Advertisements
Feeds:
Posts
Comments

Archive for the ‘Genomics Pharmacy’ Category


Tweets and Re-Tweets by @Pharma_BI ‏and @AVIVA1950 at 2019 Petrie-Flom Center Annual Conference: Consuming Genetics: Ethical and Legal Considerations of New Technologies, Friday, May 17, 2019 from 8:00 AM to 5:00 PM EDT @Harvard_Law

 

Tweets by @Pharma_BI ‏and @AVIVA1950

  1.   Retweeted

    AMAZING conference on Genomics and Ethics

  2. Amazing Conference LIVE 2019 Petrie-Flom Center Annual Conference: : and Considerations of New Technologies, Friday, May 17, 2019 from 8:00 AM to 5:00 PM EDT via

  3. Concluding remark cited by ⁦⁩ ⁦ Great Panel on the Impact of Genetic Information new conceptual approach prioritizing parental autonomy with restriction built in

  4. ⁩ ⁦ NIPT test for fetal sex blood type Trisonomy Whole Genome-wide analysis routinization of procedure READY at Birth impact intrafamilial discrimination babySeqProject G2P ⁦

  5. Leila Jamal, NIAID Pre- Test Genetic Counseling – information and testing need, indication for testing Post-Test Informational Burden low vs high: Likely pathogenic, Pathogenic benign – natural history data potentially high impact

  6. Leila Jamal, NIAID benefit the patient, positive autonomy, benefiesence – how potentially impactful is the Test Information Nondirectiveness – Why? distance from eugenics + abortion politics persons and patient autonomy

  7. Leila Jamal, NIAID Genetic and Genomics Testing: Prenata, Pediatric, Vancer, other: Cardiology, Neurology, Hematology, Infectious diseases, pharmaco genomics, DTC, Ancestry

  8. Emily Qian, Genetic Counselor, Veritas Genetics – Physician-Mediated Elective Whole Genome Sequencing Tests: Impacts on Informed Consent DTC Physician-initiated Genetic Testing Physician-initiated DTC Informed consent is a process

  9. ⁩ ⁦ Recommendation based on best evidence guidelines available

  10. Natalie RamGenetic Genealogy and the Problem of Familial Forensic Identification Familial Forensic Identification – Privacy for information held by Telephone companies Involuntarily Identification by genetic data genetic markers

  11. Natalie Ram, Assistant Professor of Law, University of Baltimore School of Law – Genetic Genealogy and the Problem of Familial Forensic Identification Opt in to share genetic data on the platforms opt in national DB

  12. Natalie Ram, Univ of Baltimore School of Law Genetic relatedness is stickier than social relations Voluntary sharing of genetic information – no other party can protect genetic information of any person, thu, if shared voluntarily

  13. ⁩ ⁦ gene APO-E e-2, e-3, e-4 If e-4 variant risk AD is 40% 23andMe since 2011 rest for e-4 unlock result # copies of e-4 are present little clinical value post diagnosis recommendation do not depend on e-4

  14. Jonathan Kahn, Precision Medicine and the Resurgence of Race in Genomic Medicineprecision medicine – classification of individuals into subpopulations that differ in their susceptability to a particular disease

  15. Kif Augustine-Adams, BYU Law School – Generational Failures of Law and Ethics: Rape, Mormon Orthodoxy, the Revelatory Power of Ancestry DNAComplex Sorrows: Anscestry DNA – 20 Millions records. Complete anonymity and privacy collapsed

  16. Regulating Consumer Genetic Technologies Conclusions: DTC policies are over the place, FDA poised to regulate Big Data, Human Genomics Somatic vs Germline are key distinctions NY Dept Health 3rd Party Certification in Genomics

  17. Scott Schweikart, Council on Ethical and Judicial Affairs, American Medical Association and Legal Editor, AMA Journal of Ethics – Human Gene Editing: An Ethical Analysis and Arguments for Regulatory Guidance National and Global Levels

  18. Catherine M. Sharkey, The Emerging Role of the FDA Genetic predisposition – BRCA I & II approved Testing Pharmaco-genetic Test authorization incorrect interpretation, incorrect action based on results False positive and False negative

  19. Scott Schweikart, AMA Ethical concernsTechnologiesCRISPR-Cas-9 Somatic vs GermlineAMA: Individual liberty (1) Autonomy & Gene Editing (2) Non-maleficence and Beneficence (3) Social Justice Treatment vs Enhancement National Regulations

  20. Patricia J. Zettler, Regulators can do: Promote self regulations vs restrict community labs Drugs: premarket approval by FDA 11/2017: any use of CRISPR is subjected to regulation Bio hacking materials are distributed outside channels

  21. Patricia J. Zettler, FDA agency – regulation can’t reach everything, Not seen wide range abuse, FDA encourage learning and information dissemination and Educate

  22. Maxwell J. Mehlman, Governing Non-Traditional Biology On-Line gene editing equipment CRISPR-Cas9 – IGEM – international Competition in community of Scientists Biological weapons – issues of Prior Art impeding patentability may come up

  23. Maxwell J. Mehlman Harm to subjects Biosafety Safety Phase I Gene drives in Human?? – Human gene editing: “Nanoparticle and liposomal delivery” and “Allelic drive using CRISPR”

  24. ⁩ ⁦ regulatory options: liabilities, legal requirements industry restrictions on access to material community labs, NTB IRBs self-governing bodies FBI surveillance

  25. Barbara J. Evans Is it FDA duty on Cosmetic enhancement Genome is Software, US is not good in regulating software The Harm Principle, Legal Paternalism benevolent vs non-benevolent Legal Moralism – no body is harmed but it’s just wrong

  26. Barbara J. Evans Multiple Agencies: In the 80’s on Future Products of Biotechnology: EPA, FDA, USDA, OSHA, CPSC, NIH, NEPA, ESA, APA Skepticism that compulsory regulation for compliance with norms

  27. Barbara J. Evans Regulatory Challenges Citizen Science and DIY Bio democratization of science and medicine narrative, new frontiers for institutional science narrative nostalgia narrative, political narrative: “hacker” portrayals

  28. in Preparing for Future Products of Biotechnology, NAS

  29. Seema Mohapatra, AAbolishing the Myth of “Anonymous” Gamete Donation in the Age of Direct-to-Consumer Genetic TestingAnonymous sperm donation Sell sperm $30 – $130 per sample – industry is thriving due to donor anonymity last 3 years,

  30. Seema Mohapatra, 2.6 million Ancestry DNA only to keep donor Anonymity Donor-Conceived Individuals at age 18 can identified the DonorLegal landscape ART – no federal laws regarding UT and WA [medical disclosure about the donor

  31. Nita Farahany, Professor Law, Philosophy Duke Law School need new Framework if anonymity is dead, most uses are diverted for medicinePrivacy is improving, ACA – protects from preexisting conditionsIndividual costs vs societal benefits

  32. Liza Vertinsky Courts: Pushing the boundaries: (1) Privacy (2) publicity rights (3) property (commodificationPresidential Figures: Infidelity gene, gambling geneLegal pathways Junk DNA Law enforcement databasesAlternative legal framing

  33. Kayte Spector-Bagdady, Data coming into Academia – Genetic data partnerships Academia (41% NIH funding) and Industry: Use of existing private data, company performs analysisPatients: using data and specimens in ways they do not wish

  34. Kayte Spector-Bagdady, to secondary research: stay anonymousPublic health covers Informed consent forms – conceptualize for secondary research protocols Transparency In BioBank Research 67% commercialization of biospecimens agree

  35. Property and Health Data: Excludability, Alienability and Divisibility, Valuation and compensation, Unstewarded and Orphan data, duration, tracking Propertization of medical information effect on biomedical research

  36. Genetic “Property” Statues: @CO – genetic information pertain to the individual health data – common law Personal Property vs Information as Property object

  37. direct consumer protection may get that by Claim of conversion – Common Law Genetic Testing companies are protected by three legal laws consumers as employees face genetic information been accessed by employers via Wellness Programs

  38. Courts shows a newfound openness to claims for genetic conversion claims will not stifle reaserch or create moral harms consumers genetics, claims for genetic conversion necessary to adequately protect people’s interests in their DNA

  39. ⁩ ⁦ three new regulations of ownership of genetic test information ownership even Dx of breast cancer Insurance may not cover BRCA testing

  40. ⁩ ⁦ employment law and genetic testing property ownership

  41. Family not in treatment relationship with the Researcher – Court rejected the claim family donated to research unfair benefir of the Hospital from the data and tissue donatedClaim of conversion – Common LawGene by Gene Family Tree DNA

  42. Insurance may or may not cover BRCA testing Law suit on that matter is pending

  43. Life insurance company initiated genetic testing: (a) Gatekeeping policy underwriting new comer applicants (b) Wellness Employer wellness programs incentivize healthy behavior Incorporate genetic testing into wellness Programs Testing

  44. wellness Programs Test for preventing genetic conditions Like BRCA, Lynch syndrome, preventable – win/win proposition –>>> Healthier employees. Studies show shift of cost from employer to employee and employer have access to genetic i

 

 

RE-TWEETS

 

  1.   Retweeted

    Max Mehlman thinks “DIYBio” is problematic b/c often team efforts; “biohacking” has negative connotations. Suggests “non-traditional biology.”

  2.   Retweeted

    In reviewing how reviewed various tests, Catherine Sharkey discusses how some were reviewed through De Novo and others through 510(k) pathway and benefits and drawbacks of each.

  3.   Retweeted

    . invokes THE CONE OF SILENCE. NO MORE DATA FROM THIS TALK! Medical/scientific publishing norms are weird.

  4.   Retweeted

    A very full house today (480 people registered!) for the Consuming Genetics conference . opening a day that promises to be fascinating. Kudos also for selecting hot topics and amazing speakers.

  5.   Retweeted

    Talking about her ⁦team’s ⁩ paper ⁦⁩ shows most patients want notification of commercial use of biospecimens, most are uncomfortable about profit from biospecimens, but feel better if reinvested in research.

  6.   Retweeted

    You don’t have to identify as a biohacker to understand their goals, interests, and culture.

  7.   Retweeted

    Blog post about about my upcoming presentation at Petrie-Flom Center’s upcoming Consumer Genetics conference this Friday, May 17.

  8.   Retweeted

    Incredibly difficult topic.

  9.   Retweeted

    I asked Maxwell Mehlman how he envisioned biohackers could form an IRB-style review process. One suggestion was to engage with insitutional IRBs. Raise your hand if you think an establishment IRB would approve enhancement experiments? (I don’t…)

  10.   Retweeted

    Gene editing has become cheaper, easier to do in community labs. Max Mehlman ⁦⁩ compares it to where Steve Jobs and Bill Gates began with the personal computer. But US gov has listed as a “weapon of mass destruction”

  11.   Retweeted

    Thanks to for hosting another great conference!

  12.   Retweeted

    “Diversity” means a LOT of different things–it’s very easy to slip back and forth (problematically) between molecular/genetic diversity and social constructs of race. Just using “diversity” elides and blurs important concepts. – Jonathan Kahn @

  13.   Retweeted

    Audience member during Q&A calls the first group of talks “very very interesting — and terrifying.” That’s what we’re here for, folks. These issues are real and we’re happy you’re here to talk about them with us.

  14.   Retweeted

    Just FYI my research showed you cannot waive statutory nondiscrim rights (under GINA or others) but can waive right to judicial forum to decide if there has been a violation (2009 Pyett v 14 Penn Plaza decision-ie case after GINA-overturned 30 years of precedence)

  15.   Retweeted

    FYI in Perlmutter & Peerenboom, the claim was not ownership in the DNA material. It was in the genetic information contained within it

  16.   Retweeted

    “If I want to edit my genes and make my skin glow green, whose business is that?” Barbara Evans on paternalism issues in our views of regulating DIYbio

  17.   Retweeted

    Takeaways from Regulating : Hazel: existing DTC genetic privacy policies are all over the place Sharkey: in an era of big data, FDA is poised to pose enhanced role as health information regulator Schweikart: in gene editing, somatic ≠ germline editing

  18.   Retweeted

    I have been waiting so long for this and is finally here!

  19.   Retweeted

    Many of the regulatory issues/possibilities raised by DIYbio will presented by (co-authors and ) “What can we do with what we’ve already got?”

  20.   Retweeted

    Moderators summary: In today’s panel we heard: -Property law won’t work -Anonymity is dead -Data is being commercialized and we don’t realize it -May be need for publicity rights for DNA. But there is hope. Good things are being done with this data.

  21.   Retweeted

    Is ⁦⁩ right, asks Vertinsky ⁦⁩,to be worried about “genetic ” publishing of information derived from your genetic information (especially discarded DNA). Or a presidential candidate ? What role for law?

  22.   Retweeted

    Interesting points by : Because many biohacking materials exchanges may not take place in traditional commercial contexts, attempting to regulate the trade of materials could prove difficult for FDA.

  23.   Retweeted

    We have not seen much FDA involvement in “genetic biohacking” says , but that might be a shame.Don’t need “harsh involvement” but “engagement” such as education — e.g., how long you can leave potato salad out at picnic, does not mean enforcement

  24.   Retweeted

    On genetic ownership and federalism. ⁦⁩ discusses the 5 states that have protected genetic property and skeptical about how well thought out the common law property approach has been. ⁩ ⁦

  25.   Retweeted

    “When you’re doing something that’s really high risk and cutting edge, maybe you SHOULD experiment on yourself–maybe that’s the most ethical way.” Barbara Evans talks up self-experimentation (reffing previous Nobels) @

  26.   Retweeted

    I feel simultanously very overwhelmed and very excited

  27.   Retweeted

    “Whatever the boundaries of FDA’s authority are [re: biohacking]…there are important questions about how it should use that authority.” @

  28.   Retweeted

    One person uploading info to a genetic database illuminates hundreds or thousands of other people–those people’s info isn’t “voluntarily” in datasets. Genetic databases familial searches aren’t voluntary. Natalie Ram @

  29.   Retweeted

    DIY gene therapy, CRISPR, etc. – failures likely to cause more harm (inadvertent) than successes. Speaker at analogizes to regulation of drones, beer, computer hacking many stakeholders with competing interests.

  30.   Retweeted

    Excellent talk by showing that in the face of clinicians can be legally damned if they do use revealed info and also damned if they don’t–potentially liable for patient’s misguided medical decisions

  31.   Retweeted

    “We need to rethink our Informed Consent methods for our secondary research protocols” – given all the confusion arising among Patients, their Doctors and the Researchers working with the data specimens about the use of the data, says – at Wasserstein Hall

  32.   Retweeted

    How do we deal with Publicity Rights in DNA? Thought-provoking talk by Professor Vertinsky of The “Genetic Paparazzi” conundrum – at Wasserstein Hall

  33.   Retweeted

    argues against recognizing Property Rights in personal health data: “A vast amount of ‘orphan Biomedical data’ is useless” – doesn’t help advance research in the field Other protections already available and more suitable

  34.   Retweeted

    Leading up to Friday’s Conference on Consuming Genetics () here’s a post about my topic: why law isn’t a good fit for health data.

  35.   Retweeted

    Professor Kif Augustine-Adams of says that individual privacy settings on Consumer Genetics testing have limited power; total anonymity is a myth. It is only a matter of time before the relational nature of DNA makes all connections identifiable. – at Wasserstein Hall

  36.   Retweeted

    “Wellness Programs” by Employers or Insurance underwriters – how should they deal with collecting genetic data? suggests Employers / Insurers only act as mediators between members and DTC genetic testing companies, and only get aggregate, anonymized data – at Harvard Law School

  37.   Retweeted

    Natalie Ram: there’s an idea of voluntariness re: searching & genetic information. THAT’S FICTION. Genetic relatedness is different–it’s sticky! “I could decline my aunt’s FaceBook request…but [she] can still serve as reliable-as-ever genetic informant on me.”

  38.   Retweeted

    A lot of thought-provoking posts this month from leading scholars in law, ethics, genetics. Get immersed in the issues before Friday’s conference!

  39.   Retweeted

    When employer “wellness programs” incentivize employees to use , consider what goes to , what to or , & what does employee have about any of this.

  40.   Retweeted

    Looking forward to joining this awesome line-up of speakers at ‘s conference & talking about ‘s, ‘s & my work. Thx to , & for organizing!

  41.   Retweeted

    It’s not every day that a serious conference on discusses Brad Pitt in a bath leaving behind sperm that later impregnates a woman and the legal challenges that emerge. Well done – you managed to get everyone’s attention 🙂

  42.   Retweeted

    Anguishing story told with elegance and grace. We are all utterly unprepared for generations of secrets unearthed by 26 million ++ kits sold to date.

  43.   Retweeted

    “Civilized societies are nearby, believe it or not!” explains how when is implemented in Canada, it means the government pays for it. (We are all v jealous about your developed country to the north, Vardit)

  44.   Retweeted

    Jonathan Kahn ⁦⁩ ⁦⁩ discusses the fall and rise of race in genetic medicine, its science and politics.

  45.   Retweeted

    Yes! And we should continue to strive to have racial and ethnic representation to ensure that genomic research and policy doesn’t continue to exacerbate racial disparities

  46.   Retweeted

    Fascinating discussions today at the conference

  47.   Retweeted

    Potential consequences are greater when editing germline compared with somatic cells, because its modification can allow for the generational transmission of altered genes. laying out priciplist bioethical concerns of

  48.   Retweeted

    Health information should not be treated as property to protect individuals, says . Instead, we should continue to enhance existing regulatory and liability rules to safeguard individual privacy and data security.

  49.   Retweeted

    There has been a relunctance by courts to recognize information as property, but that could change drastically when it comes to genetic data.

  50.   Retweeted

    Sir Wm. Blackstone is always a hit on the big screen — from my talk today on why health data isn’t property .

  51.   Retweeted

    FDA involvement with DTC tests hasn’t shut them down. Five have been approved, and FDA has been flexible in its approval pathway (4 de novo, 1 510(k)). – Catherine Sharkey @

  52.   Retweeted

    Emily Qian of is a genetic counselor and is co-author on one of the blog posts in our symposium:

  53.   Retweeted

    At the Ethics Conference on Consuming Genomics. There was a question about why patients decline participating in precision medicine research. Check out our paper on why patients decline genomic sequencing

  54.   Retweeted

    Great turnout at DTC genomics conference today. Tour de force discussion of the issues facing the personal genomics industry and consumers today.

  55.   Retweeted

    “Informed consent is a process” that should include: test’s purpose, possible results of the test, test’s limitations/consequences, confidentiality/privacy, risks of testing and familial implications, and voluntary participation.

  56.   Retweeted

    The amazing ⁦⁩ closes out the conference by discussing the ethics of non-invasive prenatal testing (NIPT), it’s ethical challenges, and how whole genome NIPT may make “the fetus transparent.”

  57.   Retweeted

    .: what about DNA vigilantes who upload information to databases explicitly to help law enforcement? Natalie Ram: BAM I ALREADY WROTE THAT ARTICLE CHECK IT OUT. (forthcoming , mayyyybe here? )

  58.   Retweeted

    23andMe does a pretty good job situating and contextualizing results, but APOE testing may have little benefit

  59.   Retweeted

    Is ⁦⁩ ‘s test for APOE associated with Alzheimer’s different ethically speaking from its other tests? ⁦⁩ ⁦⁩ discuss ⁦

  60.   Retweeted

    Ultrasound technology made the uterus transparent, so parents could see their child before it was born. In the future, could make the fetus itself transparent, so parents can see the whole genome. Many associated ethical challenges, both pre- and post-birth

  61.   Retweeted

    Great talk by one of the authors at on the need for laws and regulations to protect the privacy rights of genetic testing consumers and assuage concerns about information

  62.   Retweeted

    Johnathan on The Fall and Rise of Race in Genomics: – not a thing (2000) – a stepping stone to true targeting (2005) – useful to classify subpopulations (2011) – under-representation of ethnically diverse subpopulations are necessary for good data (2019)

  63.   Retweeted

    When tests allow the breach of anonymity and privacy of relatives who don’t want to be known–including in cases of rape–what should we do? Answers aren’t easy. -Kif Augustine-Adams

  64.   Retweeted

    Listening to the brilliant discuss the concept of non-directiveness in genetic counseling.

  65.   Retweeted

    Grateful for the opportunity to participate in the Annual Conference – thanks Carmel Sachar & Cristine Hutchison-Jones for a great line-up & planning- learned a lot & left with many more ?s to consider

  66.   Retweeted

    & : “The more jurisdictions that adopt a cautionary approach to their own regulations for genome editing (particularly heritable genome editing) the more likely negative world-wide consequences can be mitigated.”

  67.   Retweeted

    There’s no prospect of potentially suing because of the disclaimers and forced arbitration put into agreements by the company ⁦

  68.   Retweeted

    explains the ways employer wellness programs is only a “theoretical win-win.” Minimal results come at the cost at privacy, and all of which can also show up in insurace realms as well. (Ex: Life insurers also implementing wellness policies)

  69.   Retweeted

    Although increasing access to predictive/actionable genetic tests could theoretically be beneficial, we should be cautious about using third-parties, like life insurers, to disseminate these tests to their consumers without greater regulatory protections.

  70.   Retweeted

    . has examined for years whether we should own our genetic info. Three reactions: Lay: yeah, duh Lawyers: no, duh (see Moore v Regents of U of Cal) Clinicians/researchers: Good God No! Disaster! (Not live-tweeting b/c draft here: )

  71.   Retweeted

    Property Conversion in Genetic Property Rights – who owns the rights? “Researchers need to be transparent and use adequate informed consent” – claims for generic conversion should not stifle research or create moral harms, suggests – at Wasserstein Hall

  72.   Retweeted

    We’re so proud of our friend and Academic Fellowship alum ! ✨🕺🏻

  73.   Retweeted

    Why is most insurance typically a state issue? FYI – Congress essentially “blessed” and preserved a state regulatory system of the insurance industry with passage of the McCarran-Ferguson Act of 1945. It makes it politically difficult to push this at federal level

  74.   Retweeted

    DTC genetic testing customers lack legal protections. Genetic conversations might offer them some rights… ?

  75.   Retweeted

    . takeaway: Wellness programs aren’t necessarily bad, but question is what data goes to consumers, what data to employers and insurers, and what can they do with it?

  76.   Retweeted

    . takeaway: w/r/t liability, companies are essentially immune because of disclaimers & arbitration clauses; doctors may be on the hook.

  77.   Retweeted

    Q by : What do we tell GCs/trainees when we get a DTC result that needs to be confirmed but insurance won’t pay for confirmation? Answer: not very clear, but might be liable if we do nothing. Yikes!

  78.   Retweeted

    Major disconnect with the ideas of ways to convert health data into what we have traditionally considered property-like rights.

  79.   Retweeted

    Great point from about how to treat “control group” genetic data, from those without the indicative genetic information, in arguments for genetic ownership/remuneration arguments.

  80.   Retweeted

    The story of a mom who contacts her (donor conceived) five-year-old’s grandmother — then gets threatened by a sperm bank

  81.   Retweeted

    The ethical debate about anonymity is MOOT. There is no anonymity for sperm donors, nor are there any federal laws regarding anonymity of sperm donors. (Some states address medical information/disclosure but not anonymity)

  82.   Retweeted

    Three observations: 1. Biomedical data/samples are governed by method of procurement 2. Contributors care about use 3. Specimens/data procured differently end up being used similarly (lots of mixing between academia & industry). ==>TENSION. – @

  83.   Retweeted

    Rights to privacy or publicity – What will the courts decide? Well, it’s unclear because there are gaps in the existing laws. Liza Vertinsky also looking at the underlying implications of the choices of legal pathways

  84.   Retweeted

    . is an active moderator! Asking excellent questions (including mine–how do we react to patients not ‘getting’ consent info?, and then ‘s on right not to be a genetic parent! Need to think on your feet w/ Nita around!)

  85.   Retweeted

  86.   Retweeted

    Wondering how panelists and fellow attendees feel about this lack of anonymity? and individuals conceived from egg or who want to know about their background never consented to anonymity of donors

  87.   Retweeted

    Yeah that looks simple! Barbara Evans on what the regulatory pathway issupposed to look like and what makes it challenging in the world of genetics using charts from 2017 reports. And an ode to the “pink golden retriever” we all want

  88.   Retweeted

    You’re welcome!

  89.   Retweeted

    Barbara Evans: Peer-review is no longer the threshold for good science it once was – grant review is. But if research is not funded…those protections aren’t there

  90.   Retweeted

    How well are companies doing in complying with the privacy principles they themselves signed on to? James Hazel talks about the work he and Chris Slobogin ⁦⁩ ⁦⁩ have done. ⁦

  91.   Retweeted

    Excellent talk by Barbara Evans expressing skepticism about a top down regulatory approach on biohacking (“If I want to turn my skin bright green who’s the FDA to tell me I can’t?), citing Lisa Ikemoto’s excellent DIY Bio Hacking article

  92.   Retweeted

    Terrific representation of women at ! Speakers: 14F, 6M Moderators: 4F, 2M Nicely done, folks.

  93.   Retweeted

    Panel takeaways: * DTC privacy policies are all over the place, and Best practices are a good way forward. * FDA is poised to take an advanced role as a regulator in the field. * We must differentiate between germline and somatic editing for regulation

  94.   Retweeted

    Catherine Sharkey asks us to consider the FDA may play in managing the conceptual risk and regulatory model for DTC genetic testing especially given the complexities that AI, machine learning, and big data add to this industry

  95.   Retweeted

    You can hear a pin drop in the auditorium as Kif Augustine tells a very personal tale about how reveals a story of rape and a lost half sister. Secrets, lies, ancestry, DNA, and Mormon Orthodoxy in 1959 Utah.

  96.   Retweeted

    And what does diversity mean? What does it do? Among other things, drives $$$$ funding in the research cycle.

  97.   Retweeted

    Health equity is due to structural and systemic racism in the field present from its beginnings. Seeking more diversity in the workforce will not solve this “health equity” issue. As Jonathan Khan notes, these d&i initiatives can be used to elide responsibility

  98.   Retweeted

    Natalie Ram at talks about familial investigations for law enforcement. For a short, recent piece w/ & Amy McGuire: . Longer ago and longer (by far) in :

  99.   Retweeted

    Natalie Ram uses her baby bump as the ultimate scholarly “flex” in showing the involuntary and immutable nature of informational revelation for the children we produce. How do these elements make the forensic use of that information different?

  100.   Retweeted

    Ooh interesting! Natalie Ram argues that the involuntariness of familial info getting into databases means the Third Party Doctrine [which sucks anyway] shouldn’t apply. (here’s her piece, DNA by the Entirety: )

  101.   Retweeted

    providing a range of policy/legal choices about how to address new forms of noninvasive prenatal testing

Advertisements

Read Full Post »


The Journey of Antibiotic Discovery

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The term ‘antibiotic’ was introduced by Selman Waksman as any small molecule, produced by a microbe, with antagonistic properties on the growth of other microbes. An antibiotic interferes with bacterial survival via a specific mode of action but more importantly, at therapeutic concentrations, it is sufficiently potent to be effective against infection and simultaneously presents minimal toxicity. Infectious diseases have been a challenge throughout the ages. From 1347 to 1350, approximately one-third of Europe’s population perished to Bubonic plague. Advances in sanitary and hygienic conditions sufficed to control further plague outbreaks. However, these persisted as a recurrent public health issue. Likewise, infectious diseases in general remained the leading cause of death up to the early 1900s. The mortality rate shrunk after the commercialization of antibiotics, which given their impact on the fate of mankind, were regarded as a ‘medical miracle’. Moreover, the non-therapeutic application of antibiotics has also greatly affected humanity, for instance those used as livestock growth promoters to increase food production after World War II.

 

Currently, more than 2 million North Americans acquire infections associated with antibiotic resistance every year, resulting in 23,000 deaths. In Europe, nearly 700 thousand cases of antibiotic-resistant infections directly develop into over 33,000 deaths yearly, with an estimated cost over €1.5 billion. Despite a 36% increase in human use of antibiotics from 2000 to 2010, approximately 20% of deaths worldwide are related to infectious diseases today. Future perspectives are no brighter, for instance, a government commissioned study in the United Kingdom estimated 10 million deaths per year from antibiotic resistant infections by 2050.

 

The increase in antibiotic-resistant bacteria, alongside the alarmingly low rate of newly approved antibiotics for clinical usage, we are on the verge of not having effective treatments for many common infectious diseases. Historically, antibiotic discovery has been crucial in outpacing resistance and success is closely related to systematic procedures – platforms – that have catalyzed the antibiotic golden age, namely the Waksman platform, followed by the platforms of semi-synthesis and fully synthetic antibiotics. Said platforms resulted in the major antibiotic classes: aminoglycosides, amphenicols, ansamycins, beta-lactams, lipopeptides, diaminopyrimidines, fosfomycins, imidazoles, macrolides, oxazolidinones, streptogramins, polymyxins, sulphonamides, glycopeptides, quinolones and tetracyclines.

 

The increase in drug-resistant pathogens is a consequence of multiple factors, including but not limited to high rates of antimicrobial prescriptions, antibiotic mismanagement in the form of self-medication or interruption of therapy, and large-scale antibiotic use as growth promotors in livestock farming. For example, 60% of the antibiotics sold to the USA food industry are also used as therapeutics in humans. To further complicate matters, it is estimated that $200 million is required for a molecule to reach commercialization, with the risk of antimicrobial resistance rapidly developing, crippling its clinical application, or on the opposing end, a new antibiotic might be so effective it is only used as a last resort therapeutic, thus not widely commercialized.

 

Besides a more efficient management of antibiotic use, there is a pressing need for new platforms capable of consistently and efficiently delivering new lead substances, which should attend their precursors impressively low rates of success, in today’s increasing drug resistance scenario. Antibiotic Discovery Platforms are aiming to screen large libraries, for instance the reservoir of untapped natural products, which is likely the next antibiotic ‘gold mine’. There is a void between phenotanypic screening (high-throughput) and omics-centered assays (high-information), where some mechanistic and molecular information complements antimicrobial activity, without the laborious and extensive application of various omics assays. The increasing need for antibiotics drives the relentless and continuous research on the foreground of antibiotic discovery. This is likely to expand our knowledge on the biological events underlying infectious diseases and, hopefully, result in better therapeutics that can swing the war on infectious diseases back in our favor.

 

During the genomics era came the target-based platform, mostly considered a failure due to limitations in translating drugs to the clinic. Therefore, cell-based platforms were re-instituted, and are still of the utmost importance in the fight against infectious diseases. Although the antibiotic pipeline is still lackluster, especially of new classes and novel mechanisms of action, in the post-genomic era, there is an increasingly large set of information available on microbial metabolism. The translation of such knowledge into novel platforms will hopefully result in the discovery of new and better therapeutics, which can sway the war on infectious diseases back in our favor.

 

References:

 

https://www.mdpi.com/2079-6382/8/2/45/htm

 

https://www.ncbi.nlm.nih.gov/pubmed/19515346

 

https://www.ajicjournal.org/article/S0196-6553(11)00184-2/fulltext

 

https://www.ncbi.nlm.nih.gov/pubmed/21700626

 

http://www.med.or.jp/english/journal/pdf/2009_02/103_108.pdf

 

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Researchers have embraced CRISPR gene-editing as a method for altering genomes, but some have reported that unwanted DNA changes may slip by undetected. The tool can cause large DNA deletions and rearrangements near its target site on the genome. Such alterations can confuse the interpretation of experimental results and could complicate efforts to design therapies based on CRISPR. The finding is in line with previous results from not only CRISPR but also other gene-editing systems.

 

CRISPR -Cas9 gene editing relies on the Cas9 enzyme to cut DNA at a particular target site. The cell then attempts to reseal this break using its DNA repair mechanisms. These mechanisms do not always work perfectly, and sometimes segments of DNA will be deleted or rearranged, or unrelated bits of DNA will become incorporated into the chromosome.

 

Researchers often use CRISPR to generate small deletions in the hope of knocking out a gene’s function. But when examining CRISPR edits, researchers found large deletions (often several thousand nucleotides) and complicated rearrangements of DNA sequences in which previously distant DNA sequences were stitched together. Many researchers use a method for amplifying short snippets of DNA to test whether their edits have been made properly. But this approach might miss larger deletions and rearrangements.

 

These deletions and rearrangements occur only with gene-editing techniques that rely on DNA cutting and not with some other types of CRISPR modifications that avoid cutting DNA. Such as a modified CRISPR system to switch one nucleotide for another without cutting DNA and other systems use inactivated Cas9 fused to other enzymes to turn genes on or off, or to target RNA. Overall, these unwanted edits are a problem that deserves more attention, but this should not stop anyone from using CRISPR. Only when people use it, they need to do a more thorough analysis about the outcome.

 

References:

 

https://www.nature.com/articles/d41586-018-05736-3?utm_source=briefing-dy

 

https://www.ncbi.nlm.nih.gov/pubmed/28561021

 

https://www.ncbi.nlm.nih.gov/pubmed/30010673

 

https://www.ncbi.nlm.nih.gov/pubmed/24651067

 

https://www.ncbi.nlm.nih.gov/pubmed/25398350

 

https://www.ncbi.nlm.nih.gov/pubmed/24838573

 

https://www.ncbi.nlm.nih.gov/pubmed/25200087

 

https://www.ncbi.nlm.nih.gov/pubmed/25757625

 

Read Full Post »


Acute Coronary Syndrome (ACS): Strategies in Anticoagulant Selection: Diagnostics Approaches – Genetic Testing Aids vs. Biomarkers (Troponin types and BNP)

Curator: Aviva Lev-Ari, PhD, RN

UPDATED on 8/7/2018

Siemens’ high-sensitivity Troponin I (TnIH) assaysgot FDA clearance for use in diagnosing acute myocardial infarction. (Cardiovascular Business) The first high-sensitivity Troponin T test was cleared last year, as MedPage Today reported.

SOURCE

https://www.medpagetoday.com/cardiology/prevention/74423?xid=nl_mpt_cardiobreak2018-08-06&eun=g99985d0r&utm_source=Sailthru&utm_medium=email&utm_campaign=CardioBreak_080618&utm_term=SM%20CardioBreak%20Alert

UPDATED on 3/17/2018

An NT-proBNP <300 pg/ml strongly excludes the presence of acute HF.

J Am Coll Cardiol. 2018 Mar 20;71(11):1191-1200. doi: 10.1016/j.jacc.2018.01.021.

N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study

 

A breakthrough in emergence of

  • Genetic Testing Aids as a Personalized approach, genomics-based approach to selecting antiplatelet therapy, for reduction in ischemic and bleeding events, and
  • Biochemical Biomarker approaches for dosing anti-thrombotic drugs are presented here.

“This study fills in a part of the puzzle of genomic testing,” said Craig Beavers, PharmD, of the University of Kentucky in Lexington. “It shows we can use genomic information in clinical decision making. It was interesting that there appeared to be a change in prescribing based on genomics.”

SOURCE

https://www.medpagetoday.com/meetingcoverage/acc/71722?xid=nl_mpt_DHE_2018-03-13&eun=g99985d0r&pos=3&utm_source=Sailthru&utm_medium=email&utm_campaign=Daily%20Headlines%202018-03-13&utm_term=Daily%20Headlines%20-%20Active%20User%20-%20180%20days

At 12 months, 25.9% of patients receiving standard care had experienced the trial’s primary composite endpoint — cardiovascular death, non-fatal MI or stroke, and Bleeding Academic Research Consortium (BARC) 3-5 major bleeding — compared with 15.8% of patients receiving an anticoagulant drug on the basis of genetic testing (P<0.001), reported Diego Ardissino, MD, of Azienda Ospedaliero-Universitaria di Parma in Italy, and colleagues.

PHARMCLO is the first trial to combine clinical characteristics with genetic information to inform the choice of P2Y12 receptor antagonist in patients with ACS, Ardissino said in a presentation at the American College of Cardiology annual meeting. The study was simultaneously published in the Journal of the American College of Cardiology.

“Selecting treatment on the basis of genetic data in addition to considerations concerning the patients’ clinical characteristics may lead to a more personalized, and therefore more efficient, antiplatelet therapy, thus reducing both ischemic and bleeding risk,” he said. “PHARMCLO is the first step of a new approach that will see a shift in emphasis away from trying to discover ever-more potent anti-thrombotic drugs, and toward ensuring that the right therapy is given to each individual patient.”

However, PHARMCLO was halted after about a fourth of the intended population was recruited. The Ethics Committee of Modena (Italy) required the trial to be prematurely stopped because of a lack of in vitro diagnosis certification for the testing instruments. The original patients were still followed, Ardissino stated.

The authors enrolled 888 patients, and randomly assigned them to be tested for

  • three genes associated with resistance to clopidogrel (Plavix), and then were assigned a
  • treatment based on clinical data informed by the testing results.
  • Tested genes were ABCB1, 2C19*2 and 2C19*17 with the STQ3 system.
  • Another group was assigned to treatment without reference to genetic testing.
  • Standard of care treatment was with Clopidogrel, Ticagrelor (Brilinta), or Prasugrel (Effient).
  1. Clopidogrel was more frequently used in the standard arm (50.7% versus 43.3%), while
  2. Ticagrelor in the pharmacogenomic arm (42.6% versus 32.7%, P<0.05) and
  3. Prasugrel were used equally in both.

The primary endpoint hazard ratio was 0.58 versus the standard arm (95% CI 0.43-0.78, P<0.001).

Previous studies have shown Prasugrel and Ticagrelor to be superior to Clopidogrel at preventing ischemic events. However, prasugrel and ticagrelor, which are more potent, are also known to increase the risk of bleeding. The findings suggest that having more information about a specific patient’s likely response to clopidogrel can help doctors weigh this trade-off, Ardissino said.

 SOURCES

The STANDARD OF CARE in Diagnosis of Acute Coronary Syndrome (ACS) using BioMarkers in serum blood relays of values of Troponin types and BNP for dosing anti-thrombotic drugs.

The team at LPBI Group published the following articles on this topic:

A search into our Journal Archive for “Acute Coronary Syndrome” yielded 210 articles

https://pharmaceuticalintelligence.com/?s=Acute+Coronary+Syndrome

  1. High Sensitivity Troponin (hs cTn) Assays 

  • Previously undiscerned value of hs-troponin

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/06/18/previously-undiscerned-value-of-hs-troponin/

  • Recent Insights into the High Sensitivity Troponins for Acute Coronary Syndromes

Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/09/08/recent-insights-into-the-high-sensitivity-troponins-for-acute-coronary-syndromes/

  • Dealing with the Use of the High Sensitivity Troponin (hs cTn) Assays: Preparing the United States for High-Sensitivity Cardiac Troponin Assays

Author and Curator: Larry H Bernstein, MD, FCAP and Author and Curator: Aviva Lev-Ari, PhD, RD

https://pharmaceuticalintelligence.com/2013/05/18/dealing-with-the-use-of-the-hs-ctn-assays/

  • Preparing the United States for High-Sensitivity Cardiac Troponin Assays

Curator: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/06/13/high-sensitivity-cardiac-troponin-assays/

 

2. BNP and proBNP

Brain natriuretic peptide (BNP), also known as B-type natriuretic peptide, is a hormone secreted by cardiomyocytes in the heart ventricles in response to stretching caused by increased ventricular blood volume, decrease in systemic vascular resistance and central venous pressure as well as an increase in natriuresis. The net effect of these peptides is a decrease in blood pressure due to the decrease in systemic vascular resistance and, thus, afterload. Additionally, the actions of both BNP and ANP result in a decrease in cardiac output due to an overall decrease in central venous pressure and preload as a result of the reduction in blood volume that follows natriuresis and diuresis.

SOURCE

Maisel A, Krishnaswamy P, Nowak R, McCord J, Hollander J, Duc P, Omland T, Storrow A, Abraham W, Wu A, Clopton P, Steg P, Westheim A, Knudsen C, Perez A, Kazanegra R, Herrmann H, McCullough P (2002). “Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure“. N Engl J Med347 (3): 161–7. 

 

The team at LPBI Group published the following articles on this topic:

  • Effect of Coronary Atherosclerosis and Myocardial Ischemia on Plasma Levels of High-Sensitivity Troponin T and NT-proBNP in Patients With Stable Angina

https://pharmaceuticalintelligence.com/2016/02/17/effect-of-coronary-atherosclerosis-and-myocardial-ischemia-on-plasma-levels-of-high-sensitivity-troponin-t-and-nt-probnp-in-patients-with-stable-angina/

  • More on the Performance of High Sensitivity Troponin T and with Amino Terminal Pro BNP in Diabetes

Writer and Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/01/20/more-on-the-performance-of-high-sensitivity-troponin-t-and-with-amino-terminal-pro-bnp-in-diabetes/

  • Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

Co-Author of the FIRST Article: Larry H. Bernstein, MD, FCAP. Reviewer and Curator of the SECOND and of the THIRD Articles: Larry H. Bernstein, MD, FCAP and Article Architecture Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/10/epo-as-therapeutics-for-anemia-in-chf/

  • Highlights of LIVE Day 1: World Medical Innovation Forum – CARDIOVASCULAR • MAY 1-3, 2017  BOSTON, MA • UNITED STATES

Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/05/01/highlights-of-live-day-1-world-medical-innovation-forum-cardiovascular-%E2%80%A2-may-1-3-2017-boston-ma-%E2%80%A2-united-states/

 

Read Full Post »


Pharmacotyping Pancreatic Cancer Patients in the Future: Two Approaches – ORGANOIDS by David Tuveson and Hans Clevers and/or MICRODOSING Devices by Robert Langer

Curator: Aviva Lev-Ari, PhD, RN

 

UPDATED on 4/5/2018

Featured video: Magical Bob

A fascination with magic leads Institute Professor Robert Langer to solve world problems using the marvels of chemical engineering.Watch Video

MIT News Office
March 27, 2018

http://news.mit.edu/2018/featured-video-magical-bob-langer-0327

 

This curation provides the resources for edification on Pharmacotyping Pancreatic Cancer Patients in the Future

 

  • Professor Hans Clevers at Clevers Group, Hubrecht University

https://www.hubrecht.eu/onderzoekers/clevers-group/

  • Prof. Robert Langer, MIT

http://web.mit.edu/langerlab/langer.html

Langer’s articles on Drug Delivery

https://scholar.google.com/scholar?q=Langer+on+Drug+Delivery&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwixsd2w88TTAhVG4iYKHRaIAvEQgQMIJDAA

organoids, which I know you’re pretty involved in with Hans Clevers. What are your plans for organoids of pancreatic cancer?

Organoids are a really terrific model of a patient’s tumour that you generate from tissue that is either removed at the time of surgery or when they get a small needle biopsy. Culturing the tissue and observing an outgrowth of it is usually successful and when you have the cells, you can perform molecular diagnostics of any type. With a patient-derived organoid, you can sequence the exome and the RNA, and you can perform drug testing, which I call ‘pharmacotyping’, where you’re evaluating compounds that by themselves or in combination show potency against the cells. A major goal of our lab is to work towards being able to use organoids to choose therapies that will work for an individual patient – personalized medicine.

Organoids could be made moot by implantable microdevices for drug delivery into tumors, developed by Bob Langer. These devices are the size of a pencil lead and contain reservoirs that release microdoses of different drugs; the device can be injected into the tumor to deliver drugs, and can then be carefully dissected out and analyzed to gain insight into the sensitivity of cancer cells to different anticancer agents. Bob and I are kind of engaged in a friendly contest to see whether organoids or microdosing devices are going to come out on top. I suspect that both approaches will be important for pharmacotyping cancer patients in the future.

From the science side, we use organoids to discover things about pancreatic cancer. They’re great models, probably the best that I know of to rapidly discover new things about cancer because you can grow normal tissue as well as malignant tissue. So, from the same patient you can do a comparison easily to find out what’s different in the tumor. Organoids are crazy interesting, and when I see other people in the pancreatic cancer field I tell them, you should stop what you’re doing and work on these because it’s the faster way of studying this disease.

SOURCE

Other related articles on Pancreatic Cancer and Drug Delivery published in this Open Access Online Scientific Journal include the following:

 

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Keyword Search: “Pancreatic Cancer” – 275 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Pancreatic+Cancer&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Drug Delivery: 542 Articles Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Drug+Delivery&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

Keyword Search: Personalized Medicine: 597 Article Titles

https://pharmaceuticalintelligence.wordpress.com/wp-admin/edit.php?s=Personalized+Medicine&post_status=all&post_type=post&action=-1&m=0&cat=0&paged=1&action2=-1

  • Cancer Biology & Genomics for Disease Diagnosis, on Amazon since 8/11/2015

http://www.amazon.com/dp/B013RVYR2K

 

 

VOLUME TWO WILL BE AVAILABLE ON AMAZON.COM ON MAY 1, 2017

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Scientists think excessive population growth is a cause of scarcity and environmental degradation. A male pill could reduce the number of unintended pregnancies, which accounts for 40 percent of all pregnancies worldwide.

 

But, big drug companies long ago dropped out of the search for a male contraceptive pill which is able to chemically intercept millions of sperm before they reach a woman’s egg. Right now the chemical burden for contraception relies solely on the female. There’s not much activity in the male contraception field because an effective solution is available on the female side.

 

Presently, male contraception means a condom or a vasectomy. But researchers from Center for Drug Discovery at Baylor College of Medicine, USA are renewing the search for a better option—an easy-to-take pill that’s safe, fast-acting, and reversible.

 

The scientists began with lists of genes active in the testes for sperm production and motility and then created knockout mice that lack those genes. Using the gene-editing technology called CRISPR, in collaboration with Japanese scientists, they have so far made more than 75 of these “knockout” mice.

 

They allowed these mice to mate with normal (wild type) female mice, and if their female partners don’t get pregnant after three to six months, it means the gene might be a target for a contraceptive. Out of 2300 genes that are particularly active in the testes of mice, the researchers have identified 30 genes whose deletion makes the male infertile. Next the scientists are planning a novel screening approach to test whether any of about two billion chemicals can disable these genes in a test tube. Promising chemicals could then be fed to male mice to see if they cause infertility.

 

Female birth control pills use hormones to inhibit a woman’s ovaries from releasing eggs. But hormones have side effects like weight gain, mood changes, and headaches. A trial of one male contraceptive hormone was stopped early in 2011 after one participant committed suicide and others reported depression. Moreover, some drug candidates have made animals permanently sterile which is not the goal of the research. The challenge is to prevent sperm being made without permanently sterilizing the individual.

 

As a better way to test drugs, Scientists at University of Georgia, USA are investigating yet another high-tech approach. They are turning human skin cells into stem cells that look and act like the spermatogonial cells in the testes. Testing drugs on such cells might provide more accurate leads than tests on mice.

 

The male pill would also have to start working quickly, a lot sooner than the female pill, which takes about a week to function. Scientists from University of Dundee, U.K. admitted that there are lots of challenges. Because, a women’s ovary usually release one mature egg each month, while a man makes millions of sperm every day. So, the male pill has to be made 100 percent effective and act instantaneously.

 

References:

 

https://www.technologyreview.com/s/603676/the-search-for-a-perfect-male-birth-control-pill/

 

https://futurism.com/videos/the-perfect-male-birth-control-pill-is-coming-soon/?utm_source=Digest&utm_campaign=c42fc7b9b6-EMAIL_CAMPAIGN_2017_03_20&utm_medium=email&utm_term=0_03cd0a26cd-c42fc7b9b6-246845533

 

http://www.telegraph.co.uk/women/sex/the-male-pill-is-coming—and-its-going-to-change-everything/

 

http://www.mensfitness.com/women/sex-tips/male-birth-control-pill-making

 

http://health.howstuffworks.com/sexual-health/contraception/male-bc-pill.htm

 

http://europe.newsweek.com/male-contraception-side-effects-study-pill-injection-518237?rm=eu

 

http://edition.cnn.com/2016/01/07/health/male-birth-control-pill/index.html

 

http://www.nhs.uk/Conditions/contraception-guide/Pages/male-pill.aspx

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. They control every cellular process and their altered regulation is involved in human diseases. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. In the ovary, miRNAs play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation.

 

Deciphering the underlying causes of idiopathic male infertility is one of the main challenges in reproductive medicine. This is especially relevant in infertile patients displaying normal seminal parameters and no urogenital or genetic abnormalities. In these cases, the search for additional sperm biomarkers is of high interest. This study was aimed to determine the implications of the sperm miRNA expression profiles in the reproductive capacity of normozoospermic infertile individuals. The expression levels of 736 miRNAs were evaluated in spermatozoa from normozoospermic infertile males and normozoospermic fertile males analyzed under the same conditions. 57 miRNAs were differentially expressed between populations; 20 of them was regulated by a host gene promoter that in three cases comprised genes involved in fertility. The predicted targets of the differentially expressed miRNAs unveiled a significant enrichment of biological processes related to embryonic morphogenesis and chromatin modification. Normozoospermic infertile individuals exhibit a specific sperm miRNA expression profile clearly differentiated from normozoospermic fertile individuals. This miRNA cargo has potential implications in the individuals’ reproductive competence.

 

Circulating or “extracellular” miRNAs detected in biological fluids, could be used as potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) remain unknown. Polycystic ovary syndrome (PCOS) is a frequent endocrine disorder in women. PCOS is associated with altered features of androgen metabolism, increased insulin resistance and impaired fertility. Furthermore, PCOS, being a syndrome diagnosis, is heterogeneous and characterized by polycystic ovaries, chronic anovulation and evidence of hyperandrogenism, as well as being associated with chronic low-grade inflammation and an increased life time risk of type 2 diabetes. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that these might serve as potential biomarkers and a new approach for the diagnosis of PCOS. Presence of miRNA in mammalian follicular fluid has been demonstrated to be enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The investigation of the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from women with normal ovarian reserve and with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes showed that these miRNAs could provide new helpful biomarkers to facilitate personalized medical care for oocyte quality in ART (Assisted Reproductive Treatment) and during IVF (In Vitro Fertilization).

 

References:

 

http://link.springer.com/chapter/10.1007%2F978-3-319-31973-5_12

 

http://onlinelibrary.wiley.com/doi/10.1111/andr.12276/abstract;jsessionid=F805A89DCC94BDBD42D6D60C40AD4AB0.f03t03

 

http://www.sciencedirect.com/science/article/pii/S0009279716302241

 

http://link.springer.com/article/10.1007%2Fs10815-016-0657-9

 

http://www.nature.com/articles/srep24976

 

 

Read Full Post »

Older Posts »