Malnutrition in India, High Newborn Death Rate and Stunting of Children Age Under Five Years
Curator: Larry H Bernstein, MD, FCAP
A lead report in the New York Times focuses on a major public health problem in India today, with the irony of high growth rate and malnutrition and stunting of children under age 5 years that occurs in the majority and wealthy Hindu population, but not to any comparable degree in the Muslim population or in Bangladesh. This is prevalent along the Ganges River, which crosses India below the Himalaya Mountains. The inference is that the problem is perhaps solely related to poor sanitation, which is to a large degree indisputable, and the disease is related to the gut microbiome (not so stated), that leaves an intestinal mucosa with flattened epithelia, and no observation is made of the submucosal thymic-derived T-cell lymphocyte population, the largest in the human body.
Moreover, I might point out that the turnover of the intestinal epithelium with its large surface area is very high under normal metabolic circumstances. The result is that the children are malnourished, and they have visceral protein losses as well as somatic protein loss (stunted growth, probably affecting both skeletal muscle and the metaphyseal growth plates of long bones). This is not quite stated this way.
The irony is that they have sufficient food supply, except that if there is a diarrhea or intestinal malabsorption at an early age, the children just might not eat, except for perhaps soft foods. So it is not explicitly cleat that their is sufficient animal protein in the diet, which has a S:N ratio that is roughly twice that of an exclusively plant diet. The distinction is made between marasmus and kwashiorkor in that in kwashiorkor the protein deficiency is in the visceral compartment. Consequently, there is a reprioriotization of the liver to synthesize acute phase proteins with a decline in albumin, transthyretin, and retinol-binding protein. This is not insignificant, even though there may also be an inflammatory state, as from repeated infections.
I certainly would be interested in seeing data from the ongoing study that measures the serum protein analytes, and also a measurement of serum red cell Hb, serum cysteine, homocysteine, and glutathione, and perhaps a muscle biopsy.
I go directly to the article at this point.
Poor Sanitation in India May Afflict Well-Fed Children With Malnutrition
By GARDINER HARRIS JULY 13, 2014
http://www.nytimes.com/2014/07/15/world/asia/poor-sanitation-in-india-may-afflict-well-fed-children-with-malnutrition.html
SHEOHAR DISTRICT, India — He wore thick black eyeliner to ward off the evil eye, but Vivek, a tiny 1-year-old living in a village of mud huts and diminutive people, had nonetheless fallen victim to India’s great scourge of malnutrition.
His parents seemed to be doing all the right things. His mother still breast-fed him. His family had six goats, access to fresh buffalo milk and a hut filled with hundreds of pounds of wheat and potatoes. The economy of the state where he lives has for years grown faster than almost any other. His mother said she fed him as much as he would eat and took him four times to doctors, who diagnosed malnutrition. Just before Vivek was born in this green landscape of small plots and grazing water buffalo near the Nepali border, the family even got electricity.
So why was Vivek malnourished?
‘Bihar grew at 12% last 7 years’
Abhay Singh, TNN | Feb 15, 2014, 02.15AM IST
The report has taken 1999-2006 as the cut-off period to highlight spectacular Bihar turnaround story achieved under CM Nitish Kumar.
PATNA: Bihar’s average annual growth rate has been 12% in the last seven fiscal years, one of the highest among all Indian states, on the back of high growth rate achieved in the agriculture and allied sectors. Besides, advancement has also been made in healthcare and education.
The state’s Economic Survey Report for 2013-14, which was tabled in the assembly on Friday, has concluded this. The summary of the report said, “During 1990-91 to 2005-06, the state’s income at constant prices grew at an annual rate of 5.7%.” It said after that the economy witnessed a turnaround and grew at an annual rate of 12%. “The rate of growth achieved by the economy during 2006-13 is not only much higher, but also one of the highest among all Indian states.”
The report has taken 1999-2006 as the cut-off period to highlight spectacular Bihar turnaround story achieved under CM Nitish Kumar.
Poor Sanitation Linked to Malnutrition in India
New research on malnutrition, which leads to childhood stunting, suggests that a root cause may be an abundance of human waste polluting soil and water, rather than a scarcity of food.
Like almost everyone else in their village, Vivek and his family have no toilet, and the district where they live has the highest concentration of people who defecate outdoors. As a result, children are exposed to a bacterial brew that often sickens them, leaving them unable to attain a healthy body weight no matter how much food they eat.
“These children’s bodies divert energy and nutrients away from growth and brain development to prioritize infection-fighting survival,” said Jean Humphrey, a professor of human nutrition at Johns Hopkins Bloomberg School of Public Health. “When this happens during the first two years of life, children become stunted. What’s particularly disturbing is that the lost height and intelligence are permanent.”
Two years ago, Unicef, the World Health Organization and the World Bank released a major report on child malnutrition that focused entirely on a lack of food. Sanitation was not mentioned. Now, Unicef officials and those from other major charitable organizations said in interviews that they believe that poor sanitation may cause more than half of the world’s stunting problems.
“Our realization about the connection between stunting and sanitation is just emerging,” said Sue Coates, chief of water, sanitation and hygiene at Unicef India. “At this point, it is still just an hypothesis, but it is an incredibly exciting and important one because of its potential impact.”
This research has quietly swept through many of the world’s nutrition and donor organizations in part because it resolves a great mystery: Why are Indian children so much more malnourished than their poorer counterparts in sub-Saharan Africa?
A child raised in India is far more likely to be malnourished than one from the Democratic Republic of Congo, Zimbabwe or Somalia, the planet’s poorest countries. Stunting affects 65 million Indian children under the age of 5, including a third of children from the country’s richest families.
This disconnect between wealth and malnutrition is so striking that economists have concluded that economic growth does almost nothing to reduce malnutrition.
Half of India’s population, or at least 620 million people, defecate outdoors. And while this share has declined slightly in the past decade, an analysis of census data shows that rapid population growth has meant that most Indians are being exposed to more human waste than ever before.
In Sheohar, for instance, a toilet-building program between 2001 and 2011 decreased the share of households without toilets to 80 percent from 87 percent, but population growth meant that exposure to human waste rose by half.
“The difference in average height between Indian and African children can be explained entirely by differing concentrations of open defecation,” said Dean Spears, an economist at the Delhi School of Economics. “There are far more people defecating outside in India more closely to one another’s children and homes than there are in Africa or anywhere else in the world.”
Not only does stunting contribute to the deaths of a million children under the age of 5 each year, but those who survive suffer cognitive deficits and are poorer and sicker than children not affected by stunting. They also may face increased risks for adult illnesses like diabetes, heart attacks and strokes.
“India’s stunting problem represents the largest loss of human potential in any country in history, and it affects 20 times more people in India alone than H.I.V./AIDS does around the world,” said Ramanan Laxminarayan, vice president for research and policy at the Public Health Foundation of India.
India is an increasingly risky place to raise children. The country’s sanitation and air quality are among the worst in the world. Parasitic diseases and infections like tuberculosis, often linked with poor sanitation, are most common in India. More than one in four newborn deaths occur in India.
Open defecation has long been an issue in India. Some ancient Hindu texts advised people to relieve themselves far from home, a practice that Gandhi sought to curb.
“The cause of many of our diseases is the condition of our lavatories and our bad habit of disposing of excreta anywhere and everywhere,” Gandhi wrote in 1925.
Other developing countries have made huge strides in improving sanitation. Just 1 percent of Chinese and 3 percent of Bangladeshis relieve themselves outside compared with half of Indians. Attitudes may be just as important as access to toilets. Constructing and maintaining tens of millions of toilets in India would cost untold billions, a price many voters see no need to pay — a recent survey found that many people prefer going to the bathroom outside.
Few rural households build the sort of inexpensive latrines that have all but eliminated outdoor waste in neighboring Bangladesh.
“We need a cultural revolution in this country to completely change people’s attitudes toward sanitation and hygiene,” said Jairam Ramesh, an economist and former sanitation minister.
India’s government has for decades tried to resolve the country’s stubborn malnutrition problems by distributing vast stores of subsidized food. But more and better food has largely failed to reverse early stunting, studies have repeatedly shown.
India now spends about $26 billion annually on food and jobs programs, and less than $400 million on improving sanitation — a ratio of more than 60 to 1.
Lack of food is still an important contributor to malnutrition for some children, and some researchers say the field’s sudden embrace of sanitation has been overdone. “In South Asia, a more important factor driving stunting is diet quality,” said Zulfiqar A. Bhutta, a director of the Center for Global Child Health at the Hospital for Sick Children in Toronto.
Studies are underway in Bangladesh, Kenya and Zimbabwe to assess the share of stunting attributable to poor sanitation. “Is it 50 percent? Ninety percent? That’s a question worth answering,” said Dr. Stephen Luby, a professor of medicine at Stanford University who is overseeing a trial in Bangladesh that is expected to report its results in 2016. “In the meantime, I think we can all agree that it’s not a good idea to raise children surrounded by poop.”
Better sanitation in the West during the 19th and early 20th centuries led to huge improvements in health long before the advent of vaccines and antibiotics, and researchers have long known that childhood environments play a crucial role in child death and adult height.
The present research on gut diseases in children has focused on a condition resulting from repeated bacterial infections that flatten intestinal linings, reducing by a third the ability to absorb nutrients. A recent study of starving children found that they lacked the crucial gut bacteria needed to digest food.
In a little-discussed but surprising finding, Muslim children in India are 17 percent more likely to survive infancy than Hindus, even though Muslims are generally poorer and less educated. This enormous difference in infant mortality is explained by the fact that Muslims are far more likely to use latrines and live next to others also using latrines, a recent analysis found.
So widespread housing discrimination that confines many Muslims to separate slums may protect their children from increased exposure to the higher levels of waste in Hindu communities and, as a result, save thousands of Indian Muslim babies from death each year.
Discussion:
The coexistence of poor sanitation, where has a very large cultural barrier, with serious protein-energy malnutrition, is a toxic mix. There is the comparison with the Muslim population at the adjoining border of the Ganges River outflow in Bangladesh. One might also look at the catholic Portuguese population in Goa, the Jewish population in Mumbai and Kochi, and the nearby Catholic population. There is no malnutrition in those populations, or in the Siiks. This is undoubtedly a cultural phenomenon of ancient origin. (The migration of the jews and of the catholics to Kochi occurred around the Indian Ocean at the time of Christ. The catholic population in Goa was from Portugal.
I don’t think we have enough of the story here. The Ganges river flows centrally across India, and is not far from the Himalayas. This has some significance in the sufficiency of animal protein availability, and most importantly, of what I might expect of the tissue S:N ratio, which is critical for availability of methionine, S-adenosyl methionine, and mitochondrial energy reactions. These are also mediated by transsulfuration reactions and by cystathionine beta-synthase. Detailed discussions are available elsewhere. It has been pointed out by Vernon Young and Yve Ingenbleek that sulfur is insufficient in the soil where there is not a lava flow of volcanic ash, which could be the case here. So it is at best not a good geographic situation, even before compounding the issue.
The relationship to heart attack and stroke is established for elevated homocysteine.
Homocysteine and Vascular Disease
STEVEN E . S. MINER , M.D. , DAVID E .C. COLE *, M.D. , PHD. AND DUNCAN J . STEWART, M.D.
Cardiology Rounds A U G U S T 1 9 9 6 ; I(5)
Homocysteine is a naturally occurring, sulfur-containing amino acid. Continuously formed and catabolized in vivo, its metabolism is dependent on a complex interaction of genetics and physiology (Fig. 1). Its relevance is based on the increasing recognition of the correlation between elevated levels of homocysteine and human disease.
Table 1
Selected Determinants of Plasma Homocysteine*
1. Genetic
• Cystathionine-beta-synthase:
heterozygote mutations 0.5-1.5% {451}
• Methionine synthase: rare
• MTHFR: heterozygote mutations
approximately 50% {403}
2. Physiologic
• age: Hcy increases with increasing age {336}
• sex: pre-and post-menopausal women
have lower levels than men {247}
• diet: related to methionine and vitamin cofactor
(folate, vitamins B6 and B12) intake {437}
• alcohol: relationship unclear {375}
3. Pathologic
• vitamin deficiency: increased homocysteine
concentrations {10}
• renal disease: increase correlated
with increasing serum creatinine {81}
• transplantation: increased levels {149, 435}
• post stroke: transiently decreased levels {341}
• severe psoriasis: elevated levels {438}
4. Medications
• oral contraceptives/hormone replacement:
decreased levels {269}
• corticosteriods: increased {159}
• cyclosporine: increased {393}
• smoking: increased {336}
Abstracts of Interest
Serum total homocysteine and coronary heart disease in middleaged
British men.
IJ PERRY, H REFSUM, RW MORRIS, SB EBRAHIM, PM UELAND, AG SHAPER.
D E PA RTMENT OF PRIMARY CARE & POPULATION SCIENCES, ROYAL FREE
H O S P I TAL SCHOOL OF MEDICINE, LONDON, AND DEPA RTMENT OF CLINICAL
B I O L O G Y, UNIVERSITY OF BERGEN, NORWAY.
Serum total homocysteine (tHcy) levels are inversely associated with dietary intake of folic acid and B vitamins. Raised tHcy levels have been linked with coronary heart disease (CHD). We have examined the association between tHcy concentration and the subsequent risk of CHD, using a nested case control study design, within a prospective study of cardiovascular disease in British men. tHcy concentration was measured in serum samples, stored at entry to the study, from 110 incident cases of myocardial infarction and 118 controls. Cases were randomly sampled from events which occured after the first five years of follow-up. Cases and controls were frequency matched by town and age group. Levels of homocysteine [geometric mean (95% CI)] were significantly higher in cases than controls: homocysteine 13.5 (12.6 – 14.3) μmol/L vs 11.9 (11.3 – 12.6) μmol/L; p=0.005. There was a graded increase in the relative risk (odds ratio; OR) of CHD in the 2nd, 3rd and 4th quartile of tHcy (OR 1.4, 1.9, 2.2; trend p=0.006) relative to the first quartile. Adjustment for age, town, social class, body mass index, smoking, physical activity, alcohol intake, hypertensive status, serum cholesterol, and serum creatinine did not attenuate this association, (OR 2.1, 2.3, 2.7; trend p=0.04). tHcy levels were higher at baseline in men with evidence of pre-existing CHD and (as expected) adjustment for this factor attenuated the linear association between tHcy and subsequent events, trend p=0.07. The findings suggest that homocysteine is an independent risk factor for CHD
with no threshold level.
Reprinted from Heart, Volume 75 /Number 5 (Supplement 1), May 1996.
Homocysteine and Coronary Atherosclerosis
ELLEN L. MAYER, MD, DONALD W. JACOBSEN, PHD, KILLIAN ROBINSON, MD,
FACC, CLEVELAND, OHIO
The conventional risk factors for premature coronary artery disease include smoking, hyperlipidemia, hypertension, diabetes and a positive family history. However, many patients have precocious atherosclerosis without having any of these standard risk factors. Identification of other markers that increase the risk of coronary disease may improve our understanding of the pathophysiologic mechanisms of this disorder and allow the development of new preventive or therapeutic measures. An elevated plasma homocysteine level has recently received greater attention as an important risk factor for vascular disease, including coronary atherosclerosis. This review discusses the biochemistry of homocysteine and the related metabolic importance of folate, vitamin B6 (pyridoxine) and B12 (cobalamin) as well as a number of essential enzymes. The major factors that influence homocysteine concentration are genetic, nutritional and pathologic.
There is a large body of experimental and clinical evidence for high plasma homocysteine to be a risk factor for vascular disease, including coronary atherosclerosis.
Excerpted from Journal of the American College of Cardiology 1996;27:517-27
An important meta-analysis by Boushey et al in 1995 further quantified the magnitude of risk. In their analysis of all major studies available at that time, they found a linear, independent risk for increments in homocysteine. There were no levels above or below which an incremental rise in homocysteine did not affect cardiovascular risk. Specifically, every 5 μmol/L increment in homocysteine was found to be associated with odds ratios of 1.6 for m e n ; (95% Cl 1.4-1.7) and 1.8 for women; (95% CI 1.3-1.9) for coronary artery disease.
Cystathionine beta synthase (CBS) catalyzes the reaction taking homocysteine to cystathionine. This enzyme requires pyridoxine as a co-factor and is an integral part of the transsulfuration or
pyridoxine – dependent pathway. 33 distinct mutations have been identified with heterozygosity occurring at a prevalence of 0.5-1.5%. The majority of heterozygotes will have normal fasting homocysteine levels, but can be detected with a methionine load test.
Hyperhomocysteinemia is a Biomarker of Sulfur-Deficiency in Human Morbidities
Yves Ingenbleek
Laboratory of Nutrition, University Louis Pasteur Strasbourg, France
The Open Clinical Chemistry Journal, 2009, 2, 49-60
Abstract: Methionine (Met) is crucially involved in the synthesis of S-compounds endowed with molecular, structural and functional properties of survival value. Dietary Met may undergo transmethylation processes to release homocysteine (Hcy) which may either be regenerated to Met following remethylation (RM) pathways or catabolized along the transsulfuration
(TS) cascade. The activity of enzymes governing RM and TS pathways is depending on pyridoxine, folate and cobalamin bioavailability. Dietary restriction in any of these watersoluble B-vitamins may lead to hyperhomocysteinemia (HHcy) causing a panoply of cardiovascular disorders. Taken together, the vitamin triad only affords partial account of Hcy variance, prompting the search for additional causal factor(s). Body composition studies demonstrate that nitrogen (N) and sulfur (S) maintain tightly correlated concentrations in tissues of both healthy subjects and diseased patients. Any morbid condition characterized by insufficient N intake or assimilation, as seen in protein malnutrition or intestinal malabsorption, reduces body S accretion rates. Excessive urinary N-losses, as reported in acute or chronic inflammatory disorders, entail proportionate obligatory S-losses. As a result, lean body mass (LBM) undergoes downsizing and concomitant depletion of N and S body stores which depresses the activity of cystathionine--synthase, thereby promoting upstream accumulation of Hcy and overstimulation of RM processes. HHcy thus appears as the dark side of efforts developed by S-deprived patients to safeguard Met homeostasis. Irrespective of vitamin-B status, Hcy values are negatively correlated with LBM shrinkage well identified by the serial measurement of plasma transthyretin (TTR). The S deprivation theory fulfills the gap and allows full causal coverage of the metabolic anomaly, hence providing together with vitamin-deficiencies an unifying overview of the main nutritional determinants implicated in HHcy epidemiology.
The Oxidative Stress of Hyperhomocysteinemia Results from Reduced Bioavailability of Sulfur-Containing Reductants
Yves Ingenbleek
Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur Strasbourg, France
The Open Clinical Chemistry Journal, 2011, 4, 34-44
Abstract: Vegetarian subjects consuming subnormal amounts of methionine (Met) are characterized by subclinical protein malnutrition causing reduction in size of their lean body mass (LBM) best identified by the serial measurement of plasma transthyretin (TTR). As a result, the transsulfuration pathway is depressed at cystathionine-beta-synthase (C-b-S) level triggering the upstream sequestration of homocysteine (Hcy) in biological fluids and promoting its conversion to Met. Maintenance of beneficial Met homeostasis is counterpoised by the drop of cysteine (Cys) and glutathione (GSH) values downstream to CbS causing in turn declining generation of hydrogen sulfide (H2S) from enzymatic sources. The biogenesis of H2S via non-enzymatic reduction is further inhibited in areas where earth’s crust is depleted in elemental sulfur (S8) and sulfate oxyanions. Combination of subclinical malnutrition and S8-deficiency thus maximizes the defective production of Cys, GSH and H2S reductants, explaining persistence of unabated oxidative burden. The clinical entity increases the risk of developing cardiovascular diseases (CVD) and stroke in underprivileged plant-eating populations regardless of Framingham criteria and vitamin-B status. Although unrecognized up to now, the nutritional disorder is one of the commonest worldwide, reaching top prevalence in populated regions of Southeastern Asia. Increased risk of hyperhomocysteinemia and oxidative stress may also affect individuals suffering from intestinal malabsorption or westernized communities
having adopted vegan dietary lifestyles.
Leave a Reply