Deuren1, Jos W.M. van der Meer1, Quirijn de Mast1, Roger J. Brüggemann3, Hans van der Hoeven4

doi:10.20944/preprints202004.0023.v1

Abstract

Most striking observations in COVID-19 patients are the hints on pulmonary edema (also seen on CT scans as ground glass opacities), dry cough, fluid restrictions to prevent more severe hypoxia, the huge PEEP that is needed while lungs are compliant, and the fact that antiinflammatory therapies are not powerful enough to counter the severity of the disease. We propose that the severity of the disease and many deaths are due to a local vascular problem due to activation of B1 receptors on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2, a cell membrane bound molecule with enzymatic activity that next to its role in RAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the bradykinin receptor type 1 (B1). In contrast to bradykinin receptor 2 (B2), the B1 receptor on endothelial cells is upregulated by proinflammatory cytokines. Without ACE2 acting as a guardian to inactivate the ligands of B1, the lung environment is prone for local vascular leakage leading to angioedema. Angioedema is likely a feature already early in disease, and might explain the typical CT scans and the feeling of people that they drown. In some patients, this is followed by a clinical worsening of disease around day 9 due to the formation antibodies directed against the spike (S)-antigen of the corona-virus that binds to ACE2 that could contribute to disease by enhancement of local immune cell influx and proinflammatory cytokines leading to damage. In parallel, inflammation induces more B1 expression, and possibly via antibody-dependent enhancement of viral infection leading to continued ACE2 dysfunction in the lung because of persistence of the virus. In this viewpoint we propose that a bradykinin-dependent local lung angioedema via B1 and B2 receptors is an important feature of COVID-19, resulting in a very high number of ICU admissions. We propose that blocking the B1 and B2 receptors might have an ameliorating effect on disease caused by COVID-19. This kinin-dependent pulmonary edema is resistant to corticosteroids or adrenaline and should be targeted as long as the virus is present. In addition, this pathway might indirectly be responsive to anti-inflammatory agents or neutralizing strategies for the anti-S-antibody induced effects, but by itself is likely to be insufficient to reverse all the pulmonary edema. Moreover, we provide a suggestion of how to ventilate in the ICU in the context of this hypothesis.

 

Emerging Pandemic Diseases: How We Got to COVID-19

David M. Morens1,* and Anthony S. Fauci1

1Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

*Correspondence: dm270q@nih.gov

https://doi.org/10.1016/j.cell.2020.08.021

SUMMARY

Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.

Read Full Post »


Why Blood Clots Are a Major Problem in Severe COVID-19

Reporter: Aviva Lev-Ari, PhD, RN

 

  • Clotting in uninjured blood vessels is a common occurrence in hospital patients, especially those in the intensive care unit.

  • In a July report in the journal Blood, Al-Samkari and colleagues found that nearly 10 percent of 400 people hospitalized for Covid-19 developed clots. In a February report by researchers in China, about 70 percent of people who died of Covid-19 had widespread clotting, while few survivors did.
  • people who died of Covid-19 were nine times as likely to be speckled with tiny clots as those of people who died of influenza
  • SARS-CoV-2 infects and damages the cells lining blood vessels, it could expose the tissue underneath
  • clotting results from inflammation. And here, many experts are eyeing a set of proteins called the complement system
  • These proteins, known collectively as complement, attack invaders and call in other parts of the immune system to assist. They also can activate platelets and promote clotting.
  • Claudia Kemper1,2,3 said “complementologists think that this is a massive part of the disease”  signs of complement activity in the lungs and livers of people who died from Covid-19
  • Laurence found several active complement proteins in the skin and blood vessels of his early Covid-19 clotting cases
  • a New York team found that patients were more likely to become very ill and die if they had a history of clotting or bleeding, or if they had macular degeneration, which can indicate complement problems.
  • Genes involved in complement and clotting responses were more active when the virus was present in patients’ nasal swabs.
  • immune element may promote clotting in severe Covid-19 cases: an overreaction called a cytokine storm, in which the body releases an excess of inflammation-promoting cytokine molecules.
  • Body’s response in need of control: (1) control the clotting, (2) control the inflammation, (2) control the complement pathway in tandem with antiviral Remdesivir that controls the viral replication thus the viral load.
  • Balance the risk of clotting with the danger of bleeding (bleeds into the digestive system for these patients, but they may also hemorrhage in the lungs, brain or spots where medical devices pierce the skin)
  • Dosage of blood thinners is debated – 40 Studies found for: anticoagulation | Covid19
    Also searched for COVID and SARS-CoV-2See Search Details
  • there is no evidence that people with less severe Covid-19, who do not require hospitalization, should take blood thinners or aspirin to ward off clots.
  • Management of Clotting: Argatroban, for example, is a Food and Drug Administration-approved anticoagulant that interferes with thrombin, an element of the clotting cascade. Eculizumab, which blocks one of the complement proteins, is approved for certain inflammatory conditions.
  • Clinical judgement is used in light of lack of evidence

 

SOURCES

Why Blood Clots Are a Major Problem in Severe Covid-19

SMITHSONIANMAG.COM

https://www.smithsonianmag.com/science-nature/why-blood-clots-are-major-problem-severe-covid-19-180975678/

Complement and the Regulation of T Cell Responses

Annual Review of Immunology

Vol. 36:309-338 (Volume publication date April 2018)
https://doi.org/10.1146/annurev-immunol-042617-053245

Complement Dysregulation and Disease: Insights from Contemporary Genetics

M. Kathryn Liszewski,1 Anuja Java,2

Elizabeth C. Schramm,3 and John P. Atkinson1

1Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110; email: j.p.atkinson@wustl.edu

2Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

3Serion Inc., St. Louis, Missouri 63108

 

Keywords

atypical hemolytic uremic syndrome, age-related macular degeneration,

alternative complement pathway, C3 glomerulopathies, factor H, CD46,

factor I, C3, factor B

Abstract

The vertebrate complement system consists of sequentially interacting proteins that provide for a rapid and powerful host defense. Nearly 60 proteins comprise three activation pathways (classical, alternative, and lectin) and a terminal cytolytic pathway common to all. Attesting to its potency, nearly half of the system’s components are engaged in its regulation. An emerging theme over the past decade is that variations in these inhibitors predispose to two scourges of modern humans. One, occurring most often in childhood, is a rare but deadly thrombomicroangiopathy called atypical hemolytic uremic syndrome. The other, age-related macular degeneration, is the most common form of blindness in the elderly. Their seemingly unrelated clinical presentations and pathologies share the common theme of overactivity of the complement system’s alternative pathway. This review summarizes insights gained from contemporary genetics for understanding how dysregulation of this powerful innate immune system leads to these human diseases.

CONCLUSIONS AND PERSPECTIVES

Over the last decade, a remarkable advance has been the elucidation of the role of mutations in complement regulators and components in aHUS, AMD, and C3G. Next-generation sequencing has led theway to these discoveries, but functional assessments are the critical factors in definitively associating pathogenesis with genetic variants.

Most exciting has been the development and approval by the FDA of the monoclonal antibody, eculizumab, as the new standard of care for treatment of aHUS. Challenges remain, however because eculizumab is costly and the duration of treatment remains uncertain and warrants further prospective studies. The use of eculizumab in C3G should also be prospectively addressed.

Furthermore, given the increasing number of mutations in the complement regulatory proteins identified in aHUS and C3G and the heterogeneity in the mechanisms leading to dysregulation of the AP, there is a need for further assessment of the genetic variants of unknown significance. As yet, no complement inhibitor has been approved to treat AMD.

These analyses coupled with the anticipated new developments of complement therapeutics will help establish patient-tailored therapies based on each patient’s specific alteration. The future holds much promise for the further delineation of complement-disease associations and for novel complement-targeted therapeutic agents.

SOURCE

Annu. Rev. Pathol. Mech. Dis. 2017. 12:25–52

https://www.annualreviews.org/doi/10.1146/annurev-pathol-012615-044145

 

 

Other related articles published in this Open Access Online Scientific Journal include the following: 

 

Is SARS-COV2 Hijacking the Complement and Coagulation Systems?

Reporter: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/2020/08/04/is-sars-cov2-hijacking-the-complement-and-coagulation-systems/

 

New Etiology for COVID-19: Death results from Immune-Mediation (virus-independent immunopathology: lung and reticuloendothelial system) vs Pathogen-Mediation causing Organ Dysfunction & Hyper-Inflammation – Immunomodulatory Therapeutic Approaches (dexamethasone)

Curators: Stephen J. Williams and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2020/07/12/new-etiology-for-covid-19-death-results-from-immune-mediation-virus-independent-immunopathology-lung-and-reticuloendothelial-system-vs-pathogen-mediation-causing-organ-dysfunction-hyper-infl/

Corticosteroid, Dexamethasone Improves Survival in COVID-19: Deaths reduction by 1/3 in ventilated patients and by 1/5 in other patients receiving oxygen only

Reporter: Aviva Lev-Ari, PhD, RN – bold face and color fonts added

https://pharmaceuticalintelligence.com/2020/06/27/corticosteroid-dexamethasone-improves-survival-in-covid-19-deaths-reduction-by-1-3-in-ventilated-patients-and-by-1-5-in-other-patients-receiving-oxygen-only/

SAR-Cov-2 is probably a vasculotropic RNA virus affecting the blood vessels: Endothelial cell infection and endotheliitis in COVID-19

Reporter: Aviva Lev-Ari, PhD, RN – Bold face and colors are my addition

https://pharmaceuticalintelligence.com/2020/06/01/sar-cov-2-is-probably-a-vasculotropic-rna-virus-affecting-the-blood-vessels-endothelial-cell-infection-and-endotheliitis-in-covid-19/

Read Full Post »


Thymic Dysfunction and Atrophy in COVID-19 Disease Complicated by Inflammation, Malnutrition and Cachexia

Reporter: Aviva Lev-Ari, PhD, RN

Kate Chiang

Charak Foundation; Applied Medical Technologies LLC

Kamyar Kalantar-Zadeh

University of California Irvine

Ajay Gupta

University of California Irvine

Date Written: July 13, 2020

Abstract

The current COVID-19 pandemic sweeping across developing countries is putting millions at risk of protein-energy malnutrition by pushing them into poverty and disrupting the global food supply chain. COVID-19 disease and protein-energy malnutrition are both known to cause immune dysfunction. The objective of this review is to highlight the known pathogenetic mechanisms underlying immune dysfunction in COVID-19 disease and malnutrition, and thereby identify preventive and therapeutic interventions that would help limit and contain the global health impact of this pandemic. Severe COVID-19 disease is characterized by dysregulation of myeloid compartments and lymphopenia. Lymphopenia is often protracted and outlasts the cytokine storm, suggesting underlying thymic dysfunction or involution. The thymus is considered a barometer of malnutrition, and leptin deficiency induced by protein-energy malnutrition can lead to thymic dysfunction and atrophy. Immune dysfunction in COVID-19 disease and malnutrition may be further increased by comorbidities including zinc and vitamin deficiencies, hyperinflammation, and stress. Thymic dysfunction or involution, especially in children, can potentially slow the recovery from COVID-19 disease and increase the risk of other infections. National governments and international organizations including WHO, World Food Program, and UNICEF should institute measures to ensure provision of food including micronutrients for the poor, thereby mitigating the health impact of the COVID-19 pandemic, especially amongst children in developing countries.

 

Note: Conflict of Interest: AG has filed provisional patents for use of Ramatroban as an immunotherapy to treat COVID-19 infection. (Gupta, A. Use of Ramatroban as a therapeutic agent for prevention and treatment of viral infections including COVID-Application no. 63/003,286 filed on March 31, 2020; and Gupta A. Use of a DP2 antagonist such as Ramatroban as a therapeutic agent for treatment of adults with viral infection including COVID-19 Provisional Patent Application no. 63/005,205 filed on April 3, 2020). Other authors have not declared conflict of interest.

Funding: None to declare

Keywords: COVID-19, protein-calorie malnutrition, thymic atrophy, inflammation, zinc, cachexia, lymphopenia, leptin, stress, glucocorticoids

 Suggested Citation

Chiang, Kate and Kalantar-Zadeh, Kamyar and Gupta, Ajay, Thymic Dysfunction and Atrophy in COVID-19 Disease Complicated by Inflammation, Malnutrition and Cachexia (July 13, 2020). Available at SSRN: https://ssrn.com/abstract=3649836 or http://dx.doi.org/10.2139/ssrn.3649836

Kate Chiang

Charak Foundation ( email )

12551 Downey Ave
Downey, CA 90242
United States
5627020617 (Phone)

Applied Medical Technologies LLC ( email )

2505 Seascape Drive
Las Vegas, NV NV 89128
United States
5624126259 (Phone)
89128 (Fax)

Kamyar Kalantar-Zadeh

University of California Irvine ( email )

Division of Nephrology, University of California I
101 City Drive South, City Tower, Suite 400-ZOT;40
Orange, CA California 92868-3217
United States
7144565142 (Phone)

Ajay Gupta (Contact Author)

University of California Irvine ( email )

Division of Nephrology, University of California I
101 City Drive South, City Tower, Suite 400-ZOT;40
Orange, CA California 92868-3217
United States
5624197029 (Phone)
92868-3217 (Fax)

Read Full Post »


Did FDA Reverse Course on Convalescent Plasma Therapy for COVID-19?

Reporter: Stephen J. Williams, PhD

 

Starting with a timeline of recent announcements by the FDA on convalescent plasma therapy

April 16, 2020

FDA STATEMENT

Coronavirus (COVID-19) Update: FDA Encourages Recovered Patients to Donate Plasma for Development of Blood-Related Therapies

 

As part of the all-of-America approach to fighting the COVID-19 pandemic, the U.S. Food and Drug Administration has been working with partners across the U.S. government, academia and industry to expedite the development and availability of critical medical products to treat this novel virus. Today, we are providing an update on one potential treatment called convalescent plasma and encouraging those who have recovered from COVID-19 to donate plasma to help others fight this disease.

Convalescent plasma is an antibody-rich product made from blood donated by people who have recovered from the disease caused by the virus. Prior experience with respiratory viruses and limited data that have emerged from China suggest that convalescent plasma has the potential to lessen the severity or shorten the length of illness caused by COVID-19. It is important that we evaluate this potential therapy in the context of clinical trials, through expanded access, as well as facilitate emergency access for individual patients, as appropriate.

The response to the agency’s recently announced national efforts to facilitate the development of and access to convalescent plasma has been tremendous. More than 1,040 sites and 950 physician investigators nationwide have signed on to participate in the Mayo Clinic-led expanded access protocol. A number of clinical trials are also taking place to evaluate the safety and efficacy of convalescent plasma and the FDA has granted numerous single patient emergency investigational new drug (eIND) applications as well.

Source: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-encourages-recovered-patients-donate-plasma-development-blood

August 23, 2020

 

Recommendations for Investigational COVID-19 Convalescent Plasma

 

  • FDA issues guidelines on clinical trials and obtaining emergency enrollment concerning convalescent plasma

FDA has issued guidance to provide recommendations to health care providers and investigators on the administration and study of investigational convalescent plasma collected from individuals who have recovered from COVID-19 (COVID-19 convalescent plasma) during the public health emergency.

The guidance provides recommendations on the following:

Because COVID-19 convalescent plasma has not yet been approved for use by FDA, it is regulated as an investigational product.  A health care provider must participate in one of the pathways described below.  FDA does not collect COVID-19 convalescent plasma or provide COVID-19 convalescent plasma.  Health care providers or acute care facilities should instead obtain COVID-19 convalescent plasma from an FDA-registered blood establishment.

Excerpts from the guidance document are provided below.

Background

The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States (U.S.) from threats including emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic.  FDA is committed to providing timely guidance to support response efforts to this pandemic.

One investigational treatment being explored for COVID-19 is the use of convalescent plasma collected from individuals who have recovered from COVID-19.  Convalescent plasma that contains antibodies to severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (the virus that causes COVID-19) is being studied for administration to patients with COVID-19. Use of convalescent plasma has been studied in outbreaks of other respiratory infections, including the 2003 SARS-CoV-1 epidemic, the 2009-2010 H1N1 influenza virus pandemic, and the 2012 MERS-CoV epidemic.

Although promising, convalescent plasma has not yet been shown to be safe and effective as a treatment for COVID-19. Therefore, it is important to study the safety and efficacy of COVID-19 convalescent plasma in clinical trials.

Pathways for Use of Investigational COVID-19 Convalescent Plasma

The following pathways are available for administering or studying the use of COVID-19 convalescent plasma:

  1. Clinical Trials

Investigators wishing to study the use of convalescent plasma in a clinical trial should submit requests to FDA for investigational use under the traditional IND regulatory pathway (21 CFR Part 312). CBER’s Office of Blood Research and Review is committed to engaging with sponsors and reviewing such requests expeditiously. During the COVID-19 pandemic, INDs may be submitted via email to CBERDCC_eMailSub@fda.hhs.gov.

  1. Expanded Access

An IND application for expanded access is an alternative for use of COVID-19 convalescent plasma for patients with serious or immediately life-threatening COVID-19 disease who are not eligible or who are unable to participate in randomized clinical trials (21 CFR 312.305). FDA has worked with multiple federal partners and academia to open an expanded access protocol to facilitate access to COVID-19 convalescent plasma across the nation. Access to this investigational product may be available through participation of acute care facilities in an investigational expanded access protocol under an IND that is already in place.

Currently, the following protocol is in place: National Expanded Access Treatment Protocol

  1. Single Patient Emergency IND

Although participation in clinical trials or an expanded access program are ways for patients to obtain access to convalescent plasma, for various reasons these may not be readily available to all patients in potential need. Therefore, given the public health emergency that the COVID-19 pandemic presents, and while clinical trials are being conducted and a national expanded access protocol is available, FDA also is facilitating access to COVID-19 convalescent plasma for use in patients with serious or immediately life-threatening COVID-19 infections through the process of the patient’s physician requesting a single patient emergency IND (eIND) for the individual patient under 21 CFR 312.310. This process allows the use of an investigational drug for the treatment of an individual patient by a licensed physician upon FDA authorization, if the applicable regulatory criteria are met.  Note, in such case, a licensed physician seeking to administer COVID-19 convalescent plasma to an individual patient must request the eIND (see 21 CFR 312.310(b)).

To Obtain a Single Patient Emergency IND  

The requesting physician may contact FDA by completing Form FDA 3926 (https://www.fda.gov/media/98616/download) and submitting the form by email to CBER_eIND_Covid-19@FDA.HHS.gov.

FACT SHEET FOR PATIENTS AND PARENTS/CAREGIVERS EMERGENCY USE AUTHORIZATION (EUA) OF COVID-19 CONVALESCENT PLASMA FOR TREATMENT OF COVID-19 IN HOSPITALIZED PATIENTS

  • FDA issues fact sheet for patients on donating plasma

August 23, 2020

 

FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic

 

Today, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients as part of the agency’s ongoing efforts to fight COVID-19. Based on scientific evidence available, the FDA concluded, as outlined in its decision memorandum, this product may be effective in treating COVID-19 and that the known and potential benefits of the product outweigh the known and potential risks of the product.

Today’s action follows the FDA’s extensive review of the science and data generated over the past several months stemming from efforts to facilitate emergency access to convalescent plasma for patients as clinical trials to definitively demonstrate safety and efficacy remain ongoing.

The EUA authorizes the distribution of COVID-19 convalescent plasma in the U.S. and its administration by health care providers, as appropriate, to treat suspected or laboratory-confirmed COVID-19 in hospitalized patients with COVID-19.

Alex Azar, Health and Human Services Secretary:
“The FDA’s emergency authorization for convalescent plasma is a milestone achievement in President Trump’s efforts to save lives from COVID-19,” said Secretary Azar. “The Trump Administration recognized the potential of convalescent plasma early on. Months ago, the FDA, BARDA, and private partners began work on making this product available across the country while continuing to evaluate data through clinical trials. Our work on convalescent plasma has delivered broader access to the product than is available in any other country and reached more than 70,000 American patients so far. We are deeply grateful to Americans who have already donated and encourage individuals who have recovered from COVID-19 to consider donating convalescent plasma.”

Stephen M. Hahn, M.D., FDA Commissioner:
“I am committed to releasing safe and potentially helpful treatments for COVID-19 as quickly as possible in order to save lives. We’re encouraged by the early promising data that we’ve seen about convalescent plasma. The data from studies conducted this year shows that plasma from patients who’ve recovered from COVID-19 has the potential to help treat those who are suffering from the effects of getting this terrible virus,” said Dr. Hahn. “At the same time, we will continue to work with researchers to continue randomized clinical trials to study the safety and effectiveness of convalescent plasma in treating patients infected with the novel coronavirus.”

Scientific Evidence on Convalescent Plasma

Based on an evaluation of the EUA criteria and the totality of the available scientific evidence, the FDA’s Center for Biologics Evaluation and Research determined that the statutory criteria for issuing an EUA criteria were met.

The FDA determined that it is reasonable to believe that COVID-19 convalescent plasma may be effective in lessening the severity or shortening the length of COVID-19 illness in some hospitalized patients. The agency also determined that the known and potential benefits of the product, when used to treat COVID-19, outweigh the known and potential risks of the product and that that there are no adequate, approved, and available alternative treatments.

 

August 24, 2020

Donate COVID-19 Plasma

 

  • FDA posts video and blog about how to donate plasms if you had been infected with COVID

 

https://youtu.be/PlX15rWdBbY

 

 

Please go to https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma

to read more from FDA

 

 

August 25, 2020

 

CLINICAL MEMORANDUM From: , OBRR/DBCD/CRS To: , OBRR Through: , OBRR/DBCD , OBRR/DBCD , OBRR/DBCD/CRS Re: EUA 26382: Emergency Use Authorization (EUA) Request (original request 8/12/20; amended request 8/23/20) Product: COVID-19 Convalescent Plasma Items reviewed: EUA request Fact Sheet for Health Care Providers Fact Sheet for Recipients Sponsor: Robert Kadlec, M.D. Assistant Secretary for Preparedness and Response (ASPR) Office of Assistant Secretary for Preparedness and Response (ASPR) U.S. Department of Health and Human Services (HHS) EXECUTIVE SUMMARY COVID-19 Convalescent Plasma (CCP), an unapproved biological product, is proposed for use under an Emergency Use Authorization (EUA) under section 564 of the Federal Food, Drug, and Cosmetic Act (the Act),(21 USC 360bbb-3) as a passive immune therapy for the treatment of hospitalized patients with COVID-19, a serious or life-threatening disease. There currently is no adequate, approved, and available alternative to CCP for treating COVID-19. The sponsor has pointed to four lines of evidence to support that CCP may be effective in the treatment of hospitalized patients with COVID-19: 1) History of convalescent plasma for respiratory coronaviruses; 2) Evidence of preclinical safety and efficacy in animal models; 3) Published studies of the safety and efficacy of CCP; and 4) Data on safety and efficacy from the National Expanded Access Treatment Protocol (EAP) sponsored by the Mayo Clinic. Considering the totality of the scientific evidence presented in the EUA, I conclude that current data for the use of CCP in adult hospitalized patients with COVID-19 supports the conclusion that CCP meets the “may be effective” criterion for issuance of an EUA from section 564(c)(2)(A) of the Act. It is reasonable to conclude that the known and potential benefits of CCP outweigh the known and potential risks of CCP for the proposed EUA. Current data suggest the largest clinical benefit is associated with high-titer units of CCP administered early course of the disease.

Source: https://www.fda.gov/media/141480/download

 

And Today August 26, 2020

  • A letter, from Senator Warren, to Commissioner Hahn from Senate Committee asking for documentation for any communication between FDA and White House

August 25, 2020 Dr. Stephen M. Hahn, M.D. Commissioner of Food and Drugs U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 Dear Commissioner Hahn: We write regarding the U.S. Food and Drug Administration’s (FDA) troubling decision earlier this week to issue an Emergency Use Authorization (EUA) for convalescent plasma as a treatment for coronavirus disease 2019 (COVID-19).1 Reports suggests that the FDA granted the EUA amid intense political pressure from President Trump and other Administration officials, despite limited evidence of convalescent plasma’s effectiveness as a COVID-19 treatment.2 To help us better understand whether the issuance of the blood plasma EUA was motivated by politics, we request copies of any and all communications between FDA and White House officials regarding the blood plasma EUA.

Source: https://www.warren.senate.gov/imo/media/doc/2020.08.25%20Letter%20to%20FDA%20re%20Blood%20Plasma%20EUA.pdf

…….. which may have been a response to this article

FDA chief walks back comments on effectiveness of coronavirus plasma treatment

 

From CNBC: https://www.cnbc.com/2020/08/25/fda-chief-walks-back-comments-on-effectiveness-of-coronavirus-plasma-treatment.html

PUBLISHED TUE, AUG 25 202010:45 AM EDTUPDATED TUE, AUG 25 20204:12 PM EDT

Berkeley Lovelace Jr.@BERKELEYJR

Will Feuer@WILLFOIA

KEY POINTS

  • The authorization will allow health-care providers in the U.S. to use the plasma to treat hospitalized patients with Covid-19.
  • The FDA’s emergency use authorization came a day after President Trump accused the agency of delaying enrollment in clinical trials for vaccines or therapeutics.
  • The criticism from Trump and action from the FDA led some scientists to believe the authorization, which came on the eve of the GOP national convention, was politically motivated.

FDA Commissioner Dr. Stephen Hahn is walking back comments on the benefits of convalescent plasma, saying he could have done a better job of explaining the data on its effectiveness against the coronavirus after authorizing it for emergency use over the weekend.

Commisioners responses over Twitter

https://twitter.com/SteveFDA/status/1298071603675373569?s=20

https://twitter.com/SteveFDA/status/1298071619236245504?s=20

August 26, 2020

In an interview with Bloomberg’s , FDA Commissioner Hahn reiterates that his decision was based on hard evidence and scientific fact, not political pressure.  The whole interview is at the link below:

https://www.bloomberg.com/news/articles/2020-08-25/fda-s-hahn-vows-to-stick-to-the-science-amid-vaccine-pressure?sref=yLCixKPR

Some key points:

  • Dr. Hahn corrected his initial statement about 35% of people would be cured by convalescent plasma. In the interview he stated:

I was trying to do what I do with patients, because patients often understand things in absolute terms versus relative terms. And I should’ve been more careful, there’s no question about it. What I was trying to get to is that if you look at a hundred patients who receive high titre, and a hundred patients who received low titre, the difference between those two particular subset of patients who had these specific criteria was a 35% reduction in mortality. So I frankly did not do a good job of explaining that.

  • FDA colleagues had frank discussion after the statement was made.  He is not asking for other people in HHS to retract their statements, only is concerned that FDA has correct information for physicians and patients
  • Hahn is worried that people will not enroll due to chance they may be given placebo
  • He gave no opinion when asked if FDA should be an independent agency

 

For more articles on COVID19 please go to our Coronavirus Portal at

https://pharmaceuticalintelligence.com/coronavirus-portal/

 

Read Full Post »


Online Event: Vaccine matters: Can we cure coronavirus? An AAAS Webinar on COVID19: 8/12/2020

Reporter: Stephen J. Williams. PhD

Source: Online Event

Top on the world’s want list right now is a coronavirus vaccine. There is plenty of speculation about how and when this might become a reality, but clear answers are scarce.Science/AAAS, the world’s leading scientific organization and publisher of the Science family of journals, brings together experts in the field of coronavirus vaccine research to answer the public’s most pressing questions: What vaccines are being developed? When are we likely to get them? Are they safe? And most importantly, will they work?

link: https://view6.workcast.net/AuditoriumAuthenticator.aspx?cpak=1836435787247718&pak=8073702641735492

Presenters

Presenter
Speaker: Sarah Gilbert, Ph.D.

University of Oxford
Oxford, UK
View Bio

Presenter
Speaker: Kizzmekia Corbett, Ph.D.

National Institute of Allergy and Infectious Diseases, NIH
Bethesda, MD
View Bio

Presenter
Speaker: Kathryn M. Edwards, M.D.

Vanderbilt Vaccine Research Program
Nashville, TN
View Bio

Presenter
Speaker: Jon Cohen

Science/AAAS
San Diego, CA
View Bio

Presenter
Moderator: Sean Sanders, Ph.D.

Science/AAAS
Washington, DC
View Moderator Bio

Read Full Post »


 

Contagious

We are in the midst of a pandemic that is impacting people and society in ways that are hard to grasp. The most apparent impact is on physical health. It also effects our attitudes in society, our economy and our cultural life. Throughout history, humanity has had to face the challenge of understanding, managing and fighting viruses.

In the exhibition Contagious we are highlighting Nobel Prize-awarded researchers who have expanded our knowledge about viruses, mapped our immune system and developed vaccines. We also examine the perspectives from Literature and Economics Laureates about the impact of epidemics on life and society. Visit us at the museum or on these pages.

Museums have an important role to play in times of crisis, since they can help people tackle existential questions and provide a broader context. The Nobel Museum is about ideas that have changed the world. The Nobel Prize points to the ability of humans to find solutions to difficult challenges that we face time and time again. It is a source of hope, even in the midst of the crisis.

SOURCE

Nobel Prize Museum

https://nobelprizemuseum.se/en/whats-on/contagious/?utm_content=contagious_text

Coronavirus

On March 11 this year, the World Health Organization announced that the spread of the coronavirus should be classified as a pandemic, that is “an infectious disease that spreads to large parts of the world and affects a large proportion of the population of each country”. Today, nobody knows how many will die in this pandemic, or when, or if, we can have a vaccine against the disease.

SARS-CoV-2, or Severe acute respiratory syndrome coronavirus 2, is an RNA virus from the family coronavirus that causes the respiratory disease covid-19.

The virus was detected at the end of last year in the Wuhan sub-province of China, and in most cases causes milder disease symptoms that disappear within two weeks. But sometimes, especially in certain groups such as the elderly and people with certain other underlying illnesses, the infection becomes more severe and can in some cases lead to death.

The virus is believed to have zoonotic origin, that is, it has been transmitted to humans from another animal. Where the origin of the disease comes from, that is to say from which host animal the virus originates, is still unknown. However, the virus has close genetic similarity to a corona virus carried by some bats, which might indicate where the virus comes from.

This model shows the SARS-CoV-2 virus, which causes the illness covid-19. The globe-shaped envelope has a membrane of fat-like substances. Inside the envelope are proteins bound to RNA molecules, that contain the virus’s genes. Short spikes of proteins and longer spikes of glycoprotein stick out of the envelope and attach to receptors on the surface of attacked cells. The spikes, which are bigger at the top, give the virus its appearance reminiscent of the Sun’s corona. This where the coronavirus’s name comes from.

Testing is an important tool for tracking and preventing the spread of infection during an epidemic.

One type of test looks at if a person is infected by looking for traces of the virus’s RNA genetic material. The test is taken using a swab stick inserted into the throat. The small amounts of RNA or DNA that attach to the swab are analyzed using the PCR technique, which was invented by Kary Mullis in 1983. Ten years later he was awarded the Nobel Prize in Chemistry.

Another type of test looks for antibodies to the virus in the blood. This indicates that the person has had the disease.

https://nobelprizemuseum.se/en/coronavirus/

The first virus ever discovered

We have understood since the 19th century that many diseases are caused by microscopic bacteria that cannot be seen by the naked eye. It turned out that there were even smaller contagions: viruses. Research on viruses has been recognized with several Nobel Prizes.

https://nobelprizemuseum.se/en/the-first-virus-ever-discovered/

Spanish flu

The worst pandemic of the 20th century was the Spanish flu, which swept across the world 1918–1920.

The Spanish flu was caused by an influenza virus. American soldiers at military facilities at the end of World War I were likely an important source of its spread in Europe. The war had just ended, and the pandemic claimed even more lives than the war. Between 50 and 100 million people died in the pandemic.

The Red Cross, an international aid organization, which received the Nobel Peace Prize for its efforts during the war, also took part in fighting the Spanish flu. International Committee of the Red Cross received the prize in 1917, 1944 and 1963.

This photo shows personnel from the Red Cross providing transportation for people suffering from the Spanish flu in St. Louis, Missouri in the United States.

https://nobelprizemuseum.se/en/spanish-flu/

Polio

Polio is an illness that often affects children and young people and that can lead to permanent paralysis.

Polio is a highly infectious RNA virus belonging to the genus Enterovirus. The virus only infects humans and enters the body via droplets such as sneezing and coughing, or through contact with infected people’s feces. Usually, polio infects our respiratory and intestinal tract, but sometimes the virus spreads to the spinal cord and can then cause paralysis. The virus mainly affects children, but most of those infected show no or very mild symptoms.

Vaccines are a way to help our immune system fight viruses. The immune system is the body’s defence mechanism against attacks from viruses and bacteria. A number of Nobel Laureates have researched the immune system and contributed to the development of vaccines.

Hepatitis B

The virus can infect people without them becoming sick. Discoveries in the 1960s enabled both vaccines and tests to prevent the spread.

Hepatitis B can infect humans and apes, and is most common in West Africa and in sub-Saharan Africa. The disease also occurs in the rest of Africa, as well as in areas from the Caspian Sea through to China and Korea and further down to Southeast Asia.

Baruch Blumberg discovered the virus behind hepatitis B and developed a vaccine against the disease.

There are many varieties of hepatitis, or jaundice, that cause inflammation in the liver. When studying blood proteins from people from different parts of the world at the end of the 1960s, Baruch Blumberg unexpectedly discovered an infectious agent for hepatitis B. He showed that the infectious agent was linked to a virus of previously unknown type. The virus can infect people without them becoming sick. The discoveries enabled both vaccines and tests to prevent the spread through blood transfusions.

Baruch Blumberg was awarded the Nobel Prize in Physiology or Medicine 1976. He has summarized what the Nobel Prize meant to him.

https://nobelprizemuseum.se/en/hepatitis-b/

Yellow fever

Each year, Yellow fever causes about 30,000 deaths. The vaccine against yellow fever was produced in the 1930s. A work awarded the Nobel Prize.

Yellow fever is a serious disease caused by a virus that is spread by mosquitos in tropical areas of Africa and South America.

Each year, Yellow fever causes about 200,000 infections and 30,000 deaths. About 90% of the cases occur in Africa. The disease is common in warm, tropical climates such as South America and Africa, but it is not found in Asia.

You may think that the number of people infected would be decreasing, but since the 1980s the number of yellow fever cases has unfortunately increased. This is believed to be due to the fact that more and more people are living in cities, that we are traveling more than before, and an increased climate impact.

Since there is no cure for the disease, preventive vaccination is a very important measure. Max Theiler successfully infected mice with a virus in the 1930s, which opened the door to more in-depth studies. When the virus was transferred between mice, a weakened form of the virus was created that gave monkeys immunity. In 1937, Theiler was able to develop an even weaker version of the virus. This version could be used as a vaccine for people.

Max Theiler was awarded the Nobel Prize in Physiology or Medicine in 1951.

https://nobelprizemuseum.se/en/yellow-fever/

HIV/AIDS

In the early 1980s, reports began to emerge about young men that suffered from unusual infections and cancers that normally only affect patients with weakened immune systems. It turned out to be a previously unknown epidemic, HIV, which spread rapidly across the world.

HIV, which is an abbreviation of human immunodeficiency virus, is a sexually transmitted retrovirus that attacks our immune system. An untreated infection eventually leads to AIDS, or acquired immune deficiency syndrome. In 2008, French scientists Luc Montagnier and Françoise Barré-Sinoussi were awarded the Nobel Prize in Physiology or Medicine for the detection of human immunodeficiency virus.

Watch the interview where Françoise Barré-Sinoussi talks about what it is like to meet patients affected by the virus she discovered.

https://nobelprizemuseum.se/en/hiv-aids/

 

Viruses captured in photos

Viruses are incredibly small and cannot be seen in normal microscopes.

The electron microscope, which was invented by Ernst Ruska and Max Knoll in 1933, made it possible to take pictures of much smaller objects than was previously possible. Ernst Ruska’s brother, Helmut Ruska, was a doctor and biologist, and used early electron microscopes to make images of viruses and other small objects. The tobacco mosaic virus was the first virus captured on film. The development of the electron microscope has enabled increasingly better images to be taken.

Ernst Ruska was awarded the 1986 Nobel Prize in Physics together with Gerd Binnig and Heinrich Röhrer, who developed the scanning electron microscope.

Read more about Ernst Ruska – his life and research. https://www.nobelprize.org/prizes/physics/1986/ruska/facts/

https://nobelprizemuseum.se/en/viruses-captured-in-photos/

 

Epidemics and literature

When epidemics and pandemics strike the world, it isn’t just the physical health of people that are impacted but also ways of life, thoughts and feelings. Nobel Laureates in literature have been effected by epidemics and written about life under real and fictive epidemics.

The coronavirus crisis has had a dramatic impact on our lives and our view of our lives. Olga Tokarczuk is one of the authors who has reflected on this.

Tokarczuk argues that the coronavirus has swept away the illusion that we are the masters of creation and that we can do anything since the world belongs to us. She wonders if the pandemic has forced us into a slower, more natural rhythm in life, but also worries about how it may increase distrust of strangers and worsen inequality among people.

Orhan Pamuk has worked for many years on a novel about a bubonic plague epidemic that struck primarily Asia in 1901. The coronavirus crisis has caused him to consider the similarities between the ongoing pandemic and past epidemics throughout history.

He sees several recurring behaviors when epidemics strike: denial and false information, distrust of individuals belonging to other groups, and theories about a malicious intent behind the pandemic. But epidemics also remind us that we are not alone and allow us to rediscover a sense of solidarity. He writes in The New York Times.

https://nobelprizemuseum.se/en/epidemics-and-literature/

Economics Laureates on the current pandemic

Pandemics have wide-ranging impacts on the economy. Paul Romer and Paul Krugman are two economists who have been active in the public discourse during the coronavirus crisis.

Paul Romer has expressed concerns about the pandemic’s effects on the economy but is optimistic about the possibilities of technology. He supports widespread testing. Those who are infected have to stay home for two weeks while others can work and take part in other ways in society.

Paul Romer was awarded the prize “for integrating technological innovations into long-run macroeconomic analysis.” Paul Romer has demonstrated how knowledge can function as a driver of long-term economic growth. He showed how economic forces govern the willingness of firms to produce new ideas.

His thoughts are developed in his lecture during the Nobel Week 2018.

https://nobelprizemuseum.se/en/economics-laureates-on-the-current-pandemic/

 

Other SOURCE

https://www.nobelprize.org/

 

Read Full Post »


Study with important implications when considering widespread serological testing, Ab protection against re-infection with SARS-CoV-2 and the durability of vaccine protection

Reporter: Aviva Lev-Ari, PhD, RN

Serological Testing WordCloud

Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection

Jeffrey SeowCarl GrahamBlair MerrickSam AcorsKathryn J.A. SteelOliver HemmingsAoife O’BryneNeophytos KouphouSuzanne PickeringRui GalaoGilberto BetancorHarry D WilsonAdrian W SignellHelena WinstoneClaire KerridgeNigel TempertonLuke SnellKaren BisnauthsingAmelia MooreAdrian GreenLauren MartinezBrielle StokesJohanna HoneyAlba Izquierdo-BarrasGill ArbaneAmita PatelLorcan OConnellGeraldine O HaraEithne MacMahonSam DouthwaiteGaia NebbiaRahul BatraRocio Martinez-NunezJonathan D. EdgeworthStuart J.D. NeilMichael H. MalimKatie Doores

Abstract

Antibody (Ab) responses to SARS-CoV-2 can be detected in most infected individuals 10-15 days following the onset of COVID-19 symptoms. However, due to the recent emergence of this virus in the human population it is not yet known how long these Ab responses will be maintained or whether they will provide protection from re-infection. Using sequential serum samples collected up to 94 days post onset of symptoms (POS) from 65 RT-qPCR confirmed SARS-CoV-2-infected individuals, we show seroconversion in >95% of cases and neutralizing antibody (nAb) responses when sampled beyond 8 days POS. We demonstrate that the magnitude of the nAb response is dependent upon the disease severity, but this does not affect the kinetics of the nAb response. Declining nAb titres were observed during the follow up period. Whilst some individuals with high peak ID50 (>10,000) maintained titres >1,000 at >60 days POS, some with lower peak ID50 had titres approaching baseline within the follow up period. A similar decline in nAb titres was also observed in a cohort of seropositive healthcare workers from Guy′s and St Thomas′ Hospitals. We suggest that this transient nAb response is a feature shared by both a SARS-CoV-2 infection that causes low disease severity and the circulating seasonal coronaviruses that are associated with common colds. This study has important implications when considering widespread serological testing, Ab protection against re-infection with SARS-CoV-2 and the durability of vaccine protection.

SOURCE

https://www.medrxiv.org/content/10.1101/2020.07.09.20148429v1

Read Full Post »

Older Posts »