Advertisements
Feeds:
Posts
Comments

Archive for the ‘Biomarkers & Medical Diagnostics’ Category


June 4, 2018 – Department of Defense Medical Innovation and Biodefense Forum, BIO 2018! at Boston Convention & Exhibition Center

Announcement

Aviva Lev-Ari, PhD, RN,

https://mybio.org/profile/member/2029564?profile_tabs=profile

Founder and Director of LPBI Group will be in attendance covering the event in REAL TIME

https://pharmaceuticalintelligence.com/2018/05/26/bio-2018-june-4-7-2018-at-boston-convention-exhibition-center/

@pharma_BI

@AVIVA1950

for

#BIO2018

@BIOConvention

  • How DoD can assist Industry to commercialize technologies
  • How the coordination in the Infectious disease takes place
  • Manufacturing for DoD
  • Infrastructure to manage across Government RFP Process
  • Devices requires detailed engineering for use in Field hospitals
  • Regulatory, Scheduling and Engineering problems
  • Development is for all the Forces of the US and for all the Forces of US Allies — design for CIvilian first respnders as well
  • Some partners are commercial Partners, they need to approach DoD with novel product concept
  • FDA approved vs Right to Try – DoD uses both
  • Small business Program, success in bringing product to market
  • 20 years ago: Communities of interest – 20 orgs community common goals in Health Care, rehabilitation after coming home,
  • MROC – Conference in Florida DoD to explain the Public the process of engagement with Do
  • Interagency partnership
  • DoD starts with good ideas, concept studies – innovators
  • Collaborations with Academia, we are available to be approached
  • DoD will partner with small businesses to avoid the Regulatory process  – to save time and resources in the commercialization process
  • How a civilian concept FITS the needs of DoD
  • Sustaining an innovation along the years
  • Need for small business to approach DoD to make the contact
  • Where is a small business in the Development cycle? DoD can help calibrate
  • A System of Systems: Diagnostics drive decisions
  • develop partnerships in consortia
  • Six month to vaccinate 17,000 with a Vaccine for EBOLA
  • DoD of respective countries are collaborating with US DoD
  • Threat environment changes over time vs modify known threats
  • Monoclonal antibody – the Industry developed the manufacturing technology and DoD is user of Industry products
  • All research for the Joint Force, Chemical, Biological,
  • Short time to market solutions are of interest for DoD to identify
  • Military relevance: Key for funding
  • Announcements of DoD on WHAT PROBLEMS DoD tries to solve
  • DoD and HHS — aligned for common solution to avoid redundancy
  • Development of profilaxix is very expensive, DoD budget has competing goals: Next soldier suit,
  • FDA and DoD need to collaborate for DoDs needs
  • Order transaction authority,
  • Congress set aside a budget for small businesses to use accounting systems for Small business to interact with DoD
  • How to get a digital signal to the brain: Expertise in many disciplines: EE, Ethomology
  • Delivery, test , evaluation, develop sensors, IS to manage threats, Diagnostics,
  • How to do Business with Industry?
  • Congress asked for a Consorsium to engage with Industry in a different form than we engaged before
  • Partnerships for out of the box thinking and going quickly – the appetite for is greater then evr before
  • Successful area: Diagnostics – adoptation of existing diagnostics for military applications
  • Platform technologies: Metabolic, Vaccines,
  • Leverage existing technologies to solve DoD concerns
  • involved with MCS help Government to learn how to build their Office
  • Genomic, Proteomics, therapeutics candidates, Prophylaxis as Vaccines
  • In the event of an outbreak: clinicians, 1st responders
Panel 2: Clay Holloway, Director of Strategic Initiatives, Joint Project Manager, Medical Countermeasure Systems (JPM-MCS)
  • Partnering is key
  • capability requirements: broad spectrum capabilities
  • Decision tools to be used at studies for data analysis for decision making
  • Risks in partnership: DoD needs to evaluate ideas for next generation to SKIP one generation
  • How to used different agreement strategically? Streamline DoD Methods
  • Have continuous access to assets

 

LOCATION
Advertisements

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Hepatitis B virus can cause serious, long-term health problems, such as liver disease and cancer, and can spread from mother-to-child during delivery. According to the latest estimates from the World Health Organization (WHO), approximately 257 million people in 2015 were living with the virus. Countries in Asia have a high burden of hepatitis B. There is no cure, and antiviral drugs used to treat the infection usually need to be taken for life.

 

To prevent infection, WHO recommends that all newborns receive their first dose of hepatitis B vaccine within 24 hours of delivery. Infants born to hepatitis B-infected mothers are also given protective antibodies called hepatitis B immune globulin (HBIG). However, mother-to-child transmission can still occur in women with high levels of virus in their blood, as well as those with mutated versions of the virus.

 

Tenofovir disoproxil fumarate (TDF), an antiviral drug commonly prescribed to treat hepatitis B infection, does not significantly reduce mother-to-child transmission of hepatitis B virus when taken during pregnancy and after delivery, according to a phase III clinical trial in Thailand funded by the National Institutes of Health. The study tested TDF therapy in addition to the standard preventative regimen — administration of hepatitis B vaccine and protective antibodies at birth — to explore the drug’s potential effects on mother-to-child transmission rates. The results appear in the New England Journal of Medicine.

 

The present study was conducted at 17 hospitals of the Ministry of Public Health in Thailand. It screened more than 2,500 women for eligibility and enrolled 331 pregnant women with hepatitis B. The women received placebo (163) or TDF (168) at intervals from 28 weeks of pregnancy to two months after delivery. All infants received standard hepatitis B preventatives given in Thailand, which include HBIG at birth and five doses of the hepatitis B vaccine by age 6 months (which differs from the three doses given in the United States). A total of 294 infants (147 in each group) were followed through age 6 months.

 

Three infants in the placebo group had hepatitis B infection at age 6 months, compared to zero infants in the TDF treatment group. Given the unexpectedly low transmission rate in the placebo group, the researchers concluded that the addition of TDF to current recommendations did not significantly reduce mother-to-child transmission of the virus.

 

According to the study, the clinical trial had enough participants to detect statistical differences if the transmission rate in the placebo group reached at least 12 percent, a rate observed in previous studies. Though the reasons are unknown, the researchers speculate that the lower transmission rate seen in the study may relate to the number of doses of hepatitis B vaccine given to infants in Thailand, lower rates of amniocentesis and Cesarean section deliveries in this study, or the lower prevalence of mutated viruses that result in higher vaccine efficacy in Thailand compared to other countries.

 

References:

 

https://www.nih.gov/news-events/news-releases/antiviral-drug-not-beneficial-reducing-mother-child-transmission-hepatitis-b-when-added-existing-preventatives

 

https://www.ncbi.nlm.nih.gov/pubmed/29514030

 

https://www.ncbi.nlm.nih.gov/pubmed/29514035

 

https://www.ncbi.nlm.nih.gov/pubmed/25240752

 

https://www.ncbi.nlm.nih.gov/pubmed/28188612

 

Read Full Post »


International Award for Human Genome Project

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The Thai royal family awarded its annual prizes in Bangkok, Thailand, in late January 2018 in recognition of advances in public health and medicine – through the Prince Mahidol Award Foundation under the Royal Patronage. This foundation was established in 1992 to honor the late Prince Mahidol of Songkla, the Royal Father of His Majesty King Bhumibol Adulyadej of Thailand and the Royal Grandfather of the present King. Prince Mahidol is celebrated worldwide as the father of modern medicine and public health in Thailand.

 

The Human Genome Project has been awarded the 2017 Prince Mahidol Award for revolutionary advances in the field of medicine. The Human Genome Project was completed in 2003. It was an international, collaborative research program aimed at the complete mapping and sequencing of the human genome. Its final goal was to provide researchers with fundamental information about the human genome and powerful tools for understanding the genetic factors in human disease, paving the way for new strategies for disease diagnosis, treatment and prevention.

 

The resulting human genome sequence has provided a foundation on which researchers and clinicians now tackle increasingly complex problems, transforming the study of human biology and disease. Particularly it is satisfying that it has given the researchers the ability to begin using genomics to improve approaches for diagnosing and treating human disease thereby beginning the era of genomic medicine.

 

National Human Genome Research Institute (NHGRI) is devoted to advancing health through genome research. The institute led National Institutes of Health’s (NIH’s) contribution to the Human Genome Project, which was successfully completed in 2003 ahead of schedule and under budget. NIH, is USA’s national medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases.

 

Building on the foundation laid by the sequencing of the human genome, NHGRI’s work now encompasses a broad range of research aimed at expanding understanding of human biology and improving human health. In addition, a critical part of NHGRI’s mission continues to be the study of the ethical, legal and social implications of genome research.

 

References:

 

https://www.nih.gov/news-events/news-releases/human-genome-project-awarded-thai-2017-prince-mahidol-award-field-medicine

 

http://www.mfa.go.th/main/en/news3/6886/83875-Announcement-of-the-Prince-Mahidol-Laureates-2017.html

 

http://www.thaiembassy.org/london/en/news/7519/83884-Announcement-of-the-Prince-Mahidol-Laureates-2017.html

 

http://englishnews.thaipbs.or.th/us-human-genome-project-influenza-researchers-win-prince-mahidol-award-2017/

 

http://genomesequencing.com/the-human-genome-project-is-awarded-the-thai-2017-prince-mahidol-award-for-the-field-of-medicine-national-institutes-of-health-press-release/

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists at the Stanford University School of Medicine have completed the first-ever characterization of the meticulously timed immune system changes in women that occur during pregnancy. The findings were published in Science Immunology revealed that there is an immune clock of pregnancy and suggest it may help doctors predict preterm birth.

 

The timing of immune system changes follows a precise and predictable pattern in normal pregnancy. Although physicians have long known that the expectant mother’s immune system adjusts to prevent her body from rejecting the fetus, no one had investigated the full scope of these changes, nor asked if their timing was tightly controlled.

 

Nearly 10 percent of U.S. infants are born prematurely, arriving three or more weeks early, but physicians lack a reliable way to predict premature deliveries. Previous research at Stanford and other places suggested that inflammatory immune responses may help in triggering early labor. It suggested that if scientists identify an immune signature of impending preterm birth, they should be able to design a blood test to detect it.

 

The researchers used mass cytometry, a technique developed at Stanford, to simultaneously measure up to 50 properties of each immune cell in the blood samples. They counted the types of immune cells, assessed what signaling pathways were most active in each cell, and determined how the cells reacted to being stimulated with compounds that mimic infection with viruses and bacteria.

 

The researchers developed an algorithm that captures the immunological timeline during pregnancy that both validates previous findings and sheds new light on immune cell interaction during gestation. By defining this immunological chronology during normal term pregnancy, they can now begin to determine which alterations associate with pregnancy-related pathologies.

 

With an advanced statistical modeling technique, introduced for the first time in this study, the scientists then described in detail how the immune system changes throughout pregnancy. Instead of grouping the women’s blood samples by trimester for analysis, the model treated gestational age as a continuous variable, allowing the researchers to account for the exact time during pregnancy at which each sample was taken. The mathematical model also incorporated knowledge from the existing scientific literature of how immune cells behave in nonpregnant individuals to help determine which findings were most likely to be important.

 

The study confirmed immune features of pregnancy that were already known. Such as the scientists saw that natural killer cells and neutrophils have enhanced action during pregnancy. The researchers also uncovered several previously unappreciated features of how the immune system changes, such as the finding that activity of the STAT5 signaling pathway in CD4+T cells progressively increases throughout pregnancy on a precise schedule, ultimately reaching levels much higher than in nonpregnant individuals. The STAT5 pathway is involved in helping another group of immune cells, regulatory T cells, to differentiate. Interestingly, prior research in animals has indicated that regulatory T cells are important for maintaining pregnancy.

 

The next step will be to conduct similar research using blood samples from women who deliver their babies prematurely to see where their trajectories of immune function differ from normal.

 

This study revealed a precisely timed chronology of immune adaptations in peripheral blood over the course of a term pregnancy. This finding was enabled by high-content, single-cell mass cytometry coupled with a csEN algorithm accounting for the modular structure of the immune system and previous knowledge. The study provided the conceptual backbone and the analytical framework to examine whether disruption of this chronology is a diagnostically useful characteristic of preterm birth and other pregnancy-related pathologies.

 

References:

 

http://immunology.sciencemag.org/content/2/15/eaan2946.full

 

http://med.stanford.edu/news/all-news/2017/09/immune-system-changes-during-pregnancy-are-precisely-timed.html

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078586/

 

http://www.nature.com/nm/journal/v19/n5/full/nm.3160.html?foxtrotcallback=true

 

https://www.ncbi.nlm.nih.gov/pubmed/14758358

Read Full Post »


SNP-based Study on high BMI exposure confirms CVD and DM Risks – no associations with Stroke

Reporter: Aviva Lev-Ari, PhD, RN

Genes Affirm: High BMI Carries Weighty Heart, Diabetes Risk – Mendelian randomization study adds to ‘burgeoning evidence’

by Crystal Phend, Senior Associate Editor, MedPage Today, July 05, 2017

 

The “genetically instrumented” measure of high BMI exposure — calculated based on 93 single-nucleotide polymorphisms associated with BMI in prior genome-wide association studies — was associated with the following risks (odds ratios given per standard deviation higher BMI):

  • Hypertension (OR 1.64, 95% CI 1.48-1.83)
  • Coronary heart disease (CHD; OR 1.35, 95% CI 1.09-1.69)
  • Type 2 diabetes (OR 2.53, 95% CI 2.04-3.13)
  • Systolic blood pressure (β 1.65 mm Hg, 95% CI 0.78-2.52 mm Hg)
  • Diastolic blood pressure (β 1.37 mm Hg, 95% CI 0.88-1.85 mm Hg)

However, there were no associations with stroke, Donald Lyall, PhD, of the University of Glasgow, and colleagues reported online in JAMA Cardiology.

The associations independent of age, sex, Townsend deprivation scores, alcohol intake, and smoking history were found in baseline data from 119,859 participants in the population-based U.K. Biobank who had complete medical, sociodemographic, and genetic data.

“The main advantage of an MR approach is that certain types of study bias can be minimized,” the team noted. “Because DNA is stable and randomly inherited, which helps to mitigate errors from reverse causality and confounding, genetic variation can be used as a proxy for lifetime BMI to overcome limitations such as reverse causality and confounding, a process that hampers observational analyses of obesity and its consequences.”

 

Other related articles published in this Open Access Online Scientific Journal include the following:

9 results for Kindle Store : “Aviva Lev-Ari”

Sort by 
Relevance
Featured
Price: Low to High
Price: High to Low
Avg. Customer Review
Publication Date
  • Product Details

    Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics

    Nov 28, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Perspectives on Nitric Oxide in Disease Mechanisms (Biomed e-Books Book 1)

    Jun 20, 2013 | Kindle eBook

    by Margaret Baker PhD and Tilda Barliya PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2)

    May 13, 2017 | Kindle eBook

    by Larry H. Bernstein and Demet Sag
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Metabolic Genomics & Pharmaceutics (BioMedicine – Metabolomics, Immunology, Infectious Diseases Book 1)

    Jul 21, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Prabodah Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics (Series E: Patient-Centered Medicine Book 3)

    Dec 26, 2015 | Kindle eBook

    by Larry H. Bernstein MD FACP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Genomics Orientations for Personalized Medicine (Frontiers in Genomics Research Book 1)

    Nov 22, 2015 | Kindle eBook

    by Sudipta Saha PhD and Ritu Saxena PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cancer Biology and Genomics for Disease Diagnosis (Series C: e-Books on Cancer & Oncology Book 1)

    Aug 10, 2015 | Kindle eBook

    by Larry H Bernstein MD FCAP and Prabodh Kumar Kandala PhD
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Regenerative and Translational Medicine: The Therapeutic Promise for Cardiovascular Diseases

    Dec 26, 2015 | Kindle eBook

    by Justin D. Pearlman MD ME PhD MA FACC and Stephen J. Williams
    Subscribers read for free.
    Auto-delivered wirelessly
    Sold by: Amazon Digital Services LLC
  • Product Details

    Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation: The Art of Scientific & Medical Curation

    Nov 29, 2015 | Kindle eBook

    by Larry H. Bernstein MD FCAP and Aviva Lev-Ari PhD RN
    Subscribers read for free.
    Auto-delivered wirelessly

 

Read Full Post »


Genomic Diagnostics: Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single Molecule DNA Sequencing

Curator: Aviva Lev-Ari, PhD, RN

 

This article presents Three Techniques to Perform Single Cell Gene Expression and Genome Sequencing Single molecule DNA sequencing

Read Full Post »


Reporter and Curator: Irina Robu, PhD

Monitoring cancer patients and evaluating their response to treatment can sometimes involve invasive procedures, including surgery.

The liquid biopsies have become something of a Holy Grail in cancer treatment among physicians, researchers and companies gambling big on the technology. Liquid biopsies, unlike traditional biopsies involving invasive surgery — rely on an ordinary blood draw. Developments in sequencing the human genome, permitting researchers to detect genetic mutations of cancers, have made the tests conceivable. Some 38 companies in the US alone are working on liquid biopsies by trying to analyze blood for fragments of DNA shed by dying tumor cells.

Premature research on the liquid biopsy has concentrated profoundly on patients with later-stage cancers who have suffered treatments, including chemotherapy, radiation, surgery, immunotherapy or drugs that target molecules involved in the growth, progression and spread of cancer. For cancer patients undergoing treatment, liquid biopsies could spare them some of the painful, expensive and risky tissue tumor biopsies and reduce reliance on CT scans. The tests can rapidly evaluate the efficacy of surgery or other treatment, while old-style biopsies and CT scans can still remain inconclusive as a result of scar tissue near the tumor site.

As recently as a few years ago, the liquid biopsies were hardly used except in research. At the moment, thousands of the tests are being used in clinical practices in the United States and abroad, including at the M.D. Anderson Cancer Center in Houston; the University of California, San Diego; the University of California, San Francisco; the Duke Cancer Institute and several other cancer centers.

With patients for whom physicians cannot get a tissue biopsy, the liquid biopsy could prove a safe and effective alternative that could help determine whether treatment is helping eradicate the cancer. A startup, Miroculus developed a cheap, open source device that can test blood for several types of cancer at once. The platform, called Miriam finds cancer by extracting RNA from blood and spreading it across plates that look at specific type of mRNA. The technology is then hooked up at a smartphone which sends the information to an online database and compares the microRNA found in the patient’s blood to known patterns indicating different type of cancers in the early stage and can reduce unnecessary cancer screenings.

Nevertheless, experts warn that more studies are essential to regulate the accuracy of the test, exactly which cancers it can detect, at what stages and whether it improves care or survival rates.

SOURCE

https://www.fastcompany.com/3037117/a-new-device-can-detect-multiple-types-of-cancer-with-a-single-blood-test

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356857/

Other related articles published in this Open Access Online Scientific Publishing Journal include the following:

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/

One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

https://pharmaceuticalintelligence.com/2017/01/05/one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-biomarkers-rd-wpi

 

 

Read Full Post »

Older Posts »