Advertisements
Feeds:
Posts
Comments

Archive for the ‘BioTechnology – Venture Creation, Venture Capital’ Category


Record Innovations in Drug Discovery by Koch Institute @MIT Members and Affiliates

Reporter: Aviva Lev-Ari, PhD, RN

 

 

In Good Company

Trovagene announced a new patent for the use of the drug onvansertib in combination with other anti-androgen drugs for the treatment of prostate cancer. Last fall, Trovagene secured exclusive rights to develop combination therapies and clinical biomarkers for prostate cancer based in part on Bridge Project-funded research. Read more.

Lyndra Therapeutics, co-founded by KI member Bob Langer, raised $55 million in its Series B round, with new investors including the Bill and Melinda Gates Foundation and Gilead Sciences. Phase 2 trials for its ultra long-acting drug delivery capsule are expected to begin next year. Read more.

Dragonfly Therapeutics, co-founded by KI director Tyler Jacks, has committed $10 million to launch the first clinical studies of its TriNKETs (Tri-specific, NK cell Engager Therapies) platform for both solid tumor and hematological cancers. Read more.

Following its record-breaking IPO, Moderna Therapeutics (co-founded by KI member Bob Langer) published preclinical data in Science Translational Medicine demonstrating the promise of its mRNA-2752 program in several cancers. Read more.

Dewpoint Therapeutics launched with a $60 million Series A, aims to translate recent insights into biomolecular condensates from the laboratory of co-founder and KI member Rick Young to drug discovery. Read more.

KI member Bob Langer and collaborator Omid Farokhzad co-founded Seer— combining nanotechnology, protein chemistry, and machine learning—to develop liquid biopsy tests for the early detection of cancer and other diseases. Read more.

Epizyme, co-founded by KI member Bob Horvitz, is submitting a New Drug Application to gain accelerated approval of tazemetostat for patients with relapsed or refractory follicular lymphoma. Read more.

Ribon Therapeutics, founded by former KI member Paul Chang, launched with $65 million in a Series B funding round with Victoria Richon, a veteran of Sanofi and Epizyme, at the helm. Ribon focuses on developing PARP7 inhibitors for cancer treatment. Read more.

SOURCE

From: MIT Koch Institute for Integrative Cancer Research <cancersolutions=mit.edu@cmail19.com> on behalf of MIT Koch Institute for Integrative Cancer Research <cancersolutions@mit.edu>

Reply-To: <ki-communications@mit.edu>

Date: Wednesday, February 6, 2019 at 3:15 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Lung Microbiome Corrupted in Cancer; Angelika Amon wins 2019 Vilcek Award; Lunch Lines of Inquiry

Advertisements

Read Full Post »


37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 10, 2019: Deals and Announcements

Reporter: Stephen J. Williams, Ph.D.

From Biospace.com

 

JP Morgan Healthcare Conference Update: Sage, Mersana, Shutdown Woes and Babies

Speaker presenting to audience at a conference

With the J.P. Morgan Healthcare Conference winding down, companies remain busy striking deals and informing investors about pipeline advances. BioSpace snagged some of the interesting news bits to come out of the conference from Wednesday.

SAGE Therapeutics – Following a positive Phase III report that its postpartum depression treatment candidate SAGE-217 hit the mark in its late-stage clinical trial, Sage Therapeutics is eying the potential to have multiple treatment options available for patients. At the start of J.P. Morgan, Sage said that patients treated with SAGE-217 had a statistically significant improvement of 17.8 points in the Hamilton Rating Scale for Depression, compared to 13.6 for placebo. The company plans to seek approval for SAGE-2017, but before that, the FDA is expected to make a decision on Zulresso in March. Zulresso already passed muster from advisory committees in November, and if approved, would be the first drug specifically for postpartum depression. In an interview with the Business Journal, Chief Business Officer Mike Cloonan said the company believes there is room in the market for both medications, particularly since the medications address different patient populations.

 

Mersana Therapeutics – After a breakup with Takeda Pharmaceutical and the shelving of its lead product, Cambridge, Mass.-based Mersana is making a new path. Even though a partial clinical hold was lifted following the death of a patient the company opted to shelve development of XMT-1522. During a presentation at JPM, CEO Anna Protopapas noted that many other companies are developing therapies that target the HER2 protein, which led to the decision, according to the Boston Business Journal. Protopapas said the HER2 space is highly competitive and now the company will focus on its other asset, XMT-1536, an ADC targeting NaPi2b, an antigen highly expressed in the majority of non-squamous NSCLC and epithelial ovarian cancer. XMT-1536 is currently in Phase 1 clinical trials for NaPi2b-expressing cancers, including ovarian cancer, non-small cell lung cancer and other cancers. Data on XMT-1536 is expected in the first half of 2019.

Novavax – During a JPM presentation, Stan Erck, CEO of Novavax, pointed to the company’s RSV vaccine, which is in late-stage development. The vaccine is being developed for the mother, in order to protect an infant. The mother transfers the antibodies to the infant, which will provide the baby with protection from RSV in its first six months. Erck called the program historic. He said the Phase III program is in its fourth year and the company has vaccinated 4,636 women. He said they are tracking the women and the babies. Researchers call the mothers every week through the first six months of the baby’s life to acquire data. Erck said the company anticipates announcing trial data this quarter. If approved, Erck said the market for the vaccine could be a significant revenue driver.

“You have 3.9 million birth cohorts and we expect 80 percent to 90 percent of those mothers to be vaccinated as a pediatric vaccine and in the U.S. the market rate is somewhere between $750 million and a $1 billion and then double that for worldwide market. So it’s a large market and we will be first to market in this,” Erck said, according to a transcript of the presentation.

Denali Therapeutics – Denali forged a collaboration with Germany-based SIRION Biotech to develop gene therapies for central nervous disorders. The two companies plan to develop adeno-associated virus (AAV) vectors to enable therapeutics to cross the blood-brain barrier for clinical applications in neurodegenerative diseases including Parkinson’s, Alzheimer’s disease, ALS and certain other diseases of the CNS.

AstraZeneca – Pharma giant AstraZeneca reported that in 2019 net prices on average across the portfolio will decrease versus 2018. With a backdrop of intense public and government scrutiny over pricing, Market Access head Rick Suarez said the company is increasing its pricing transparency. Additionally, he said the company is looking at new ways to price drugs, such as value-based reimbursement agreements with payers, Pink Sheet reported.

Amarin Corporation – As the company eyes a potential label expansion approval for its cardiovascular disease treatment Vascepa, Amarin Corporation has been proactively hiring hundreds of sales reps. In the fourth quarter, the company hired 265 new sales reps, giving the company a sales team of more than 400, CEO John Thero said. Thero noted that is a label expansion is granted by the FDA, “revenues will increase at least 50 percent over what we did in the prior year, which would give us revenues of approximate $350 million in 2019.”

Government Woes – As the partial government shutdown in the United States continues into its third week, biotech leaders at JPM raised concern as the FDA’s carryover funds are dwindling. With no new funding coming in, reviews of New Drug Applications won’t be able to continue past February, Pink Sheet said. While reviews are currently ongoing, no New Drug Applications are being accepted by the FDA at this time. With the halt of NDA applications, that has also caused some companies to delay plans for an initial public offering. It’s hard to raise potential investor excitement without the regulatory support of a potential drug approval. During a panel discussion, Jonathan Leff, a partner at Deerfield Management, noted that the ongoing government shutdown is a reminder of how “overwhelmingly dependent the whole industry of biotech and drug development is on government,” Pink Sheet said.

Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include:

#JPM19 Conference: Lilly Announces Agreement To Acquire Loxo Oncology

36th Annual J.P. Morgan HEALTHCARE CONFERENCE January 8 – 11, 2018

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: #JPM2019 for Jan. 8, 2019; Opening Videos, Novartis expands Cell Therapies, January 7 – 10, 2019, Westin St. Francis Hotel | San Francisco, California

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 8, 2019: Deals and Announcements

 

Read Full Post »


37th Annual J.P. Morgan HEALTHCARE CONFERENCE: News at #JPM2019 for Jan. 8, 2019: Deals and Announcements

Reporter: Stephen J. Williams, Ph.D.

From Biospace.com

JP Morgan Healthcare Conference Update: FDA, bluebird, Moderna and the Price of Coffee

Researcher holding test tube up behind circle of animated research icons

Tuesday, January 8, was another busy day in San Francisco for the JP Morgan Healthcare Conference. One interesting sideline was the idea that the current government shutdown could complicate some deals. Kent Thiry, chief executive officer of dialysis provider DaVita, who is working on the sale of its medical group to UnitedHealth Group this quarter, said, “We couldn’t guarantee that even if the government wasn’t shut down, but we and the buyer are both working toward that goal with the same intensity if not more.”

And in a slightly amusing bit of synchrony, U.S.Food and Drug Administration (FDA)Commissioner Scott Gottlieb’s keynote address that was delivered by way of video conference from Washington, D.C., had his audio cut out in the middle of the presentation. Gottlieb was talking about teen nicotine use and continued talking, unaware that his audio had shut off for 30 seconds. When it reconnected, the sound quality was reportedly poor.

Click to search for life sciences jobs

bluebird bio’s chief executive officer, Nick Leschlygave an update of his company’s pipeline, with a particular emphasis on a proposed payment model for its upcoming LentiGlobin, a gene therapy being evaluated for transfusion-dependent ß-thalassemia (TDT). The gene therapy is expected to be approved in Europe this year and in the U.S. in 2020. Although the price hasn’t been set, figures up to $2.1 million per treatment have been floated. Bluebird is proposing a five-year payment program, a pledge to not raise prices above CPI, and no costs after the payment period.

Eli Lilly’s chief executive officer David Ricks, just days after acquiring Loxo Oncologyoffered up projections for this year, noting that 45 percent of its revenue will be created by drugs launched in 2015. Those include Trulicity, Taltz and Verzenio. The company also expects to launch two new molecular entities this year—nasal glucagons, a rescue medicine for high blood sugar (hyperglycemia), and Lasmiditan, a rescue drug for migraine headaches.

CNBC’s Jim Cramer interviewed Allergan chief executive officer Brent Saunders, in particular discussing the fact the company’s shares traded in 2015 for $331.15 but were now trading for $145.60. Cramer noted that the company’s internal fundamentals were strong, with multiple pipeline assets and a strong leadership team. Some of the stock problems are related to what Saunders said were “unforced errors,” including intellectual property rights to Restasis, its dry-eye drug, and Allergan’s dubious scheme to protect those patents by transferring the rights to the Saint Regis Mohawk Tribe in New York. On the positive side, the company’s medical aesthetics portfolio, dominated by Botox, is very strong and the overall market is expected to double.

One of the big areas of conversation is so-called “flyover tech.” Biopharma startups are dominant in Boston and in San Francisco, but suddenly venture capital investors have realized there’s a lot going on in between. New York City-based Radian Capital, for example, invests exclusively in markets outside major U.S. cities.

“At Radian, we partner with entrepreneurs who have built their businesses with a focus on strong economics rather than growth at all costs,” Aly Lovett, partner at Radian, told The Observer. “Historically, given the amount of money required to stand up a product, the software knowledge base, and coastal access to capital, health start-ups were concentrated in a handful of cities. As those dynamics have inverted and as the quality of living becomes a more important factor in attracting talent, we’re not seeing a significant increase in the number of amazing companies being built outside of the Bay Area.”

“Flyover companies” mentioned include Bind in Minneapolis, Minnesota; Solera Health in Phoenix, Arizona; ClearDATA in Austin, Texas; Healthe, in Eden Prairie, Minnesota; HistoSonics in Ann Arbor, Michigan; and many others.

Only a month after its record-breaking IPO, Moderna Therapeutics’ chief executive officer Stephane Bancelspent time both updating the company’s clinical pipeline and justifying the company’s value despite the stock dropping off 26 percent since the IPO. Although one clinical program, a Zika vaccine, mRNA-1325, has been abandoned, the company has three new drugs coming into the clinic: mRNA-2752 for solid tumors or lymphoma; mRNA-4157, a Personalized Cancer Vaccine with Merck; and mRNA-5671, a KRAS cancer vaccine. The company also submitted an IND amendment to the FDA to add an ovarian cancer cohort to its mRNA-2416 program.

One interesting bit of trivia, supplied on Twitter by Rasu Shrestha, chief innovation officer for the University of Pittsburgh Medical Center, this year at the conference, 33 female chief executive officers were presenting corporate updates … compared to 19 men named Michael. Well, it’s a start.

And for another bit of trivia, Elisabeth Bik, of Microbiome Digest, tweeted, “San Francisco prices are so out of control that one hotel is charging the equivalent of $21.25 for a cup of coffee during a JPMorgan conference.”

Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include:

#JPM19 Conference: Lilly Announces Agreement To Acquire Loxo Oncology

36th Annual J.P. Morgan HEALTHCARE CONFERENCE January 8 – 11, 2018

37th Annual J.P. Morgan HEALTHCARE CONFERENCE: #JPM2019 for Jan. 8, 2019; Opening Videos, Novartis expands Cell Therapies, January 7 – 10, 2019, Westin St. Francis Hotel | San Francisco, California

Read Full Post »


NIH SBIR Funding Early Ventures: September 26, 2018 sponsored by Pennovation

Stephen J. Williams PhD, Reporter

Penn Center for Innovation (Pennovation) sponsored a “Meet with NCI SBIR” program directors at University of Pennsylvania Medicine Smilow Center for Translational Research with a presentation on advice on preparing a successful SBIR/STTR application to the NCI as well as discussion of NCI SBIR current funding opportunities.   Time was allotted in the afternoon for one-on-one discussions with NCI SBIR program directors.

To find similar presentations and one-on-one discussions with NCI/SBIR program directors in an area nearest to you please go to their page at:

https://sbir.cancer.gov/newsevents/events

For more complete information on the NCI SBIR and STTR programs please go to their web page at: https://sbir.cancer.gov/about

A few notes from the meeting are given below:

  • In 2016 the SBIR/STTR 2016 funded $2.5 billion (US) of early stage companies; this is compared to the $6.6 billion invested in early  stage ventures by venture capital firms so the NCI program is very competitive with alternate sources of funding
  • It was stressed that the SBIR programs are flexible as far as ownership of a company; SBIR allows now that >50% of the sponsoring company can be owned by other ventures;  In addition they are looking more favorably on using outside contractors and giving leeway on budgetary constraints so AS THEY SUGGEST ALWAYS talk to the program director about any questions you may have well before (at least 1 month) you submit. More on eligibility criteria is found at: https://sbir.cancer.gov/about/eligibilitycriteria
  • STTR should have strong preliminary data since more competitive; if don’t have enough go for  an R21 emerging technologies grant which usually does not require preliminary data
  • For entities outside the US need a STRONG reason for needing to do work outside the US

Budget levels were discussed as well as  the waiver program, which allows for additional funds to be requested based on criteria set by NCI (usually for work that is deemed high priority or of a specialized nature which could not be covered sufficiently under the standard funding limits) as below:

Phase I: 150K standard but you can get waivers for certain work up to 300K

Phase II: 1M with waiver up to 2M

Phase IIB waiver up to 4M

You don’t need to apply for the waiver but grant offices may suggest citing a statement requesting a waiver as review panels will ask for this information

Fast Track was not discussed in the presentation but for more information of the Fast Track program please visit the website  

NCI is working hard to cut review times to 7 months between initial review to funding however at beginning of the year they set pay lines and hope to fund 50% of the well scored grants

NCI SBIR is a Centralized system with center director and then program director with specific areas of expertise: Reach out to them

IMAT Program and Low-Resource Setting new programs more suitable for initial studies and also can have non US entities

Phase IIB Bridge funding to cross “valley of death” providing up to 4M for 2-3 years: most were for drug/biological but good amount for device and diagnostics

 

Also they have announced administrative supplements for promoting diversity within a project: can add to the budget

FY18 Contracts Areas

3 on biotherapies

2 imaging related

2 on health IT

4 on radiation therapy related: NOTE They spent alot of time discussing the contracts centered on radiation therapy and seems to be an area of emphasis of the NCI SBIR program this year

4 other varied topics

 

Breakdown of funding

>70% of NCI SBIR budget went to grants (for instance Omnibus grants); about 20-30% for contracts; 16% for phase I and 34 % for phase II ;

ALSO the success rate considerably higher for companies that talk to the program director BEFORE applying than not talking to them; also contracts more successful than Omnibus applications

Take Advantage of these useful Assistance Programs through the NIH SBIR Program (Available to all SBIR grantees)

NICHE ASSESSMENT Program

From the NCI SBIR website:

The Niche Assessment Program is designed to help small businesses “jump start” their commercialization efforts. All active HHS (NIH, CDC, FDA) SBIR/STTR Phase I awardees and Phase I Fast-Track awardees (by grant or contract) are eligible to apply. Registration is on a first-come, first-serve basis!

The Niche Assessment Program provides market insight and data that can be used to help small businesses strategically position their technology in the marketplace. The results of this program can help small businesses develop their commercialization plans for their Phase II application, and be exposed to potential partners. Services are provided by Foresight Science & Technology of Providence, RI.

Technology Niche Analyses® (TNA®) are provided by Foresight, for one hundred and seventy-five (175), HHS SBIR/STTR Phase I awardees. These analyses assess potential applications for a technology and then for one viable application, it provides an assessment of the:

  1. Needs and concerns of end-users;
  2. Competing technologies and competing products;
  3. Competitive advantage of the SBIR/STTR-developed technology;
  4. Market size and potential market share (may include national and/or global markets);
  5. Barriers to market entry (may include but is not limited to pricing, competition, government regulations, manufacturing challenges, capital requirements, etc.);
  6. Market drivers;
  7. Status of market and industry trends;
  8. Potential customers, licensees, investors, or other commercialization partners; and,
  9. The price customers are likely to pay.

Commercialization Acceleration Program  (CAP)

From the NIH SBIR website:

NIH CAP is a 9-month program that is well-regarded for its combination of deep domain expertise and access to industry connections, which have resulted in measurable gains and accomplishments by participating companies. Offered since 2004 to address the commercialization objectives of companies across the spectrum of experience and stage, 1000+ companies have participated in the CAP. It is open only to HHS/NIH SBIR/STTR Phase II awardees, and 80 slots are available each year. The program enables participants to establish market and customer relevance, build commercial relationships, and focus on revenue opportunities available to them.

I-Corps Program

The I-Corps program provides funding, mentoring, and networking opportunities to help commercialize your promising biomedical technology. During this 8-week, hands-on program, you’ll learn how to focus your business plan and get the tools to bring your treatment to the patients who need it most.

Program benefits include:

  • Funding up to $50,000 to cover direct program costs
  • Training from biotech sector experts
  • Expanding your professional network
  • Building the confidence and skills to create a comprehensive business model
  • Gaining years of entrepreneurial skills in only weeks.

 

ICORPS is an Entrepreneurial Program (8 week course) to go out talk to customers, get assistance with business models, useful resource which can guide the new company where they should focus on for the commercialization aspect

THE NCI Applicant Assistance Program (AAP)

The SBIR/STTR Applicant Assistance Program (AAP) is aimed at helping eligible small R&D businesses and individuals successfully apply for Phase I SBIR/STTR funding from the National Cancer Institute (NCI), National Institute for Neurological Disorders and Stroke (NINDS), National Heart, Lung and Blood Institute (NHLBI). Participation in the AAP will be funded by the NCI, NINDS, and NHLBI with NO COST TO PARTICIPANTS. The program will include the following services:

  • Needs Assessment/Small Business Mentoring
  • Phase I Application Preparation Support
  • Application Review
  • Team/Facilities Development
  • Market Research
  • Intellectual Property Consultation

For more details about the program, please refer to NIH Notice NOT-CA-18-072.

 

These programs are free for first time grant applicants and must not have been awarded previous SBIR

Peer Learning Webinar Series goal to improve peer learning .Also they are starting to provide Regulatory Assistance (see below)

NIH also provides Mentoring programs for CEOS and C level

Application tips

  1. Start early: and obtain letters of collaboration
  2. Build a great team: PI multi PI, consider other partners to fill gaps (academic, consultants, seasoned entrepreneurs (don’t need to be paid)
  3. They will pre review 1 month before due date, use NIH Project Reporter to view previous funded grants
  4. Specify study section in SF to specify areas of expertise for review
  5. Specific aims are very important; some of the 20 reviewers focus on this page (describes goals and milestones as well; spend as much time on this page as the rest of the application
  6. Letters of support from KOLs are important to have; necessary from consultants and collaborators; helpful from clinicians
  7. Have a phase II commercialization plan
  8. Note for non US clinical trials:  They will not fund nonUS clinical trials; the company must have a FWA
  9. SBIR budgets defined by direct costs; can request a 7% fee as an indirect cost; and they have a 5,000 $ technical assistance program like regulatory consultants but if requested can’t participate in NIH technical assistance programs so most people don’t apply for TAP

 

  • They are trying to change the definition of innovation as also using innovative methods (previously reviewers liked tried and true methodology)

10.  before you submit solicit independent readers

NCI SBIR can be found on Twitter @NCIsbir ‏

Discussion with Monique Pond, Ph.D. on Establishment of a Regulatory Assistance Program for NCI SBIR

I was able to sit down with Dr. Monique Pond,  AAAS Science & Technology Policy Fellow, Health Scientist within the NCI SBIR Development Center to discuss the new assistance program in regulatory affairs she is developing for the NCI SBIR program.  Dr Pond had received her PhD in chemistry from the Pennsylvania State University, completed a postdoctoral fellow at NIST and then spent many years as a regulatory writer and consultant in the private sector.  She applied through the AAAS for this fellowship and will bring her experience and expertise in regulatory affairs from the private sector to the SBIR program. Dr. Pond discussed the difficulties that new ventures have in formulating regulatory procedures for their companies, the difficulties in getting face time with FDA regulators and helping young companies start thinking about regulatory issues such as pharmacovigilence, oversight, compliance, and navigating the complex regulatory landscape.

In addition Dr. Pond discussed the AAAS fellowship program and alternative career paths for PhD scientists.

 

A formal interview will follow on this same post.

 

Other articles on this OPEN ACCESS JOURNAL on Funding for Startups and Early Ventures are given below:

 

Mapping Medical Device Startups Across The Globe per Funding Criteria

Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)

 

Funding Opportunities for Cancer Research

 

Team Profile: DrugDiscovery @LPBI Group – A BioTech Start Up submitted for Funding Competition to MassChallenge Boston 2016 Accelerator

 

A Message from Faculty Director Lee Fleming on Latest Issue of Crowdfunding; From the Fung Institute at Berkeley

 

PROTOCOL for Drug Screening of 3rd Party Intellectual Property Presented for Funding Representation

 

Foundations as a Funding Source

 

The Bioscience Crowdfunding Environment: The Bigger Better VC?

 

Read Full Post »


Cancer Cell Therapy: Global Start up Acquisitions in Oncolytic Viruses (OV) Therapeutics – a Pipeline of 70 OVs in Clinical Development and another 95 in Preclinical Programs

 

Reporter: Aviva Lev-Ari, PhD, RN

 

September 2018 

  • Boehringer Ingelheim is buying ViraTherapeutics in $244M deal

Boehringer Ingelheim joins the crowd and goes all-in on oncolytic viruses, buying ViraTherapeutics in $244M deal

https://endpts.com/boehringer-ingelheim-joins-the-crowd-and-goes-all-in-on-oncolytic-viruses-buying-viratherapeutics-in-244m-deal/?utm_medium=email&utm_campaign=Thursday%20September%2013%202018&utm_content=Thursday%20September%2013%202018+CID_61414a80a0003abe24ea7e26fafb3eab&utm_source=ENDPOINTS%20emails&utm_term=Boehringer%20Ingelheim%20joins%20the%20major%20league%20players%20with%20a%20buyout

 

May 2018

  • J&J executed one of its classic billion-dollar deals to buy BeneVir.

J&J’s Janssen to Acquire BeneVir for $1 Billion

May 09, 2018
By Pharmaceutical Technology Editors

Janssen Biotech, part of Janssen Pharmaceutical Companies, a subsidiary of Johnson & Johnson (J&J), announced on May 2, 2018 that it has entered into a definitive agreement to acquire BeneVir Biopharm (BeneVir), a biotechnology company specializing in the development of oncolytic immunotherapies.

BeneVir is a portfolio company and subsidiary of HC2 Holdings’ Pansend Life Sciences, which is focused on developing healthcare technologies and products. Benevir uses a proprietary T-Stealth Oncolytic Virus Platform to engineer oncolytic viruses tailored to infect and eliminate cancer cells.

Under the terms of the agreement, Janssen will make an upfront cash payment of $140 million at closing of the transaction, plus additional contingent payments of up to $900 million based on achievement of certain predetermined milestones. The total amount of all payments could exceed $1 billion if all milestones are met. The closing of the transaction is subject to customary closing conditions, including clearance under the Hart-Scott-Rodino Antitrust Improvements Act. The transaction, which was facilitated by J&J Innovation, is expected to close in the second quarter of 2018.

SOURCE

http://www.pharmtech.com/jj-s-janssen-acquire-benevir-1-billion-0

 

May 2018

  • A recent study from the Cancer Research Institute found 69 OVs in clinical development and another 95 in a preclinical program.

New Report on the Global Landscape of Cancer Cell Therapy Highlights Robust International Pipeline Marked by Rapid Growth

  • A comprehensive, neutral analysis of the global cancer cell therapy landscape
  • 753 cancer cell therapies in the global development pipeline, with 375 in clinical studies
  • 350 new cancer cell therapies have entered the global development pipeline since Sep. 2017, an 87% increase in less than 7 months
  • 113 targets are being pursued in 7 different classes of cell therapies

NEW YORK, May 25, 2018—The Cancer Research Institute (CRI) announced today the publication of a report that provides a comprehensive, independent analysis of the global landscape of cancer cell therapies, including all agents from preclinical to post-market stages. This report provides a quantitative and current overview of the cancer cell therapy field, reveals the unparalleled speed of the field’s expansion, highlights exciting innovations in the development pipeline, and advises strategies to advance the field as a whole.

The report, titled “The Global Landscape of Cancer Cell Therapy,” appeared online today in Nature Reviews Drug Discovery, a premium journal from Nature Publishing Group and an authoritative source of information in drug discovery and development. This report, which expands on CRI’s previously published landscape analysis of the entire field of immuno-oncology, highlights the geographic distribution of cancer cell therapies worldwide and identifies the dominant presence of CAR T therapies in the cancer cell therapy space.

“The quantitative analyses from this report reveal unprecedented enthusiasm and innovation in the global cell therapy pipeline,” said Jill O’Donnell-Tormey, Ph.D., chief executive officer and director of scientific affairs at the Cancer Research Institute.

“In addition to traditional powerhouses of drug development such as the United States or European countries, many other countries, especially China, have significant presence in this space,” noted Jun Tang, Ph.D., a senior research analyst for the CRI Anna-Maria Kellen Clinical Accelerator program and first author on the report.

To access the interactive dashboard of the report, visit the CRI website at cancerresearch.org/io-cell-therapy.

Reference
Tang J. et al. Global landscape of cancer cell therapy. Nature Reviews Drug Discovery. 25 May 2018. doi:10.1038/nrd.2018.74

SOURCE

https://www.cancerresearch.org/news/2018/global-landscape-of-cancer-cell-therapy-report

 

February 2018

  • Merck’s R&D chief Roger Perlmutter — who steered the T-Vec deal at Amgen — bagged Viralytics for $394 million.
FEBRUARY 21, 2018 / 4:29 AM / 7 MONTHS AGO

Merck to buy virus-based cancer drug firm Viralytics for $394 million

(Reuters) – U.S. drugmaker Merck & Co (MRK.N), already one of the leaders in the hot area of cancer immunotherapy, said on Wednesday it had agreed to buy Viralytics VLA.AX for 502 million Australian dollars ($394 million) to expand its pipeline in the sector.

Merck will pay 1.75 Australian dollars per share for the Sydney-based biotech company, which uses viruses to infect and kill cancer cells.

The idea is to cause cancer cells to rupture and die, while also stimulating a wider immune system response in the body.

SOURCE

https://www.reuters.com/article/us-viralytics-m-a-merck-co/merck-to-buy-virus-based-cancer-drug-firm-viralytics-for-394-million-idUSKCN1G50ZN

 

Hum Vaccin Immunother. 2018; 14(4): 839–846.
Published online 2018 Feb 22. doi:  10.1080/21645515.2017.1412896
PMCID: PMC5893211
PMID: 29420123

Talimogene laherparepvec: First in class oncolytic virotherapy

ABSTRACT

Oncolytic viruses represent a novel drug class in which native or modified viruses mediate tumor regression through selective replication within and lysis of tumor cells as well as induction of systemic antitumor immunity capable of eradicating tumor at distant, uninjected sites. Talimogene laherparepvec (TVEC) is a type I herpes simplex virus genetically modified to preferentially replicate in tumor cells, enhance antigen loading of MHC class I molecules and express granulocyte-macrophage colony-stimulating factor to increase tumor-antigen presentation by dendritic cells. It is presently the only oncolytic virus approved by the FDA with an indication for advanced melanoma based upon improved durable response rate in a randomized, phase III trial. Clinical trials are underway in melanoma investigating TVEC as neoadjuvant monotherapy and in combination with checkpoint inhibitors for unresectable disease as well as in an array of other malignancies. It is appropriate to review TVEC’s biology mechanism of action, clinical indication and future directions as a prototype of the burgeoning class of oncolytic viruses.

SOURCE

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893211/

October 2015 

  • Amgen’s landmark approval of T-Vec, the world’s first marketed oncolytic virus.

FDA approves cancer-killing cold sore virus as therapy for late-stage melanoma

October 28, 2015, University of Utah Health Sciences
melanoma
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

The U.S. Food and Drug Administration announced on Oct. 27 that it has approved, for the first time, an oncolytic (cancer-killing) viral therapy in the United States. The drug was approved for use against late-stage melanoma, a deadly skin cancer that can be difficult to treat.

The approval came as the result of a recent Phase III study, which showed that more patients with late-stage melanoma, treated with a herpes cold sore virus designed to kill , had a better response when compared to a different treatment. Robert Andtbacka, M.D., from Huntsman Cancer Institute at the University of Utah and Howard L. Kaufman, M.D., from Rutgers Cancer Institute of New Jersey, led the multisite study, published May 26 online in the Journal of Clinical Oncology.

SOURCE

https://medicalxpress.com/news/2015-10-fda-cancer-killing-cold-sore-virus.html

 

Additional Sources

T Cell Engineering Breakthrough Sidesteps Need for Viruses in Gene-Editing
UCSF News Center | Pete Farley | July 11, 2018

With Faster, Cheaper, More Precise Technique, Authors Say It’s ‘Off to the Races’ Toward New Cell

The basic unit of life. The number of cells in a living organism ranges from one (e.g. yeast) to quadrillions (e.g. blue whale). A cell is composed of four key macromolecules that allow it to function (protein, lipids, carbohydrates, and nucleic acids). Among other things, cells can build and break down molecules, move, grow, divide, and die.

” aria-describedby=”tt”>CellTherapies

In an achievement that has significant implications for research, medicine, and industry, UC San Francisco scientists have genetically reprogrammed the human immune cells known as T cells without using Virus

An infectious entity that can only persist by hijacking a host organism to replicate itself. Has its own genome, but is technically not considered a living organism. Viruses infect all organisms, from humans to plants to microbes. Multicellular organisms have sophisticated immune systems that combat viruses, while CRISPR systems evolved to stop viral infection in bacteria and archaea.

” aria-describedby=”tt”>viruses to insert DNA

Abbreviation of deoxyribonucleic acid, a long molecule that encodes the information needed for a cell to function or a virus to replicate. Forms a double-helix shape that resembles a twisted ladder. Different chemicals called bases, abbreviated as A, C, T, and G, are found on each side of the ladder, or strand. The bases have an attraction for each other, making A stick to T while C sticks to G. These rungs of the ladder are called base pairs. The sequence of these letters is called the genetic code.

” aria-describedby=”tt”>DNA. The researchers said they expect their technique — a rapid, versatile, and economical approach employing CRISPR

Pronounced “crisper.” An adaptive immune system found in bacteria and archaea, co-opted as a genome engineering tool. Acronym of “clustered regularly interspaced short palindromic repeats,” which refers to a section of the host genome containing alternating repetitive sequences and unique snippets of foreign DNA. CRISPR-associated surveillance proteins use these unique sequences as molecular mugshots as they seek out and destroy viral DNA to protect the cell.

” aria-describedby=”tt”>CRISPR Gene

A segment of DNA that encodes the information used to make a protein. Each gene is a set of instructions for making a particular molecular machine that helps a cell, organism, or virus function.

” aria-describedby=”tt”>gene-editing technology — to be widely adopted in the burgeoning field of cell therapy, accelerating the development of new and safer treatments for Cancer

A type of disease caused by uncontrolled growth of cells. Cancerous cells may form clumps or masses known as tumors, and can spread to other parts of the body through a process known as metastasis.

” aria-describedby=”tt”>cancer, autoimmunity, and other diseases, including rare inherited disorders.

The new method, described in the July 11, 2018 issue of Nature, offers a robust molecular “cut and paste” system to rewrite Genome

The entire DNA sequence of an organism or virus. The genome is essentially a huge set of instructions for making individual parts of a cell and directing how everything should run.

” aria-describedby=”tt”>genome sequences in human T cells. It relies on electroporation, a process in which an electrical field is applied to cells to make their membranes temporarily more permeable. After experimenting with thousands of variables over the course of a year, the UCSF researchers found that when certain quantities of T cells, DNA, and the CRISPR “scissors” are mixed together and then exposed to an appropriate electrical field, the T cells will take in these elements and integrate specified genetic sequences precisely at the site of a CRISPR-programmed cut in the genome.

“This is a rapid, flexible method that can be used to alter, enhance, and reprogram T cells so we can give them the specificity we want to destroy cancer, recognize infections, or tamp down the excessive immune response seen in autoimmune disease,” said UCSF’s Alex Marson, MD, PhD, associate professor of microbiology and immunology, member of the UCSF Helen Diller Family Comprehensive Cancer Center, and senior author of the new study. “Now we’re off to the races on all these fronts.”

But just as important as the new technique’s speed and ease of use, said Marson, also scientific director of biomedicine at the Innovative Genomics

The study of the genome, all the DNA from a given organism. Involves a genome’s DNA sequence, organization and control of genes, molecules that interact with DNA, and how these different components affect the growth and function of cells.

” aria-describedby=”tt”>Genomics Institute, is that the approach makes it possible to insert substantial stretches of DNA into T cells, which can endow the cells with powerful new properties. Members of Marson’s lab have had some success using electroporation and CRISPR to insert bits of genetic material into T cells, but until now, numerous attempts by many researchers to place long sequences of DNA into T cells had caused the cells to die, leading most to believe that large DNA sequences are excessively toxic to T cells.

SOURCE

https://innovativegenomics.org/news/t-cell-engineering-breakthrough-sidesteps-viruses/

 

Cancer Res. 2016 Aug 15; 76(16): 4627–4636.

Published online 2016 Jun 3. doi:  10.1158/0008-5472.CAN-15-3455

PMCID: PMC5295843

CAMSID: CAMS5780

PMID: 27261504

Design and Reporting of Targeted Anticancer Preclinical Studies: A Meta-Analysis of Animal Studies Investigating Sorafenib Antitumor Efficacy

James Mattina,1 Nathalie MacKinnon,1 Valerie C. Henderson,1 Dean Fergusson,2 andJonathan Kimmelman

 

Other 17 related articles published in this Online Scientific Journal include the following:

https://pharmaceuticalintelligence.com/category/oncolytic-virus-oncoviro-therapy/

Read Full Post »

Entrepreneurship in Biotech – Read this book!!!


Entrepreneurship in Biotech – Read this book!!!

Reporter: Aviva Lev-Ari, PhD, RN

 

ARE YOU INTERESTED IN #Entrepreneurship in Biotech??? – Read this book!!!

Hammer and Silicon: The Soviet Diaspora in the US Innovation Economy – Immigration, Innovation, Institutions, Imprinting, and Identity

by Sheila M. Puffer (Author), Daniel J. McCarthy  (Author), Daniel M. Satinsky  (Author)

Paperback – June 30, 2018

https://www.amazon.com/Hammer-Silicon-Innovation-Immigration-Institutions/dp/1316641260/ref=sr_1_1?s=books&ie=UTF8&qid=1536715051&sr=1-1&keywords=Hammer+and+SIlicon

Read Full Post »

Reactions to Original Tweets by @Pharma_BI and by @AVIVA1950 from #BIO2018


Reactions to Original Tweets by @Pharma_BI and by @AVIVA1950 from #BIO2018

Curator: Aviva Lev-Ari, PhD, RN

 

Please review:

https://pharmaceuticalintelligence.com/2018/06/11/re-tweets-and-likes-by-pharma_bi-aviva1950-from-bio2018-iambiotech-bioconvention-bio-2018-boston-june-4-7-2018-bcec/

 

https://pharmaceuticalintelligence.com/2018/06/11/original-tweets-by-pharma_bi-and-by-aviva1950-from-bio2018-iambiotech-bioconvention-bio-2018-boston-june-4-7-2018-bcec/

 

https://pharmaceuticalintelligence.com/2018/06/11/thriving-at-the-survival-calls-during-careers-in-the-digital-age-an-age-like-no-other-also-known-as-digital/

 

     liked a Tweet you were mentioned in

    4h4 hours ago

  1. Gail Thornton Retweeted @pharma_BI

    From Philip K Dick’s obtuse robots to Mark O’Connell’s guide to transhumanism, novelist Julian Gough picks essential reading for a helter skelter world. Can’t wait to read some of the top 10 books. to survive the digital age!

    Gail Thornton added,

     liked your Tweet

    Jun 8

    In case you missed Gail Thornton‘s Tweet

    Jun 8

  2. Gail Thornton Retweeted Aviva Lev-Ari

    Gail Thornton added,

     Retweeted your Tweet

    Jun 8

  3.  liked your Tweets

    Jun 8

    3 other likes

     liked your Tweet

    Jun 7

     liked your Tweet

    Jun 7

     liked your Tweet

    Jun 7

     Retweeted your Tweet

    Jun 7

     liked your Tweet

    Jun 7

  4. Replying to  

    Thanks to Pete Pellerito for keeping the academic zone going . It was great.

     liked your Tweet

    Jun 7

     liked your Tweet

    Jun 7

  5. Replying to   and 2 others

    👊👏🙏

     liked your reply

    Jun 7

     liked your Retweet

    Jun 7

  6.  Retweeted your Retweets

    Jun 6

    10 other Retweets

     Retweeted a Tweet you are mentioned in

    Jun 6

  7.  liked your Tweets

    Jun 6

    2 other likes

  8.  Retweeted your Tweet

    Jun 6

    1 other Retweet

     Retweeted your Tweet

    Jun 6

  9.  liked your Retweets

    Jun 6

    2 other likes

     Retweeted your Retweet

    Jun 6

     and  liked your Tweet

    Jun 6

     and  liked your Tweet

    Jun 6

     and  liked your Tweet

    Jun 6

     liked your Tweet

    Jun 6

     Retweeted your Tweet

    Jun 6

     liked your Tweet

    Jun 6

     liked your Tweet

    Jun 5

     and  liked a Tweet you were mentioned in

    Jun 5

    Recent Tweet from Gail Thornton

    Jun 5

  10. Translate Tweet

  11.  liked Tweets you were included in

    Jun 5

    1 other like

  12.  liked your Tweets

    Jun 5

    7 other likes

     liked your Tweet

    Jun 5

     Retweeted your Tweet

    Jun 4

     Retweeted your reply

    Jun 4

     liked your reply

    Jun 4

     liked your reply

    Jun 4

     liked your reply

    Jun 4

  13.  liked your Tweets

    Jun 4

    1 other like

     liked your Tweet

    Jun 3

Read Full Post »

Older Posts »